
Response to all RCs and SCs 

 

Dear Professor Carlo De Michele, 

First, we deeply appreciate your precious time and efforts for handling our submission. The comments 

were extremely constructive and insightful, which dramatically helped us to improve the quality of the 

original submission. 

While we have addressed all comments point by point, the major changes done on the manuscript are 

as follows: 

- We further investigated the model’s performance to reproduce rainfall extremes. This was done by 

fitting the annual maxima of both observed and synthetic rainfall time series to the GEV distribution 

and compare the parameters of the fitted GEV distribution. 

- We validated our model to the ungagged temporal period. This was done by comparing the statistics 

of the synthetic rainfall to those of the rainfall time series observed during the validation period 

(1951-1980). The calibration period (1981-2010) does not overlap with the validation period. 

Thank you again for your time and consideration. 

Sincerely, 

Dongkyun Kim, PhD. 

Associate Professor, 

Department of Civil Engineering, 

Hongik University, Seoul, Korea 

 

 

  



Dear Anonymous Referee #1, 

We sincerely appreciate your constructive comments on our manuscript. All your comments 

tremendously helped us to improve the quality of the article. Our responses are as follow: 

 

Comment 1. The equation for the relationship between the variance of rainfall at one time scale and 

another together with the covariances (Equation 1) should be clearly derived from the preceding 

equation. 

Authors’ Response. We agree with this point. In order to clarify the relationship between preceding 

equation, we changed Equation 1 like below. 

 

We can then write the variance at time-scale nh as: 
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, where Vh is the variance of rainfall depths at scale h hours and Cov( ∙ , ∙ ) is the covariance operator 

between the two random variables. 

The second term of the right-hand side of Equation 1, which represents the rainfall correlation between 

individual records separated by ( i − j) time-steps of the time series of rainfall depths at scale h hours, 

is likely to be underestimated by the Poisson cluster rainfall model because … 

 



Comment 2. The comparison of extreme rainfall modeled vs observed was conducted via linear 

regression. First it is not clear how the "Extreme" observed rainfall points were obtained. Second it is 

not clear how the modeled values were obtained. Presumably they correspond to similar probability 

levels obtained from a GEV? In any case the subsequent assessment of bias is reasonable. However it 

may be more transparent to display the tails of the probability distributions side by side to more clearly 

visualize how well the model reproduces the observed data. Alternatively, the parameters of the GEV 

distributions could be compared. 

Authors’ Response. Yes. We assumed that the monthly maxima follow the Generalized Extreme Value 

distribution. Here, we separated the analysis for each calendar month, so we have 12 sets of extreme 

rainfall values corresponding to each gauge station. Therefore, we produced each scatter plot of Figure 

13 based on 348 points (12 months/gauge x 29 gauges). We provided the explanation regarding this in 

the article as follow: 

“The scatters in Figure 13 compare the 20-, 50-, 100-, and 200-year rainfall estimated from the 

observed rainfall (x) and the synthetic rainfall (y) generated by the hybrid model (red) and the MBLRP 

model (blue) at hourly through daily time scale. The Generalized Extreme Value (GEV) distribution 

was used to model the distribution of the annual maxima, and the three parameters of the GEV 

distribution were determined using the method of L-moments. Here, we separated the analysis for each 

calendar month, so we have 12 sets of extreme rainfall distributions corresponding to each gauge station. 

Therefore, we produced each scatter plot of Figure 13 based on 348 points (12 months/gauge x 29 

gauges).” 

 

We prepared additional figures (Figure 15 and Figure 16) according to your suggestion. The figures and 

the corresponding explanations are as follow: 

  



 

Figure 15. Relative frequency and the fitted GEV distribution of the 1-, 4-, and 16-hour monthly maxima of January, April, July, and October rainfall at NCDC gauge 

132203. Results of Observed rainfall (black), our hybrid model (red), and the traditional MBLRP model (blue) are shown. The upper 10 percentile part of the 

distribution (dashed box in the plots in the first, third, and fifth row) is magnified in the lower rows (plots in the second, fourth, and sixth row).



Figure 15 shows the relative frequency and the fitted GEV distribution of the monthly maxima of 

January, April, July, and October at NCDC gauge 132203. The black, red, and blue line correspond to 

the result of observed rainfall, our hybrid model, and the traditional MBLRP model, respectively. The 

GEV distribution of the 1-hour, 4-hour, and 16-hour duration rainfall are shown in the plots of the first, 

third, and fifth row, respectively. The plots in the second, fourth, and the sixth row magnifies the upper 

10-percentile part of the distribution of the upper figures that is denoted as the dashed box. 

For all months and durations, our hybrid model outperforms the traditional MBLRP model in 

reproducing the head through tail part of the distribution. The distribution of the traditional MBLRP 

model was skewed toward the lower values. The similar tendency was observed at most gauge locations 

while at some of the gauges our hybrid model showed the similar or slightly degraded performance 

compared to the traditional MBLRP model in reproducing distribution of the extreme values. 

  



 

Figure 16. Comparison of the shape (ξ), scale (σ), and location (μ) parameters of the fitted GEV 

distribution of the monthly maxima. The results based on the observed rainfall (x), our hybrid 

model (red), and the traditional model (blue) are shown. The results of 1-hour, 4-hour, and 16-

hours of rainfall durations are shown. 

 

Figure 16 compares the shape (ξ), the scale (σ), and the location (μ) parameter of the fitted GEV 

distribution of the monthly maxima of the observed rainfall (x) and of the synthetic rainfall generated 

by our hybrid model (red scatters) and by the traditional MBLRP model (blue scatters). The results of 

1-hour, 4-hours, and 16-hours of rainfall durations are shown. Each scatter point represents the result 

of one calendar month at one gauge. A total of 348 scatter points (12 months/gauge x 29 gauges) are 

shown for each of the plot. The traditional MBLRP model underestimates the location parameters at all 

rainfall durations, and the degree of underestimation increases with the increase of the duration. Our 

hybrid model showed the opposite trend. The location parameters tend to be overestimated with the 



increase of the duration, but the degree of overestimation was not as significant as the case of the 

traditional model. The traditional model compensates the underestimated location of the distribution 

with the overestimated scale parameters, which were observed for all three durations investigated. Our 

hybrid model also compensates the overestimated location of the distribution with the underestimated 

scale parameters, but the degree of compensation was not as significant as the case of the traditional 

model. However, the shape parameter of the observed monthly maxima was not well reproduced by 

both models. This result shows the difficulty of precisely reproducing the rainfall extreme values. This 

is mainly because the extreme values of the rainfall are indeed extreme. For example, 1-hour 100-year 

rainfall of ninety nine years of rainfall record is theoretically the greatest value of all 867,240 hourly 

rainfall records (24hours/day x 365days/year x 99year), and precisely reproducing a value with such a 

low probability of occurrence can be a daunting task using the models with only a limited number of 

parameters. 

 

Technical notes 1. There are only a few minor editorial suggestions (which have been included in a 

scanned document) 

Authors’ Response. Thank you for your thorough review. The attached supplementary material has 

only the odd pages, so we will incorporate all your correction suggestions once we receive the complete 

document. 

  



Dear Anonymous Referee #2, 

This manuscript reports on a new rainfall model that is an extension of the commonly employed 

Bartlett-Lewis approach. The model was applied to 29 rain gages, which at first glance seems like 

perhaps not enough. The authors argue that the approach is very laborious and they justify that this is a 

good start. Overall the work will make a positive contribution. Some suggestions for improvement are 

included below. 

Response: We deeply appreciate this thoughtful review, which dramatically improved the quality of the 

article. We also recognize the complexity of implementing our model caused by its non-parsimonious 

nature. We explicitly addressed this issue in the discussion section of the article. Our responses are as 

follow: 

 

Major comments  

Comment 1. The model performance should be assessed based not just on “effectiveness” (fitting data), 

but also on “efficiency” (how many parameter). The latter criteria is quantified using AIC or similar 

metrics. Such criteria are already embedded within ARIMA frameworks so it is clear that the authors 

should be familiar with the importance of AIC etc. However, the authors have chosen not to describe 

how many parameters the overall model uses? This is very important information that should be 

explicitly compared against the MBLRP model, which very clearly uses 6 parameters. The proposed 

model is acknowledged by the authors (p.26, line 20) as “not easy to implement”. Yet it is argued 

throughout the paper to perform better than the ‘standard’ MBLRP model, which is easy to implement. 

So the critical question is whether the improved performance is worth the cost in complexity. AIC or 

similar should be used to compare the gains in model performance vs the cost of increased complexity. 

It seems that the current model is perhaps far more complex than the MBLRP, yet this complexity is 

currently hidden from the reader. 

Response: We agree. While the parsimonious nature of the MBLRP model is its greatest strength, there 

is a need to acknowledge the limitations of modeling the extremely complex rainfall process of reality 

only with the six parameters, one of which our article addresses and resolves. We explicitly addressed 

this issue in the discussion section as follow: 

 

4.3. An Issue with Model Parsimoniousness: six versus fifty five 

Our hybrid model uses one MBLRP model parameter set per one simulation year while the MBLRP 

model needs only 6 parameters regardless of the simulation length. However, this does not mean that 



our model requires 600 MBLRP model parameters (6 per month x 100 months) to generate 100 months 

of rainfall. This is because parameters are estimated based on the short-term rainfall statistics that are 

synthetically generated through the process of the SARIMA model and the regression analysis (See 

Figure 5). Therefore, the parameters of the SARIMA model and the parameters of the regression 

analyses shown in Figure 5 should be considered as the “true” parameters of this model because once 

these parameters are given, our model can generate infinite length of rainfall record. The SARIMA 

model has 6 parameters, and a set of regression analyses shown in Figure 5 has 49 parameters (2 per 

ten solid arrows in Figure 5 = 20, 3 per 8 bivariate normal distributions relating two subsequent residual 

terms (εi) in Figure 5 = 24, and one per 5 normal distributions perturbing autocorrelation terms (ci) = 

5). Therefore, our model has a total of 55 parameters. This discrepancy of number of parameters (6 of 

the traditional of MBLRP model versus 55 of our hybrid model) can be considered as a cost taken to 

reproduce the large-scale rainfall variability that the traditional MBLRP model cannot.  

We admit that this large discrepancy of model parsimoniousness is an issue to be resolved for our model 

to be applied in practice. Regarding this, we are planning to apply our model to additional gauge 

locations across the world and share the result through the website (http://www.letitrain.info). The work 

has been already initiated for the rainfall data of Korean Peninsula.  

2. Twenty-nine gages were selected. But the spatial distribution is not uniform. For example, most of 

the gages are in a similar climate region in the Midwestern USA with only two gages in the southeastern 

USA. What was the reason for this disproportionate representation? It needs to be specified if these are 

the only gages in the study region where sufficient data are available or whether this is just a sub-section 

of available data. If it is a sub-selection of available data, then the disproportionate representation needs 

some explanation. 

Response: The gauge locations randomly chosen out of potential 3,000+ gauge locations. The reason 

why we chose only 29 gauges is because we were concerned about the difficulty of precisely identifying 

the cause of potential issues of the model if too many gauges were investigated together. In the 

meantime, we were also curious about the result at the remaining gauges, so we integrated the results 

at 6 extra gauges in the article. The new analysis result did not significantly alter the original result. 

 

3. I do not understand the necessity of the first model module (SARIMA model). From Figure 4 it seems 

that the input to the second module is “monthly rainfall mean”. If this is the only output from module 1 

that is then used in module 2, then why is synthetic data created at all? It seems that the measured 

monthly means should be used here. 

Response: We agree that our model without the first module can still downscale the observed monthly 



rainfall. However, such model will be only a downscaling model. The first module enables our model 

to generate the monthly rainfall of which statistical property is similar to the observation including the 

large-scale (e.g. interannual) temporal variability, which the traditional MBLRP model fails to 

reproduce. Then, this generated monthly rainfall is downscaled by the remaining modules of the model. 

To sum up, this unique combination of the modules enables the generation of rainfall time series that is 

different from the observation but with the similar statistical properties including the large-scale 

temporal variability, which we believe, is the primary purpose of the rainfall “generators” 

 

4. Also, From Figure 4 it seems that the second module is generating more outputs than are supported 

by the model inputs. If only monthly means are input, then it seems impossible to determine just from 

this all of the outputs that are listed. This wide array of outputs would have to be non-unique given only 

monthly means as an input. So something must be missing here.  

Response: We believe that Figure 5, Figure 6 and the corresponding explanation, which addresses the 

second module in detail, may resolve your concern. Even though the input of the second module is a 

single monthly rainfall value, it uses the additional information obtained from the regression analysis 

between various fine time-scale statistics shown in Figure 6 to acquire module output values. 

 

5. Several figures use data from one selected gage as illustration. However, different gages are used 

between the figures. In such cases it should be specified whether similar trends are observed at all gages 

or whether this is only seen at this particular gage. The reader should not be led to suspect that the “best” 

gage is being selected for each figure. 

Updated Response: After the suggestion of another reviewer (the third reviewer), we decided to replace 

the figures in the methodology section (Figure 6, 7, and 8) such that they represent the result of the 

identical station (NCDC-200164). In the result section, Figure 10 is the only one corresponding to an 

individual gage, but Figure 11 conveys the information of Figure 10 for all gauge locations. All other 

figures in the results section (Figure 9, 11, 12, 13, and 14) display the analysis of all gauge locations. 

The discussion section shows the analysis on the gage NCDC-460582 (Figure 15 and 16), which clearly 

showed our point of discussion. 

Original Response: We completely agree with your concern, which is the reason why the figures that 

summarize the results of our study were prepared so that they represent the entire study area. The figures 

showing the analysis of individual gauge were limited in the methodology (Figure 6, 7, and 8 from 

NCDC gauge ID 200164) and discussion section (Figure 15 and 16 from NCDC gauge ID 406582). 

The selection of these two gauges were random because using the same gauge for all these five figures 



conversely give an impression that we are only showing the best results.  

In the result section, Figure 10 is the only one that corresponds to individual gauge, but Figure 11 

conveys the information of Figure 10 for all gauge locations. All other figures in the result section 

(Figure 9, 11, 12, 13, and 14) display the analysis of all gauge locations. 

 

Other comments 

1) P.1,Line 11, “fine tuned” here is vague and not descriptive. Suggest more specific description of the 

approach that is used. 

The words were replaced into “carefully calibrated.” The detailed description of this careful calibration 

is given in the next sentence of the article, which were almost impossible to be integrated into one 

sentence. 

2) P.1,Line 11, “fine scale” is similarly vague, so I suggest to be specific. 

The words were replaced into “sub-daily statistical.” 

