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The manuscript under review examines a mixed stochastic model using an autoregressive model
(SARIMA) for the generation of monthly precipitation that is then disaggregated to hourly scale through
a modified Bartlett-Lewis rectangular pulse (MBLRP) model. This method can capture the long-term
behaviour of large scale (monthly) precipitation through the SARIMA model and, implicitly (through
coupling), to preserve some statistical characteristics (e.g. marginal mean, variance and skewness, lag-
1 autocorrelation, and dry proportions) of the small scale (hourly) precipitation through the MBLRP
model, thus simulating some aspects of intermittency. The method is tested at 34 hourly stations located

in USA where the monthly maxima were also well preserved there.

The paper is well organized and well written and it matches the of HESS journal. My only concerns are
that some significant points (related to the innovations of this work) may still need some additional
justification and discussion on other stochastic methodologies. Although my field of expertise is not on
Bartlett-Lewis models (but rather on stochastic synthesis of processes from small to large scales in an
explicit manner) it is highly relevant to some innovative points of the Authors’ analysis. Therefore, |
hope some of my comments and suggestions can contribute to the Authors’ methodology and help them

improve it and highlight it to Readers interested in stochastic modelling of precipitation in general.
Sincerely,

Panayiotis Dimitriadis

Authors’ Response.

Dear Dr. Panayiotis Dimitriadis,

We sincerely appreciate your constructive comments on our manuscript. All your comments

tremendously helped us to improve the quality of the article. Our responses are as follow:

Dongkyun Kim, Ph.D.
Associate Professor, Department of Civil Engineering,

Hongik University, Seoul, Korea



Major Comments and suggestions

The main innovations of the presented model is the coupling of a large scale model (such as the
SARIMA) that can reproduce some long-term properties (e.g. long-term behaviour of autocorrelation
and monthly maxima), and a small scale one (such as the MBLRP) that can capture some statistical
properties of the short-term behaviour of precipitation (e.g. marginal mean, variance and skewness, lag-

1 autocorrelation, and dry proportions).

Comment 1. In other words, one of the innovations of this methodology is the coupling between an
autoregressive model and a Bartlett-Lewis one, where often in literature is either a coupling of
autoregressive models or of pulse models. In the first case, generalized linear models can reproduce the
variability only at coarse time scales (“larger than one month”), whereas in the second case the (Poisson)
cluster models cannot capture the large scale behaviour but can reproduce the small scale of storm
events (P4L89 to P4L.96). However, some of the approaches mentioned later in the text (PSL101 to
P6L.125) seem to propose how to tackle the above scale issues. For example, Koutsoyiannis (2001; see
also Koutsoyiannis et al., 2003) suggested coupling several stochastic models of different scales and
thus, preserving some small and large scale characteristics. Does the Authors’ proposed methodology
(a) resolve some of the limitations of these models (PSL101 to P6L.125), and if yes what are those, or
(b) is it a new model that can equally reproduce what all these models also reproduce? I would suggest
a discussion to this question to be added to the Abstract and at the end of the Introduction (P6L125),

since it seems important in my opinion.

Authors’ Response. Thanks for this comment. We believe that our model has merits in both
perspectives: it overcomes the limitations of the existing models and it is a new model. We added the

following sentence to the manuscript following your suggestion:

“...scale such as mean, variance, covariance, and proportion of dry periods, which existing composite
approaches that are not based on Poisson cluster rainfall models showed limitations in reproducing

especially at sub-daily scale.”

Koutsoyiannis et al. (2003) primarily discusses the algorithm of rainfall disaggregation from daily scale

to the finer scale, so we briefly mentioned about this in the conclusion section as follow:

“A multivariate downscaling approach (Koutsoyiannis et al., 2003; Moon et al., 2016) may be applied

to obtain spatially consistent rainfall at multiple sites.”

Reference. Koutsoyiannis, D., Onof, C. and Wheater, H. S.: Multivariate rainfall disaggregation at a
fine timescale, Water Resour. Res., 39, 2003.



Moon, J., Kim, J., Moon, Y., and Kwon, H., A development of multisite hourly rainfall simulation
technique based on Neyman-Scott rectangular pulse model, J. Korea Water Resour. Assoc., 49(11), 913-

922, 2016.

Comment 2. Also, another innovation mentioned by the Authors is the modification of the Bartlett-
Lewis model in module 2 (Fig. 4, 5, sect. 3.2). More specific, a modification is proposed to the Bartlett-
Lewis Poisson pulse model, where a dependency is now introduced between the storm Poisson events
and thus, the proposed model can now better represent the short (and medium) term autocorrelation of
precipitation in contrast to other Bartlett-Lewis models in literature (e.g. the ones mentioned in P2L42
to P3L53). The Authors may find interesting to discuss some works by Lombardo et al. (2012; 2017)
where they also use an innovative downscaling method that can generate fine scale precipitation by
preserving some aspects of intermittency. Additionally, the Authors may be interested in discussing a
recent work by Dimitriadis and Koutsoyiannis (2018) where it is shown how the above “scaling issue”
can be dealt by directly generating the fine scale process from small to large scale and thus, explicitly
preserving the large scale behaviour and some aspects of intermittency (through the preservation of
joint-statistics; see also Appendix D where a comparison is made to the copula method). This explicit
generation is achieved based on a Moving Average scheme and not an AutoRegressive (AR) one since
as also is stated by the Authors the AR models cannot capture the small scale intermittent behaviour
(P4L94: “Models based on autoregressive properties of rainfall are typically good at reproducing the

observed rainfall variability only for a limited range of scales...”).

Authors’ Response. Thanks for the suggestions. We believe that Lombardo et al. (2012, 2017) may
better be categorized as disaggregation model, so we added the discussion on this in the conclusion

section for future improvement as follow:

“An additional model could be integrated to our hybrid model to incorporate further rainfall variability,
for example, an approach based on random cascades (Lombardo et al., 2012, 2017; Molnar and

Burlando, 2005; Miiller and Haberlandt, 2016; Pohle et al., 2018)”

We added the discussion about Dimitriadis and Koutsoyiannis (2018) in the methodology section as

follow:

“Furthermore, some recent models assuming an autoregressive process (Langousis and Koutsoyiannis,
2006; Koutsoyiannis, 2010; Efstratiadis et al., 2014; Dimitriadis and Koutsoyiannis, 2015, 2018)
succeeded in reproducing the various statistical properties of the observed rainfall at wider range of

scales”

Reference. Dimitriadis, P. and Koutsoyiannis, D.: Climacogram versus autocovariance and power



spectrum in stochastic modelling for Markovian and Hurst—Kolmogorov processes, Stoch. Env. Res.

Risk A., 29, 1649-1669, 2015.

Dimitriadis, P. and Koutsoyiannis, D.: Stochastic synthesis approximating any process dependence and

distribution, Stoch. Env. Res. Risk A., 32, 1493-1515, 2018.

Efstratiadis, A., Dialynas, Y. G., Kozanis, S. and Koutsoyiannis, D.: A multivariate stochastic model for
the generation of synthetic time series at multiple time scales reproducing long-term persistence,

Environ. Modell. Softw., 62, 139-152, 2014.

Koutsoyiannis, D.: HESS Opinions" A random walk on water", Hydrol. Earth Syst. Sc., 14, 585-601,
2010.

Langousis, A. and Koutsoyiannis, D.: A stochastic methodology for generation of seasonal time series

reproducing overyear scaling behaviour, J. Hydrol., 322, 138-154, 2006.

Lombardo, F., Volpi, E. and Koutsoyiannis, D.: Rainfall downscaling in time: theoretical and empirical
comparison between multifractal and Hurst-Kolmogorov discrete random cascades, Hydrolog. Sci. J.,

57, 1052-1066, 2012.

Lombardo, F., Volpi, E., Koutsoyiannis, D. and Serinaldi, F.: A theoretically consistent stochastic

cascade for temporal disaggregation of intermittent rainfall, Water Resour. Res., 53, 4586-4605, 2017.

