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The manuscript under review examines a mixed stochastic model using an autoregressive model 

(SARIMA) for the generation of monthly precipitation that is then disaggregated to hourly scale through 

a modified Bartlett-Lewis rectangular pulse (MBLRP) model. This method can capture the long-term 

behaviour of large scale (monthly) precipitation through the SARIMA model and, implicitly (through 

coupling), to preserve some statistical characteristics (e.g. marginal mean, variance and skewness, lag-

1 autocorrelation, and dry proportions) of the small scale (hourly) precipitation through the MBLRP 

model, thus simulating some aspects of intermittency. The method is tested at 34 hourly stations located 

in USA where the monthly maxima were also well preserved there.  

The paper is well organized and well written and it matches the of HESS journal. My only concerns are 

that some significant points (related to the innovations of this work) may still need some additional 

justification and discussion on other stochastic methodologies. Although my field of expertise is not on 

Bartlett-Lewis models (but rather on stochastic synthesis of processes from small to large scales in an 

explicit manner) it is highly relevant to some innovative points of the Authors’ analysis. Therefore, I 

hope some of my comments and suggestions can contribute to the Authors’ methodology and help them 

improve it and highlight it to Readers interested in stochastic modelling of precipitation in general.  

Sincerely,  

Panayiotis Dimitriadis 

Authors’ Response.  

Dear Dr. Panayiotis Dimitriadis, 

We sincerely appreciate your constructive comments on our manuscript. All your comments 

tremendously helped us to improve the quality of the article. Our responses are as follow: 

 

Dongkyun Kim, Ph.D. 

Associate Professor, Department of Civil Engineering, 

Hongik University, Seoul, Korea 



Major Comments and suggestions 

The main innovations of the presented model is the coupling of a large scale model (such as the 

SARIMA) that can reproduce some long-term properties (e.g. long-term behaviour of autocorrelation 

and monthly maxima), and a small scale one (such as the MBLRP) that can capture some statistical 

properties of the short-term behaviour of precipitation (e.g. marginal mean, variance and skewness, lag-

1 autocorrelation, and dry proportions). 

 

Comment 1. In other words, one of the innovations of this methodology is the coupling between an 

autoregressive model and a Bartlett-Lewis one, where often in literature is either a coupling of 

autoregressive models or of pulse models. In the first case, generalized linear models can reproduce the 

variability only at coarse time scales (“larger than one month”), whereas in the second case the (Poisson) 

cluster models cannot capture the large scale behaviour but can reproduce the small scale of storm 

events (P4L89 to P4L96). However, some of the approaches mentioned later in the text (P5L101 to 

P6L125) seem to propose how to tackle the above scale issues. For example, Koutsoyiannis (2001; see 

also Koutsoyiannis et al., 2003) suggested coupling several stochastic models of different scales and 

thus, preserving some small and large scale characteristics. Does the Authors’ proposed methodology 

(a) resolve some of the limitations of these models (P5L101 to P6L125), and if yes what are those, or 

(b) is it a new model that can equally reproduce what all these models also reproduce? I would suggest 

a discussion to this question to be added to the Abstract and at the end of the Introduction (P6L125), 

since it seems important in my opinion. 

Authors’ Response. Thanks for this comment. We believe that our model has merits in both 

perspectives: it overcomes the limitations of the existing models and it is a new model. We added the 

following sentence to the manuscript following your suggestion: 

“…scale such as mean, variance, covariance, and proportion of dry periods, which existing composite 

approaches that are not based on Poisson cluster rainfall models showed limitations in reproducing 

especially at sub-daily scale.”  

Koutsoyiannis et al. (2003) primarily discusses the algorithm of rainfall disaggregation from daily scale 

to the finer scale, so we briefly mentioned about this in the conclusion section as follow: 

“A multivariate downscaling approach (Koutsoyiannis et al., 2003; Moon et al., 2016) may be applied 

to obtain spatially consistent rainfall at multiple sites.” 

Reference. Koutsoyiannis, D., Onof, C. and Wheater, H. S.: Multivariate rainfall disaggregation at a 

fine timescale, Water Resour. Res., 39, 2003. 



Moon, J., Kim, J., Moon, Y., and Kwon, H., A development of multisite hourly rainfall simulation 

technique based on Neyman-Scott rectangular pulse model, J. Korea Water Resour. Assoc., 49(11), 913-

922, 2016. 