3) P.1, Line 14, change to “at 29 gages” 

Done as suggested. 

4) P.2,lines 1-2, Change to “provide rainfall input data to modeling studies for risk. . .” 

Done as suggested. 

5) P.2, lines 8-21, This direct quote from another paper was to me much too long to be appropriate. 

Either summarize briefly in your own words, or just cite the other paper. Do not extract large sections 

of another paper – even if some authors are shared between the papers. 

We agree. The sentence was removed. Our original purpose was to make this article as independent as 

possible so that readers do not have to find another article to understand the MBLRP model. The 

sentence was removed and was replaced into the following sentence: 

….The model assumes that a series of rain storms (black circles) comprising a sequence of rain cells 

(red circles), arrives in time according to a Poisson process. The MBLRP model has six parameters of 

which brief descriptions are provided in the lower text box of Figure 1. 

 

6) P. 3, lines 9-12, This are far too many references cited here. Generally three references are enough to 

support a point. It is not necessary to cite in one sentence every study that has ever been done. 



We agree that three references are enough to support a point, but we believe that the articles cited here 

describes the gradual progress of the model over the last 30+ years, so we would like to keep them per 

reviewers’ permission. 

7) P. 4, line 31, Here it is not specified what model parameters were used nor how those parameters 

were determined. At a minimum it should say here that these were determined “as specified below/in 

section XX”. 

The following sentence was added. 

“Here, the MBLRP model used the parameter set that was calibrated to reproduce the observed rainfall 

mean, variance, lag-1 auto-covariance, and proportion of dry periods at sub-daily aggregation 

intervals (1-, 2-, 4-, 8-, and 16-hours), which is a typical practice of MBLRP model calibration 

(Rodriguez-Iturbe et al., 1987; Rodriguez-Iturbe et al., 1988; Kim et al., 2013a)” 

8) P. 9, line 9, The justification for 24 is not clear here 

The sentence was changed as follow: 

In so doing we are now considering the monthly rainfall, when divided by the number of days in the 

month times 24, as providing us with an estimate of the mean hourly rainfall for that particular month. 

9) P. 10, line 11, This seems to be equation 1 re-stated 

Removed as suggested. 

10) P. 13, line 4, cite figure number, and describe which data these are based on 

Done as suggested. 

11) P.15, line 29, It is not clear here what data are meant by “generated fine time scale statistics” and 

“statistics of the generated synthetic hourly rainfall”. These sound too similar. 

Changed as follow according to your suggestion: 

Second, the discrepancy between the fine time scale statistics generated by the second module of the 

model (Figure 5) and the statistics of the synthetic hourly rainfall time series generated by the MBLRP 

model is calculated using the following formula: 

12) P. 16, lines 11-12, It is not appropriate to switch between R2 and R when the R2 value is not high 

enough to support your point. 

Removed as suggested. 

13) P. 18, section 4.3, It is not clear why variance is described in section 4.2 and then standard deviation 



in section 4.3. These are not two independent parameters. Pick only one. 

Figure 12 was changed into variance.  

14) P.17, line 12, The equation should not be invoked here when it has not been presented yet  

The equation was presented previously. It is the following equation: 

𝑉𝑛ℎ = 𝑛𝑉ℎ + 2 ∑ 𝐶ℎ(𝑘)

𝑛−1

𝑘=1

 

15) P. 20, line 2, It is not clear how the 100 or 200 year recurrence intervals are determined from 

measured data 

The sentence was modified as follow: 

The scatters in Figure 13 compare the 20-, 50-, 100-, and 200-year rainfall estimated from the 

observed rainfall (x) and the synthetic rainfall (y) generated by the hybrid model (red) and the MBLRP 

model (blue) at hourly through daily aggregation levels. The extreme rainfall value were estimated in 

the following manner: (1) time series of monthly rainfall maxima corresponding to a given duration is 

obtained; (2) The Generalized Extreme Value (GEV) distribution was assumed to model the 

distributions, and the three parameters of the distribution were determined using the method of L-

moments. So, there are 348 points for each model (29 gauges x 12 months). 

 

16) P. 20, lines 7-9, These sentences should probably be removed. Readers of this journal do not need 

to be told that R2 approaching 1 means the model is good. 

Removed as suggested. 

 

17) P. 22, lines 10-11, Revise this sentence. Currently “rainfall” is repeated four times.  

It was changed as follow: 

“A good rainfall model should reproduce not only the extreme values but also the distribution of the 

maxima from which extreme values are derived.” 

18) P. 24, all of this seems like it should be in the methods rather than discussion. 

While we agree that the results shown here are closely associated with the methodology, we believe that 

they would better fit in the discussion section because understanding the message of the figure would 

require understanding on the results. 



 

19) Figure 2 – the meaning of the gray boxes should be described in the caption  

20) Figure 3 – the caption should explain the importance of the BIC values  

21) Figure 5 – the different shading of the boxes should be described in the caption  

22) Figure 6 – the caption should specify which data sets these results correspond to  

23) Figure 9 – it is not clear if these are the mean for all months or if there is one data point for each 

month.  

24) Figure 13- make the symbol sizes bigger. I could not see triangles  

25) Figure 14 – change the y-axis limits to better show the data range. Since the lower limit is already 

not equal to zero, just make it 0.7 and the upper limit 1.1 or 1.2 

  



Dear Anonymous Referee #3, 

The authors here propose and test a composite method which appears able to generate synthetic rainfall 

time series for a wide range of aggregation time scales. The issue of producing reliable synthetic rainfall 

time series is undoubtedly a central problem in hydrology, and the extension to a wide range of scales 

attempted in this study has the potential to be a relevant contribution. Therefore, the scope of this study 

makes it suitable for consideration in Hydrology and Earth System Sciences. However, there are a 

number of issues that needs clarification and/or correction, which I detail below. In particular, my main 

comment concerns the validation of the method (comment 6 below). I would recommend the paper for 

publication only after these issues have been addressed by the authors. 

Authors’ Response. We sincerely appreciate your constructive comments on our manuscript. All your 

comments tremendously helped us to improve the quality of the article. Our responses are as follows: 

 

Major Comments 

Comment 1. The so-called Module 2 uses only one quantity (mean hourly rainfall, as obtained from 

the 1st module) to generate finer scale rainfall statistics (mean, variance, correlation, and dry fraction). 

Is not clear to me how the regression analysis for module 2 is carried out (Page 10, line 10). For example, 

the variance is computed from the mean assuming the two quantities are linearly related. How is the 

slope 𝛼[6] computed? Using the entire dataset available for each station and each month? If this is the 

case, is not true that the proposed model solely use monthly information (as stated e.g., in Figure 4) to 

produce fine scale rainfall statistics, and this should be clarified. I find that section 3.2 is overall not 

very clear, and could be improved. You use ‘functional relations’ between many quantities, but a relation 

is only shown for the mean vs standard deviation relationship. Perhaps this linear relation could be 

introduced more generally (e.g., X = \alpha_i Y + \epsilon_i), and then state that X and Y can be the 

variables of interest, for example mean, variance, … ?  

Authors’ Response. We agree that the explanation about the second module is vague. We modified the 

manuscript as follows: 

Revised Contents. 

3.2 Generation of fine time scale rainfall statistics 

The second module generates the fine time scale statistics corresponding to each monthly rainfall value 

generated through the SARIMA model. These synthetic fine time scale statistics will be later used for 

the calibration of the MBLRP model to downscale the monthly rainfall into hourly level. In so doing we 

first consider the monthly rainfall, when divided by the number of days in the month times 24, as 



providing us with an estimate of the mean hourly rainfall for that particular month. Then, this estimated 

mean hourly rainfall is provided as the input variable of the module that generates the mean, variance, 

auto-correlation coefficient, and the proportion of dry periods at 1-, 2-, 4-, 8-, and 16-hour aggregation 

intervals, as described in Figure 5. In this process, the module employs the information obtained from 

univariate regression analysis between the fine-scale statistics of the observed rainfall (Figure 6) and 

the mathematical formula relating rainfall variance and auto-covariance at different time scales 

(Equation 4).  

 

 

Figure 5: Schematic of the algorithm to generate fine time-scale rainfall statistics. The statistics in the 

blue boxes are used to calibrate the MBLRP model and the statistics in gray boxes are used to estimate 

the 1ag-1 autocorrelation. 

 

Figure 5 is the schematic of the second module. In the figure, 𝑀ℎ, 𝑆ℎ, 𝑉ℎ , 𝑐ℎ(1) = 𝐶ℎ(1)/𝑉ℎ and 𝑃ℎ 

in each rectangle represent the rainfall mean, standard deviation, variance, lag-1 autocorrelation, and 

proportion of dry periods at time-scale h hours, respectively. The statistic connected to each solid arrow 

head is stochastically generated based on its linear relationship to the one connected to the tail of the 

same arrow. In other words, the following equation is used: 

 

𝑌 = 𝑎[𝑖] 𝑋 + 𝑏[𝑖] + 𝜀[𝑖]          (2) 

 



where 𝑌  is the variable being generated, and the X is the variable being used as the basis of the 

generation. Here, the variable X and Y can be substituted by any combination of two variables 

connected by the solid arrow; 𝑎[𝑖] and 𝑏[𝑖] are the parameters of the regression analysis, and 𝜀[𝑖] is 

a random number drawn from the normal distribution 𝜀[𝑖]~𝑁(0, 𝜎[𝑖]
2 )  fitted to the residuals of the 

regression analysis. Here, these three parameters are estimated from the univariate regression analysis 

relating the two variables observed during a given calendar month over multiple years as shown by 

black scatters in each plot of Figure 6, which shows the linear relationship between the rainfall statistics 

observed at the gage NCDC-200164 (star mark in Figure 3) during the month of July of different years. 

The statistic connected to the dashed arrow head is calculated based on the ones connected to the tail 

of the same arrow using the mathematical (deterministic) relationship connecting these variables. For 

instance, in Figure 5, 𝑉1 and 𝑉2 are connected to 𝐶1(1) through a dashed arrow, which means that 

𝐶1(1)  is derived from 𝑉1  and 𝑉2 . The following equations establish the relationship between the 

variances at time-scales h and 2h from which we shall obtain the relationship between 𝑉1 and 𝑉2: ..... 

 

Comment 2. Also, it is not immediate to me how all these relations between rainfall statistics can be 

linearly related, especially rainfall mean and wet fraction. I think it would be helpful to show how these 

linear relations hold for all the stations in the study, not just a sample rain gauge. Is it possible they 

depend on season/rainfall regimes? 

Authors’ Response. Regarding the linearity, we prepared the plots for all gauge locations and all 

seasons, which can be accessed through the following website: 

http://www.letitrain.info/ 

Here are some notes about our linearity assumptions:  

(i) We assumed that the hourly standard deviation (S1), but not the hourly variance (V1), is 

linearly correlated to the hourly mean (M1) as suggested by the black scatters in Figure 6(a). 

After we generated S1 from M1 based on this relationship, we took the square of it to obtain 

the hourly variance (V1). We believe that the linearity between M1 and S1 is not a bold 

assumption considering numerous previous studies that models the rainfall distribution as 

exponential (mean = λ-1, standard deviation = λ-1) or gamma (mean = kθ, standard 

deviation = k0.5θ) distribution;  

(ii) The linearity between the variance at different aggregation intervals can be explained by 

the following equation given in the manuscript. 



𝑉𝑎𝑟 (𝑌𝑖
(2ℎ)

) = 𝑉𝑎𝑟 (𝑌2𝑖−1
(ℎ)

) + 𝑉𝑎𝑟 (𝑌2𝑖
(ℎ)

) + 2𝐶𝑜𝑣 (𝑌2𝑖−1
(ℎ)

, 𝑌2𝑖
(ℎ)

) 

𝑉2ℎ = 2𝑉ℎ + 2𝐶ℎ(1) 

We can consider two extreme cases. First, if 𝑌2𝑖−1
(ℎ)

 and 𝑌2𝑖
(ℎ)

 are independent, then we get 

a linear regression with the gradient of 2 (𝑉2ℎ = 2𝑉ℎ). Second, if 𝑌2𝑖−1
(ℎ)

 and 𝑌2𝑖
(ℎ)

 were 

identical, then the covariance is equal to the variance, so we would get 𝑉2ℎ = 4𝑉ℎ.  

(iii) We could not find the studies that explicitly deals with relationship between hourly mean 

and hourly proportion of dry periods (M1 vs P1). However, our empirical analysis at all 34 

stations suggests a strong linear relationship between the two variables. Please see the 

figures at:   

http://www.letitrain.info/ 

(iv) Regarding the relationship between the proportions of dry periods at different aggregation 

intervals, Onof et al. (1994) showed that the mean number of events at time scale h, is given 

by the following relation to the proportions dry period: 

𝐸(𝑁ℎ) =
𝑃ℎ

𝑃ℎ−𝑃2ℎ
  

By rearranging the equation, we get: 

𝑃2ℎ = 𝑃ℎ (1 −
1

𝐸(𝑁ℎ)
).  

This, therefore, suggests looking at whether the coefficient here is reasonably stable and 

therefore whether there is a linear relationship between these two proportions dry. 

Reference. Onof, C., Wheater, H. S. and Isham, V.: Note on the analytical expression of the inter-event 

time characteristics for Bartlett-Lewis type rainfall models, Journal of hydrology, 157, 197-210, 1994. 

 

Comment 3. In general, figure captions should be improved and expanded throughout the manuscript, 

explaining more in depth what is in the figure. For example, the caption of figure 1 should state what 

the blue areas (cells) and shaded lines (total rainfall intensity I guess) are. Also, even if it is just a 

schematic figure, Figure 1 should have axes for time and rainfall depth. Figure 6 caption should specify 

that the results are for a single gauge, etc. The caption of figure 14 is probably swapped (blue and red 

lines – please check). 

 



Authors’ Response. We completely agree. Done as suggested as follow: 

Revised Contents. 

 

Figure 1: Schematic of the Modified Bartlett-Lewis Rectangular Pulse Model. Blue area represents 

duration (width) and intensity (height) of each rain cell, respectively. Dashed line represents superposed 

sum of the rain cell intensities. 

Figure 6: Linear relationship between various fine time-scale statistics of the rainfall observed for the 

month of July of different years at the gage NCDC-200164 (black dots). The solid black line represents 

the least squares regression line. Based on this regression relationships, a set of the 20 fine-time scale 

statistics are generated, which are immediately used as the basis of the MBLRP model parameter 

calibration. If the objective function of the parameter calibration corresponding to the generated set is 

greater than a given threshold, the set is rejected (blue squares), and the set with the objective function 

lower the threshold value is only chosen (red squares). 