Comment 3. Additionally, please consider a couple of comments on the module 2 methodology:

Comment 3A. In Eq. (5) the Authors estimate the lag-1 discrete autocorrelation, i.e. &(1), through an
estimator V(2)/V(1)/2—1 that corresponds to the true value of the lag-1 autocorrelation (i.e.
V(2)/V(1)/2 — 1). However, the statistical bias (for a discussion please see Dimitriadis, 2017, sect.
2.4.5) is not seem to be taken under consideration. I believe the use of this estimator is not adequately

(but rather empirically) justified and it is based on the assumption that:

In case of an AR(1) model (Eq. 2) and for large timeseries samples, then E[é (1)] ~C(1) =
V(2)/V(1) /2 — 1. This can be derived based on the following analysis, where the expectation of

autocovariance C(h) as a function of the cumulative variance V(h) is:

V(h)

1
n

E[C®)] = 755

(= W) + 22— vy - ) (1)

where ((h) is related to the estimator of the autocovariance and is usually taken as n or n—1 or n-h

Dimitriadis and Koutsoyiannis, 2015, Table 2, Eq. 9). Note that where V (k) = k?y(k) is the variance
y q



of the cumulative process vs. scale, or else called cumulative climacogram, and y (k) is the variance
of the averaged process vs. scale, or else climacogram (Koutsoyiannis, 2016, and references therein).

Therefore, for h = 1:

BlC)] = 5 (= De@ + X2 - v(m) - 12=2) @

¢

We see that E[C(l)] =C() = @ -V(@)+Vv() = @ — V(1). The above expressions may be

used to correct the deviation between a straight line (y = x) as shown in Fig (5a) but also to help the
Authors express the variances V(h) of different lags h with autocorrelation c(h) = C(h)/V (1), as

shown in Eq. (5) of the manuscript.

Furthermore to the justification, since the Authors have chosen an AR(1) model (Eq. 2), then y(k) =
V(h)/h? would behave like a white noise process in large scales (Dimitriadis and Koutsoyiannis, 2015,

sect. 2.3) and thus, V(&) = ah (where a constant). Therefore, for large samples, one may assume that

(n— 1)C(1) V(n) V(n—l) - V(1) ~ .
e c(1),— OO 0 and also e 0, and thus, it can be assumed that
V(2) V(2)
E[C(l)] # C(1) + a = —— V(1) + a, and for the autocorrelation, E[C(l)] —V@)+a'. In
( )

this case, P14L.238 (“we therefore estimate the autocorrelation lag-1 of hourly rainfalls using — —

1+ €'") can be now also analytically justified.

Alternatively, in case that the Authors wish to somehow take bias into consideration when estimating
the autocorrelation c(1), they could suggest an estimator of lag-1 autocovariance that is not only based

on the cumulative variance but also takes into account the sample’s length n, then (for e.g., {(h)=n—

V(1)-nv(n)-v(n-1)
n(n-1)

1), we have that E[ﬁ(l)] =C(1)+

, and thus for an AR(1) process an estimator for
the lag-1 autocorrelation could be:

_ 1-a(n?+n-1)
T 2P n(n-1)

(3)

Authors’ Response. We truly appreciate this elaborated comment. It is indeed a brilliant derivation.
However, the context in which Equation 5 was used is not assuming that the rainfall process follows
AR(1) process, but it investigates the relationship between statistics of observed rainfall with a more
complex temporal correlation structure. That is, the monthly means are modelled using a SARIMA
process. The confusion probably arises from the fact that equation (2) has the general form typical of
an AR(1). But this equation relates, not terms of a single time-series at consecutive times, but different
monthly statistics of the rainfall signal. Therefore, per reviewer’s permission, we would like to keep

using the original equations, and add the following sentence explaining the bias term:

“Figure 7a reveals that there exist discrepancies between the true ¢(1) and its estimator (c(1)), which



are known to primarily depend on the sample size (Panayiotis and Koutsoyiannis, 2015; Koutsoyiannis,

2016).”

Reference. Dimitriadis, P. and Koutsoyiannis, D.: Climacogram versus autocovariance and power
spectrum in stochastic modelling for Markovian and Hurst—-Kolmogorov processes, Stoch. Env. Res.

Risk A., 29, 1649-1669, 2015.

Koutsoyiannis, D.: Generic and parsimonious stochastic modelling for hydrology and beyond,

Hydrolog. Sci. J., 61, 225-244, 2016.

Comment 3B. In Eq. (6) and (7) of the manuscript the Authors use an empirical expression for the
mean and variances of the cumulative process. Based on the above analysis they could justify this linear
approximation by the fact that for an AR(1) model (Eq. 2, P10L189) the variance of the cumulative
process is (Dimitriadis and Koutsoyiannis, 2015, Table 4, Eq.18):

V(h) = 2q2V(1)(§ +eMa_1) (4)

where g =—1/In (c(1)) is the AR(1) parameter (see also Koutsoyiannis, 2016, Table 1, Eq.T1.2 and T1.3,

and references therein).

Therefore, the link of cumulative variances for different lags h is not always be close to linear but rather

depends on the q parameter. For large g, or else small ¢(1), we have that V(h) = 2q?V(1)(h/q — 1)

h—-q
h'—q

and so, V(h)/V(h') = (), which is not a linear expression. Maybe the above configurations could

explain the deviation from linearity (y=x) in Fig. 6

Authors’ Response. Again, we are not assuming the AR(1) process here, but it is an investigation on
the observed rainfall. Therefore, per reviewer’s permission, we would like to keep our narratives as they

are.

Comment 3C. Finally, in Eq. (3) the Authors linearly connect the mean of the process to the standard
deviation and to the dry proportions. This is a very good result that I would recommend the Authors to
further highlight as one of the empirical results of this work (for example in the Introduction), since for
a larger scale such as daily the link between mean and standard deviation seems to be a rather power-

type expression (e.g. Sotiriadou et al., 2016, sect. 7).

Also, since this a link based on the marginal distribution of precipitation rather than on its dependence

structure, a more analytical justification could be that all the distributions applied to the Bartlett Lewis



model (i.e. exponential, gamma and Poison) have a linear combination between their mean and standard

X

deviation. For example, for the gamma distribution (i.e. f(x) = x*~1e™8/T'(k)0*) we have that w/c =
\/k, and similar results can be drawn for the other two distributions. Therefore, this could be another
evidence that the proposed modified model MBLRP can describe well some properties of the fine scale

precipitation.

Authors’ Response. The link between the mean and standard deviation of the rainfall depth cannot be
examined analytically because we do not have the distribution of the total depth at a given time-scale.
The total depth over a duration At is the sum of the contributions from the cells that are “alive” during
At. It is true that, for the intensity of an individual cell, the relations that you point out exist. But this is
not the case for the total depth over At. You question relates to a point made by another reviewer. We

would like to share with you on what has been previously discussed about this topic as follow:

(RC3) Comment 2. Also, it is not immediate to me how all these relations between rainfall statistics can be
linearly related, especially rainfall mean and wet fraction. I think it would be helpful to show how these linear
relations hold for all the stations in the study, not just a sample rain gauge. Is it possible they depend on
season/rainfall regimes?

(RC3) Authors’ Response. Regarding the linearity, we prepared the plots for all gauge locations and all seasons,
which can be accessed through the following website:

http://www.letitrain.info/

Here are some notes about our linearity assumptions:

Q) We assumed that the hourly standard deviation (S;), but not the hourly variance (V), is linearly
correlated to the hourly mean (M) as suggested by the black scatters in Figure 6(a). After we
generated S| from M, based on this relationship, we took the square of it to obtain the hourly variance
(V1). We believe that the linearity between M; and S; is not a bold assumption considering numerous

previous studies that models the rainfall distribution as exponential (mean = A", standard deviation
= A'!) or gamma (mean = k6, standard deviation = k%38) distribution;

(i) The linearity between the variance at different aggregation intervals can be explained by the
following equation given in the manuscript.

Var(Y®") = var(vP)) + Var(YP) + 2cov(v,, v

- 2i-1’

VZh = ZVh + ZCh(l)

YZ(L.h_)1 and Yz(ih ) are independent, then we get a linear
regression with the gradient of 2 (V,;, = 2V},). Second, if Yz(ih_)1 and Yz(ih ) were identical, then the
covariance is equal to the variance, so we would get V,, = 4V},.