 

Comment 2. Also, another innovation mentioned by the Authors is the modification of the Bartlett-

Lewis model in module 2 (Fig. 4, 5, sect. 3.2). More specific, a modification is proposed to the Bartlett-

Lewis Poisson pulse model, where a dependency is now introduced between the storm Poisson events 

and thus, the proposed model can now better represent the short (and medium) term autocorrelation of 

precipitation in contrast to other Bartlett-Lewis models in literature (e.g. the ones mentioned in P2L42 

to P3L53). The Authors may find interesting to discuss some works by Lombardo et al. (2012; 2017) 

where they also use an innovative downscaling method that can generate fine scale precipitation by 

preserving some aspects of intermittency. Additionally, the Authors may be interested in discussing a 

recent work by Dimitriadis and Koutsoyiannis (2018) where it is shown how the above “scaling issue” 

can be dealt by directly generating the fine scale process from small to large scale and thus, explicitly 

preserving the large scale behaviour and some aspects of intermittency (through the preservation of 

joint-statistics; see also Appendix D where a comparison is made to the copula method). This explicit 

generation is achieved based on a Moving Average scheme and not an AutoRegressive (AR) one since 

as also is stated by the Authors the AR models cannot capture the small scale intermittent behaviour 

(P4L94: “Models based on autoregressive properties of rainfall are typically good at reproducing the 

observed rainfall variability only for a limited range of scales...”). 

Authors’ Response. Thanks for the suggestions. We believe that Lombardo et al. (2012, 2017) may 

better be categorized as disaggregation model, so we added the discussion on this in the conclusion 

section for future improvement as follow: 

“An additional model could be integrated to our hybrid model to incorporate further rainfall variability, 

for example, an approach based on random cascades (Lombardo et al., 2012, 2017; Molnar and 

Burlando, 2005; Müller and Haberlandt, 2016; Pohle et al., 2018)” 

We added the discussion about Dimitriadis and Koutsoyiannis (2018) in the methodology section as 

follow: 

“Furthermore, some recent models assuming an autoregressive process (Langousis and Koutsoyiannis, 

2006; Koutsoyiannis, 2010; Efstratiadis et al., 2014; Dimitriadis and Koutsoyiannis, 2015, 2018) 

succeeded in reproducing the various statistical properties of the observed rainfall at wider range of 

scales” 

Reference. Dimitriadis, P. and Koutsoyiannis, D.: Climacogram versus autocovariance and power 



spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes, Stoch. Env. Res. 

Risk A., 29, 1649-1669, 2015. 

Dimitriadis, P. and Koutsoyiannis, D.: Stochastic synthesis approximating any process dependence and 

distribution, Stoch. Env. Res. Risk A., 32, 1493-1515, 2018. 

Efstratiadis, A., Dialynas, Y. G., Kozanis, S. and Koutsoyiannis, D.: A multivariate stochastic model for 

the generation of synthetic time series at multiple time scales reproducing long-term persistence, 

Environ. Modell. Softw., 62, 139-152, 2014. 

Koutsoyiannis, D.: HESS Opinions" A random walk on water", Hydrol. Earth Syst. Sc., 14, 585-601, 

2010. 

Langousis, A. and Koutsoyiannis, D.: A stochastic methodology for generation of seasonal time series 

reproducing overyear scaling behaviour, J. Hydrol., 322, 138-154, 2006. 

Lombardo, F., Volpi, E. and Koutsoyiannis, D.: Rainfall downscaling in time: theoretical and empirical 

comparison between multifractal and Hurst-Kolmogorov discrete random cascades, Hydrolog. Sci. J., 

57, 1052-1066, 2012. 

Lombardo, F., Volpi, E., Koutsoyiannis, D. and Serinaldi, F.: A theoretically consistent stochastic 

cascade for temporal disaggregation of intermittent rainfall, Water Resour. Res., 53, 4586-4605, 2017. 

 

Comment 3. Additionally, please consider a couple of comments on the module 2 methodology: 

Comment 3A. In Eq. (5) the Authors estimate the lag-1 discrete autocorrelation, i.e. ĉ(1), through an 

estimator 𝑉̂(2)/𝑉̂(1)/2 − 1   that corresponds to the true value of the lag-1 autocorrelation (i.e. 

𝑉̂(2)/𝑉̂(1)/2 − 1). However, the statistical bias (for a discussion please see Dimitriadis, 2017, sect. 

2.4.5) is not seem to be taken under consideration. I believe the use of this estimator is not adequately 

(but rather empirically) justified and it is based on the assumption that: 

In case of an AR(1) model (Eq. 2) and for large timeseries samples, then E[𝐶̂(1)]  ≈ 𝐶(1) =

𝑉(2)/𝑉(1) ∕ 2 − 1. This can be derived based on the following analysis, where the expectation of 

autocovariance C(h) as a function of the cumulative variance V(h) is: 

E[𝐶̂(ℎ)] =
1

𝜁(ℎ)
((𝑛 − ℎ)𝑐(ℎ) +

𝑉(ℎ)

𝑛
− 𝑉(𝑛)/ℎ −

𝑉(𝑛−ℎ)

𝑛
)                                 (1) 

where ζ(ℎ) is related to the estimator of the autocovariance and is usually taken as n or n–1 or n-h 

(Dimitriadis and Koutsoyiannis, 2015, Table 2, Eq. 9). Note that where 𝑉(𝑘) = 𝑘2𝛾(𝑘) is the variance 



of the cumulative process vs. scale, or else called cumulative climacogram, and 𝛾(𝑘) is the variance 

of the averaged process vs. scale, or else climacogram (Koutsoyiannis, 2016, and references therein). 