Figure 7: (a) Comparison of estimator 𝒄(𝟏)̂ (horizontal axis) with estimator 
𝑽�̂�

𝟐𝑽�̂�
− 𝟏 (vertical axis) 

of the autocorrelation lag-1 of hourly rainfall, (b) The histogram of the discrepancies between these 

two estimators at the gage NCDC-200164. 

Figure 8: (a) Relationship between 𝜺[𝟕] and 𝜺[𝟖] and the fitted bivariate distribution. (b) Color map 

of the correlation coefficient between different 𝜺[𝒊]s at the gage NCDC-200164 on September. 



Figure 14: Degree of over/underestimation of extreme values by our model (red) and the traditional 

MBLRP model (blue). 𝑬𝑹𝒔𝒚𝒏 and 𝑬𝑹𝒐𝒃𝒔 are extreme rainfall estimated from synthetic rainfall and 

observed rainfall, respectively. 

 

Comment 4. The authors present results for a particular station in some of the figures, and this station 

is not the same throughout the paper. I think it would be better to be consistent and present the results 

for the same station. 

Authors’ Response. We agree with your concern. We replaced the figures in the methodology section 

(Figure 6, 7, and 8) such that they represent the result of the identical station (NCDC-200164). In the 

result section, Figure 10 is the only one corresponding to an individual gage, but Figure 11 conveys the 

information of Figure 10 for all gauge locations. All other figures in the results section (Figure 9, 11, 

12, 13, and 14) display the analysis of all gauge locations. The discussion section shows the analysis on 

the gage NCDC-460582 (Figure 15 and 16), which clearly showed our point of discussion. 

 

Comment 5. Page 15, line 17: it is stated that the Module 2 may fail in generating realistic fine scale 

rainfall statistics. The Authors should include a bit more explanation for this. How often does it happen? 

Given that Module 2 is based on linear relations, is it possible for some of this relations not to be linear 

in some cases, and cause these failures? (This may vary with precipitation types/rainfall regimes). This 

could be assessed checking if, in a cases of ‘failure’, any of the relations between rainfall statistics in 

Module 2 exhibit a divergence from linearity more marked than in other cases. 

Authors’ Response. We appreciate this thorough review. The cases of failure in which the parameter 

set satisfying the objective function criteria could not be generated even after the 50 iterations were 

identified at the 11 months over 8 gage locations. (NCDC-85663(Jun and Dec), 111549(Mar), 

138706(Jan and Dec), 360106(May and Dec), 401094(Nov), 431081(Dec), 447201(May), and 

460582(Jul)), which comprises 0.01 percent of the entire months simulated (200 years × 12 months per 

gage × 34 gages = 81,600 months). For these months, the set with the lowest objective function was 

selected among the 50 generated statistics set. It should be noted that the case of failure was not repeated 

on the same month at the same gage. If the linearity assumption was not correct, there should be a 

repetitive (or systematic) behavior of failure. Therefore, we cannot say that the linearity assumption is 

the primary reason of the failure. 

 

Comment 6. Figure 12 summarizes the performance of the rainfall generation method, comparing 



observed and simulated rainfall statistics. I think the method should be validated using an independent 

set of observations, not the same used for calibration (i.e., used for computing the regression 

coefficients). For example, the authors could divide the gauge time-series in two independent samples, 

using one of them for calibration and the second for validation. In the end, this is what we want to 

achieve with a synthetic rainfall generator: match as much as possible statistics of time series that we 

do not have available. This analysis could also resolve a second issue: Since the proposed model is more 

complex/has more parameters that the original MBLRP, using independent samples for validation 

would show to what extent the additional model complexity can improve method performance. Also for 

figures 9, 10 and 11 it would be helpful to show results obtained using independent samples.  

Authors’ Response. We completely agree with this view. We used the period of the year 1951 to 1980 

as the validation period, which is the previous 30 years to the calibration period. Figure 9 to Figure 12 

were redrawn, and the following paragraphs were added in the manuscript. 

Revised Contents. 

3.5 Validation for Ungaged Periods 

One of the primary purposes of the stochastic rainfall model is to provide the synthetic rainfall for the 

ungaged periods, which can be the period of missing data or future. For this reason, we separated the 

period of model calibration and validation at some gage locations (square marks in Figure 2) where 

record length of each period is sufficiently long (60+ years). Then, we tested our model not only based 

on the statistics of the calibration period (1981-2010) but also based on the validation period (1951-

1980). 

 



 

Figure 9: Comparison of (a) mean, (b) variance, (c) lag-1 autocorrelation, and (d) skewness of the 

synthetic (x) and observed (y) monthly rainfall. Filled circles (dashed line) and hollow triangles (dotted 

line) correspond to the calibration (1981-2010) and validation period (1951-1980), respectively. 

4.1 Monthly Rainfall Statistics Reproduction 

Figure 9 compares the mean, variance, lag-1 autocorrelation, and skewness of the monthly rainfall time 

series generated by the SARIMA model (x) to those of the observed monthly rainfall time series (y). 

Each scatter represents one rainfall gage. On the calibration period (1981-2010), the first and the 

second-order moments were reproduced accurately with the coefficient of determination ranging from 

0.69 to 0.95. Skewness was reproduced fairly well with the coefficient value of 0.36. For the validation 

period (1951-1980), mean and variance were reproduced, but not 1ag-1 autocorrelation and skewness. 

However, this discrepancy cannot be solely attributed to the limitation of the model because the 



discrepancy in each plot of Figure 9 is solely caused by the discrepancy of the statistics between 

calibration and validation period. In other words, if the statistics of the calibration period is similar to 

those of the validation period, we can expect the similar performance for both periods, and vice versa. 

 

 

Figure 10: Behaviour of the rainfall variance with regard to the aggregation interval of rainfall time 

series at the gage NCDC-122738. The behaviour corresponding to the observed-calibration (black, 

1981-2010), observed-validation (green, 1951-1980), MBLRP (blue) and our hybrid model (red) are 

shown together. 

4.2 Reproduction of Large Scale Rainfall Variability 

Figure 10 shows the behaviour of the rainfall variance varying with temporal aggregation interval 

between 1 hour and 1 year at the gage NCDC-122738. The behaviour corresponding to the observed-

calibration (black, 1981-2010), observed-validation (green, 1951-1980), MBLRP (blue) and our hybrid 

model (red) are shown together. … 

 



 

Figure 11: (a) Comparison of the large scale rainfall variance of the rainfall generated by our hybrid 

model (x) and the observed rainfall (y); (b) Comparison of the large scale rainfall variance of the 

rainfall generated by the traditional MBLRP model (x) and the observed rainfall (y). The different 

colours of the scatter correspond to the different aggregation interval of rainfall time series. Filled 

circles and hollow triangles correspond to the calibration and validation period, respectively. 

 

…Figure 11 compares the variance of the synthetic (x) and observed (y) rainfall time series at yearly 

(purple), monthly (red), 15-daily (yellow), weekly (blue), and 32-hourly (green) aggregation levels. The 

comparison of the variance at the finer time scale is carried out in the following section.  

As indicated by the concentration of the scatters above the 1:1 line in Figure 11b, the traditional MBLRP 

model systematically underestimates the variability at time scales greater than 32 hours. Our model did 

not show any bias in this range of large time-scales as shown in Figure 11a. 

 

 



 



 

Figure 12: Comparison of the statistics of the synthetic (x) and observed (y) rainfall time series at sub-

daily time scale. The colour of the dots represents the statistics of each calendar month. The results of 

(a) the calibration period (1981-2010) and (b) the validation period (1951-1980) are shown. 



 

4.3 Reproduction of Sub-Daily Rainfall Statistics 

Figure 12 compares the mean, variance, lag-1 autocorrelation, and the proportion of dry periods of the 

synthetic (x) and observed (y) rainfall time-series at hourly through 16 hourly aggregation levels. Each 

scatter represents the statistics at a given gage of a given calendar month. The colour of the scatters 

represents the calendar months. In each plot, the coefficient of determination (𝑅2)  of the linear 

regression between the two variables is shown. All four statistics were accurately reproduced across 

various sub-daily time scales with 𝑅2 equal to 0.98 (mean), and varying between the following limits 

for the other statistics: 0.90 and 0.93 (variance), 0.58 and 0.93 (lag-1 autocorrelation), and 0.67 and 

0.85 (proportion of dry periods) on the calibration period (Figure 12a). The similar degree of coefficient 

of determinations were obtained for the validation period (Figure 12b). 

5.3 Calibration versus validation 

Our approach of separating the period of calibration and validation adopted to some gage locations, 

at one viewpoint, is paradoxical because most stochastic rainfall generators are calibrated based on 

the statistics reflecting the temporal stationarity of rainfall process. According to this assumption, the 

statistics of the period of calibration and the validation should be the same, which obviates the needs 

of validating the model for separate periods. However, this assumption is often broken, for example, in 

case that the observation period is too short (e.g. a few extreme events are included in only one part of 

the time period) or in case that the time series is indeed non-stationary. For this reason, the discrepancy 

of the model performance between the calibration and the validation period not only attributed to the 

model's limitation but also to the discrepancy of the statistics between the two periods. In this context, 

the term “validation” may be substituted into the term “prediction.” 

Taken these, our primary purpose of separating the period of calibration and validation was to figure 

out the applicability of our model for rainfall generation of future period: From the view point of 

calibration period, validation period is ungagged period just as future period, and our model can be 

easily extended to the future period by adding a term accounting for long-term rainfall non-stationarity 

to the SARIMA model (first module). Our hybrid model assumes not only the stationarity of the typical 

rainfall statistics such as mean, variance, covariance and proportion of dry periods but also the 

relationship between them (See Figure 6). The latter has not been explicitly discussed by previous 

studies, so it will be very interesting to see whether such relationship between the statistics holds over 

different temporal periods and how the discrepancy affects the final model performance, if there is any. 

Figure 19 compares the slope of the regression analysis between the statistics shown in Figure 6 for the 

calibration (x) and validation (y) period. The plots corresponding to the variances at different scales 

are not shown because they have a firm analytical background to have solid slope close to 2 (See 



Equation 5 and the preceding equations). There is not a significant discrepancy between slopes 

estimated using statistics on calibration and validation period implying that relationships between the 

fine time scale statistics are stationary and that our model can be used for future or ungagged periods. 

 

Figure 19: Comparison of the slope of regression analysis between the statistics shown in Figure 6 for 

the calibration (x) and validation (y) period. The slopes of regression analysis (a) between mean and 

standard deviation and (b) between mean and proportion of dry periods and (c)-(f) between proportion 

of dry periods at the different time scale were compared. Solid lines are 1:1 line and dashed lines 

represent the regression lines. 



Comment 7. In the MBLRP model, cell durations are represented by a double stochastic process which 

produces a long-tail matching observation as stated at line 14. However, rainfall intensities are also 

known to be of sub-exponential nature (Wilson and Toumi 2005). While MBLRP uses an exponential 

distribution for rainfall intensities, the method proposed here appear to improve the performance in 

reproducing rainfall extremes. You state that this results on rainfall extremes (better performance 

compared to MBLRP) is ‘surprising’: However, this is likely due to the inter-annual variation of the 

parameters as you also discuss in section 5.1. On this effect, see Zorzetto et al (2016), where it is shown 

that the interannual variation of exponential-type rainfall distributions, as is the case with your findings, 

can explain the emergence of fattailed extreme value distributions. The fact that your model generates 

time series with improved extreme value properties is very appealing, as this is a traditional shortcoming 

of Poisson-cells based rainfall models. 

Authors’ Response. This is the best compliment commented on this article. Indeed, the heavier tail 

could be reproduced after introducing stochasticity to the parameters of the exponential distribution 

representing the cell intensity. Please see the following figure that we added to the revised manuscript. 

 

Figure 15. Relative frequency and the fitted GEV distribution of the 1, 4, and 16-hour monthly maxima 

of January, April, July, and October rainfall at the gage NCDC-132203. Results of Observed rainfall 

(black), our hybrid model (red), and the traditional MBLRP model (blue) are shown. The upper 10 

percentile part of the distribution (dashed box in the plots in the first, third, and fifth row) is magnified 

in the lower rows (plots in the second, fourth, and sixth row). 

In addition, we added the following sentences in the manuscript: 

Revised Contents. 

Zorzetto et al. (2016) also briefly discussed this matter. They introduced a novel framework of meta-



statistical extreme value (MEV) analysis. In this MEV formulation, one can show that interannual-

variation of exponential-type rainfall process leads to fat-tail of its extreme value. 

Reference. Zorzetto, E., Botter, G. and Marani, M.: On the emergence of rainfall extremes from 

ordinary events, Geophys. Res. Lett., 43, 8076-8082, 2016. 

 

Minor Comments 

1) Page 4, line 29 – Rain gauge with ID 85663, please correct 

Authors’ Response. Done as suggested. 

 

2) Page 5, line 2 – ‘the discrepancy between their quartiles/ their range..’. Please also specify in the 

caption what the whiskers of the boxplots are (quartiles?) 

Authors’ Response. Done as suggested. 

Revised Contents. 

Figure 2: Box plots of the observed monthly rainfall at the gage NCDC-85663 in Florida, USA (red). 

The box plots of the synthetic monthly rainfall generated by the Modified Bartlett-Lewis Rectangular 

Pulse model at the same gage are shown for reference (blue). Whiskers reach to minimum and maximum 

values of monthly rainfall during the period between 1961 and 2010 and gray shaded boxes represent 

the discrepancy of the variability of the two monthly rainfalls. 

 

3) The sentence at lines 27-28 is not clear, please clarify. The variance is not represented by the vertical 

axis in Figure 2, even though the boxplots do give an idea of the variability of the seasonal monthly 

rainfall distributions. 

Authors’ Response. Done as suggested. 

Revised Contents. 

In Figure 2, the red box plots represent the distribution of the monthly rainfall observed at the gage 

NCDC-85663 located in Florida, USA during the period between 1961 and 2010. 

 

4) Figure 3: please state in the legend what the values in the map are (SARIMA parameters) and what 

the coloring is, even if it is already explained in the text. 



Authors’ Response. Done as suggested. 

Revised Contents. 

Figure 3: Study area and 34 NCDC hourly rainfall gages. The label of the markers is presented in the 

following format: aaaaaa(i,j,k)(x,y,z)12, where aaaaaa represents the NCDC gage ID, (i, j,k) represent 

the orders of the autoregressive, differencing, and moving average terms of SARIMA model, and (x,y,z) 

represent the orders of the seasonal autoregressive, differencing, and moving average terms of SARIMA 

model. Colour of the markers represent the Bayesian Information Criterion (BIC) value of the SARIMA 

model. The lower BIC indicates either parsimonious parameterization, larger likelihood, or both. 

