
Review for manuscript “A Hybrid Stochastic Rainfall Model That Reproduces Rainfall 

Characteristics at Hourly through Yearly Time Scale” 

The manuscript under review examines a mixed stochastic model using an autoregressive 

model (SARIMA) for the generation of monthly precipitation that is then disaggregated to 

hourly scale through a modified Bartlett-Lewis rectangular pulse (MBLRP) model. This 

method can capture the long-term behaviour of large scale (monthly) precipitation through 

the SARIMA model and, implicitly (through coupling), to preserve some statistical 

characteristics (e.g. marginal mean, variance and skewness, lag-1 autocorrelation, and dry 

proportions) of the small scale (hourly) precipitation through the MBLRP model, thus 

simulating some aspects of intermittency. The method is tested at 34 hourly stations located 

in USA where the monthly maxima were also well preserved there. 

The paper is well organized and well written and it matches the of HESS journal. My only 

concerns are that some significant points (related to the innovations of this work) may still 

need some additional justification and discussion on other stochastic methodologies. 

Although my field of expertise is not on Bartlett-Lewis models (but rather on stochastic 

synthesis of processes from small to large scales in an explicit manner) it is highly relevant to 

some innovative points of the Authors’ analysis. Therefore, I hope some of my comments 

and suggestions can contribute to the Authors’ methodology and help them improve it and 

highlight it to Readers interested in stochastic modelling of precipitation in general. 

Sincerely, 

Panayiotis Dimitriadis 

  



Major comments and suggestions 

The main innovations of the presented model is the coupling of a large scale model (such as 

the SARIMA) that can reproduce some long-term properties (e.g. long-term behaviour of 

autocorrelation and monthly maxima), and a small scale one (such as the MBLRP) that can 

capture some statistical properties of the short-term behaviour of precipitation (e.g. marginal 

mean, variance and skewness, lag-1 autocorrelation, and dry proportions). 

1) In other words, one of the innovations of this methodology is the coupling between an 

autoregressive model and a Bartlett-Lewis one, where often in literature is either a 

coupling of autoregressive models or of pulse models. In the first case, generalized linear 

models can reproduce the variability only at coarse time scales (“larger than one 

month”), whereas in the second case the (Poisson) cluster models cannot capture the 

large scale behaviour but can reproduce the small scale of storm events (P4L89 to P4L96). 

However, some of the approaches mentioned later in the text (P5L101 to P6L125) seem to 

propose how to tackle the above scale issues. For example, Koutsoyiannis (2001; see also 

Koutsoyiannis et al., 2003) suggested coupling several stochastic models of different 

scales and thus, preserving some small and large scale characteristics. Does the Authors’ 

proposed methodology (a) resolve some of the limitations of these models (P5L101 to 

P6L125), and if yes what are those, or (b) is it a new model that can equally reproduce 

what all these models also reproduce? I would suggest a discussion to this question to be 

added to the Abstract and at the end of the Introduction (P6L125), since it seems 

important in my opinion. 

2) Also, another innovation mentioned by the Authors is the modification of the Bartlett-

Lewis model in module 2 (Fig. 4, 5, sect. 3.2). More specific, a modification is proposed to 

the Bartlett-Lewis Poisson pulse model, where a dependency is now introduced between 

the storm Poisson events and thus, the proposed model can now better represent the 

short (and medium) term autocorrelation of precipitation in contrast to other Bartlett-

Lewis models in literature (e.g. the ones mentioned in P2L42 to P3L53). 

The Authors may find interesting to discuss some works by Lombardo et al. (2012; 2017) 

where they also use an innovative downscaling method that can generate fine scale 

precipitation by preserving some aspects of intermittency. Additionally, the Authors may 

be interested in discussing a recent work by Dimitriadis and Koutsoyiannis (2018) where 

it is shown how the above “scaling issue” can be dealt by directly generating the fine 

scale process from small to large scale and thus, explicitly preserving the large scale 

behaviour and some aspects of intermittency (through the preservation of joint-statistics; 

see also Appendix D where a comparison is made to the copula method). This explicit 

generation is achieved based on a Moving Average scheme and not an AutoRegressive 

(AR) one since as also is stated by the Authors the AR models cannot capture the small 

scale intermittent behaviour (P4L94: “Models based on autoregressive properties of 



rainfall are typically good at reproducing the observed rainfall variability only for a 

limited range of scales...”). 