Therefore, for h = 1: 

E[𝐶̂(1)] =
1

𝜁(1)
((𝑛 − 1)𝐶(1) +

𝑉(1)

𝑛
− 𝑉(𝑛) −

𝑉(𝑛−1)

𝑛
)                                   (2) 

We see that E[𝐶̂(1)] ≠ 𝐶(1) =
𝑉(2)

2
− 𝑉(1) + 𝑉(0) =

𝑉(2)

2
− 𝑉(1) . The above expressions may be 

used to correct the deviation between a straight line (y = x) as shown in Fig (5a) but also to help the 

Authors express the variances V(h) of different lags h with autocorrelation 𝑐(ℎ) = 𝐶(ℎ)/𝑉(1) , as 

shown in Eq. (5) of the manuscript. 

Furthermore to the justification, since the Authors have chosen an AR(1) model (Eq. 2), then γ(ℎ) = 

V(ℎ)/h2 would behave like a white noise process in large scales (Dimitriadis and Koutsoyiannis, 2015, 

sect. 2.3) and thus, V(ℎ) ≈ aℎ (where a constant). Therefore, for large samples, one may assume that 

(𝑛−1)𝐶(1)

𝜁(1)
≈ 𝐶(1),

𝑉(𝑛)

𝜁(1)
≈ a,

𝑉(𝑛−1)

𝑛𝜁(1)
≈ 0  and also 

𝑉(1)

𝑛(𝑛−1)
≈ 0 , and thus, it can be assumed that 

E[𝐶̂(1)] ≠ 𝐶(1) + 𝑎 =
𝑉(2)

2
− 𝑉(1) + 𝑎, and for the autocorrelation, E[𝐶̂(1)] ≈

𝑉(2)

2
− 𝑉(1) + 𝑎′. In 

this case, P14L238 (“we therefore estimate the autocorrelation lag-1 of hourly rainfalls using 
𝑉̂(2)

2
−

1 + ε′′) can be now also analytically justified. 

Alternatively, in case that the Authors wish to somehow take bias into consideration when estimating 

the autocorrelation c(1), they could suggest an estimator of lag-1 autocovariance that is not only based 

on the cumulative variance but also takes into account the sample’s length n, then (for e.g., ζ(ℎ) = n − 

1), we have that E[𝐶̂(1)] = 𝐶(1) +
𝑉(1)−𝑛𝑉(𝑛)−𝑉(𝑛−1)

𝑛(𝑛−1)
, and thus for an AR(1) process an estimator for 

the lag-1 autocorrelation could be: 

𝑐̂(1) =
𝑉̂(2)

2𝑉̂(1)
− 1 +

1−𝑎(𝑛2+𝑛−1)

𝑛(𝑛−1)
           (3) 

Authors’ Response. We truly appreciate this elaborated comment. It is indeed a brilliant derivation. 

However, the context in which Equation 5 was used is not assuming that the rainfall process follows 

AR(1) process, but it investigates the relationship between statistics of observed rainfall with a more 

complex temporal correlation structure. That is, the monthly means are modelled using a SARIMA 

process. The confusion probably arises from the fact that equation (2) has the general form typical of 

an AR(1). But this equation relates, not terms of a single time-series at consecutive times, but different 

monthly statistics of the rainfall signal. Therefore, per reviewer’s permission, we would like to keep 

using the original equations, and add the following sentence explaining the bias term: 

“Figure 7a reveals that there exist discrepancies between the true 𝑐(1) and its estimator (𝑐(1)̂), which 



are known to primarily depend on the sample size (Panayiotis and Koutsoyiannis, 2015; Koutsoyiannis, 

2016).” 

Reference. Dimitriadis, P. and Koutsoyiannis, D.: Climacogram versus autocovariance and power 

spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes, Stoch. Env. Res. 

Risk A., 29, 1649-1669, 2015. 

Koutsoyiannis, D.: Generic and parsimonious stochastic modelling for hydrology and beyond, 

Hydrolog. Sci. J., 61, 225-244, 2016. 