Model description of SARIMA is detailed in Section 3.1. 

 

5) Page 22, line 10: ‘It is important TO NOTE THAT..’ or something on this line.  

Authors’ Response. This line was already pointed from RC2. It was changed as follows: 

Revised Contents. 

A good rainfall model should reproduce not only the extreme values but also the distribution of the 

maxima from which extreme values are derived. 

 

6) Page 26, line 1: ‘and the subsequent EFFECTS ON human..’  

Authors’ Response. Done as suggested. 

 

7) Page 26, line 3; ‘time scaleS’ 

Authors’ Response. Done as suggested. 

  



Dear Dr. Nadav Peleg, 

We sincerely appreciate your constructive comments on our manuscript. All your comments 

tremendously helped us to improve the quality of the article. Our response is as follow: 

 

Comment 1. Is the rainfall generator capable of simulating the diurnal cycle of precipitation? I didn’t 

find a mention to it in the text. 

Authors’ Response. We appreciate this comment. This rainfall generator was not designed to consider 

the diurnal cycle of precipitation. Diurnal pattern of rainfall could be integrated by introducing separate 

model parameter sets to for day and night period, but at the expense of model accuracy and parsimony. 

Therefore, we would like not to discuss the topic of rainfall diurnal pattern in this article. 

 

Comment 2. You mentioned that “. . . Poisson cluster rainfall models are designed to reflect the original 

spatial structure of rain storms containing multiple rain cells” [page 3 line 5], which implies that the 

rainfall generator can be used in a multisite context. Yet, the examples and discussion are given for 

single sites. Can the model be used to simulate hourly rainfall at multi-sites? And if so, can you please 

provide some examples to the ability of the model to preserve the spatial structure of the rainfall?  

Authors’ Response. The model is applicable only for a single site at the current stage, and we believe 

that the extension of the model to multiple sites may be treated in a separate research. As a matter of 

fact, there have been efforts to extend the point process models to generate spatially distributed rainfall. 

The first kind adopted the concept of spatial and temporal correlation (Rodriguez-Itrube et al., 1986), 

and the second kind adopts adopted the spatial concept in the stage of rain storm and cell generation 

(Cowpertwait, 1995). However, none of this research can account for the complex dynamics of storm 

movement. We believe that the recent models assuming movement of structured rain cells (Paschalis et 

al., 2013; Peleg and Morin, 2014) represent a considerable improvement, and that further research in 

this direction may ultimately resolve the problem of space-time rainfall generation in the near future.  

Reference. Cowpertwait, P. S.: A generalized spatial-temporal model of rainfall based on a clustered 

point process, Proc.R.Soc.Lond.A, 450, 163-175, 1995. 

Paschalis, A., Molnar, P., Fatichi, S. and Burlando, P.: A stochastic model for high‐resolution space‐

time precipitation simulation, Water Resour. Res., 49, 8400-8417, 2013. 

Peleg, N. and Morin, E.: Stochastic convective rain‐field simulation using a high‐resolution synoptically 

conditioned weather generator (HiReS‐WG), Water Resour. Res., 50, 2124-2139, 2014. 



Rodriguez-Iturbe, I., Cox, D. R. and Eagleson, P.: Spatial modelling of total storm rainfall, 

Proc.R.Soc.Lond.A, 403, 27-50, 1986. 

 

Comment 3. In page 4, line 4, it is mentioned that “. . .Poisson cluster rainfall models have also been 

used to generate future rainfall scenario under climate change”. How can the model be re-set to simulate 

rainfall for a future period following the methodology you are suggesting here?  

Authors’ Response. Thank you for your suggestion. The concept of Change Factor (CF) may be 

incorporated to extend our model for future rainfall generation. Here, the change factor represents the 

ratio of the future to the current rainfall depth, which are typically derived from the information drawn 

from the General Circulation Model result. Fatichi et al. (2011) also adopted this approach. This change 

factor may be applied between the first and the second module of our methodology. 

Reference. Fatichi, S., Ivanov, V. Y. and Caporali, E.: Simulation of future climate scenarios with a 

weather generator, Adv. Water Resour., 34, 448-467, 2011.  

 

Comment 4. You state that “Our hybrid model is not easy to implement because it requires extensive 

analysis of the correlation structure of the fine-scale rainfall statistics to fine-tune the MBLRP model to 

downscale the generated monthly rainfall” [page 26 line 20]. Can you give some further information in 

this direction? e.g. what is the minimum number of years that are required for a proper analysis of the 

statistics? How many gauges are required to cover a given area? 

Authors’ Response. Regarding the number of gauges, our model requires the records from one gauge 

to generate the rainfall time series at one gauge. It is one-to-one relationship. Regarding the minimum 

rainfall record length, we performed additional analyses. However, we would like to keep this 

information internally because a more extensive analysis targeting every model component is necessary 

to obtain a comprehensive answer, which may be addressed in a separate article. 

Here, we provide a guideline on the length of the rainfall record that is required for successful 

implementation of the model. The key step of our model that is influenced by the rainfall record length 

is the algorithm to generate the monthly rainfall statistics to be used for model parameter estimation 

(Figure 5). This step is composed of a total of 14 linear regressions between various short-term rainfall 

statistics, and the reliability of these 14 linear regressions influences the subsequent steps, which 

eventually determines the overall model performance. The relationships between M1 and V1 and 

between M1 and P1 are especially important because they impose the greatest uncertainty among all 14 

regressions (compare the data spreads of Fig.6a,b and those of the remaining plots of Fig. 6). For this 

reason, we investigated the sensitivity of the slope of these regression analyses to the rainfall record 



length. Figure SC1-1 summarizes the result. For both plots, the x-axis represents the rainfall record 

length, and the y-axis represents the relative error of the regression slope values. Here, the relative error 

was calculated through the following procedure: (a) Calculate the regression slope at one gauge based 

on all 30 years of rainfall record (1981-2010). This value was regarded as the true value; (b) Remove 

the record of the oldest year from the original rainfall data (1982-2010) and calculate the regression 

slope; (c) Calculate the absolute value of the difference between the regression slope of (a) and (b); (d) 

Repeat the process (b) and (c) for all 29 gauges and calculate the 5- (lower red line in Figure SC1-1), 

50- (middle black line in Figure SC1-1), and 95-percentile (upper red line in Figure SC1-1) value of the 

29 absolute values of regression slope difference; (e) Repeat the process (b) through (d) by subsequently 

removing additional one year of data (1983-2010, 1984-2010, 1985-2010, … , 2000-2010). Fig. SC1-

1a and b corresponds to the regression analysis between M1 and V1, and M1 and P1. The result suggests 

that systematic bias is introduced in the regression slope values with the decrease in the size of the data 

set. When the record length was reduced from 30 years to 20 years, 4 to 8 percent, and 3 to 5 percent of 

systematic bias are introduced into the estimates of the slope of regression relating M1 and V1 and the 

one relating M1 and P1 respectively. The plot can be also used for quantifying the systematic bias 

corresponding to different record lengths. 

 

Figure SC1-1. The 5- (lower red line), 50- (middle black line), and 95- (upper red line) percentile of 

relative error of the regression slope values relating M1 and V1, and M1 and P1, respectively, that vary 

with the record length. The values can be regarded as the systematic bias introduced in the regression 

analysis as the record length decreases. 

 

Comment 5. A short comment from my side – you mention in the introduction the importance of rainfall 

at small scales. The paper here focused on the hourly scale, and you mention in the conclusion that the 

model can be (with implementing some methods, as random cascades) also used to simulate rainfall at 



sub-hourly scales. It is maybe worth mentioning in this context that there are already several gridded 

sub-hourly rainfall generator models that are presented in the literature (e.g. Paschalis et al. 2013 – 

WRR; Peleg and Morin 2014 – WRR; Peleg et al. 2017 – JAMES; Benoit et al. 2018 - WRR) and to 

briefly discuss the advantages/limitations of using the tool you are suggesting for simulating rainfall at 

fine scales in comparison to the others. 

Authors’ Response. Thank you for your suggestion. We changed the manuscript as below. 

Revised Contents.  

[(old) page 26 line 18 / (new) page 30 line 5] … Southern Oscillation (ENSO) and North Atlantic 

Oscillation (NAO). Lastly, the genuine structure of our model that is composed of a large scale rainfall 

generation module and a downscaling module, may be integrated to existing space-time rainfall 

generators to enhance their ability to generate large temporal-scale rainfall variability (Burton et al., 

2008, Müller and Haberlandt, 2015, Paschalis et al., 2013; Peleg and Morin, 2014; Peleg et al., 2017; 

Benoit et al., 2018). 

Reference. Benoit, L., Allard, D. and Mariethoz, G.: Stochastic Rainfall Modelling at Sub‐Kilometer 

Scale, Water Resour. Res., 2018. 

Burton, A., Kilsby, C., Fowler, H., Cowpertwait, P. and O'Connell, P.: RainSim: A spatial–temporal 

stochastic rainfall modelling system, Environmental Modelling & Software, 23, 1356-1369, 2008. 

Müller, H. and Haberlandt, U.: Temporal rainfall disaggregation with a cascade model: from single-

station disaggregation to spatial rainfall, J. Hydrol. Eng., 20, 04015026, 2015. 

Paschalis, A., Molnar, P., Fatichi, S. and Burlando, P.: A stochastic model for high‐resolution space‐

time precipitation simulation, Water Resour. Res., 49, 8400-8417, 2013. 

Peleg, N. and Morin, E.: Stochastic convective rain‐field simulation using a high‐resolution synoptically 

conditioned weather generator (HiReS‐WG), Water Resour. Res., 50, 2124-2139, 2014. 

Peleg, N., Fatichi, S., Paschalis, A., Molnar, P. and Burlando, P.: An advanced stochastic weather 

generator for simulating 2‐D high‐resolution climate variables, Journal of Advances in Modeling Earth 

Systems, 9, 1595-1627, 2017. 

 

 

  



Dear Dr. Hannes Müller, 

We sincerely appreciate your constructive comments on our manuscript. All your comments 

tremendously helped us to improve the quality of the article. We have prepared the following responses 

to your comments: 

 

Comment 1. The rainfall model generates hourly rainfall time series. Are there any investigations/plans 

to extend it to e.g. 5 min resolution (instead of applying cascade models as suggested in the outlook)? 

Do you see any restrictions or arising problems, if the method would be extended to a finer temporal 

scale?  

Authors’ Response. Yes, we do have a plan, and we invited you for the co-work in a very near future. 

I see no arising technical problems. 

 

Comment 2. To enable comparisons with other rainfall generators, maybe the authors want to spend a 

few words on the total number of parameters required to generate the hourly rainfall time series? E.g. 

for the MBLRP-module you use 6 parameters per set and one set per month, resulting in 72 parameters 

for module 3. What is the total number of parameters?  

Authors’ Response. Thank you for your suggestion. We added the following sentence according to 

your suggestion: 

3.3 MBLRP Model Parameter Estimation 

4.3. An Issue with Model Parsimoniousness: six versus fifty five 

Our hybrid model uses one MBLRP model parameter set per one simulation year while the MBLRP 

model needs only 6 parameters regardless of the simulation length. However, this does not mean that 

our model requires 600 MBLRP model parameters (6 per month x 100 months) to generate 100 months 

of rainfall. This is because parameters are estimated based on the short-term rainfall statistics that are 

synthetically generated through the process of the SARIMA model and the regression analysis (See 

Figure 5). Therefore, the parameters of the SARIMA model and the parameters of the regression 

analyses shown in Figure 5 should be considered as the “true” parameters of this model because once 

these parameters are given, our model can generate infinite length of rainfall record. The SARIMA 

model has 6 parameters, and a set of regression analyses shown in Figure 5 has 49 parameters (2 per 

ten solid arrows in Figure 5 = 20, 3 per 8 bivariate normal distributions relating two subsequent residual 

terms (εi) in Figure 5 = 24, and one per 5 normal distributions perturbing autocorrelation terms (ci) = 



5). Therefore, our model has a total of 55 parameters. This discrepancy of number of parameters (6 of 

the traditional of MBLRP model versus 55 of our hybrid model) can be considered as a cost taken to 

reproduce the large-scale rainfall variability that the traditional MBLRP model cannot.  

We admit that this large discrepancy of model parsimoniousness is an issue to be resolved for our model 

to be applied in practice. Regarding this, we are planning to apply our model to additional gauge 

locations across the world and share the result through the website (http://www.letitrain.info). The work 

has been already initiated for the rainfall data of Korean Peninsula.  

  

Comment 3. P15l18-20 “. . .the MLRP model that reflects the original spatial structure of rainfall in 

reality, . . .” What is the connection between the point statistics mentioned before and the spatial 

structure? Is it planned to extend the introduced model to be able to generate spatial rainfall? Even if 

not, maybe the authors want to include in their outlook, how this can be achieved, for example i) during 

the rainfall generation by e.g. the circle approach with the radius of single pulses or their velocities as 

additional parameters (Cox and Isham, 1988, Bordoy and Burlando, 2014) or ii) subsequently be a 

resampling approach (Müller and Haberlandt, 2015)? Where do the authors see 

opportunities/limitations? 

Authors’ Response. Thank you for your suggestion. That sentence you mentioned in our article can 

indeed confuse to many readers because Poisson cluster model mentioned in this study is purely a 

single-site model. We added a sentence in the conclusion according to your suggestion as follow:  

An additional model could be integrated to our hybrid model to incorporate further rainfall variability. 

For example, an approach based on random cascades (Molnar and Burlando, 2005; Müller and 

Haberlandt, 2016; Pohle et al., 2018) can be integrated to our model for reproducing the rainfall 

variability at the time scale as fine as five minutes. In addition, the SARIMA model that was adopted in 

this study could be further modified to account for the coarser rainfall variability caused by El Niño-

Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO). Lastly, the genuine algorithm of 

our model of sequential generation and disaggregation may be integrated to improve the performance 

of existing space-time rainfall generators (Burton et al., 2008, Müller and Haberlandt, 2015, Paschalis 

et al., 2013; Peleg and Morin, 2014; Peleg et al., 2017; Benoit et al., 2018).  

 

Technical notes 1. Fig. 13: For the observations extreme values with return periods of 200 yrs are 

shown for all stations, taken from a fitted GEV distribution. The observation length is only 30 yrs (1981-

2010) and it can be questioned if the comparison of extrapolated values for 200 yrs return periods is 

reliable from a statistical point of view. I would rather limit the comparison to 50 yrs or 100 yrs. 



Authors’ Response. While we agree with the reliability issue of the extrapolated values, we still think 

that presenting the 200-year value may be necessary because it can clearly show the limitation of our 

model and the traditional MBLRP model. 