3) Additionally, please consider a couple of comments on the module 2 methodology: 

A) In Eq. (5) the Authors estimate the lag-1 discrete autocorrelation, i.e. �̂(1), through an 

estimator ��(2)/��(1)/2 − 1 that corresponds to the true value of the lag-1 autocorrelation 

(i.e. �(2)/�(1)/2 − 1). However, the statistical bias (for a discussion please see 

Dimitriadis, 2017, sect. 2.4.5) is not seem to be taken under consideration. I believe the 

use of this estimator is not adequately (but rather empirically) justified and it is based on 

the assumption that: 

In case of an AR(1) model (Eq. 2) and for large timeseries samples, then E�
�(1)� ≈ 
(1) =
�(2)/�(1)/2 − 1. This can be derived based on the following analysis, where the 

expectation of autocovariance C(h) as a function of the cumulative variance V(h).is: 

E�
�(ℎ)� = �
�(�) �(� − ℎ)�(ℎ) + �(�)

� − �(�)/ℎ − �(���)
� �      (1) 

where �(ℎ) is related to the estimator of the autocovariance and is usually taken as n or n 

– 1 or n-h (Dimitriadis and Koutsoyiannis, 2015, Table 2, Eq. 9). Note that where �(�) =
�� (�) is the variance of the cumulative process vs. scale, or else called cumulative 

climacogram, and  (�) is the variance of the averaged process vs. scale, or else 

climacogram (Koutsoyiannis, 2016, and references therein). 

Therefore, for h = 1: 

E�
�(1)� = �
�(�) �(� − 1)
(1) + �(�)

� − �(�) − �(���)
� �     (2) 

We see that E�
�(1)� ≠ 
(1) = �(�)
� − �(1) + �(0) = �(�)

� − �(1). The above expressions 

may be used to correct the deviation between a straight line (y = x) as shown in Fig (5a) 

but also to help the Authors express the variances V(h) of different lags h with 

autocorrelation c(h) = C(h)/V(1), as shown in Eq. (5) of the manuscript. 

Furthermore to the justification, since the Authors have chosen an AR(1) model (Eq. 2), 

then  (ℎ) = �(ℎ)/ℎ� would behave like a white noise process in large scales (Dimitriadis 

and Koutsoyiannis, 2015, sect. 2.3) and thus, �(ℎ) ≈ #ℎ (where a constant). Therefore, for 

large samples, one may assume that (���)$(�)
�(�) ≈ 
(1), �(�)

�(�) ≈ #, �(���)
��(�) ≈ 0 and also 

�(�)
�(���) ≈ 0, and thus, it can be assumed that E�
�(1)� ≈ 
(1) + # = �(�)

� − �(1) + #, and for 

the autocorrelation, E��̂(1)� ≈ �(�)
��(�) − 1 + #′. In this case, P14L238 (“we therefore estimate 

the autocorrelation lag-1 of hourly rainfalls using �'(�)
��'(�) − 1 + (”) can be now also 

analytically justified. 

Alternatively, in case that the Authors wish to somehow take bias into consideration 

when estimating the autocorrelation c(1), they could suggest an estimator of lag-1 

autocovariance that is not only based on the cumulative variance but also takes into 

account the sample’s length n, then (for e.g., �(ℎ) = � − 1), we have that E�
�(1)� =

(1) + �(�)���(�)��(���)

�(���) , and thus for an AR(1) process an estimator for the lag-1 

autocorrelation could be: 



�̂(1) = �'(2)
2�'(1) − 1 + 1−#(�2+�−1)

�(�−1) =        (3) 

B) In Eq. (6) and (7) of the manuscript the Authors use an empirical expression for the 

mean and variances of the cumulative process. Based on the above analysis they could 

justify this linear approximation by the fact that for an AR(1) model (Eq. 2, P10L189) the 

variance of the cumulative process is (Dimitriadis and Koutsoyiannis, 2015, Table 4, Eq. 

18): 

�(ℎ) = 2)��(1) *�
+ + e��/+ − 1-        (4) 

where ) = −1/ln (�(1)) is the AR(1) parameter (see also Koutsoyiannis, 2016, Table 1, Eq. 

T1.2 and T1.3, and references therein). 

Therefore, the link of cumulative variances for different lags h is not always be close to 

linear but rather depends on the q parameter. For large q, or else small �(1), we have that 

�(ℎ) ≈ 2)��(1)(ℎ/) − 1) and so, �(ℎ)/�(ℎ0) ≈ * ��+
�1�+-, which is not a linear expression. 

Maybe the above configurations could explain the deviation from linearity (y=x) in Fig. 6 

C) Finally, in Eq. (3) the Authors linearly connect the mean of the process to the standard 

deviation and to the dry proportions. This is a very good result that I would recommend 

the Authors to further highlight as one of the empirical results of this work (for example 

in the Introduction), since for a larger scale such as daily the link between mean and 

standard deviation seems to be a rather power-type expression (e.g. Sotiriadou et al., 

2016, sect. 7). 