 

Comment 3B. In Eq. (6) and (7) of the manuscript the Authors use an empirical expression for the 

mean and variances of the cumulative process. Based on the above analysis they could justify this linear 

approximation by the fact that for an AR(1) model (Eq. 2, P10L189) the variance of the cumulative 

process is (Dimitriadis and Koutsoyiannis, 2015, Table 4, Eq.18): 

𝑉(ℎ) = 2𝑞2𝑉(1)(
ℎ

𝑞
+ 𝑒−ℎ/𝑞 − 1)        (4) 

where q = −1/ln (c(1)) is the AR(1) parameter (see also Koutsoyiannis, 2016, Table 1, Eq.T1.2 and T1.3, 

and references therein). 

Therefore, the link of cumulative variances for different lags h is not always be close to linear but rather 

depends on the q parameter. For large q, or else small c(1), we have that 𝑉(ℎ) ≈ 2𝑞2𝑉(1)(ℎ/𝑞 − 1) 

and so, 𝑉(ℎ)/𝑉(ℎ′) ≈ (
ℎ−𝑞

ℎ′−𝑞
), which is not a linear expression. Maybe the above configurations could 

explain the deviation from linearity (y=x) in Fig. 6 

Authors’ Response. Again, we are not assuming the AR(1) process here, but it is an investigation on 

the observed rainfall. Therefore, per reviewer’s permission, we would like to keep our narratives as they 

are. 

 

Comment 3C. Finally, in Eq. (3) the Authors linearly connect the mean of the process to the standard 

deviation and to the dry proportions. This is a very good result that I would recommend the Authors to 

further highlight as one of the empirical results of this work (for example in the Introduction), since for 

a larger scale such as daily the link between mean and standard deviation seems to be a rather power-

type expression (e.g. Sotiriadou et al., 2016, sect. 7). 

Also, since this a link based on the marginal distribution of precipitation rather than on its dependence 

structure, a more analytical justification could be that all the distributions applied to the Bartlett Lewis 



model (i.e. exponential, gamma and Poison) have a linear combination between their mean and standard 

deviation. For example, for the gamma distribution (i.e. 𝑓(𝑥) = 𝑥𝑘−1𝑒−
𝑥

𝜃/Γ(𝑘)𝜃𝑘) we have that μ/σ = 

√k, and similar results can be drawn for the other two distributions. Therefore, this could be another 

evidence that the proposed modified model MBLRP can describe well some properties of the fine scale 

precipitation. 

Authors’ Response. The link between the mean and standard deviation of the rainfall depth cannot be 

examined analytically because we do not have the distribution of the total depth at a given time-scale. 

The total depth over a duration ∆𝑡 is the sum of the contributions from the cells that are “alive” during 

∆𝑡. It is true that, for the intensity of an individual cell, the relations that you point out exist. But this is 

not the case for the total depth over ∆𝑡. You question relates to a point made by another reviewer. We 

would like to share with you on what has been previously discussed about this topic as follow: 

 

(RC3) Comment 2. Also, it is not immediate to me how all these relations between rainfall statistics can be 

linearly related, especially rainfall mean and wet fraction. I think it would be helpful to show how these linear 

relations hold for all the stations in the study, not just a sample rain gauge. Is it possible they depend on 

season/rainfall regimes? 

(RC3) Authors’ Response. Regarding the linearity, we prepared the plots for all gauge locations and all seasons, 

which can be accessed through the following website: 

http://www.letitrain.info/ 

Here are some notes about our linearity assumptions:  

(i) We assumed that the hourly standard deviation (S1), but not the hourly variance (V1), is linearly 

correlated to the hourly mean (M1) as suggested by the black scatters in Figure 6(a). After we 

generated S1 from M1 based on this relationship, we took the square of it to obtain the hourly variance 

(V1). We believe that the linearity between M1 and S1 is not a bold assumption considering numerous 

previous studies that models the rainfall distribution as exponential (mean = λ-1, standard deviation 

= λ-1) or gamma (mean = kθ, standard deviation = k0.5θ) distribution;  

(ii) The linearity between the variance at different aggregation intervals can be explained by the 

following equation given in the manuscript. 

𝑉𝑎𝑟(𝑌𝑖
(2ℎ)

) = 𝑉𝑎𝑟(𝑌2𝑖−1
(ℎ)

) + 𝑉𝑎𝑟(𝑌2𝑖
(ℎ)

) + 2𝐶𝑜𝑣(𝑌2𝑖−1
(ℎ)

, 𝑌2𝑖
(ℎ)

) 

𝑉2ℎ = 2𝑉ℎ + 2𝐶ℎ(1) 

We can consider two extreme cases. First, if 𝑌2𝑖−1
(ℎ)

 and 𝑌2𝑖
(ℎ)

 are independent, then we get a linear 

regression with the gradient of 2 (𝑉2ℎ = 2𝑉ℎ). Second, if 𝑌2𝑖−1
(ℎ)

 and 𝑌2𝑖
(ℎ)

 were identical, then the 

covariance is equal to the variance, so we would get 𝑉2ℎ = 4𝑉ℎ.  