 

 

Fig. 13 



 

Fig. 14 

 

Technical notes 2. Fig. 14 (caption): I think the model colors have been swapped by mistake: ’our 

model’ should be red, ’MBLRP’ should be blue. 

Authors’ Response. Your comment is correct. We changed the caption of the figures. 

Figure 14: Degree of over/underestimation of extreme values by our model (red) and the traditional 

MBLRP model (blue). 
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Abstract. A novel approach ofto stochastic rainfall generation that can reproduce various statistical characteristics of observed 

rainfall at hourly through yearly time scale is presented. The model uses the Seasonal Auto-Regressive Integrated Moving 

Average (SARIMA) model to generate monthly rainfall. Then, it downscales the generated monthly rainfall to the hourly 

aggregation level using the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) model, a type of Poisson cluster rainfall 10 

model. Here, the MBLRP model is fine-tunedcarefully calibrated such that it can reproduce the fine-scalesub-daily statistical 

properties of observed rainfall. This was achieved by first generating a set of fine scale rainfall statistics reflecting the complex 

correlation structure between rainfall mean, variance, auto-covariance, and proportion of dry periods, and then coupling it to 

the generated monthly rainfall, which were used as the basis of the MBLRP parameters to downscale monthly 

rainfall.parameterization. The approach was tested at the 29 gaugeson 34 gages located in the Midwest to the East Coast of the 15 

Continental United States with a variety of rainfall characteristics. The results of the test suggest that our hybrid model 

accurately reproduces the first through the third order statistics as well as the intermittency properties from the hourly to the 

annual time scale; and the statistical behaviour of monthly maxima and extreme values of the observed rainfall was wellwere 

reproduced as well. 

1 Introduction and Background 20 

Most human and natural systems affected by rainfall react sensitively to temporal variability of rainfall across small (e.g. 

quarter-hourly) through large (e.g. monthly, yearly) time scalescales. Small scale rainfall temporal variability influences short-

term watershed responses such as flash flood (Reed et al., 2007) and subsequent transport of sediments (Ogston et al., 2000) 

and contaminants (Zonta et al., 2005). Large scale rainfall temporal variability influences long-term resilience of human-flood 

systems (Yu et al., 2017), human health (Patz et al., 2005), food production (Shisanya et al., 2011), and evolution of human 25 

society (Warner and Afifi, 2014) and ecosystems (Borgogno et al., 2007; Fernandez-Illescas and Rodriguez-Iturbe, 2004). 

While the risk exerted by these impacts needs to be precisely assessed for the management of thesuch systems, the observed 

rainfall record is oftentimes not long enough (Koutsoyiannis and Onof, 2001). Furthermore, the rainfall records do not exist 

when the risks need to be assessed for the future. For this reason, stochastic rainfall generators, which can generatecreate 
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synthetic rainfall record with infinite length, have been frequently used to provide the rainfall input data to the modelling 30 

studies for the risk assessment. 

 The Poisson cluster rainfall generation model (Rodriguez-Iturbe et al, 1987; 1988) is one of the most widely applied 

stochastic rainfall generators. Figure 1 shows a schematic of the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) model, 

which is a typical Poisson cluster rainfall model. The model assumes that a series of rain storms (black circles) comprising a 

sequence of rain cells (red circles), arrives in time according to a Poisson process. Kim et al. (2013a) summarized the MBLRP 35 

model structure as follow: The MBLRP model has six parameters of which brief description is provided in the lower text box 

of Figure 1. 

"In the MBLRP model, X1 [T] is a random variable that represents the storm arrival time, which is governed by a 

Poisson process with parameter λ [1/T]; X2 [T] is a random variable that represents the duration of storm activity (i.e., the time 

window after the beginning of the storm within which rain cells can arrive), which varies according to an exponential 40 

distribution with parameter γ [1/T]; X3 [T] is a random variable that represents the rain cell arrival time within the duration of 

storm activity, which is governed by a Poisson process with parameter β [1/T]; X4 [T] is a random variable that represents the 

duration of the rain cells. The distribution of the rain cell durations is known to have a long-tailed distribution (Rodriguez-

Iturbe et. al., 1987), which was assumed to vary according to an exponential distribution with parameter η [1/T] that, in turn, 

is a random variable represented by a gamma distribution with parameters ν [T] and α [dimensionless]; and X5 [L/T] is a 45 

random variable that represents the rain cell intensity, which varies according to an exponential distribution with parameter μ 

[L/T]. From the physical viewpoint, λ is the expected number of storms that arrive in a given period, 1/γ is the expected 

duration of storm activity, β is the expected number of rain cells that arrive within the duration of storm activity, 1/η is the 

expected duration of rain cells and μ is the average rain cell intensity. Parameters ν and α do not have a clear physical meaning, 

but the expected value and variance of η can be expressed as α/ν and α/ν2. Therefore, the model has six parameters: λ, γ, β, ν, 50 

α and μ; however, it is customary to use the dimensionless ratios φ = γ/η and κ = β/η as parameters instead of γ and β.” 
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Figure 1: Schematic of the Modified Bartlett-Lewis Rectangular Pulse Model. The blue area represents duration (width) and 

intensity (height) of each rain cell, respectively. The dashed line represents superposed sum of the rain cell intensities. 55 

 

As suggested by the figure, Poisson cluster rainfall models are designed to reflect the original spatial structure of rain storms 

containing multiple rain cells (Austin and Houze Jr., 1972; Olsson and Burlando, 2002), so they are good at reproducing the 

first through the third order statistics of the observed rainfall at quarter-hourly through daily accumulation levels, as well as 

other hydrologically important statistics such as proportion of non-rainy period (Olsson and Burlando, 2002). The performance 60 

of the Poisson cluster rainfall models in reproducing the statistical properties of observed rainfall has been validated for various 

climates at numerous locations across the globe (Bo et al., 1994; Cameron et al., 2000; Cowpertwait, 1991; Cowpertwait et al., 

2007; Derzekos et al., 2005; Entekhabi et al., 1989; Glasbey et al., 1995; Gyasi-Agyei and Willgoose; 1997, Gyasi-Agyei; 

1999, Islam et al.; 1990, Kaczmarska et al., 2014; Khaliq and Cunnane, 1996; Kim et al., 2016; Kim et al., 2013b; Kim et al., 

2014; Kossieris et al., 2015;  Kossieris et al., 2016; Onof and Wheater, 1994a; Onof and Wheater, 1994b; Onof and Wheater, 65 

1993;  Rodriguez-Iturbe et al., 1988; Rodriguez-Iturbe et al., 1987; Smithers et al., 2002; Velghe et al., 1994; Verhoest et al., 

1997; Wasko et al., 2015).; Ritschel et al., 2017). For this reason, they have been widely applied to assess the risks exerted on 
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human and natural systems such as floods (Paschalis et al., 2014), water availability (Faramarzi et al., 2009), contaminant 

transport (Solo-Gabriele, 1998), and landslides (Peres and Cancelliere, 2014; 2016)., Thomas et al., 2018). Recently, Poisson 

cluster rainfall models have also been used to generate future rainfall scenario under climate change (Kilsby et al., 2007; 70 

Burton et al., 2010; Fatichi et al., 2011). 

In the meantime, Poisson cluster rainfall models have an intrinsic limitation derived from a fundamental model assumption. 

As described by Figure 1, they generate the rainfall time series assuming that the rain storms arrive according to a Poisson 

process, which assumes that rain storm occurrences are independent. In addition, the rain cells in different storms are 

independent with each other. These model assumptions deprive the model of the ability to reproduce the long-term memory 75 

of rainfall that is often observed in reality (Marani, 2003). 

Let us introduce some notation. The aggregated process 𝑌(ℎ) at time-scale h hours is defined in terms of the continuous time 

process 𝑌 by the equation: 

𝑌𝑖
(ℎ)

= ∫ 𝑌(𝑡)𝑑𝑡
𝑖ℎ

(𝑖−1)ℎ

 

We can then write the variance at time-scale nh as: 80 

𝑉𝑛ℎ = 𝑉𝑎𝑟(𝑌(𝑛ℎ)) = 𝑛𝑉𝑎𝑟(𝑌(ℎ)) + ∑ ∑ 𝐶𝑜𝑣(𝑌𝑖
(ℎ)

, 𝑌𝑗
(ℎ)

)
𝑛

𝑗=1,𝑗≠𝑖
 

𝑛

𝑖=1
 

So 

𝑉𝑛ℎ = 𝑛𝑉ℎ + 2 ∑ 𝐶ℎ(𝑘)𝑛−1
𝑘=1           (1) 

= ∑ 𝐶𝑜𝑣(𝑌𝑖
(ℎ)

, 𝑌𝑖
(ℎ)

) 
𝑛

𝑖=1
+ ∑ ∑ 𝐶𝑜𝑣(𝑌𝑖

(ℎ)
, 𝑌𝑗

(ℎ)
)

𝑛

𝑗=1,𝑗≠𝑖
 

𝑛

𝑖=1
 

= 𝑛𝑉𝑎𝑟(𝑌(ℎ)) + ∑ ∑ 𝐶𝑜𝑣(𝑌𝑖
(ℎ)

, 𝑌𝑗
(ℎ)

)
𝑛

𝑗=1,𝑗≠𝑖
 

𝑛

𝑖=1
 85 

Since 𝐶𝑜𝑣(𝑌𝑖
(ℎ)

, 𝑌𝑗
(ℎ)

) = 𝐶𝑜𝑣(𝑌𝑗
(ℎ)

, 𝑌𝑖
(ℎ)

) 

𝑉𝑛ℎ = 𝑛𝑉𝑎𝑟(𝑌(ℎ)) + 2 ∑ ∑ 𝐶𝑜𝑣(𝑌𝑖
(ℎ)

, 𝑌𝑗
(ℎ)

)𝑛
𝑗=1,𝑗>𝑖  𝑛

𝑖=1              (1) 

, where 𝑉ℎ  is the variance of rainfall depths at scale h hours and 𝐶ℎ(𝑘)𝐶𝑜𝑣( ∙ , ∙ ) is the covariance of lag k at scale h 

hoursoperator between the two random variables. 

The second term of the right-hand side of Equation 1, which represents the rainfall correlation between individual records 90 

separated by k( 𝑖 − 𝑗) time-steps of the time series of rainfall depths at scale h hours, is likely to be underestimated by the 

Poisson cluster rainfall model because it can only reproduce short-term memory in the rainfall signal through its model 

structure, i.e. through the clustering of rain cells. The degree of underestimation will increase as the correlation between the 

individual records ( 𝑌𝑖
(ℎ)

) of the observed rainfall time series increases and as the aggregation level n increases. This 

underestimation was consistently observed in the rainfall data of the United States (Kim et al., 2013a). If ℎ = 1  in Equation 95 
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1, i.e. hourly rainfall, and 𝑛 ≅720 (24hours/day x× 30 days = 720 hours ≅ 1 month), the left-hand side of Equation 1 will 

represent the variance of monthly rainfall, which can be represented on the vertical axis of the box plots in Figure 2. 

In Figure 2, the red box plots represent the variabilitydistribution of the monthly rainfall observed at thegage NCDC rain 

gauge-85663 located in 85663, Florida, USA during the period between 1961 and 2010 The blue box plots represent the 

variability of the monthly rainfall estimated from the 50 years of hourly synthetic rainfall data generated by the Modified 100 

Bartlett-Lewis Rectangular Pulse (MBLRP) model, a type of Poisson cluster rainfall generators. Here, the MBLRP model used 

the parameter set that was calibrated to reproduce the observed rainfall mean, variance, lag-1 auto-covariance, and proportion 

of dry periods at sub-daily aggregation intervals (1, 2, 4, 8, and 16-hour), which is a typical practice of MBLRP model 

calibration (Rodriguez-Iturbe et al., 1987; Rodriguez-Iturbe et al., 1988; Kim et al., 2013a). Note that the vertical length of the 

red box plots are greater than that of the blue box plots in general, which implies that the variability of the observed rainfall is 105 

systematically greater than that of the synthetic rainfall. The discrepancy between the two are shown as the gray shading in the 

figure. In addition, the monthly extreme values shown as star marks are also underestimated by synthetic rainfall. This is, in 

particular, caused by the aforementioned limitations of the Poisson cluster rainfall models. 

Considering that the management strategies of the water-prone human and natural systems may be governed by the few 

extreme rainfall values observed in the shaded domain of Figure 2, the risk analysis based on the rainfall data generated by 110 

Poisson cluster rainfall models may miss the system behaviour that is crucial for development of the management plans. As a 

matter of fact, other rainfall models have the similar issueissues: they cannot reproduce the temporal variability of observed 

rainfall across all time scales (Paschalis et al, 2014). For example, Markov chains, alternating renewal processes, and 

generalized linear models can reproduce the variability only at time scales coarser than one day. Models based on 

autoregressive properties of rainfall are typically good at reproducing the observed rainfall variability only for a limited range 115 

of scales, for instance from one month to a year or two (Mishra and Desai, 2005; Modarres and Ouarda, 2014; Yoo et al., 

2016). 
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Figure 2: Box plots of the observed monthly rainfall at thegage NCDC Gauge -85663 in Florida, US.USA (red). The box plots of the 

synthetic monthly rainfall generated by the Modified Bartlett-Lewis Rectangular Pulse model at the same gauge are shown for 120 
reference (blue).gage are shown for reference (blue). Whiskers reach to minimum and maximum values of monthly rainfall during 

the period between 1961 and 2010 and gray shaded boxes represent the discrepancy of the variability of the two monthly rainfalls. 

Several studies discussed the need to use composite rainfall models to resolve this scale problem of rainfall models. 

Koutsoyiannis (2001) used two seasonal autoregressive models with different temporal resolution to generate two different 

time series referring to the same hydrologic process. Then, they adjusted the fine scale time-series using their novel coupling 125 

algorithm so that this series becomes consistent with the coarser scale time series without affecting the second-order statistical 

properties. Menabde and Sivapalan (2000) combined the alternating renewal process with a multiplicative cascade model in 

which a multi-year rainfall time series generated by a Poisson process based model is disaggregated using a bounded random 

cascade model. Their model reproduced the observed scaling behaviour of extreme events very well up to 6 minutes of 

temporal resolution. Fatichi et al. (2011) developed a model that generates monthly rainfall using an autoregressive model and 130 

disaggregating the generated monthly rainfall using a Poisson cluster rainfall model. Their composite model showed improved 

performance in reproducing the rainfall interannual variability that the latter often fails to reproduce. Kim et al. (2013a) 

proposed a model where the Poisson cluster rainfall model is used to disaggregate the monthly rainfall that is randomly drawn 

from a Gamma distribution. They found that incorporating the observed rainfall interannual variability through their composite 

approach also helps reproduce the statistical behaviour of rainfall annual maxima and extreme values at time scales ranging 135 

from 1 to 24 hours. Paschalis et al. (2014) introduced a composite model consisting of a Poisson cluster rainfall model or 
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Markov chain model for large time scale and a multiplicative random cascade model for small time scale, which performed 

better than individual models across a wide range of scales at four different sites with distinct climatological characteristics. 