Also, since this a link based on the marginal distribution of precipitation rather than on 

its dependence structure, a more analytical justification could be that all the distributions 

applied to the Bartlett Lewis model (i.e. exponential, gamma and Poison) have a linear 

combination between their mean and standard deviation. For example, for the gamma 

distribution (i.e. 2(3) = 34��e�5
6/Γ(�)84) we have that μ/σ = √k, and similar results can be 

drawn for the other two distributions. Therefore, this could be another evidence that the 

proposed modified model MBLRP can describe well some properties of the fine scale 

precipitation. 

  



Minor comments and suggestions 

1) P1L27: “the observed rainfall record is oftentimes not long enough (Koutsoyiannis and 

Onof, 2001).”. 

The Authors could also add some of the drawbacks of the limited timeseries with large 

length n, such as for example the statistical bias (as discussed on the above 2nd comment). 

2) P2L41: “...so they are good at reproducing the first through the third order statistics of 

the observed rainfall...” 

What are “the first through third order statistics”? Do you mean first to third marginal 

statistics (i.e., mean, standard deviation and skewness)? Also, the title of the paper gives 

the impression that all the rainfall characteristics can be well reproduced. Maybe the title 

could be altered to “A Hybrid Stochastic Rainfall Model That Reproduces some 

important Rainfall Characteristics at Hourly through Yearly Time Scale”. The 

preservation of the first three (or even four with kurtosis) statistics is very important and 

sometimes preserving more is unnecessary. For example in Dimitriadis and 

Koutsoyiannis (2018, sect. 3.1 and sect. 4) a discussion is made for the impracticality of 

estimating high-order moments in geophysical processes and, in all applications there, it 

is exhibited that beyond the first four moments there is a negligible increase in accuracy 

of the representation of the marginal distribution. 

3) P3L57: “These model assumptions deprive the model of the ability to reproduce the long-

term memory of rainfall that is often observed in reality (Marani, 2003).” 

Do the Authors mean “short or medium memory”? Since their improvement (module 2) 

deals with the fact that Poisson events are considered independent and thus, by 

introducing a dependency among the rainfall events, the model’s short and medium term 

preservation is enhanced (see also P3L73: “...the Poisson cluster rainfall model because it 

can only reproduce short-term memory in the rainfall signal through its model 

structure...”). The long term behaviour is achieved by the SARIMA model that generates 

the large (monthly) scale precipitation. 

4) P4L81: “Here, the MBLRP model used the parameter set that was calibrated to reproduce 

the observed rainfall mean, variance, lag-1 auto-covariance, and proportion of dry 

periods at sub-daily aggregation intervals (1, 2, 4, 8, and 16-hour)…”. 

Why not adding the preservation of monthly skewness as shown in Fig. 9? 

5) P4L85: “that the variability of the observed rainfall is systematically greater than that of 

the synthetic rainfall.” 

P4L86: “In addition, the monthly extreme values shown as star marks are also 

underestimated by synthetic rainfall.” 

P4L87: “This is, in particular, caused by the aforementioned limitations of the Poisson 

cluster rainfall models.” 

Maybe this is also due to the bias effect as shown in the major comments above. 

6) P4L95: “Models based on autoregressive properties of rainfall are typically good at 

reproducing the observed rainfall variability only for a limited range of scales...”. 



Do you mean that mixed Autoregressive (AR) and Moving-Average (MA) models (such 

as the SARIMA model used here) are required to reproduce long-term behaviour, and 

that solely the AR models cannot achieve this? In fact, a Sum of arbitrary many AR 

models (SAR) can also preserve the long-term behaviour as recommended by 

Mandelbrot (1971). Also, a SAR algorithm with the parameters analytically estimated is 

introduced in Koutsoyiannis (2010) with 3 AR(1) models, where the long-term (or else 

called Hurst-Kolmogorov –HK-) behaviour is preserved for 1000 scales, and in 

Dimitriadis and Koutsoyiannis (2015, sect. 3 in suppl. mat.) with arbitrarily many AR(1) 

models, where the HK behaviour is preserved for as many scales as needed. 

7) P6L120: The Authors may find useful discussing other models (like SARIMA) that can 

reproduce the long-term behaviour (such as the SAR one mentioned above) as well as the 

monthly seasonality such as the Langousis and Koutsoyiannis (2006) and Efstratiadis, et 

al. (2014). 

8) Figure 5: “ε9 is a random number drawn from the normal distribution” is missing from 

the Figure’s legend at the lower left corner. 

