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 5 

Abstract. Description of thermal regimes in flowing waters is key to understanding physical 6 

processes, enhancing predictive abilities, and improving bioassessments. Spatially and temporally 7 

sparse datasets, especially in logistically challenging mountain environments, have limited studies 8 

on thermal regimes but inexpensive sensors coupled with crowd-sourced data collection efforts 9 

provide efficient means of developing large datasets for robust analyses. Here, thermal regimes are 10 

assessed using annual monitoring records spanning a five-year period (2011–2015) at 226 sites 11 

across several contiguous montane river networks in the northwestern U.S. Regimes were 12 

summarized with 28 metrics and principle components analysis (PCA) was used to determine those 13 

metrics which best explained thermal variation on a reduced set of orthogonal axes. Four principle 14 

components (PC) accounted for 93.4% of the variation in the temperature metrics, with the first PC 15 

(49% of variance) associated with metrics that represented magnitude and variability and the second 16 

PC (29% of variance) associated with metrics representing the length and intensity of the winter 17 

season. Another variant of PCA, T-mode analysis, was applied to daily temperature values and 18 

revealed two distinct phases of spatial variance—a homogeneous phase during winter when daily 19 

temperatures at all sites were < 3 °C and a heterogeneous phase throughout the year’s remainder 20 

when variation among sites was more pronounced. Phase transitions occurred in March and 21 

November, and coincided with the abatement and onset of subzero air temperatures across the study 22 

area. S-mode PCA was conducted on the same matrix of daily temperature values after transposition 23 

and indicated that two PCs accounted for 98% of the temporal variation among sites. The first S-24 

mode PC was responsible for 96.7% of that variance and correlated with air temperature variation (r 25 

= 0.92) whereas the second PC accounted for 1.3% of residual variance and was correlated with 26 

discharge (r = 0.84). Thermal regimes in these mountain river networks were relatively simple and 27 

responded coherently to external forcing factors, so sparse monitoring arrays and small sets of 28 

summary metrics may be adequate for many aspects of their description. PCA provides a 29 

computationally efficient means of extracting key information elements from large temperature 30 

datasets and could be applied broadly to facilitate comparisons among more diverse stream types 31 

and develop classification schemes for thermal regimes. 32 

 33 

1 Introduction 34 

Temperatures of flowing waters control many physicochemical processes (Likens and Likens, 1977; 35 

Gordon et al., 1991; Ducharne, 2007) and affect the ecology of aquatic organisms and communities 36 

(Isaak et al., 2017a; Neuheimer and Taggart, 2007; Woodward et al., 2010). The annual sequence of 37 

temperatures characteristic to specific locations within a river network constitutes the local thermal 38 

regime (Caissie, 2006), of which knowledge is key to understanding natural conditions and 39 

diagnosing anthropogenic impairments. Seminal work by Poff and colleagues (Poff and Ward, 40 

1989; Poff et al., 1997) created a robust framework for describing flow regimes based on metric 41 
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descriptions of magnitude, frequency, timing, duration, and variability that are largely transferrable 42 

to thermal regimes (Poole et al., 2004; Olden and Naiman, 2010). Recent studies have contributed 43 

useful derivations of temperature metrics (Arismendi et al., 2013; Chu et al., 2010; Rivers-Moore et 44 

al., 2013; Steel et al., 2016) or classification schemes based on a small number of pre-selected 45 

metrics (Maheu et al., 2016) but the limited availability of annual temperature records (Orr et al., 46 

2015; Isaak et al., 2018) has slowed broad development and adoption of thermal regime concepts. 47 

Data inadequacies are often compounded for montane riverscapes that are difficult to sample 48 

(Brown and Hannah, 2008; Isaak et al., 2013), a shortfall that needs to be overcome given the 49 

importance of these areas as climate refugia for cold-water biodiversity (Brown et al., 2009; Isaak et 50 

al., 2016) and as the focus of costly regional conservation strategies (Roni et al., 2002; Rieman et 51 

al., 2015). 52 

 53 

Despite existing limitations, the importance of temperature to stream biota is well recognized and 54 

inculcated to regulatory standards based on metrics used within threshold-based approaches (Poole 55 

et al., 2004; Todd et al., 2008). Most often, those metrics represent some aspect of conditions during 56 

warm summer months when temperature sensitive species or life stages are thought to be most 57 

vulnerable (Ice et al., 2004; McCullough, 2010), which may contribute to the preponderance of 58 

short monitoring records that span only these months (Isaak et al., 2017b). However, thermally 59 

mediated ecological processes occur throughout the year (Neuheimer and Taggart, 2007; Olden and 60 