This study proposes a composite rainfall generation model that can reproduce various statistical properties of observed rainfall 

at time scales ranging between one hour and one year. First, the model generates the monthly rainfall time series using the 140 

Seasonal Auto-Regressive Integrated Moving Average (SARIMA) model. Then, it downscales the generated monthly rainfall 

time series to the hourly aggregation level using a Poisson cluster rainfall model. Compared to the previous studies with similar 

methodology (Fatichi et al., 2011; Paschalis et al., 2014), our model has a novelty in that: (i) it models the monthly rainfalls 

so as to generate monthly statistics that will serve to calibrate the MLBRP model; (ii) each of the generated individual monthly 

rainfalls are downscaled using month-specific MLBRP model parameter sets that reflect the complex correlation structure of 145 

various rainfall statistics at fine time scale such as mean, variance, covariance, and proportion of dry periods. This distinctive 

approach of our model enables an accurate reproduction of the first through the third order statistics as well as the proportion 

of dry periods from the hourly to the annual time scale; and the statistical behaviour of monthly maxima and extreme values 

of the observed rainfall is well reproduced. 

 150 

2 Study Area 

Figure 3 shows the study area, which encompasses the Midwest to the East Coast of the Continental United States. We used 

the National Climatic Data Centre (NCDC) hourly rainfall data observed at 29 gauge34 gage locations (triangles in Figure 3) 

for the period between 1981 and 2010. The study area has a variety of rainfall characteristics (Kim et al., 2013b). The northern, 

middle, and the southern part of the study area are classified as Humid Continental (warm summer), Humid Continental (cool 155 

summer), and Humid Subtropical climate, respectively, according to the Köppen Climate Classification (Köppen, 1900; Kottek, 

2006). The annual rainfall of the study area varies from 750 mm to 1500 mm. 
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Figure 3: Study area and 29 NCDC hourly rainfall gauges. 
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 160 

Figure 3: Study area and 34 NCDC hourly rainfall gages. The label of the markers is presented in the following format: 

aaaaaa(i,j,k)(x,y,z)12, where aaaaaa represents the NCDC gage ID, (i, j,k) represent the orders of the autoregressive, differencing, 

and moving average terms of the SARIMA model, and (x,y,z) represent the orders of the seasonal autoregressive, differencing, and 

moving average terms of SARIMA model. The colour of the markers represent the Bayesian Information Criterion (BIC) value of 

the SARIMA model. The lower BIC indicates more parsimonious parameterization, larger likelihood, or both. Model description of 165 
SARIMA is detailed in Section 3.1. 

3 Methodology 

Figure 4 describes the model structure of this study. The model is composed of four distinct modules. The first module 

generates the monthly rainfall. The second module generates the fine-scale (1 hour through 16 hours) rainfall statistics 

corresponding to each of the generated monthly rainfall values in the first module. The third module estimates the parameters 170 
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of the MBLRP model based on the fine-scale rainfall statistics generated by the second module. As a result of this process, 

each of the generated monthly rainfalls is coupled with the MBLRP parameter set reflecting its fine-scale statistical 

characteristics. The fourth module downscales each of the monthly rainfalls using the MBLRP model based on the parameters 

obtained in the third module. 

 175 



12 

 

 

 

Figure 4: Four different modules of the model of this study 

3.1 Monthly Rainfall Generation 

We applied the Seasonal Auto-Regressive Integrated Moving Average (SARIMA) model to generate monthly rainfall. 

Generation of monthly rainfall based on Autoregressive relationship has been widely applied due to its parsimonious nature 180 

(Mishra and Desai, 2005) and was proven to successfully reproduce the first through the third-order statistics of the observed 

rainfall at monthly time scale (Delleur and Kavvas, 1978; Katz and Skaggs, 1981; Ü nal et al., 2004; Mishra and Desai, 2005). 

Rainfall data of different stations have different temporal persistence, so we applied the SARIMA model with different 

autoregressive(p), differencing(d), and moving average terms(q) to different stations. The choice of the optimal model for each 

station was determined through the following processes: First, a model structure of SARIMA(p, d, q)(P, D, Q)m is assumed, 185 

where P, D, Q represent the numbers of seasonal autoregressive, differencing, and moving average terms, respectively, and m 

represents the number of periods (here, months) in each season – here 𝑚 = 12. Second, the parameters of the SARIMA model 
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are determined through the method of maximum likelihood. Third, the the Bayesian Information Criterion (BIC) are calculated 

for the fitted SARIMA model. Lastly, the first to third steps are repeated for a combination of different values of p (0p2), d 

(0d2), q (0q2), P (0P2), D (0D2), and Q (0Q2), and the model structure with the lowest BIC is selected for the 190 

station. Therefore, a total of 729 (=36) SARIMA model structures were tested to obtain the optimal model for a station. The 

optimalselected model structure and the BIC values were shown in Figure 3. Through this process, we generated 200 years of 

monthly rainfall for the 29 gauges34 gages. 

3.2 Generation of fine time scale rainfall statistics 

The second module generates the fine time scale (1hour through 16 hours) statistics corresponding to each monthly rainfall 195 

value generated through the SARIMA model. These synthetic fine time scale statistics will later be used for the calibration of 

the MBLRP model to downscale the monthly rainfall to the hourly level. In so doing we are now consideringfirst consider the 

monthly rainfall, when divided by the number of days in the month times 24, as providing us with an estimate of the mean 

hourly rainfall for that particular month. The second module consists of univariate regressions and functional relations linking 

the Then, this estimated mean hourly rainfall to is provided as the input variable of the other module that generates the statistics 200 

that are requiredneeded to fit the MBLRP model. With these statistics MLBRP model parameters are obtained and these will 

be used to disaggregate the generated monthly rainfall., namely the mean, variance, auto-correlation coefficient, and the 

proportion of dry periods at 1-, 2-, 4-, 8-, and 16-hour aggregation intervals, as described in Figure 5 describes the . In this 

process of , the module employs the information obtained from univariate regression analyses between the fine time -scale 

statistics of the observed rainfall (Figure 6) and the mathematical formulae relating rainfall generation.variance and auto-205 

covariance at different time scales (Equation 4) as explained below.  

 



14 

 

 

 

 

Figure 5: Schematic of the algorithm to generate fine time-scale rainfall statistics. The statistics in the blue boxes are used to calibrate 210 
the MBLRP model and the statistics in gray boxes are used to estimate the 1ag-1 autocorrelation. 
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Figure 5 shows a schematic of the second module. In the figure, 𝑀ℎ , 𝑆ℎ , 𝑉ℎ , 𝑐ℎ(1) = 𝐶ℎ(1)/𝑉ℎ  and 𝑃ℎ  in each rectangle 

represent the rainfall mean, standard deviation, variance, lag-1 autocorrelation, and proportion of dry periods at time-scale h 

hours, respectively. The statistic connected to each solid arrow head is stochastically generated based on its linear relationship 215 

to the one connected to the tail of the same arrow. The statistic connected to the dashed arrow head is calculated based on the 

ones connected to the tail of the same arrow using the mathematical (deterministic) relationship connecting these variables as 

we explain below. In other words, the following equation is used: 

Let ε represent the residual of the linear regression between the two statistics connected by an arrow. Consider, for example, 

statistic 𝑀1 which is connected to 𝑉1 220 

𝑌 = 𝑎[𝑖] 𝑋 + 𝑏[𝑖] + 𝜀[𝑖]            (2) 

 

where Y is the variable being generated, and the X is the variable being used as the basis of the generation. Here, the variable 

X and Y can be substituted by any combination of two variables connected by the solid arrow; 𝑎[𝑖] and 𝑏[𝑖] are the parameters 

of the regression analysis, and 𝜀[𝑖] is a random number drawn from the normal distribution 𝜀[𝑖]~𝑁(0, σ[i]
2 ) fitted to the residuals 225 

of the regression analysis. Here, these three parameters are estimated from the univariate regression analysis relating the two 

variables observed during a given calendar month over multiple years as shown by black scatters in each plot of Figure 6, 

which shows the linear relationship between the rainfall statistics observed at gage NCDC-200164 (star mark in Figure 3) 

during the month of July of different years. 

 230 

Consider, for example, statistic 𝑀1 which is connected to 𝑉1(= 𝑆1
2) through the solid arrow in the figure, which means that 

the variance of one-hour rainfall (𝑉1 = 𝑆1
2) is stochastically generated using its relationship to one-hour rainfall mean (𝑀1) 

(scatter of black dots in Figure 6a) using the following formula: 

𝑆1 = 𝑎[6] 𝑀1 + 𝜀[6]            (23) 

𝑉1 = 𝑆1
2             (34) 235 

where subscripts with square brackets are used for the residuals so as to avoid confusion with the time-scale, and where 𝑎[6] is 

the coefficient determined from the regression analysis (note that the constant term is zero here since, trivially, 𝑆1 = 0 when 

𝑀1 = 0), and 𝜀[6] is normally distributed: 𝜀[6]~𝑁(0, 𝜎[6]
2 ). Note that 𝑀1 which is the mean hourly rainfall for the month in 

question is just the monthly total obtained using the SARIMA model, divided by the number of hours in the month.a random 

number drawn from a normal distribution: 𝜀[6]~𝑁(0, 𝜎[6]
2 ). 240 

Similar principles can be applied to the remaining statistics connected through solid arrows in Figure 5. The black scatters in 

Figure 6 shows the linear relationship between the rainfall statistics observed at thegage NCDC gauge ID -200164 (star mark 

in Figure 3) during the month of July of different years. 
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Figure 6: Linear relationship between various fine time-scale rainfall statistics of the rainfall observed rainfallfor the month of July 

of different years at gage NCDC-200164 (black dots). The solid black line represents the least squares regression line. Based on this 

regression relationship, up to 50 setsa set of the 20 fine-time scale statistics are generated for each of the months (hollow blue 250 

squares) until, which are immediately used as the basis of the MBLRP model parameter calibration. If the objective function of the 

set becomes smallerparameter calibration corresponding to the generated set is greater than a given threshold value. Then,, the 

set is rejected (blue squares), and the set with the objective function less thanlower the threshold in the MBLRP parameter 

calibration process is finallyvalue is only chosen (red squares).e 

Let us look at this process in a little more detail, focusing first upon the dashed arrows: 255 

The statistic connected to the dashed arrow head is calculated based on the ones connected to the tail of the same arrow using 

the mathematical (deterministic) relationship connecting these variables (Equation 4). For instance, in Figure 5, 𝑉1 and 𝑉2 are 

connected to 𝐶1(1) through a dashed arrow, which means that 𝐶1(1) is derived from 𝑉1  and 𝑉2 . The following equations 
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establish the relationship between the variances at time-scales h and 2h from which we shall obtain the relationship between 

𝑉1 and 𝑉2: 260 

𝑉𝑎𝑟(𝑌𝑖
(2ℎ)

) = 𝑉𝑎𝑟(𝑌2𝑖−1
(ℎ)

) + 𝑉𝑎𝑟(𝑌2𝑖
(ℎ)

) + 2𝐶𝑜𝑣(𝑌2𝑖−1
(ℎ)

, 𝑌2𝑖
(ℎ)

) 

Or, in simplified notation: 

𝑉2ℎ = 2𝑉ℎ + 2𝐶ℎ(1) 

The autocorrelation lag-k is 𝑐ℎ(𝑘) = 𝐶ℎ(𝑘)/𝑉ℎ, so, for 𝑘 = 1 and ℎ = 1 hour, we obtain the relation: 

𝑐(1) =
𝑉2

2𝑉1
− 1             (45) 265 

If we estimate the lag-one autocorrelation using standard estimators of the terms in the right-hand side of this relation, i.e. by 

using 
𝑉2̂

2𝑉1̂
− 1, how good is the estimation likely to be? The figure belowFigure 7 compares this estimator with the standard 

estimator 𝑐(1)̂ of the autocorrelation. 

 

Figure 7: (a) Comparison of estimator 𝒄(𝟏)̂ (horizontal axis) with estimator 
𝑽�̂�

𝟐𝑽�̂�
− 𝟏 (vertical axis) of the autocorrelation lag-1 of 270 

hourly rainfall, (b) The histogram of the discrepancies between these two estimators at gage NCDC-200164. 

Using the discrepancies 𝜀 between these two estimators which are approximately normally distributed as shown in Figure 

7(b),7b, i.e. 𝜀~𝑁(0, 𝜎2) we therefore estimate the autocorrelation lag-1 of hourly rainfalls using 
𝑉2̂

2𝑉1̂
− 1 + 𝜀. 

Looking now at the solid arrows in Figure 5, we see that the residual terms (denoted 𝜀[𝑖]) are likely to be correlated. For 

example, consider the following equations relating 𝑉1 to 𝑉2 and 𝑉2 to 𝑉4:  275 
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𝑉2 = a[7]𝑉1 + ε[7]            (56) 

𝑉4 = a[8]𝑉2 + ε[8]            (67) 

From equation (46), it is clear that the term ε[7] is dependent upon the hourly autocorrelation (lag-1) coefficient, and similarly 

therefore that ε[8] in equation (67) is dependent upon the two-hourly (lag-1) autocorrelation coefficient. 

The autocorrelations at various time scales are known to be correlated with each other (Kim et al., 2013a, Kim et al., 2014), 280 

which means that ε[7] and ε[8] should be correlated with each other. Figure 8(a)8a shows the bivariate probability density 

function of these two variables at thegage NCDC gauge 366889-200164 for the month of September. Figure 8(b)8b shows the 

colour map of the correlation coefficient between different ε[i]s. This study developed bivariate probability density functions 

for consecutively numbered random variables ε, i.e. ε[i] and ε[i+1] (for i ranging from 1 to 4 and 6 to 9 respectively - see Figure 

5). These were then used to sample values of ε[i+1] conditional upon ε[i], This procedure in effect assumes that a Markov 285 

structure governs the sequences {ε[i]}𝑖=1,…,,5
 and {ε[i]}𝑖=6,…,,10

. . The bivariate probability density functions were developed 

using the Gaussian Copula and its parameters are determined using the maximum likelihood method. 
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Figure 8: (a) Relationship between 𝛆[𝟕] and 𝛆[𝟖] and the fitted bivariate distribution. (b) Color map of the correlation coefficient 290 

between different 𝛆[𝐢]s at gage NCDC-200164 on September. 