9) Please consider moving Figures 6, 12, 13, 15, 16 and 19 (or some parts of them) to an 

Appendix or a supplementary material since, in my opinion, they are quite large for the 

main text. 

10) Also, I would recommend the Authors to add a Table with all the statistical 

characteristics of the 34 hourly stations (mean, stdev etc.) as well as the fitted parameters 

of the SARIMA and MBLRP models. 

11) P16L275: “Here, it should be noted that a time step with rainfall less than 0.5 mm was 

considered dry when the proportion of non-rainy period was calculated because small 

rainfall values are known to distort the “true” proportion of non-rainy period exerting an 

adverse effect on calibration process (Kim et al, 2016, Cross et al., 2018).” 

The value 0.5 mm may seem somehow arbitrary. Why not estimating the average of the 

lowest positive values (> 0) observed at the 34 timeseries and set this value as the dry 

threshold? 

12) Some comments on Fig. 10, which seems very interesting and in my opinion should be 

further discussed since it highlights (additionally to the other results) the strength of the 

applied method in terms of other methods existing in literature. Specifically: 

a) From this Fig. 10 one could estimate the Hurst parameter that is related to the 

significance of the long-term behaviour of the process. In fact, I made a rough estimation 

of the Hurst parameter (based on the log-log slope of the cumulative variance shown in 

the Figure below; for this method see also Koutsoyiannis, 2016), where H ≈ 0.6. This is 

also consistent to what the Authors mention on Marani (2003) about the long-term 

behaviour in P3L58, and to the global analysis of Iliopoulou et al. (2016) and Tyralis et al. 

(2018). 

Also, it can be shown at the Figure below that the MBLRP model can well preserve the 

short-term behaviour but not the long-term behaviour as the Authors mention, since the 

MBLRP model exhibits a white noise (WN) slope (as shown from the fitted dashed line). 



b) There is an evident smooth behaviour of the cumulative variance (or else cumulative 

climacogram, please see above comments) vs. scale as an estimator of the long-term 

behaviour as compared to the autocovariance (or autocorrelation) vs. lag, where a larger 

variability of the sample statistics at large lags could prevent depicting this behaviour. 

This diversity is discussed and thoroughly analyzed in Dimitriadis and Koutsoyiannis 

(2015), where the power spectrum is also compared to the other two estimators of 

autocovariance and climacogram, and it is found that the variability of the latter is 

smaller in large lags and thus, enabling a more accurate estimation of the long-term 

behaviour and of the Hurst parameter. 

c) Also, one could fit a more generalized process based on the Figure below and describe 

within a single expression of �(ℎ) how the cumulative climacogram is increasing from 

the finer to the larger scales h. In fact, a one-parameter power-type model (named HK, 

i.e., �(ℎ) = �(1)ℎ�:) or a more generalized two-parameters one (named GHK, i.e. 

�(ℎ) = ;ℎ�/(1 + ℎ/))���:, where coefficient ; = �(1)(1 + 1/))���:) seem to work also 

very well. Note that if one is focused to finer and finer scales, eventually the dependence 

structure of the cumulative process will also have to drop down to zero in a quicker 

manner than power-type (or in other words, it will have to stabilize at some point in 

terms of the dependence structure of the averaged process). It is interesting to mention 

that a similar HK and GHK behaviour has been detected to a daily precipitation 

timeseries (Dimitriadis and Koutsoyiannis, 2018, sect. 4.2, Fig. 4). The Authors may well 

use these results to further highlight their work in the sense that their proposed 

methodology seem to can very well preserve the expected dependence structure for a 

large range of scales and thus, it is equally strong to other methods that are based on the 

expected value of the cumulative climacogram. 



 
13) P29L443: “While significant variability is observed for all six parameters, the parameter 

μ, which represents the average rain cell intensity, showed the greatest variability, 

ranging over two orders of magnitudes.” 

This could be also justified by the fact that in long-term processes (such as the one 

examined in this paper) there seems to be a larger variability of the mean of the process 

rather than of some higher-order moments. The Authors may be interested in the 

analysis of Dimitriadis and Koutsoyiannis (2018), where in sect. 3.1, they present a 

benchmark case with a N(0,1) distribution and in Fig. 1 they show how the variability of 

the mean (in terms of its standard deviation) is changing as a function of the Hurst 

parameter, and in Fig. 2 how the variability of the mean is larger than that of the first 

four moments for a large range of scales. 

  

HK: V(h) = h2H , with H = 0.63

WN:  V(h) = h 

GHK: V(h) = λh2/(1+h/q)2-2H , with  H = 0.58, 

q = 1.5 hours and λ = (1+1/q)-2H = 1.5 mm2)
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