(iii) We could not find the studies that explicitly deals with relationship between hourly mean and hourly 

proportion of dry periods (M1 vs P1). However, our empirical analysis at all 34 stations suggests a 

strong linear relationship between the two variables. Please see the figures at:   

http://www.letitrain.info/ 

(iv) Regarding the relationship between the proportions of dry periods at different aggregation intervals, 

Onof et al. (1994) showed that the mean number of events at time scale h, is given by the following 

relation to the proportions dry period: 



𝐸(𝑁ℎ) =
𝑃ℎ

𝑃ℎ−𝑃2ℎ
  

By rearranging the equation, we get: 

𝑃2ℎ = 𝑃ℎ (1 −
1

𝐸(𝑁ℎ)
).  

This, therefore, suggests looking at whether the coefficient here is reasonably stable and therefore 

whether there is a linear relationship between these two proportions dry. 

(RC3) Reference. Onof, C., Wheater, H. S. and Isham, V.: Note on the analytical expression of the inter-event 

time characteristics for Bartlett-Lewis type rainfall models, Journal of hydrology, 157, 197-210, 1994. 

In addition, following sentence was added in the manuscript following your suggestion: 

“The linear relationships were also identified at all other gauges investigated. This is a secondary yet 

significant finding of this study: a simple linearity can accurately express the relationship between the 

variables reflecting such a chaotic and dynamic interactions occurring in natural phenomena concerning 

rainfall. Also note that the linearity established here applies only to sub-daily time scale. For example, 

a power-law may better express the relationship between the mean and standard deviation at daily scale 

(Sotiriadou et al, 2016).” 

Reference. Sotiriadou, A., Petsiou, A., Feloni, E., Kastis, P., Iliopoulou, T., Markonis, Y., Tyralis, H., 

Dimitriadis, P. and Koutsoyiannis, D.: Stochastic investigation of precipitation process for climatic 

variability identification, in: EGU General Assembly Conference Abstracts, 2016. 

 

Minor Comments and suggestions 

1) P1L27: “the observed rainfall record is oftentimes not long enough (Koutsoyiannis and Onof, 2001).”.  

The Authors could also add some of the drawbacks of the limited timeseries with large length n, such 

as for example the statistical bias (as discussed on the above 2nd comment). 

Authors’ Response. Thanks for the suggestion. We believe that the bias you mentioned in the Comment 

#2 concerning the term c(1) is reduced as the length of the time series becomes longer. Therefore, we 

would like to keep the narrative as they are. 

2) P2L41: “...so they are good at reproducing the first through the third order statistics of the observed 

rainfall...” 

What are “the first through third order statistics”? Do you mean first to third marginal statistics (i.e., 

mean, standard deviation and skewness)? Also, the title of the paper gives the impression that all the 

rainfall characteristics can be well reproduced. Maybe the title could be altered to “A Hybrid Stochastic 

Rainfall Model That Reproduces some important Rainfall Characteristics at Hourly through Yearly 

Time Scale”. The preservation of the first three (or even four with kurtosis) statistics is very important 



and sometimes preserving more is unnecessary. For example in Dimitriadis and Koutsoyiannis (2018, 

sect. 3.1 and sect. 4) a discussion is made for the impracticality of estimating high-order moments in 

geophysical processes and, in all applications there, it is exhibited that beyond the first four moments 

there is a negligible increase in accuracy of the representation of the marginal distribution. 

Authors’ Response.  

• Thanks for the suggestion. The Poisson cluster rainfall models handle also the covariance term, 

which is not marginal statistics. Therefore, saying “marginal” there would be misleading. 

Therefore, we would like to keep the text as it is here. 

• The title has been changed as suggested. 

• Regarding the importance of the 1st through 4th order statistics in hydrological problem, we 

totally agree. I also wrote an article on this. Please refer to: Kim and Olivera, (2011) 

We added the following sentence in the manuscript: 

“Figure 12 compares the mean, variance, lag-1 autocorrelation, skewness, and the proportion 

of dry periods of the synthetic (x) and observed (y) rainfall time-series at hourly through 16 

hourly aggregation levels. Here, we discuss the first three moments only (i.e. mean, variance, 

auto-correlation, and skewness) because of their relative greater importance compared to the 

higher moments (Kim and Olivera, 2011; Dimitriadis and Koutsoyiannis, 2018).” 

Reference. Kim, D. and Olivera, F.: Relative importance of the different rainfall statistics in the 

calibration of stochastic rainfall generation models, J. Hydrol. Eng., 17, 368-376, 2011. 