Residual terms (𝜀[𝑖+1]) are thus generated using the conditional distribution: 

𝑓𝜀[𝑖+1]
(𝑦|𝜀[𝑖] = 𝑥) = 

𝑓𝜀[𝑖], 𝜀[𝑖+1]
(𝑥,𝑦)

𝑓𝜀[𝑖]
(𝑥)

          (78) 

, where i = 1, 2, 3, 4, 6, 7, 8, and 9, and 𝑓𝜀[𝑖+1]
(𝑦|𝜀[𝑖] = 𝑥) is the probability density function of 𝜀[𝑖+1] conditional upon 𝜀[𝑖] = 𝑥, 

and 𝑓𝜀[𝑖], 𝜀[𝑖+1]
 is the bivariate distribution function of 𝜀[𝑖] and 𝜀[𝑖+1]. 295 

As a result of this process, a total of 20 rainfall statistics at fine time scale (mean, variance, lag-1 autocorrelation, and proportion 

of dry period at 1-,, 2-,, 4-,, 8-,, and 16-hourly aggregation interval) are sampled using these conditional distributions and the 

individual monthly rainfall that is generated by the SARIMA model. 

3.3 MBLRP Model Parameter Estimation 

In this process, each of the monthly rainfall values generated by the SARIMA model is coupled with one set of six MBLRP 300 

model parameters that define the random nature of rain storm and rain cell arrival frequency, and the intensity and duration of 

rain cells (Figure 1). 

In this study, the parameters of the MBLRP model were determined such that the rainfall statistics of the generated rainfall 

resemble the 20 fine-scale rainfall statistics that were coupled with the monthly rainfall generated by the SARIMA model. The 

Isolated-Speciation Particle Swarm Optimization (ISPSO, Cho et al., 2011) algorithm was employed to identify a set of 305 

parameters that minimizes the following objective function: 
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OF =  ∑ wi ∙20
i=1 [1 −

Fi(λ,ν,α,μ,ϕ,κ)

fi
]

2

𝑂𝐹 =  ∑ 𝑤𝑖 ∙20
𝑖=1 [1 −

𝐹𝑖(𝜆,𝜈,𝛼,𝜇,𝜙,𝜅)

𝑓𝑖
]

2

      

    (89) 

Fi is the ith statistic of the synthetic rainfall time series (e.g. mean of hourly rainfall, standard deviation of 4-hourly rainfall, 

etc.). The mathematical formulae for the Fis were derived by Rodriguez-Iturbe et al. (1988) as a function of the six parameters 310 

(λ, ν, α, μ, ϕ, κ); fi is the ith generated statistic, and wi the weighting factor given to the ith rainfall statistic depending on the use 

of the synthetic rainfall time series (Kim and Olivera, 2011). Here, it should be noted that a time step with rainfall less than 

0.5mm5 mm was considered dry when the proportion of non-rainy period was calculated because small rainfall values are 

known to distort the “true” proportion of non-rainy period exerting an adverse effect on calibration process (Kim et al, 2016, 

Cross et al., 2018). 315 

It is noteworthy that Module 2 may fail to generate a realistic set of fine scale rainfall statistics due to the complex 

interdependencies between them. The unrealistic fine scale rainfall statistics cannot be represented by the MBLRP model that 

reflects the original spatial structure of rainfall in reality, which entails poorly calibrated model parameters with high objective 

function value of Equation 8. To exclude the poorly calibrated parameter sets caused by the unrealistic fine scale rainfall 

statistics generated by Module 2, we repeated the process of Module 2 and Module 3 until the objective function value of 320 

Equation 8 becomes lower than a given threshold value (0.8 in this study). If the algorithm fails to find the parameter set after 

50 repetitions, the parameter set with the lowest objective function value is chosen. Figure 4 describes this filtering process, 

and the red squares in Figure 6 shows the chosen parameter sets. 

 

3.4 Downscaling of Monthly Rainfall Using the MBLRP Model 325 

The MBLRP model was used to downscale the monthly rainfall to the hourly aggregation level. First, the MBLRP model 

generates the hourly rainfall time series using the parameter set for the monthly rainfall being downscaled. Second, the 

discrepancy between the generated fine time scale statistics generated by the second module of the model (Figure 5) and the 

statistics of the generated synthetic hourly rainfall time series generated by the MBLRP model is calculated using the following 

formula: 330 

𝐷𝑗  = ∑ [
𝑆𝑖

𝑗
−𝑓𝑖

𝑅𝑖
]

2

20
𝑖=1            (910) 

,where 𝐷𝑗  is the discrepancy between the generated statistics and statistics of jth synthetic hourly rainfall time series. 𝑆𝑖
𝑗
 is the 

ith statistic of jth time series and 𝑅𝑖 is the difference between maximum and minimum values of 𝑆𝑖
𝑗
 about ith statistic. 

Third, the first and the second process are repeated 300 times. Then the synthetic hourly rainfall time series with the lowest 

discrepancy value is chosen. Finally, we repeated the entire process for 200 times to obtain 200 synthetic hourly rainfall time 335 

series for each of the generated monthly rainfall.  
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3.5 Validation for Ungaged Periods 

One of the primary purposes of the stochastic rainfall model is to provide synthetic rainfall for the ungaged periods, which can 

be the periods of missing data or future periods. For this reason, we separated the period of model calibration and validation 340 

at some gage locations (square marks in Figure 2) where record length of each period is sufficiently long (60+ years). Then, 

we tested our model not only based on the statistics of the calibration period (1981-2010) but also based on the validation 

period (1951-1980). 

4 Result 

4.1 Monthly Rainfall Statistics Reproduction 345 

Figure 9 compares the mean, variance, lag-1 autocorrelation, and skewness of the observed (x) andmonthly rainfall time series 

generated rainfall by the SARIMA model (x axis) to those of the observed monthly rainfall time series (y axis). Each scatter 

represents one rainfall gauge. Thegage. For the calibration period (1981-2010), the first and the second-order moments were 

reproduced accurately with the coefficient of determination ranging between 0.72 and 0.96. Skewness was reproduced fairly 

well with the correlation coefficient of 0.43from 0.69 to 0.95. Skewness was reproduced fairly well with the coefficient value 350 

of 0.36. For the validation period (1951-1980), mean and variance were reproduced, but not 1ag-1 autocorrelation and 

skewness. However, this discrepancy cannot be attributed solely to the limitations in the model because the discrepancy in 

each plot of Figure 9 directly results from the differences between the statistics of the calibration and validation periods. In 

other words, had the statistics of the calibration period been similar to those of the validation period, we would have expected 

similar performance for both periods, and vice versa. 355 
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Figure 9: Comparison of (a) mean, (b) variance, (c) lag-1 autocorrelation, and (d) skewness of the observed (x) and synthetic (x) and 

observed (y) monthly rainfall. Filled circles (dashed line) and hollow triangles (dotted line) correspond to the calibration (1981-2010) 360 
and validation period (1951-1980) respectively. 

4.2 Reproduction of Large Scale Rainfall Variability 

Figure 10 shows the behaviour of the rainfall variance varying with temporal aggregation interval between 1 hour and 1 year 

at thegage NCDC gauge -122738. The behaviour corresponding to the observed rainfall-calibration (black) and the 200 years 

of synthetic rainfall generated by the, 1981-2010), observed-validation (green, 1951-1980), MBLRP model (blue) and by our 365 

hybrid model (red) are shown together. While our model successfully reproduces the rainfall variance across the time scale, 

the MBLRP model is successful in reproducing the rainfall variance only at the hourly accumulation level. This reflects the 

fact that Poisson cluster rainfall models are not designed to preserve the rainfall persistence at the aggregation interval that is 

greater than the typical model storm duration, i.e. a few hours. See Figure 1 for example. Within the duration of one storm, 

rainfall at different time steps may be similar insofar as a portion of it is from the same rain cell. However, the rainfall within 370 

one storm is independent of the rainfall within another storm. Therefore, it is natural that Poisson cluster rainfall models tend 

to underestimate the observed rainfall variance (which reflects the covariance structure - see Equation 1) at time scales 
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exceeding the rain storm duration. Kim et al. (2013b), when mapping the average model storm duration across the continental 

United States using Equation 11, showed that the model storm duration of the MBLRP model approximately ranges from 2 to 

100 hours, so it is not only at the annual scale, but already at the scale of several hours (depending upon the location) that the 375 

variability may be underestimated by the MBLRP model. 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑡𝑜𝑟𝑚 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (ℎ𝑟) ≅
1

𝜙
𝛼

𝜈
[1+𝜙(𝜅+𝜙)−

1

4
𝜙(𝜅+𝜙)(𝜅+4𝜙)+

1

72
𝜙(𝜅+𝜙)(4𝜅2+27𝜅𝜙+72𝜙2]

    (11) 
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Figure 10: Behaviour of the rainfall variance with regard to the aggregation interval of the observed rainfall time series at gage 380 
NCDC-122738. The behaviour corresponding to the observed-calibration (black) and the 200 years of synthetic rainfall generated 

by the, 1981-2010), observed-validation (green, 1951-1980), MBLRP model (blue) and our hybrid model (red).) are shown together. 

A similar trend as exhibited in Figure 1011 was observed at all of the 29 gauges34 gages. Figure 11(a) compares the variance 

of the observedsynthetic (x) and syntheticobserved (y) rainfall time series at yearly (purple), monthly (red), 15-daily (yellow), 

weekly (blue), and 32-hourly (green) aggregation levels. The comparison of the variance at the finer time scale is carried out 385 

in the following section. Figure 10(b) compares the observed (x) and synthetic rainfall time series generated by the traditional 

MBLRP model (y).  
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Figure 11: (a) Comparison of the large scale rainfall variance of the observed rainfall (x) and the rainfall generated by our hybrid 390 

model (x) and the observed rainfall (y); (b) Comparison of the large scale rainfall variance of the observed rainfall (x) and the 
rainfall generated by the traditional MBLRP model (x) and the observed rainfall (y). The different colours of the scatter correspond 

to the different aggregation interval of rainfall time series. Filled circles and hollow triangles correspond to the calibration and 

validation periods respectively. 
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 395 

As indicated by the concentration of the scatters belowabove the 1:1 line in Figure 11(b),11b, the traditional MBLRP model 

systematically underestimates the variability at time scales greater than 32 hours. Our model did not show any bias in this 

range of large time-scales as shown in Figure 11a. 

4.3 Reproduction of Sub-Daily Rainfall Statistics 

Figure 12 compares the mean, standard deviationvariance, lag-1 autocorrelation, and the proportion of dry periods of the 400 

observed (x) and synthetic (x) and observed (y) rainfall time-series at hourly through 16 hourly aggregation levels. The 

colourEach scatter represents the statistics at a given gage for a given calendar month. The colours of the scatters 

representsrepresent the calendar months. In each plot, the coefficient of determination (𝑅2) of the linear regression between 

the two variables is shown. All four statistics were accurately reproduced across various sub-daily time scales with 𝑅2 equal 

to 0.98 (mean), and varying between the following limits for the other statistics: 0.9690 and 0.98 (standard deviation93 405 

(variance), 0.58 and 0.9493 (lag-1 autocorrelation), and 0.7067 and 0.8785 (proportion of dry periods) on the calibration period 

(Figure 12a). Similar ranges of coefficient of determinations were obtained for the validation period (Figure 12b). 
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Figure 12: Comparison of the statistics of the observedsynthetic (x) and syntheticobserved (y) rainfall time series at sub-daily time 

scale. The colour of the dots represents the statistics of each calendar month. The results of (a) the calibration period (1981-2010) 

and (b) the validation period (1951-1980) are shown. 
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4.4 Reproduction of Extreme Values and Distribution of Annual Maxima 

The scatter of circles scatters in Figure 13 comparescompare the (a) 20-, (b), 50-, (c), 100-, (d), and 200-year rainfall estimated 

from the observed rainfall (x) and the synthetic rainfall (y) generated by the compositehybrid model of this study (y). The 

colour of(red) and the scatters represents the duration of the extreme rainfall.MBLRP model (blue) at hourly through daily 

time scale. The Generalized Extreme Value (GEV) distribution was assumedused to model the distribution of the annual 420 

maxima of both rainfall time series, and the three parameters of the GEV distribution were determined using the method of L-

moments. Here, we separated the analysis for each calendar month, so we have 12 sets of extreme rainfall distributions 

corresponding to each gage station. Therefore, we produced each scatter plot of Figure 13 based on 408 points (12 months/gage 

× 34 gages). 

A linear regression line passing through the origin is shown in each plot. As the slope of the regression line approaches the 425 

value of one, the less biased the extreme values reproduced by the model. As the 𝑅2 of the regression line approaches the value 

of one, the more consistent the extreme values reproduced by the model. In all cases, our hybrid model did not show the 

tendency of underestimating extreme values, which is one of the most widely discussed issues in Poisson cluster rainfall 

modelling (Cowpertwait, 1998; Cross et al., 2018; Furrer and Katz, 2008; Verhoest et al., 2010; Kim et al., 2013a; Onof et al., 

2013; Kim et al., 2016). This is a somewhat surprising result: our algorithm to incorporate large scale variability of the observed 430 

rainfall not only served its original purpose but also enhanced the capability of the model to reproduce extreme rainfall values. 
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Figure 13: Comparison of the extreme rainfall values estimated from the observed rainfall (x) and synthetic rainfall (y) generated 

by the model of this study (y).red) and the MBLRP model (blue). The plots comparing (a)compare 20-, (b), 50-, (c), 100-,, and (d) 435 
200-year rainfall are shown. Different colours of the scatter represent the rainfall duration. A circle represents the result according 
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the hybrid model, and a triangle represents the result according to the traditional MBLRP modelat hourly through daily aggregation 

levels. 

Figure 14 shows the degree of bias of extreme value reproduction (slope of the regression line in Figure 13) varying with 

recurrence interval. The values corresponding to the traditional MBLRP model is also shown. The degree of underestimation 440 

of the traditional methods varies between 73% and 87%, and it tends to increase as the recurrence interval increases. A similar 

tendency was observed for our model, but the degree of underestimation was significantly reduced. For our model, the degree 

of underestimation is the greatest for the 1-hour extreme rainfall and tends to decrease as the duration of the rainfall increases. 

This tendency was not observed with the traditional MBLRP model. 

 445 
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Figure 14: Degree of over/underestimation of extreme values by our model (bluered) and the traditional MBLRP model (redblue). 