We can consider two extreme cases. First, if

(iii) We could not find the studies that explicitly deals with relationship between hourly mean and hourly
proportion of dry periods (M; vs Py). However, our empirical analysis at all 34 stations suggests a
strong linear relationship between the two variables. Please see the figures at:

http://www.letitrain.info/

(iv) Regarding the relationship between the proportions of dry periods at different aggregation intervals,
Onof et al. (1994) showed that the mean number of events at time scale 4, is given by the following
relation to the proportions dry period:



Pp

E(Ny) =

Pp=P3zp

By rearranging the equation, we get:

P,y =P, (1 - ﬁ)

This, therefore, suggests looking at whether the coefficient here is reasonably stable and therefore
whether there is a linear relationship between these two proportions dry.

(RC3) Reference. Onof, C., Wheater, H. S. and Isham, V.: Note on the analytical expression of the inter-event
time characteristics for Bartlett-Lewis type rainfall models, Journal of hydrology, 157, 197-210, 1994.

In addition, following sentence was added in the manuscript following your suggestion:

“The linear relationships were also identified at all other gauges investigated. This is a secondary yet
significant finding of this study: a simple linearity can accurately express the relationship between the
variables reflecting such a chaotic and dynamic interactions occurring in natural phenomena concerning
rainfall. Also note that the linearity established here applies only to sub-daily time scale. For example,
a power-law may better express the relationship between the mean and standard deviation at daily scale

(Sotiriadou et al, 2016).”

Reference. Sotiriadou, A., Petsiou, A., Feloni, E., Kastis, P., lliopoulou, T., Markonis, Y., Tyralis, H.,
Dimitriadis, P. and Koutsoyiannis, D.: Stochastic investigation of precipitation process for climatic

variability identification, in: EGU General Assembly Conference Abstracts, 2016.

Minor Comments and suggestions

2

1) P1L27: “the observed rainfall record is oftentimes not long enough (Koutsoyiannis and Onof, 2001).”.

The Authors could also add some of the drawbacks of the limited timeseries with large length n, such

as for example the statistical bias (as discussed on the above 2nd comment).

Authors’ Response. Thanks for the suggestion. We believe that the bias you mentioned in the Comment
#2 concerning the term c¢(1) is reduced as the length of the time series becomes longer. Therefore, we

would like to keep the narrative as they are.

2) P2L41: “...so they are good at reproducing the first through the third order statistics of the observed

rainfall...”

What are “the first through third order statistics”? Do you mean first to third marginal statistics (i.e.,
mean, standard deviation and skewness)? Also, the title of the paper gives the impression that all the
rainfall characteristics can be well reproduced. Maybe the title could be altered to “A Hybrid Stochastic
Rainfall Model That Reproduces some important Rainfall Characteristics at Hourly through Yearly

Time Scale”. The preservation of the first three (or even four with kurtosis) statistics is very important



and sometimes preserving more is unnecessary. For example in Dimitriadis and Koutsoyiannis (2018,
sect. 3.1 and sect. 4) a discussion is made for the impracticality of estimating high-order moments in
geophysical processes and, in all applications there, it is exhibited that beyond the first four moments

there is a negligible increase in accuracy of the representation of the marginal distribution.
Authors’ Response.

e Thanks for the suggestion. The Poisson cluster rainfall models handle also the covariance term,
which is not marginal statistics. Therefore, saying “marginal” there would be misleading.

Therefore, we would like to keep the text as it is here.
e The title has been changed as suggested.

e Regarding the importance of the 1st through 4th order statistics in hydrological problem, we

totally agree. I also wrote an article on this. Please refer to: Kim and Olivera, (2011)
We added the following sentence in the manuscript:

“Figure 12 compares the mean, variance, lag-1 autocorrelation, skewness, and the proportion
of dry periods of the synthetic (x) and observed (y) rainfall time-series at hourly through 16
hourly aggregation levels. Here, we discuss the first three moments only (i.e. mean, variance,
auto-correlation, and skewness) because of their relative greater importance compared to the

higher moments (Kim and Olivera, 2011; Dimitriadis and Koutsoyiannis, 2018).”

Reference. Kim, D. and Olivera, F.: Relative importance of the different rainfall statistics in the

calibration of stochastic rainfall generation models, J. Hydrol. Eng., 17, 368-376, 2011.

Dimitriadis, P. and Koutsoyiannis, D.: Stochastic synthesis approximating any process dependence and

distribution, Stoch. Env. Res. Risk A., 32, 1493-1515, 2018.

3) P3L57: “These model assumptions deprive the model of the ability to reproduce the long-term

memory of rainfall that is often observed in reality (Marani, 2003).”

Do the Authors mean “short or medium memory”? Since their improvement (module 2) deals with the
fact that Poisson events are considered independent and thus, by introducing a dependency among the
rainfall events, the model’s short and medium term preservation is enhanced (see also P3L73: “...the
Poisson cluster rainfall model because it can only reproduce short-term memory in the rainfall signal
through its model structure...”). The long term behaviour is achieved by the SARIMA model that

generates the large (monthly) scale precipitation.

Authors’ Response. Thanks for this suggestion. Your understanding is accurate and precise. It is just



that the term “deprive A of B” actually means that “removes B from A.”

4) P4AL81: “Here, the MBLRP model used the parameter set that was calibrated to reproduce the
observed rainfall mean, variance, lag-1 auto-covariance, and proportion of dry periods at sub-daily

aggregation intervals (1, 2, 4, 8, and 16-hour)...”.
Why not adding the preservation of monthly skewness as shown in Fig. 9?

Authors’ Response. Thanks for the suggestion. We added the skewness to the plot and added the

sentences following your suggestion:



(a) Calibration
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(b) Validation
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Figure 12: Comparison of the statistics of the synthetic (x) and observed (y) rainfall time series at sub-daily time scale.
The colour of the dots represents the statistics of each calendar month. The results of (a) the calibration period (1981-

2010) and (b) the validation period (1951-1980) are shown.

“Figure 12 compares the mean, variance, lag-1 autocorrelation, skewness, and the proportion of dry

periods of the synthetic (x) and observed (y) rainfall time-series at hourly through 16 hourly aggregation

levels. Here, we discuss the first through the third order moments only (i.e. mean, variance, auto-

correlation, and skewness) because of their relatively greater importance compared to the higher

moments (Kim and Olivera., 2011; Dimitriadis and Koutsoyiannis, 2018). Each scatter plot represents

the statistics at a given gauge for a given calendar month. The colours of the points on the plots represent



the calendar months. In each plot, the coefficient of determination (R?) of the linear regression between
the two variables is shown. All five statistics were accurately reproduced across various sub-daily time
scales with R? equal to 0.98 (mean), and varying between the following limits for the other statistics:
0.90 and 0.93 (variance), 0.58 and 0.93 (lag-1 autocorrelation), 0.44 and 0.89 (skewness), and 0.67 and
0.85 (proportion of dry periods) for the calibration period (Figure 12a). Similar ranges of coefficient of

determination were obtained for the validation period (Figure 12b).”

5) PALSS: “that the variability of the observed rainfall is systematically greater than that of the synthetic

rainfall.”

P4L.86: “In addition, the monthly extreme values shown as star marks are also underestimated by

synthetic rainfall.”

P4L87: “This is, in particular, caused by the aforementioned limitations of the Poisson cluster rainfall

models.”
Maybe this is also due to the bias effect as shown in the major comments above.

Authors’ Response. Thanks for the suggestion. The bias mentioned in the major comment is primarily
concerning the one induced in the covariance term, which is not systematically biased toward the
positive or negative side (See Figure 7b). The bias mentioned in the article is a systematic
underestimation of variance, so its primary source cannot be attributed to what was mentioned in the
major comment. In addition, this systematic bias has been discussed by numerous articles on Poisson
cluster rainfall model (See Marani, 2003). Therefore, we would like to keep the original narratives as

they are.

Reference. Marani, M.: On the correlation structure of continuous and discrete point rainfall, Water
Resour. Res., 39, 2003.

6) P4L95: “Models based on autoregressive properties of rainfall are typically good at reproducing the

observed rainfall variability only for a limited range of scales...”.