Dimitriadis, P. and Koutsoyiannis, D.: Stochastic synthesis approximating any process dependence and 

distribution, Stoch. Env. Res. Risk A., 32, 1493-1515, 2018. 

 

3) P3L57: “These model assumptions deprive the model of the ability to reproduce the long-term 

memory of rainfall that is often observed in reality (Marani, 2003).” 

Do the Authors mean “short or medium memory”? Since their improvement (module 2) deals with the 

fact that Poisson events are considered independent and thus, by introducing a dependency among the 

rainfall events, the model’s short and medium term preservation is enhanced (see also P3L73: “...the 

Poisson cluster rainfall model because it can only reproduce short-term memory in the rainfall signal 

through its model structure...”). The long term behaviour is achieved by the SARIMA model that 

generates the large (monthly) scale precipitation. 

Authors’ Response. Thanks for this suggestion. Your understanding is accurate and precise. It is just 



that the term “deprive A of B” actually means that “removes B from A.” 

 

4) P4L81: “Here, the MBLRP model used the parameter set that was calibrated to reproduce the 

observed rainfall mean, variance, lag-1 auto-covariance, and proportion of dry periods at sub-daily 

aggregation intervals (1, 2, 4, 8, and 16-hour)…”. 

Why not adding the preservation of monthly skewness as shown in Fig. 9? 

Authors’ Response. Thanks for the suggestion. We added the skewness to the plot and added the 

sentences following your suggestion: 



 



 

Figure 12: Comparison of the statistics of the synthetic (x) and observed (y) rainfall time series at sub-daily time scale. 

The colour of the dots represents the statistics of each calendar month. The results of (a) the calibration period (1981-

2010) and (b) the validation period (1951-1980) are shown. 

“Figure 12 compares the mean, variance, lag-1 autocorrelation, skewness, and the proportion of dry 

periods of the synthetic (x) and observed (y) rainfall time-series at hourly through 16 hourly aggregation 

levels. Here, we discuss the first through the third order moments only (i.e. mean, variance, auto-

correlation, and skewness) because of their relatively greater importance compared to the higher 

moments (Kim and Olivera., 2011; Dimitriadis and Koutsoyiannis, 2018). Each scatter plot represents 

the statistics at a given gauge for a given calendar month. The colours of the points on the plots represent 



the calendar months. In each plot, the coefficient of determination (R2) of the linear regression between 

the two variables is shown. All five statistics were accurately reproduced across various sub-daily time 

scales with R2 equal to 0.98 (mean), and varying between the following limits for the other statistics: 

0.90 and 0.93 (variance), 0.58 and 0.93 (lag-1 autocorrelation), 0.44 and 0.89 (skewness), and 0.67 and 

0.85 (proportion of dry periods) for the calibration period (Figure 12a). Similar ranges of coefficient of 

determination were obtained for the validation period (Figure 12b).” 

 

5) P4L85: “that the variability of the observed rainfall is systematically greater than that of the synthetic 

rainfall.” 

P4L86: “In addition, the monthly extreme values shown as star marks are also underestimated by 

synthetic rainfall.” 

P4L87: “This is, in particular, caused by the aforementioned limitations of the Poisson cluster rainfall 

models.” 

Maybe this is also due to the bias effect as shown in the major comments above. 

Authors’ Response. Thanks for the suggestion. The bias mentioned in the major comment is primarily 

concerning the one induced in the covariance term, which is not systematically biased toward the 

positive or negative side (See Figure 7b). The bias mentioned in the article is a systematic 

underestimation of variance, so its primary source cannot be attributed to what was mentioned in the 

major comment. In addition, this systematic bias has been discussed by numerous articles on Poisson 

cluster rainfall model (See Marani, 2003). Therefore, we would like to keep the original narratives as 

they are. 

Reference. Marani, M.: On the correlation structure of continuous and discrete point rainfall, Water 

Resour. Res., 39, 2003.  

 

6) P4L95: “Models based on autoregressive properties of rainfall are typically good at reproducing the 

observed rainfall variability only for a limited range of scales...”. 

Do you mean that mixed Autoregressive (AR) and Moving-Average (MA) models (such as the 

SARIMA model used here) are required to reproduce long-term behaviour, and that solely the AR 

models cannot achieve this? In fact, a Sum of arbitrary many AR models (SAR) can also preserve the 

long-term behaviour as recommended by Mandelbrot (1971). Also, a SAR algorithm with the 

parameters analytically estimated is introduced in Koutsoyiannis (2010) with 3 AR(1) models, where 

the long-term (or else called Hurst-Kolmogorov –HK-) behaviour is preserved for 1000 scales, and in 



Dimitriadis and Koutsoyiannis (2015, sect. 3 in suppl. mat.) with arbitrarily many AR(1) models, where 

the HK behaviour is preserved for as many scales as needed. 