𝑬𝑹𝒔𝒚𝒏 and 𝑬𝑹𝒐𝒃𝒔 are extreme rainfallrainfalls estimated from synthetic rainfall and observed rainfall, respectively. 

It is important that theA good rainfall model should reproduce not only the extreme rainfall values but also the distribution of 

the rainfall monthly maxima from which extreme rainfall values are derived. We performed the two-sample Kolmogorov-450 

Smirnov (K-S) test between the monthly maxima of the synthetic rainfall and the observed rainfall. A significance level of 5% 

was used. Among all 348408 calendar months (29 gauges x34 gages × 12 months), the null hypothesis of assuming that two 

distributions are the same could not be rejected at 334, 318, 267, 248, 272384, 368, 317, 301, 323, and 282333 months for the 

1-,, 2-,, 4-,, 8-,, 16-, and 24-hour rainfall, respectively (8283 percent of all gaugesgages). On the contrary, the traditional 

approach successfully reproduced the observed monthly maxima distribution only at 292, 243, 202, 189, 165, 168219, 200, 455 

220, and 172219 months (4757 percent of all gauges).gages). 

Figure 15 shows the relative frequency and the fitted GEV distribution of the monthly maxima of January, April, July, and 

October at NCDC gage 132203. The black, red, and blue line correspond to the result of observed rainfall, our hybrid model, 

and the traditional MBLRP model, respectively. The GEV distribution of the 1, 4, and 16-hour rainfall durations are shown in 

the plots of the first, third, and fifth row, respectively. The plots in the second, fourth, and the sixth row magnify the upper 460 

10th percentile part of the distribution of the upper figures that is denoted as the dashed box. For all months and durations, our 

hybrid model outperforms the traditional MBLRP model in reproducing the head through tail part of the distribution. The 

distribution of the traditional MBLRP model was skewed toward the lower values. A similar tendency was observed at most 

gage locations while at some of the gages our hybrid model showed similar or slightly degraded performance compared to the 

traditional MBLRP model in reproducing the distribution of extreme values. We discuss about this finding further in 465 

Discussion 5.1. 



38 

 

 

Figure 16 compares the shape (ξ), the scale (σ), and the location (μ) parameter of the fitted GEV distribution of the monthly 

maxima of the observed rainfall (x) and of the synthetic rainfall generated from our hybrid model (red scatters) and from the 

traditional MBLRP model (blue scatters). The results for 1, 4, and 16-hour rainfall durations are shown. Each scatter point 

represents the result of one calendar month at one gage. A total of 408 scatter points (12 months/gage × 34 gages) are shown 470 

for each of the plot. The traditional MBLRP model underestimates the location parameters at all rainfall durations, and the 

degree of underestimation increases with increased duration. Our hybrid model showed the opposite trend. The location 

parameters tend to be overestimated with an increase in the duration, but the degree of overestimation was not as significant 

as in the case of the traditional model. The traditional model compensates the underestimated location of the distribution with 

the overestimated scale parameters, which were observed for all three durations investigated. Our hybrid model also 475 

compensates the overestimated location of the distribution with the underestimated scale parameters, but the degree of 

compensation was not as significant as in the case of the traditional model. However, the shape parameter of the observed 

monthly maxima was not well reproduced by both models. This result shows the difficulty of precisely reproducing the rainfall 

extreme values. This is mainly because the rainfall extreme values are indeed extreme. For example, 1-hour 100-year rainfall 

of 100 years of rainfall record is theoretically the greatest value of all 72,000 hourly rainfall records (24 hours/day × 30 480 

days/month × 100 years), and precisely reproducing a value with such a low probability of occurrence can be a daunting task 

using the models with only a limited number of parameters. 
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483 
Figure 15. Relative frequency and the fitted GEV distribution of the 1, 4, and 16-hour monthly maxima of January, April, July, and October rainfall at NCDC gage 132203. Results of Observed rainfall 484 
(black), our hybrid model (red), and the traditional MBLRP model (blue) are shown. The upper 10 percentile part of the distribution (dashed box in the plots in the first, third, and fifth row) is magnified 485 
in the lower rows (plots in the second, fourth, and sixth row).486 
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Figure 16. Comparison of the shape (ξ), scale (σ), and location (μ) parameters of the fitted GEV distribution of the monthly maxima. 

The results based on the observed rainfall (x), our hybrid model (red), and the traditional model (blue) are shown. The results of 1, 

4, and 16-hour rainfall durations are shown. 490 
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5 Discussion 

5.1 Variability of the Parameters of the MBLRP model and Extreme Values 495 

Our model uses different parameter sets of the MBLRP model to disaggregate different monthly rainfalls. This means 

that one given calendar month can have many different parameter sets. By contrast, the traditional MBLRP model uses one 

parameter set for each calendar month. Therefore, if we look at the variability of each month's parameters, we can see how the 

model of this study explains the variability of rainfall unlike the MBLRP model. Figure 1517 shows a box plot of the 

parameters for each month at thegage NCDC Gauge -460582. The parameters of the traditional MBLRP model are shown 500 

together for reference (triangles).  

While significant variability is observed for all six parameters, the parameter μ, which represents the average rain cell intensity, 

showed the greatest variability, ranging over two orders of magnitudes. This explains why our model is good at both 

reproducing large scale rainfall variability and small scale extreme values: the variability of the rain cell intensity parameter 

has the effect of stretching out the distribution of rainfall depths at a range of levels of aggregation, thereby increasing the 505 

probability of very large values. And it is course the variability of this cell intensity parameter that is also the most important 

factor responsible for the increase in the large scale rainfall variance. Zorzetto et al. (2016) also briefly discussed this matter. 

They introduced a novel framework of meta-statistical extreme value (MEV) analysis. In this MEV formulation, one can show 

that interannual-variation of exponential-type rainfall process leads to a fat-tail for its extreme values. 

 510 
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Figure 1517: Variability of the six parameters of the MBLRP model of this study (box plot) at thegage NCDC Gauge -460582 (star 

mark in Figure 3). The parameters of the traditional MBLRP model are shown together for reference (triangle). 

 515 

The physical characteristics of rainfall can be estimated using Equation 1011 and Equation 12 through Equation 1415. We 

repeated the same analysis on these variables to compare the variability of the rainfall characteristics of our hybrid mode and 

that of the MBLRP model. 

Average rainfall depth per storm (mm𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 𝑑𝑒𝑝𝑡ℎ 𝑝𝑒𝑟 𝑠𝑡𝑜𝑟𝑚 (𝑚𝑚) = (1 +
𝜅

𝜙
)(

𝜈

𝛼
)μ  

     (10) 520 

Average storm duration (hr) ≅
1

𝜙
𝛼

𝜈
[1+𝜙(𝜅+𝜙)−

1

4
𝜙(𝜅+𝜙)(𝜅+4𝜙)+

1

72
𝜙(𝜅+𝜙)(4𝜅2+27𝜅𝜙+72𝜙2]

    (11) 

Average number of rain cells per storm = 1 +
𝜅

𝜙
 𝜇       (12) 

Average rain cell arrival rate (hr−1𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑖𝑛 𝑐𝑒𝑙𝑙𝑠 𝑝𝑒𝑟 𝑠𝑡𝑜𝑟𝑚 = 1 +
𝜅

𝜙
   

    (13) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑖𝑛 𝑐𝑒𝑙𝑙 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 (ℎ𝑟−1) = 𝜅
𝛼

𝜐
        525 

 (13) 
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Average rain cell duration(hr) =
𝜈

𝛼
         (14) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑖𝑛 𝑐𝑒𝑙𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(ℎ𝑟) =
𝜈

𝛼
         (15) 

 

Figure 1618: Variability of the rainfall characteristics of the MBLRP model of this study (box plot) at thegage NCDC Gauge -460582 530 
(star mark in Figure 3). The rainfall characteristics of the traditional MBLRP model are shown together for reference (triangle). 

Figure 1618 shows box plots of the various rainfall characteristics for each month at thegage NCDC Gauge -460582. The 

values were calculated using Equations 1011 through 1415. The rainfall characteristics of the traditional MBLRP model are 

shown together for reference (triangles). The variability of the average storm depth, the average storm duration, and the average 

number of rain cells per storm was significant, so the y-axes of the box plots were drawn in log-scale. This result suggests that 535 

the parameter variability that is incorporated in our model's distinct algorithm contributes to the highly variable external 
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(average storm depth, average storm duration) and internal (average number of rain cells per storm, average rain cell duration) 

properties of the generated rainfall. 
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5.2 An Issue with Model Parsimoniousness: six versus fifty five 540 

Our hybrid model uses one MBLRP model parameter set per one simulation month of one year while the MBLRP model needs 

only 6 parameters regardless of the simulation length. However, this does not mean that our model requires 600 MBLRP model 

parameters (6 per month × 100 months) to generate 100 months of rainfall. This is because parameters are estimated based on 

the sub-daily scale rainfall statistics that are synthetically generated through the process of the SARIMA model and the 

regression analysis (See Figure 5). Therefore, the parameters of the SARIMA model and the parameters of the regression 545 

analyses shown in Figure 5 should be considered as the “true” parameters of this model because once these parameters are 

given, our model can generate infinite length of rainfall record. The SARIMA model has 6 parameters, and a set of regression 

analysis shown in Figure 5 has 49 parameters (2 for each of ten solid arrows in Figure 5 = 20, 3 per 8 bivariate normal 

distributions relating two subsequent residual terms (εi) in Figure 5 = 24, and one for each of 5 normal distributions perturbing 

autocorrelation terms (ci) = 5). Therefore, our model has a total of 55 parameters. This discrepancy of number of parameters 550 

(6 for the traditional of MBLRP model versus 55 of our hybrid model) can be considered as a cost taken to reproduce the large-

scale rainfall variability that the traditional MBLRP model cannot.  

We admit that this large discrepancy of model parsimoniousness is an issue to be resolved for our model to be applied in 

practice. Regarding this, we are planning to apply our model to additional gage locations across the world and share the result 

through the website (http://www.letitrain.info). The work has been already initiated for the rainfall data of Korean Peninsula. 555 

5.3 Calibration versus validation 

Our approach of separating the period of calibration and validation adopted to some gage locations, may seem surprising 

because most stochastic rainfall generators are calibrated based upon the statistics under an assumption of temporal stationarity 

of the rainfall process. According to this assumption, the statistics of the periods of calibration and the validation should be 

the same, which obviates the needs for validating the model for separate periods. However, this assumption often does not 560 

obtain, for example, in case that the observation period is too short (e.g. a few extreme events are included in only one part of 

the time period) or in when the time series is indeed non-stationary. For this reason, the discrepancy of the model performance 

between the calibration and the validation period should not only attributed to the model's limitations but also to the difference 

between statistics from the two periods. In view of these considerations, our primary purpose of separating the period of 

calibration and validation should be understood as an assessment of the model’s applicability to rainfall generation for a future 565 

period. From the point of view of the calibration period, the validation period is an ungagged period just as any future period, 

and our model can be easily extended to the future period by adding a term accounting for long-term rainfall non-stationarity 

to the SARIMA model (first module). Our hybrid model assumes not only the stationarity of the typical rainfall statistics such 

as mean, variance, covariance and proportion of dry periods but also the relationship between them (See Figure 6). The latter 

has not been explicitly discussed by previous studies, so it was also interesting to see whether such relationships between the 570 
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statistics hold over different temporal periods and how the discrepancy affects the final model performance, if there is any. 

Figure 19 compares the slope of the regression analysis between the statistics shown in Figure 6 for the calibration (x axis) 

and validation (y axis) periods. The plots corresponding to the variances at different scales are not shown because there are 

theoretical reasons for having a solid slope close to 2 (See Equation 5 and the preceding equations). There is no a significant 

discrepancy between slopes estimated using statistics on calibration and validation period implying that relationships between 575 

the fine time scale statistics are stationary and that our model can be used for future or ungagged periods. 
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Figure 19: Comparison of the slope of regression analysis between the statistics shown in Figure 6 for the calibration (x) and 

validation (y) period. The slopes of regression analysis (a) between mean and standard deviation and (b) between mean and 

proportion of dry periods and (c)-(f) between proportion of dry periods at the different time scale were compared. Solid lines are 580 
1:1 line and dashed lines represent the regression lines. 
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6 Conclusion 

The phenomena observed in hydrologic systems and the subsequent effects on human and environmental systems are the 

consequences of the complex interactions between the components that are influenced by rainfall variability at various ranges 

of time scalescales. Therefore, a good or realistic rainfall model must properly reflect the rainfall variability at all 585 

hydrologically relevant time scales. Its importance will gather more attentions because of the recent trend of the hydrologic 

societies that started to recognize the hydrologic, human, and environmental systems from a holistic view point and interpret 

them based on continuous and dynamic simulation as opposed to the event-based ones (Wagener et al., 2010).  

This study is one of many recent efforts in this regard (Fatichi et al., 2011; Kim et al., 2013a; Paschalis et al., 2014). First, we 

showed that the Poisson cluster rainfall model, which is probably the most widely applied stochastic rainfall models, cannot 590 

reproduce large-scale rainfall variability due to in-built limitations that lie in the model assumptions. Then, we showed that a 

combination of an autoregressive model for monthly time scale and the “well-tuned” Poisson cluster rainfall model for the 

finer ranges of time scale is capable of reproducing not only the first through the third order statistics of the rainfall depths, 

but also the intermittency properties of the observed rainfall. 

An additional model could be integrated to our hybrid model to incorporate further rainfall variability. For example, an 595 

approach based on random cascades (Molnar and Burlando, 2005; Müller and Haberlandt, 2016; Pohle et al., 2018) can be 

integrated to our model for reproducing the rainfall variability at the time scale as fine as five minutes. In addition, the SARIMA 

model that was adopted in this study could be further modified to account for the coarser rainfall variability caused by El Niño-

Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO). Lastly, the genuine structure of our model that is 

composed of a large scale rainfall generation module and a downscaling module, may be integrated to existing space-time 600 

rainfall generators to enhance their ability to generate large temporal-scale rainfall variability (Burton et al., 2008, Müller and 

Haberlandt, 2015, Paschalis et al., 2013; Peleg and Morin, 2014; Peleg et al., 2017; Benoit et al., 2018). 

7 Data Availability 

Our hybrid model is not easy to implement because it requires extensive analysis of the correlation structure of the fine-scale 

rainfall statistics to fine-tune the MBLRP model to downscale the generated monthly rainfall. For this reason, we shall continue 605 

our work on all possible rain gaugegage locations across the world and share the results (several hundred years of synthetic 

rainfall data in text format) through the following website: http://letitrain.info. We ask for cooperation from the international 

community to share their rainfall data. 
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