Do you mean that mixed Autoregressive (AR) and Moving-Average (MA) models (such as the
SARIMA model used here) are required to reproduce long-term behaviour, and that solely the AR
models cannot achieve this? In fact, a Sum of arbitrary many AR models (SAR) can also preserve the
long-term behaviour as recommended by Mandelbrot (1971). Also, a SAR algorithm with the
parameters analytically estimated is introduced in Koutsoyiannis (2010) with 3 AR(1) models, where

the long-term (or else called Hurst-Kolmogorov —HK-) behaviour is preserved for 1000 scales, and in



Dimitriadis and Koutsoyiannis (2015, sect. 3 in suppl. mat.) with arbitrarily many AR(1) models, where

the HK behaviour is preserved for as many scales as needed.

Authors’ Response. Thanks for the suggestion. Here, we did not intend to compare the AR type models
and the ARMA model types. We meant that both models have limitations in reproducing the variability
of rainfall at sub-daily scale. However, we totally acknowledge the recent development done on the AR

type models. Therefore, we added the following sentence in the manuscript:

“Furthermore, some recent models assuming an autoregressive process (Langousis and Koutsoyiannis,
2006; Koutsoyiannis, 2010; Efstratiadis et al., 2014; Dimitriadis and Koutsoyiannis, 2015; 2018)
succeeded in reproducing the various statistical properties of the observed rainfall over a wider range

of scales.”

7) P6L120: The Authors may find useful discussing other models (like SARIMA) that can reproduce
the long-term behaviour (such as the SAR one mentioned above) as well as the monthly seasonality

such as the Langousis and Koutsoyiannis (2006) and Efstratiadis, et al. (2014).

Authors’ Response. Thanks for the suggestion. We added the following sentence according to the

reviewer’s suggestion:

“Furthermore, some recent models assuming an autoregressive process (Langousis and Koutsoyiannis,
2006; Koutsoyiannis, 2010; Efstratiadis et al., 2014; Dimitriadis and Koutsoyiannis, 2015; 2018)
succeeded in reproducing the various statistical properties of the observed rainfall over a wider range

of scales.”

8) Figure 5: “€9 is a random number drawn from the normal distribution” is missing from the Figure’s

legend at the lower left corner.
Authors’ Response. We modified the figure and the caption as follow:

€] : a perturbation term randomly drawn from a uni- or bi-variate normal distribution.
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9) Please consider moving Figures 6, 12, 13, 15, 16 and 19 (or some parts of them) to an Appendix or

a supplementary material since, in my opinion, they are quite large for the main text.

Authors’ Response. Thanks for the suggestion. However, we believe that existing the existing

presentation should be preserved for consistency in the description of the results.

10) Also, I would recommend the Authors to add a Table with all the statistical characteristics of the 34
hourly stations (mean, stdev etc.) as well as the fitted parameters of the SARIMA and MBLRP models.

Authors’ Response. Thanks for the suggestion. It would be quite cumbersome to include this, even in
an appendix. However, the analysis results of all 34 stations are provided at the website

“http://www.letitrain.info”

11) P16L275: “Here, it should be noted that a time step with rainfall less than 0.5 mm was considered
dry when the proportion of non-rainy period was calculated because small rainfall values are known to
distort the “true” proportion of non-rainy period exerting an adverse effect on calibration process (Kim

et al, 2016, Cross et al., 2018).”

The value 0.5 mm may seem somehow arbitrary. Why not estimating the average of the lowest positive

values (> 0) observed at the 34 timeseries and set this value as the dry threshold?



Authors’ Response. Thanks for the suggestions. The issue here is that the lowest positive value that
you suggested to apply would distort the proportion of dry periods. The threshold value of 0.5mm seems

to be reasonable according to these two references, so we would like to keep this value.

12) Some comments on Fig. 10, which seems very interesting and in my opinion should be further
discussed since it highlights (additionally to the other results) the strength of the applied method in

terms of other methods existing in literature. Specifically:

12a) From this Fig. 10 one could estimate the Hurst parameter that is related to the significance of the
long-term behaviour of the process. In fact, I made a rough estimation of the Hurst parameter (based on
the log-log slope of the cumulative variance shown in the Figure below; for this method see also
Koutsoyiannis, 2016), where H = 0.6. This is also consistent to what the Authors mention on Marani
(2003) about the long-term behaviour in P3L58, and to the global analysis of Iliopoulou et al. (2016)
and Tyralis et al. (2018).

Authors’ Response. Thanks for the suggestion. The two papers you mentioned about the long-term

rainfall persistence have been mentioned in the manuscript as follows:

“Large scale rainfall temporal variability (Iliopoulou et al., 2016; Tyralis et al., 2018) influences long-
term resilience of human-flood systems (Yu et al., 2017), human health (Patz et al., 2005), food
production (Shisanya et al., 2011), and the evolution of human society (Warner and Afifi, 2014) and
ecosystems (Borgogno et al., 2007; Fernandez-Illescas and Rodriguez-Iturbe, 2004).”

Reference. Iliopoulou, T., Papalexiou, S. M., Markonis, Y. and Koutsoyiannis, D.: Revisiting long-

range dependence in annual precipitation, J. Hydrol., 2016.

Tyralis, H., Dimitriadis, P., Koutsoyiannis, D., O'Connell, P. E., Tzouka, K. and Iliopoulou, T.: On the
long-range dependence properties of annual precipitation using a global network of instrumental
measurements, Adv. Water Resour., 111, 301-318, 2018.

Also, it can be shown at the Figure below that the MBLRP model can well preserve the short-term
behaviour but not the long-term behaviour as the Authors mention, since the MBLRP model exhibits a

white noise (WN) slope (as shown from the fitted dashed line).

12b) There is an evident smooth behaviour of the cumulative variance (or else cumulative climacogram,
please see above comments) vs. scale as an estimator of the long-term behaviour as compared to the
autocovariance (or autocorrelation) vs. lag, where a larger variability of the sample statistics at large

lags could prevent depicting this behaviour. This diversity is discussed and thoroughly analyzed in



Dimitriadis and Koutsoyiannis (2015), where the power spectrum is also compared to the other two
estimators of autocovariance and climacogram, and it is found that the variability of the latter is smaller
in large lags and thus, enabling a more accurate estimation of the long-term behaviour and of the Hurst

parameter.

12¢) Also, one could fit a more generalized process based on the Figure below and describe within a
single expression of V(%) how the cumulative climacogram is increasing from the finer to the larger
scales h. In fact, a one-parameter power-type model (named HK, i.e., V(h) = V(1)h?H) or a more
generalized two-parameters one (named GHK, i.e. V(h) = 2h?/(1+ h/q)* 2", where coefficient
A=V(1)(1+1/q)?> %" seem to work also very well. Note that if one is focused to finer and finer
scales, eventually the dependence structure of the cumulative process will also have to drop down to
zero in a quicker manner than power-type (or in other words, it will have to stabilize at some point in
terms of the dependence structure of the averaged process). It is interesting to mention that a similar
HK and GHK behaviour has been detected to a daily precipitation timeseries (Dimitriadis and
Koutsoyiannis, 2018, sect. 4.2, Fig. 4). The Authors may well use these results to further highlight their
work in the sense that their proposed methodology seem to can very well preserve the expected
dependence structure for a large range of scales and thus, it is equally strong to other methods that are

based on the expected value of the cumulative climacogram.

Authors’ Response. We truly appreciate this thoughtful and insightful comment from the reviewer. We

added the following text to the manuscript following your suggestion:

“In addition, the behaviour based on the two-parameter Generalized Hurst-Kolmogorov process (gray,
GHK hereafter, Koutsoyiannis, 2016; Dimistriadis and Koutsoyiannis, 2018) are shown together. The
good fit between the GHK behaviour (gray) and the observed ones (black and green) indicates that the

observed rainfall has a clear long-term persistency, which is also a feature of all 34 NCDC gages.”

Reference. Dimitriadis, P. and Koutsoyiannis, D.: Stochastic synthesis approximating any process

dependence and distribution, Stoch. Env. Res. Risk A., 32, 1493-1515, 2018.