Naiman, 2010), so adequate understanding requires broader characterization of thermal conditions 61 

from annual datasets. That may bring additional complexity but most warm season metrics are 62 

strongly correlated and therefore redundant (Isaak and Hubert, 2001; Dunham et al., 2005; Steel et 63 

al,. 2016). If redundancy is also the norm among a broader array of annual temperature metrics, 64 

then multivariate data reduction techniques might be useful for identifying a few key aspects of 65 

thermal regimes.  66 

 67 

Supporting that idea, Rivers-Moore et al. (2013) used Principle Components Analysis (PCA) to 68 

describe covariation among 39 temperature metrics calculated for 82 South African stream sites and 69 

found that two PCs accounted for 75% of the total variation among metrics. Similarly in the field of 70 

hydrology, Olden and Poff (2003) examined 171 flow metrics calculated from 420 gage sites across 71 

the U.S. and found that two to four PCs accounted for 76–97% of variation in the dataset. In 72 

addition to metric-based PCA that is commonly used in hydrological sciences, several other PCA 73 
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variants are standard analytical tools in the field of climatology and may be relevant for 74 

characterizing thermal regimes (Richman, 1986; Demsar et al., 2013). Most notably, PCA can be 75 

done on repeated measurements of a single variable to identify common spatial or temporal 76 

behavior among monitoring stations. In the climatology literature, empirical orthogonal function 77 

analysis (S-mode PCA in the taxonomy of Richman (1986)) is used to determine which sites covary 78 

temporally as a means of developing regionalization schemes for precipitation, air temperatures, or 79 

wind speeds (Piechota et al., 2001; Jimenez et al., 2008; Martins et al., 2012). If common temporal 80 

patterns are identified, it suggests potential redundancy in the monitoring network and the 81 

information can be used to refine future sampling designs. The closely allied T-mode PCA 82 

identifies dominant spatial patterns in datasets and the times when these phases occur (Richman, 83 

1986; Gallacher et al., 2016). A single dominant spatial pattern suggests the spatial distribution of a 84 

variable is temporally consistent whereas more than one spatial phase suggests change points and 85 

alternate states. 86 

 87 

The advent of inexpensive sensors, combined with regulatory requirements and concerns about 88 

climate change, have led to a recent expansion in lotic temperature monitoring networks (Rivers-89 

Moore et al., 2013; Hilderbrand et al., 2014; Luce et al., 2014; Trumbo et al., 2014; Hannah and 90 

Garner, 2015; Isaak et al., 2017b; Jackson et al., 2016; Molinero et al., 2015; Daigle et al., 2016; 91 

Mauger et al., 2016; Steele et al., 2016). What was once a data dearth is becoming a deluge and 92 

opportunities exist to study thermal regimes with robust datasets. Here, we use annual temperature 93 

records compiled from several natural resource agencies for 226 monitoring sites in a mountainous 94 

landscape to conduct an initial assessment of thermal regimes. We limit the geographic scope of our 95 

effort to several adjacent river basins in the northwestern U.S. that are geologically and 96 

topographically similar but which have particularly dense monitoring networks to maximize 97 

analytical flexibility. Our objectives were to: 1) provide a basic description of the annual thermal 98 

characteristics in mountain rivers and streams because these are rare within the literature, 2) develop 99 

metrics to describe thermal regime characteristics based on magnitude, frequency, timing, duration, 100 

and variability, and 3) explore redundancy and patterns of spatiotemporal covariance among those 101 

metrics and monitoring sites to determine the principle components of thermal regimes in montane 102 

river networks. Findings are discussed with regards to the implications for temperature monitoring 103 

and modeling, thermal ecology, and as an initial step towards broader regional classification efforts. 104 

 105 
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2 Study area 106 

The study area encompasses 79,500 km2 of mountainous, topographically complex terrain that 107 

spans a broad elevation range of 200–3,600 m (Figure 1). Climate is characterized by cold, wet 108 

winters with moderate to heavy snow accumulations at high elevations and hot, dry summers. 109 

Hydrographs are typical of snowmelt runoff systems, with high flows during spring and early 110 

summer and low flows during late summer, fall, and winter (Figure 2). Vegetation is dominated by 111 

conifer forests except at low elevations and south facing aspects where grasses and shrubs 112 

predominate. Wildfires are common within the landscape and burned 8% of the area from 2011 to 113 