Authors’ Response. Thanks for the suggestion. Here, we did not intend to compare the AR type models 

and the ARMA model types. We meant that both models have limitations in reproducing the variability 

of rainfall at sub-daily scale. However, we totally acknowledge the recent development done on the AR 

type models. Therefore, we added the following sentence in the manuscript: 

“Furthermore, some recent models assuming an autoregressive process (Langousis and Koutsoyiannis, 

2006; Koutsoyiannis, 2010; Efstratiadis et al., 2014; Dimitriadis and Koutsoyiannis, 2015; 2018) 

succeeded in reproducing the various statistical properties of the observed rainfall over a wider range 

of scales.” 

 

7) P6L120: The Authors may find useful discussing other models (like SARIMA) that can reproduce 

the long-term behaviour (such as the SAR one mentioned above) as well as the monthly seasonality 

such as the Langousis and Koutsoyiannis (2006) and Efstratiadis, et al. (2014). 

Authors’ Response. Thanks for the suggestion. We added the following sentence according to the 

reviewer’s suggestion: 

“Furthermore, some recent models assuming an autoregressive process (Langousis and Koutsoyiannis, 

2006; Koutsoyiannis, 2010; Efstratiadis et al., 2014; Dimitriadis and Koutsoyiannis, 2015; 2018) 

succeeded in reproducing the various statistical properties of the observed rainfall over a wider range 

of scales.” 

 

8) Figure 5: “ε9 is a random number drawn from the normal distribution” is missing from the Figure’s 

legend at the lower left corner. 

Authors’ Response. We modified the figure and the caption as follow: 

𝜀[𝑖] : a perturbation term randomly drawn from a uni- or bi-variate normal distribution. 



 

 

9) Please consider moving Figures 6, 12, 13, 15, 16 and 19 (or some parts of them) to an Appendix or 

a supplementary material since, in my opinion, they are quite large for the main text. 

Authors’ Response. Thanks for the suggestion. However, we believe that existing the existing 

presentation should be preserved for consistency in the description of the results. 

 

10) Also, I would recommend the Authors to add a Table with all the statistical characteristics of the 34 

hourly stations (mean, stdev etc.) as well as the fitted parameters of the SARIMA and MBLRP models. 

Authors’ Response. Thanks for the suggestion. It would be quite cumbersome to include this, even in 

an appendix. However, the analysis results of all 34 stations are provided at the website 

“http://www.letitrain.info” 

 

11) P16L275: “Here, it should be noted that a time step with rainfall less than 0.5 mm was considered 

dry when the proportion of non-rainy period was calculated because small rainfall values are known to 

distort the “true” proportion of non-rainy period exerting an adverse effect on calibration process (Kim 

et al, 2016, Cross et al., 2018).”  

The value 0.5 mm may seem somehow arbitrary. Why not estimating the average of the lowest positive 

values (> 0) observed at the 34 timeseries and set this value as the dry threshold? 



Authors’ Response. Thanks for the suggestions. The issue here is that the lowest positive value that 

you suggested to apply would distort the proportion of dry periods. The threshold value of 0.5mm seems 

to be reasonable according to these two references, so we would like to keep this value. 

 

12) Some comments on Fig. 10, which seems very interesting and in my opinion should be further 

discussed since it highlights (additionally to the other results) the strength of the applied method in 

terms of other methods existing in literature. Specifically: 

12a) From this Fig. 10 one could estimate the Hurst parameter that is related to the significance of the 

long-term behaviour of the process. In fact, I made a rough estimation of the Hurst parameter (based on 

the log-log slope of the cumulative variance shown in the Figure below; for this method see also 

Koutsoyiannis, 2016), where H ≈ 0.6. This is also consistent to what the Authors mention on Marani 

(2003) about the long-term behaviour in P3L58, and to the global analysis of Iliopoulou et al. (2016) 

and Tyralis et al. (2018). 

Authors’ Response. Thanks for the suggestion. The two papers you mentioned about the long-term 

rainfall persistence have been mentioned in the manuscript as follows: 

“Large scale rainfall temporal variability (Iliopoulou et al., 2016; Tyralis et al., 2018) influences long-

term resilience of human-flood systems (Yu et al., 2017), human health (Patz et al., 2005), food 

production (Shisanya et al., 2011), and the evolution of human society (Warner and Afifi, 2014) and 

ecosystems (Borgogno et al., 2007; Fernandez-Illescas and Rodriguez-Iturbe, 2004).” 

Reference. Iliopoulou, T., Papalexiou, S. M., Markonis, Y. and Koutsoyiannis, D.: Revisiting long-

range dependence in annual precipitation, J. Hydrol., 2016. 