Koutsoyiannis, D.: Generic and parsimonious stochastic modelling for hydrology and beyond,

Hydrolog. Sci. J., 61, 225-244, 2016.
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13) P29L.443: “While significant variability is observed for all six parameters, the parameter Y, which

represents the average rain cell intensity, showed the greatest variability, ranging over two orders of

magnitudes.”

This could be also justified by the fact that in long-term processes (such as the one examined in this
paper) there seems to be a larger variability of the mean of the process rather than of some higher-order
moments. The Authors may be interested in the analysis of Dimitriadis and Koutsoyiannis (2018), where
in sect. 3.1, they present a benchmark case with a N(0,1) distribution and in Fig. 1 they show how the
variability of the mean (in terms of its standard deviation) is changing as a function of the Hurst
parameter, and in Fig. 2 how the variability of the mean is larger than that of the first four moments for

a large range of scales.

Authors’ Response. Thanks for this suggestion. We added the following sentence following your

suggestion:

“Dimitriadis and Koutsoyiannis (2018) performed a similar experiment where a given degree of
stochasticity was introduced to the parameter representing the rainfall mean, which subsequently

influenced the higher order moments at large time scale.”

Reference. Dimitriadis, P. and Koutsoyiannis, D.: Stochastic synthesis approximating any process

dependence and distribution, Stoch. Env. Res. Risk A., 32, 1493-1515, 2018.
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Abstract. A novel approach to stochastic rainfall generation that can reproduce various statistical characteristics of observed
rainfall at hourly through yearly time scale is presented. The model uses the Seasonal Auto-Regressive Integrated Moving
Average (SARIMA) model to generate monthly rainfall. Then, it downscales the generated monthly rainfall to the hourly
aggregation level using the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) model, a type of Poisson cluster rainfall
model. Here, the MBLRP model is carefully calibrated such that it can reproduce the sub-daily statistical properties of observed
rainfall. This was achieved by first generating a set of fine scale rainfall statistics reflecting the complex correlation structure
between rainfall mean, variance, auto-covariance, and proportion of dry periods, and then coupling it to the generated monthly
rainfall, which were used as the basis of the MBLRP parameterization. The approach was tested on 34 gauges located in the
Midwest to the East Coast of the Continental United States with a variety of rainfall characteristics. The results of the test
suggest that our hybrid model accurately reproduces the first through the third order statistics as well as the intermittency
properties from the hourly to the annual time scale; and the statistical behaviour of monthly maxima and extreme values of the

observed rainfall were reproduced well.

1 Introduction and Background

Most human and natural systems affected by rainfall react sensitively to temporal variability of rainfall across small (e.g.
quarter-hourly) through large (e.g. monthly, yearly) time scales. Small scale rainfall temporal variability influences short-term
watershed responses such as flash flood (Reed et al., 2007) and subsequent transport of sediments (Ogston et al., 2000) and
contaminants (Zonta et al., 2005). Large scale rainfall temporal variability (lliopoulou et al., 2016; Tyralis et al., 2018)
influences long-term resilience of human-flood systems (Yu et al., 2017), human health (Patz et al., 2005), food production
(Shisanya et al., 2011), and the evolution of human society (Warner and Afifi, 2014) and ecosystems (Borgogno et al., 2007;

Fernandez-Illescas and Rodriguez-lturbe, 2004).
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While the risk exerted by these impacts needs to be precisely assessed for the management of such systems, the observed
rainfall record is oftentimes long enough (Koutsoyiannis and Onof, 2001). Furthermore, the rainfall records do not exist when
the risks need to be assessed for the future. For this reason, stochastic rainfall generators, which can create synthetic rainfall
record with infinite length, have been frequently used to provide rainfall input data to the modelling studies for risk assessment.

The Poisson cluster rainfall generation model (Rodriguez-Iturbe et al, 1987, 1988) is one of the most widely applied
stochastic rainfall generators. Figure 1 shows a schematic of the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) model,
which is a typical Poisson cluster rainfall model. The model assumes that a series of rain storms (black circles) comprising a
sequence of rain cells (red circles), arrives in time according to a Poisson process. The MBLRP model has six parameters of

which brief description is provided in the lower text box of Figure 1.

I 'y

Rainfall | ——— p — Rain cell intensity
intensity A — Storm arrival i i Exponential distribution
Poisson process ! E 5
i i 1 — Rain cell duration
_____ J i v, 0. — Gamma distribution
1
1

. . r
[ — Rain cell arrival |
Poisson Process

(Pp=xn)

y — Storm activity
- Exponential distribution -

(y=¢n)

= [ [1/T] - random variable that serves as parameter for the Poisson process of cell arrivals (§ = kn)

= ¥ [1/T]—random variable that serves as parameter for the storm activity exponential distribution (y = ¢n)
= u[L/T] — mean of the exponential distribution of cell intensity

= A [I/T]— parameter of the Poisson process of storm arrivals

= (-] and % [1/T] — shape and scale parameters of the Gamma distribution for n

= 7 [1/T] - random variable that serves as parameter for the cell duration exponential distribution

Figure 1: Schematic of the Modified Bartlett-Lewis Rectangular Pulse Model. The blue area represents duration (width) and
intensity (height) of each rain cell, respectively. The dashed line represents superposed sum of the rain cell intensities.

As suggested by the figure, Poisson cluster rainfall models are designed to reflect the original spatial structure of rain storms
containing multiple rain cells (Austin and Houze Jr., 1972; Olsson and Burlando, 2002), so they are good at reproducing the

first through the third order statistics of the observed rainfall at quarter-hourly through daily accumulation levels, as well as
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other hydrologically important statistics such as proportion of non-rainy period (Olsson and Burlando, 2002). The performance
of the Poisson cluster rainfall models in reproducing the statistical properties of observed rainfall has been validated for various
climates at numerous locations across the globe (Bo et al., 1994; Cameron et al., 2000; Cowpertwait, 1991; Cowpertwait et al.,
2007; Derzekos et al., 2005; Entekhabi et al., 1989; Glasbey et al., 1995; Gyasi-Agyei and Willgoose; 1997, Gyasi-Agyei;
1999, Islam et al.; 1990, Kaczmarska et al., 2014; Khaliq and Cunnane, 1996; Kim et al., 2013b, 2014, 2016; Kossieris et al.,
2015, 2016; Onof and Wheater, 1993, 1994a, 1994b; Ritschel et al., 2017; Rodriguez-Iturbe et al., 1987, 1988; Smithers et al.,
2002; Velghe et al., 1994; Verhoest et al., 1997; Wasko et al., 2015). For this reason, they have been widely applied to assess
the risks exerted on human and natural systems such as floods (Paschalis et al., 2014), water availability (Faramarzi et al.,
2009), contaminant transport (Solo-Gabriele, 1998), and landslides (Peres and Cancelliere, 2014, 2016; Thomas et al., 2018).
Recently, Poisson cluster rainfall models have also been used to generate future rainfall scenario under climate change (Kilsby
et al., 2007; Burton et al., 2010; Fatichi et al., 2011).
In the meantime, Poisson cluster rainfall models have an intrinsic limitation derived from a fundamental model assumption.
As described by Figure 1, they generate the rainfall time series assuming that the rain storms arrive according to a Poisson
process, which assumes that rain storm occurrences are independent. In addition, the rain cells in different storms are
independent with each other. These model assumptions deprive the model of the ability to reproduce the long-term memory
of rainfall that is often observed in reality (Marani, 2003).
Let us introduce some notation. The aggregated process Y ™ at time-scale h hours is defined in terms of the continuous time
process Y by the equation:

ih
AR J Y(t)dt

(i-Dh
We can then write the variance at time-scale nh as:
Von = Var(Y(™)

Zn COU(Y;:(h), Yl(h)) + Zn Zn COU(Yi(h), Y](h))
i=1 i=14-j=1j+i

n n
nVar(Y®™) + Z Z Cov(Yi(h), Yj(h))

i=1 4 j=1,j=i

since Cov(v™,¥") = cov(v™, v ™)

Van = nVar (Y®) + 231, Ty jos Cov(¥7, ) 6y

, where V,, is the variance of rainfall depths at scale h hours and Cov( -, -) is the covariance operator between the two random
variables.

The second term of the right-hand side of Equation 1, which represents the rainfall correlation between individual records
separated by (i — j) time-steps of the time series of rainfall depths at scale h hours, is likely to be underestimated by the
Poisson cluster rainfall model because it can only reproduce short-term memory in the rainfall signal through its model
3
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structure, i.e. through the clustering of rain cells. The degree of underestimation will increase as the correlation between the
individual records (Yi(h)) of the observed rainfall time series increases and as the aggregation level n increases. This
underestimation was consistently observed in the rainfall data of the United States (Kim et al., 2013a). If R = 1 in Equation
1, i.e. hourly rainfall, and n =720 (24hours/day x 30 days = 720 hours = 1 month), the left-hand side of Equation 1 will
represent the variance of monthly rainfall, which can be represented on the vertical axis of the box plots in Figure 2.

In Figure 2, the red box plots represent the distribution of the monthly rainfall observed at gauge NCDC-85663 located in
Florida, USA during the period between 1961 and 2010 The blue box plots represent the variability of the monthly rainfall
estimated from the 50 years of hourly synthetic rainfall data generated by the Modified Bartlett-Lewis Rectangular Pulse
(MBLRP) model, a type of Poisson cluster rainfall generators. Here, the MBLRP model used the parameter set that was
calibrated to reproduce the observed rainfall mean, variance, lag-1 auto-covariance, and proportion of dry periods at sub-daily
aggregation intervals (1, 2, 4, 8, and 16-hour), which is a typical practice of MBLRP model calibration (Rodriguez-Iturbe et
al., 1987, 1988; Kim et al., 2013a). Note that the vertical lengths of the red box plots are greater than those of the blue box
plots in general, which implies that the variability of the observed rainfall is systematically greater than that of the synthetic
rainfall. The discrepancy between the two are shown as the gray shading in the figure. In addition, the monthly extreme values
shown as the highest points of the lines are also underestimated by synthetic rainfall. This is, in particular, caused by the
aforementioned limitations of the Poisson cluster rainfall models.

Considering that the management strategies of the water-prone human and natural systems may be governed by the few
extreme rainfall values observed in the shaded domain of Figure 2, the risk analysis based on the rainfall data generated by
Poisson cluster rainfall models may miss system behaviour that is crucial for development of the management plans. As a
matter of fact, other rainfall models have similar issues: they cannot reproduce the temporal variability of observed rainfall
across all time scales (Paschalis et al, 2014). For example, Markov chains, alternating renewal processes, and generalized
linear models can reproduce the variability only at time scales coarser than one day. Models based on autoregressive properties
of rainfall are typically good at reproducing the observed rainfall variability only for a limited range of scales, for instance
from one month to a year or two (Mishra and Desai, 2005; Modarres and Ouarda, 2014; Yoo et al., 2016).
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Figure 2: Box plots of the observed monthly rainfall at gauge NCDC-85663 in Florida, USA (red). The box plots of the synthetic
monthly rainfall generated by the Modified Bartlett-Lewis Rectangular Pulse model at the same gauge are shown for reference
(blue). Whiskers reach to minimum and maximum values of monthly rainfall during the period between 1961 and 2010 and gray
shaded boxes represent the discrepancy of the variability of the two monthly rainfalls.

Several studies discussed the need to use composite rainfall models to resolve this scale problem of rainfall models.
Koutsoyiannis (2001) used two seasonal autoregressive models with different temporal resolution to generate two different
time series referring to the same hydrologic process. Then, they adjusted the fine scale time-series using their novel coupling
algorithm so that this series becomes consistent with the coarser scale time series without affecting the second-order statistical
properties. Menabde and Sivapalan (2000) combined the alternating renewal process with a multiplicative cascade model in
which a multi-year rainfall time series generated by a Poisson process based model is disaggregated using a bounded random
cascade model. Their model reproduced the observed scaling behaviour of extreme events very well up to 6 minutes of
temporal resolution. Fatichi et al. (2011) developed a model that generates monthly rainfall using an autoregressive model and
disaggregating the generated monthly rainfall using a Poisson cluster rainfall model. Their composite model showed improved
performance in reproducing the rainfall interannual variability that the latter often fails to reproduce. Kim et al. (2013a)
proposed a model where the Poisson cluster rainfall model is used to disaggregate the monthly rainfall that is randomly drawn
from a Gamma distribution. They found that incorporating the observed rainfall interannual variability through their composite
approach also helps reproduce the statistical behaviour of rainfall annual maxima and extreme values at time scales ranging

from 1 to 24 hours. Paschalis et al. (2014) introduced a composite model consisting of a Poisson cluster rainfall model or
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Markov chain model for large time scale and a multiplicative random cascade model for small time scale, which performed
better than individual models across a wide range of scales at four different sites with distinct climatological characteristics.

This study proposes a composite rainfall generation model that can reproduce various statistical properties of observed rainfall
at time scales ranging between one hour and one year. First, the model generates the monthly rainfall time series using the
Seasonal Auto-Regressive Integrated Moving Average (SARIMA) model. Then, it downscales the generated monthly rainfall
time series to the hourly aggregation level using a Poisson cluster rainfall model. Compared to the previous studies with similar
methodology (Fatichi et al., 2011; Paschalis et al., 2014), our model has a novelty in that: (i) it models the monthly rainfalls
S0 as to generate monthly statistics that will serve to calibrate the MBLRP model; (ii) each of the generated individual monthly
rainfalls are downscaled using month-specific MBLRP model parameter sets that reflect the complex correlation structure of
various rainfall statistics at fine time scale such as mean, variance, covariance, and proportion of dry periods, which existing
composite approaches that are not based on Poisson cluster rainfall models showed limitations in reproducing especially at
sub-daily scale| This distinctive approach of our model enables an accurate reproduction of the first through the third order
statistics as well as the proportion of dry periods from the hourly to the annual time scale; and the statistical behaviour of

monthly maxima and extreme values of the observed rainfall is well reproduced.

2 Study Area

Figure 3 shows the study area, which encompasses the Midwest to the East Coast of the Continental United States. We used
the National Climatic Data Centre (NCDC) hourly rainfall data observed at 34 gauge locations (triangles in Figure 3) for the
period between 1981 and 2010. The study area has a variety of rainfall characteristics (Kim et al., 2013b). The northern, middle,
and the southern part of the study area are classified as Humid Continental (warm summer), Humid Continental (cool summer),
and Humid Subtropical climate, respectively, according to the Képpen Climate Classification (Képpen, 1900; Kottek, 2006).
The annual rainfall of the study area varies from 750 mm to 1500 mm.
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Figure 3: Study area and 34 NCDC hourly rainfall gauges. The label of the markers is presented in the following format:
aaaaaa(i,j,k)(x,y,2)12, where aaaaaa represents the NCDC gauge ID, (i, j,K) represent the orders of the autoregressive, differencing,
and moving average terms of the SARIMA model, and (x,y,z) represent the orders of the seasonal autoregressive, differencing, and
moving average terms of SARIMA model. The colour of the markers represent the Bayesian Information Criterion (BIC) value of
the SARIMA model. The lower BIC indicates more parsimonious parameterization, larger likelihood, or both. Model description of

SARIMA is detailed in Section 3.1.

3 Methodology

Figure 4 describes the model structure of this study. The model is composed of four distinct modules. The first module

generates the monthly rainfall. The second module generates the fine-scale (1 hour through 16 hours) rainfall statistics

corresponding to each of the generated monthly rainfall values in the first module. The third module estimates the parameters

7




of the MBLRP model based on the fine-scale rainfall statistics generated by the second module. As a result of this process,

150 each of the generated monthly rainfalls is coupled with the MBLRP parameter set reflecting its fine-scale statistical
characteristics. The fourth module downscales each of the monthly rainfalls using the MBLRP model based on the parameters
obtained in the third module.
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Figure 4: Four different modules of the model of this study
155 3.1 Monthly Rainfall Generation

We applied the Seasonal Auto-Regressive Integrated Moving Average (SARIMA) model to generate monthly rainfall.
Generation of monthly rainfall based on Autoregressive relationship has been widely applied due to its parsimonious nature
(Mishra and Desai, 2005) and was proven to successfully reproduce the first through the third-order statistics of the observed
rainfall at monthly time scale (Delleur and Kavvas, 1978; Katz and Skaggs, 1981; U nal et al., 2004; Mishra and Desai, 2005).