Tyralis, H., Dimitriadis, P., Koutsoyiannis, D., O'Connell, P. E., Tzouka, K. and Iliopoulou, T.: On the 

long-range dependence properties of annual precipitation using a global network of instrumental 

measurements, Adv. Water Resour., 111, 301-318, 2018.  

 

Also, it can be shown at the Figure below that the MBLRP model can well preserve the short-term 

behaviour but not the long-term behaviour as the Authors mention, since the MBLRP model exhibits a 

white noise (WN) slope (as shown from the fitted dashed line). 

12b) There is an evident smooth behaviour of the cumulative variance (or else cumulative climacogram, 

please see above comments) vs. scale as an estimator of the long-term behaviour as compared to the 

autocovariance (or autocorrelation) vs. lag, where a larger variability of the sample statistics at large 

lags could prevent depicting this behaviour. This diversity is discussed and thoroughly analyzed in 



Dimitriadis and Koutsoyiannis (2015), where the power spectrum is also compared to the other two 

estimators of autocovariance and climacogram, and it is found that the variability of the latter is smaller 

in large lags and thus, enabling a more accurate estimation of the long-term behaviour and of the Hurst 

parameter. 

12c) Also, one could fit a more generalized process based on the Figure below and describe within a 

single expression of V(ℎ) how the cumulative climacogram is increasing from the finer to the larger 

scales h. In fact, a one-parameter power-type model (named HK, i.e., 𝑉(ℎ) = 𝑉(1)ℎ2𝐻) or a more 

generalized two-parameters one (named GHK, i.e. 𝑉(ℎ) = 𝜆ℎ2/(1 + ℎ/𝑞)2−2𝐻 , where coefficient 

𝜆 = 𝑉(1)(1 + 1/𝑞)2−2𝐻 seem to work also very well. Note that if one is focused to finer and finer 

scales, eventually the dependence structure of the cumulative process will also have to drop down to 

zero in a quicker manner than power-type (or in other words, it will have to stabilize at some point in 

terms of the dependence structure of the averaged process). It is interesting to mention that a similar 

HK and GHK behaviour has been detected to a daily precipitation timeseries (Dimitriadis and 

Koutsoyiannis, 2018, sect. 4.2, Fig. 4). The Authors may well use these results to further highlight their 

work in the sense that their proposed methodology seem to can very well preserve the expected 

dependence structure for a large range of scales and thus, it is equally strong to other methods that are 

based on the expected value of the cumulative climacogram. 

Authors’ Response. We truly appreciate this thoughtful and insightful comment from the reviewer. We 

added the following text to the manuscript following your suggestion: 

“In addition, the behaviour based on the two-parameter Generalized Hurst-Kolmogorov process (gray, 

GHK hereafter, Koutsoyiannis, 2016; Dimistriadis and Koutsoyiannis, 2018) are shown together. The 

good fit between the GHK behaviour (gray) and the observed ones (black and green) indicates that the 

observed rainfall has a clear long-term persistency, which is also a feature of all 34 NCDC gages.” 

Reference. Dimitriadis, P. and Koutsoyiannis, D.: Stochastic synthesis approximating any process 

dependence and distribution, Stoch. Env. Res. Risk A., 32, 1493-1515, 2018. 

Koutsoyiannis, D.: Generic and parsimonious stochastic modelling for hydrology and beyond, 

Hydrolog. Sci. J., 61, 225-244, 2016. 



 

13) P29L443: “While significant variability is observed for all six parameters, the parameter μ, which 

represents the average rain cell intensity, showed the greatest variability, ranging over two orders of 

magnitudes.” 

This could be also justified by the fact that in long-term processes (such as the one examined in this 

paper) there seems to be a larger variability of the mean of the process rather than of some higher-order 

moments. The Authors may be interested in the analysis of Dimitriadis and Koutsoyiannis (2018), where 

in sect. 3.1, they present a benchmark case with a N(0,1) distribution and in Fig. 1 they show how the 

variability of the mean (in terms of its standard deviation) is changing as a function of the Hurst 

parameter, and in Fig. 2 how the variability of the mean is larger than that of the first four moments for 

a large range of scales. 

Authors’ Response. Thanks for this suggestion. We added the following sentence following your 

suggestion: 

“Dimitriadis and Koutsoyiannis (2018) performed a similar experiment where a given degree of 

stochasticity was introduced to the parameter representing the rainfall mean, which subsequently 

influenced the higher order moments at large time scale.” 

Reference. Dimitriadis, P. and Koutsoyiannis, D.: Stochastic synthesis approximating any process 

dependence and distribution, Stoch. Env. Res. Risk A., 32, 1493-1515, 2018. 