160 Furthermore, some recent models assuming an autoregressive process (Langousis and Koutsoyiannis, 2006; Koutsoyiannis,
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2010; Efstratiadis et al., 2014; Dimitriadis and Koutsoyiannis, 2015, 2018) succeeded in reproducing the various statistical
properties of the observed rainfall over a wider range of scales. Rainfall data of different stations have different temporal
persistence, so we applied the SARIMA model with different autoregressive(p), differencing(d), and moving average terms(q)
to different stations. The choice of the optimal model for each station was determined through the following processes: First,
a model structure of SARIMA(p, d, q)(P, D, Q)m is assumed, where P, D, Q represent the numbers of seasonal autoregressive,
differencing, and moving average terms, respectively, and m represents the number of periods (here, months) in each season
— here m = 12. Second, the parameters of the SARIMA model are determined through the method of maximum likelihood.
Third, the the Bayesian Information Criterion (BIC) are calculated for the fitted SARIMA model. Lastly, the first to third steps
are repeated for a combination of different values of p (0<p<2), d (0<d<2), q (0<g<2), P (0<P<2), D (0<D<2), and Q (0<Q<2),
and the model structure with the lowest BIC is selected for the station. Therefore, a total of 729 (=3%) SARIMA model structures
were tested to obtain the optimal model for a station. The selected model structure and the BIC values were shown in Figure

3. Through this process, we generated 200 years of monthly rainfall for the 34 gauges.

3.2 Generation of fine time scale rainfall statistics

The second module generates the fine time scale statistics corresponding to each monthly rainfall value generated through the
SARIMA model. These synthetic fine time scale statistics will later be used for the calibration of the MBLRP model to
downscale the monthly rainfall to the hourly level. In so doing we first consider the monthly rainfall, when divided by the
number of days in the month times 24, as providing us with an estimate of the mean hourly rainfall for that particular month.
Then, this estimated mean hourly rainfall is provided as the input variable of the module that generates the statistics needed to
fit the MBLRP model, namely the mean, variance, auto-correlation coefficient, and the proportion of dry periods at 1-, 2-, 4-,
8-, and 16-hour aggregation intervals, as described in Figure 5. In this process, the module employs the information obtained
from univariate regression analyses between the fine-scale statistics of the observed rainfall (Figure 6) and the mathematical

formulae relating rainfall variance and auto-covariance at different time scales (Equation 4) as explained below.
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Figure 5: Schematic of the algorithm to generate fine time-scale rainfall statistics. The statistics in the blue boxes are used to calibrate
the MBLRP model and the statistics in gray boxes are used to estimate the 1ag-1 autocorrelation.

Figure 5 shows a schematic of the second module. In the figure, M;, Sy, V}, ¢ (1) = C,(1)/V}, and P, in each rectangle
represent the rainfall mean, standard deviation, variance, lag-1 autocorrelation, and proportion of dry periods at time-scale h
hours, respectively. The statistic connected to each solid arrow head is stochastically generated based on its linear relationship

to the one connected to the tail of the same arrow. In other words, the following equation is used:
Y = ari X+ b[i] + € (2)

where Y is the variable being generated, and the X is the variable being used as the basis of the generation. Here, the variable
X and Y can be substituted by any combination of two variables connected by the solid arrow; a;; and by;; are the parameters
of the regression analysis, and e[ is a random number drawn from the normal distribution ef;~N (0, ofi]) fitted to the residuals
of the regression analysis. Here, these three parameters are estimated from the univariate regression analysis relating the two
variables observed during a given calendar month over multiple years as shown by black scatters in each plot of Figure 6,
which shows the linear relationship between the rainfall statistics observed at gauge NCDC-200164 (star mark in Figure 3)

during the month of July of different years.
10
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Consider, for example, statistic M; which is connected to V; (= S;%) through the solid arrow in the figure, which means that

the variance of one-hour rainfall (V; = S,?) is stochastically generated using its relationship to one-hour rainfall mean (M,)
(scatter of black dots in Figure 6a) using the following formula:

S1 = age) My + g 3)

V= 512 4
where subscripts with square brackets are used for the residuals so as to avoid confusion with the time-scale, and where a is
the coefficient determined from the regression analysis (note that the constant term is zero here since, trivially, S; = 0 when
M; = 0), and &) is a random number drawn from a normal distribution: ~N (0, 0[26]).

Similar principles can be applied to the remaining statistics connected through solid arrows in Figure 5. The black scatters in
Figure 6 shows the linear relationship between the rainfall statistics observed at gauge NCDC-200164 (star mark in Figure 3)

during the month of July of different years.
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Figure 6: Linear relationship between various fine time-scale statistics of the rainfall observed for the month of July of different
years at gauge NCDC-200164 (black dots). The solid black line represents the least squares regression line. Based on this regression
relationship, a set of the 20 fine-time scale statistics are generated, which are immediately used as the basis of the MBLRP model
parameter calibration. If the objective function of the parameter calibration corresponding to the generated set is greater than a
given threshold, the set is rejected (blue squares), and the set with the objective function lower the threshold value is only chosen

(red squares).

The statistic connected to the dashed arrow head is calculated based on the ones connected to the tail of the same arrow using
the mathematical (deterministic) relationship connecting these variables (Equation 4). For instance, in Figure 5, V; and V, are

connected to C; (1) through a dashed arrow, which means that C;(1) is derived from V, and V,. The following equations
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establish the relationship between the variances at time-scales h and 2h from which we shall obtain the relationship between
vV, and V,:

Var(Y,®") = var(vJ,) + Var(v{?) + 2cov(v P, v

Or, in simplified notation:

Van = 2V, + 2C,(1)

The autocorrelation lag-k is ¢, (k) = C,(k)/Vy, so, for k = 1 and h = 1 hour, we obtain the relation:

®)

V;
c(1)=i—1

If we estimate the lag-one autocorrelation using standard estimators of the terms in the right-hand side of this relation, i.e. by

using ZV—V{ — 1, how good is the estimation likely to be? Figure 7 compares this estimator with the standard estimator ¢(1) of
1

the autocorrelation.
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Figure 7: (a) Comparison of estimator c(1) (horizontal axis) with estimator ZVTi— 1 (vertical axis) of the autocorrelation lag-1 of
1
hourly rainfall, (b) The histogram of the discrepancies between these two estimators at gauge NCDC-200164.

dependon the sample’size (Panayiotis and Koutsoyiannis, 2015; Koutsoyiannis, 2016). Using the discrepancies e between

these two estimators which are approximately normally distributed as shown in Figure 7b, i.e. e~N(0,0?) we therefore

estimate the autocorrelation lag-1 of hourly rainfalls using % —1+e.
1
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250V, =apVy + gy (6)
Vy = agVs + €g O
From equation (6), it is clear that the term 7 is dependent upon the hourly autocorrelation (lag-1) coefficient, and similarly
therefore that €g) in equation (7) is dependent upon the two-hourly (lag-1) autocorrelation coefficient.
The autocorrelations at various time scales are known to be correlated with each other (Kim et al., 2013a, Kim et al., 2014),
255 which means that ;) and g(g) should be correlated with each other. Figure 8a shows the bivariate probability density function
of these two variables at gauge NCDC-200164 for the month of September. Figure 8b shows the colour map of the correlation

coefficient between different g;;s. This study developed bivariate probability density functions for consecutively numbered
random variables &, i.e. g;; and g;,.1; (for i ranging from 1 to 4 and 6 to 9 respectively - see Figure 5). These were then used
to sample values of g;,1) conditional upon g}, This procedure in effect assumes that a Markov structure governs the sequences

260 {E[i]}i=1 < and {E[i]}i=6,...,,10' The bivariate probability density functions were developed using the Gaussian Copula and its

,,,,,,

parameters are determined using the maximum likelihood method.
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Figure 8: (a) Relationship between g7 and g;g; and the fitted bivariate distribution. (b) Color map of the correlation coefficient
between different gf;s at gauge NCDC-200164 on September.
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265 Residual terms (gp;,.4)) are thus generated using the conditional distribution:

fE[i], £[i+1] )
fS[i] x)

fs[m] (Y|£[i] =x) = (8)
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,wherei=1,2,3,4,6,7,8,and 9, and fe[iﬂ] (y|e[i] = x) is the probability density function of &;,4; conditional upon ¢;; = x,
and fg[i], i) is the bivariate distribution function of g[;; and &/,

As aresult of this process, a total of 20 rainfall statistics at fine time scale (mean, variance, lag-1 autocorrelation, and proportion
of dry period at 1, 2, 4, 8, and 16-hourly aggregation interval) are sampled using these conditional distributions and the
individual monthly rainfall that is generated by the SARIMA model.

3.3 MBLRP Model Parameter Estimation

In this process, each of the monthly rainfall values generated by the SARIMA model is coupled with one set of six MBLRP
model parameters that define the random nature of rain storm and rain cell arrival frequency, and the intensity and duration of
rain cells (Figure 1).

In this study, the parameters of the MBLRP model were determined such that the rainfall statistics of the generated rainfall
resemble the 20 fine-scale rainfall statistics that were coupled with the monthly rainfall generated by the SARIMA model. The
Isolated-Speciation Particle Swarm Optimization (ISPSO, Cho et al., 2011) algorithm was employed to identify a set of
parameters that minimizes the following objective function:

Fi(Av,a 0012

fi )

Fi is the i statistic of the synthetic rainfall time series (e.g. mean of hourly rainfall, standard deviation of 4-hourly rainfall,

OF = 32, w;-[1

etc.). The mathematical formulae for the Fis were derived by Rodriguez-lturbe et al. (1988) as a function of the six parameters
(A v, o, 1, §, x); fiis the it generated statistic, and w; the weighting factor given to the it rainfall statistic depending on the use
of the synthetic rainfall time series (Kim and Olivera, 2011). Here, it should be noted that a time step with rainfall less than
0.5 mm was considered dry when the proportion of non-rainy period was calculated because small rainfall values are known
to distort the “true” proportion of non-rainy period exerting an adverse effect on calibration process (Kim et al, 2016, Cross et
al., 2018).

It is noteworthy that Module 2 may fail to generate a realistic set of fine scale rainfall statistics due to the complex
interdependencies between them. The unrealistic fine scale rainfall statistics cannot be represented by the MBLRP model that
reflects the original spatial structure of rainfall in reality, which entails poorly calibrated model parameters with high objective
function value of Equation 8. To exclude the poorly calibrated parameter sets caused by the unrealistic fine scale rainfall
statistics generated by Module 2, we repeated the process of Module 2 and Module 3 until the objective function value of
Equation 8 becomes lower than a given threshold value (0.8 in this study). If the algorithm fails to find the parameter set after
50 repetitions, the parameter set with the lowest objective function value is chosen. Figure 4 describes this filtering process,

and the red squares in Figure 6 shows the chosen parameter sets.
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3.4 Downscaling of Monthly Rainfall Using the MBLRP Model

The MBLRP model was used to downscale the monthly rainfall to the hourly aggregation level. First, the MBLRP model
generates the hourly rainfall time series using the parameter set for the monthly rainfall being downscaled. Second, the
discrepancy between the fine time scale statistics generated by the second module of the model (Figure 5) and the statistics of
the synthetic hourly rainfall time series generated by the MBLRP model is calculated using the following formula:

. sl
pi =322, [ (10)
,where D/ is the discrepancy between the generated statistics and statistics of j™ synthetic hourly rainfall time series. Sl.j is the

i" statistic of j time series and R; is the difference between maximum and minimum values of Sl.j about it" statistic.
Third, the first and the second process are repeated 300 times. Then the synthetic hourly rainfall time series with the lowest
discrepancy value is chosen. Finally, we repeated the entire process for 200 times to obtain 200 synthetic hourly rainfall time

series for each of the generated monthly rainfall.

3.5 Validation for Ungauged Periods

One of the primary purposes of the stochastic rainfall model is to provide synthetic rainfall for the ungauged periods, which
can be the periods of missing data or future periods. For this reason, we separated the period of model calibration and validation
at some gauge locations (square marks in Figure 2) where record length of each period is sufficiently long (60+ years). Then,
we tested our model not only based on the statistics of the calibration period (1981-2010) but also based on the validation
period (1951-1980).

4 Result
4.1 Monthly Rainfall Statistics Reproduction

Figure 9 compares the mean, variance, lag-1 autocorrelation, and skewness of the monthly rainfall time series generated by
the SARIMA model (x axis) to those of the observed monthly rainfall time series (y axis). Each scatter represents one rainfall
gauge. For the calibration period (1981-2010), the first and the second-order moments were reproduced accurately with the
coefficient of determination ranging from 0.69 to 0.95. Skewness was reproduced fairly well with the coefficient value of 0.36.
For the validation period (1951-1980), mean and variance were reproduced, but not 1ag-1 autocorrelation and skewness.
However, this discrepancy cannot be attributed solely to the limitations in the model because the discrepancy in each plot of
Figure 9 directly results from the differences between the statistics of the calibration and validation periods. In other words,
had the statistics of the calibration period been similar to those of the validation period, we would have expected similar

performance for both periods, and vice versa.
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Figure 9: Comparison of (a) mean, (b) variance, (c) lag-1 autocorrelation, and (d) skewness of the synthetic (x) and observed (y)
monthly rainfall. Filled circles (dashed line) and hollow triangles (dotted line) correspond to the calibration (1981-2010) and
validation period (1951-1980) respectively.

4.2 Reproduction of Large Scale Rainfall Variability

Figure 10 shows the behaviour of the rainfall variance varying with temporal aggregation interval between 1 hour and 1 year
at gauge NCDC-122738. The behaviour corresponding to the observed-calibration (black, 1981-2010), observed-validation

(green, 1951-1980), MBLRP (blue) and our hybrid model (red) are shown together. [ifaddition; the behaviour based on the

While our model successfully reproduces the rainfall variance across the time scale, the MBLRP model is successful in
reproducing the rainfall variance only at the hourly accumulation level. This reflects the fact that Poisson cluster rainfall models

are not designed to preserve the rainfall persistence at the aggregation interval that is greater than the typical model storm
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duration, i.e. a few hours. See Figure 1 for example. Within the duration of one storm, rainfall at different time steps may be
similar insofar as a portion of it is from the same rain cell. However, the rainfall within one storm is independent of the rainfall
within another storm. Therefore, it is natural that Poisson cluster rainfall models tend to underestimate the observed rainfall
variance (which reflects the covariance structure - see Equation 1) at time scales exceeding the rain storm duration. Kim et al.
(2013b), when mapping the average model storm duration across the continental United States using Equation 11, showed that
the model storm duration of the MBLRP model approximately ranges from 2 to 100 hours, so it is not only at the annual scale,
but already at the scale of several hours (depending upon the location) that the variability may be underestimated by the
MBLRP model.
1

D[ 1+ 1+ )~ e+ ) (c+4) +op i+ h) (4K 2 +27 1+ 7262

4

Average storm duration (hr) =

(11)
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Figure 10: Behaviour of the rainfall variance with regard to the aggregation interval of rainfall time series at gauge NCDC-122738.
The behaviour corresponding to the observed-calibration (black, 1981-2010), observed-validation (green, 1951-1980), MBLRP (blue)
and our hybrid model (red) are shown together.

A similar trend as exhibited in Figure 11 was observed at all of the 34 gauges. Figure 11 compares the variance of the synthetic
(x) and observed (y) rainfall time series at yearly (purple), monthly (red), 15-daily (yellow), weekly (blue), and 32-hourly
(green) aggregation levels. The comparison of the variance at the finer time scale is carried out in the following section.
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Figure 11: (a) Comparison of the large scale rainfall variance of the rainfall generated by our hybrid model (x) and the observed
rainfall (y); (b) Comparison of the large scale rainfall variance of the rainfall generated by the traditional MBLRP model (x) and
the observed rainfall (y). The different colours of the scatter correspond to the different aggregation interval of rainfall time series.
Filled circles and hollow triangles correspond to the calibration and validation periods respectively.

As ind