2015 (Morgan et al., 2014). Parent geology consists mostly of resistant granites of the Idaho 114 

Batholith and a smaller easterly portion of intrusive volcanics (Bond and Wood, 1978; Meyer et al., 115 

2001). Both geologies are heavily dissected and stream valleys are V-shaped except for some alpine 116 

valleys at the highest elevations that were once glaciated. Human population densities are low 117 

except along wider segments of river valleys where fertile floodplains and easy access to water 118 

accommodate small amounts of agriculture and ranching. Most of the study area is publically 119 

owned (81%) and federally administered by the National Forest Service and Bureau of Land 120 

Management for a variety of land-use, recreational, and conservation purposes. Unpaved road 121 

networks have been developed in some drainages for timber harvest but many drainages are 122 

protected in large wilderness areas with minimal anthropogenic effects or roads (Swanson, 2015). 123 

 124 

2.1 River networks and temperature dataset  125 

Rivers and streams within the study area were delineated using the 1:100,000-scale National 126 

Hydrography Dataset (NHD; http://www.horizon-systems.com/NHDPlus/index.php; McKay et al., 127 

2012), which was attributed with mean annual flow values from data at the Western U.S. Stream 128 

Flow Metrics website 129 

(http://www.fs.fed.us/rm/boise/AWAE/projects/modeled_stream_flow_metrics.shtml; Wenger et 130 

al., 2010). To highlight the perennial subset of the network where temperature monitoring occurred, 131 

reaches with annual flows less than 0.03 m3/s were removed from the network, as were reaches with 132 

channel slopes >15%, and those coded as intermittent in the NHD (Fcode = 46003). Filtering 133 

reduced the original network extent from 58,000 km to 29,600 km with streams flowing at 134 

elevations of 200–2,600 m. To visualize thermal heterogeneity in the network, a scenario 135 

representing mean August temperatures for a baseline climate period of 1993–2011 was 136 

downloaded from the Northwestern Stream Temperature website (NorWeST: 137 
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https://www.fs.fed.us/rm/boise/AWAE/projects/NorWeST.html; Isaak et al., 2017b) and linked to 138 

the NHD river reaches. Several large rivers drain the area in a generally westerly direction, the 139 

largest of which is the Salmon River with a mean annual discharge of 315 m3/s and a basin that 140 

comprises 44% of the study area. Six large dams and reservoirs occur in downstream portions of the 141 

network (three in the Boise River basin, two in the Payette River basin, and one in the Clearwater 142 

River basin) but these affect thermal conditions in less than 300 km of river and no temperature data 143 

were used from these sections. 144 

 145 

To obtain a temperature dataset for analysis, we intersected the filtered network with the NorWeST 146 

database of daily temperature summaries (Chandler et al., 2016) and extracted data for sites that had 147 

mean daily temperature values on at least 70% of the days from December 1, 2010 to November 30, 148 

2015. We started the thermal year on December 1 because temperatures usually reach their annual 149 

lows by this date and the 3-month period thereafter constituted a logical winter season (i.e., 150 

December, January, February). Subsequent three-month periods were considered to be spring 151 

(March, April, May), summer (June, July, August), and fall seasons (September, October, 152 

November). NorWeST temperature records were supplemented with additional data solicited from 153 

hydrologists and fisheries biologists employed by the Idaho Department of Fish and Game and the 154 

U.S. Forest Service, and we also downloaded data from online databases maintained by the 155 

Columbia Habitat Monitoring Program (https://www.champmonitoring.org/Home/Index) and the 156 

NOAA Northwest Fisheries Science Center (https://www.webapps.nwfsc.noaa.gov/WaterQuality/). 157 

Geographic gaps in monitoring were identified using geospatial analysis (e.g., Jackson et al., 2016) 158 

and additional sensors were strategically deployed where needed (Isaak et al., 2010; 2013). Data 159 

from the different sources were often recorded at different sub-daily intervals, so records were 160 

summarized to mean daily temperatures for standardization. Data were collected using different 161 

sensor models (TidbiT, Stowaway, and Pendant models from Onset Computer Corporation, 162 

Pocasset, Massachusetts, USA; Temp101a model from MadgeTech, Warner, New Hampshire, 163 

USA), which had measurement accuracies of +/-0.2°C to +/-0.5°C and resolutions of 0.02°C to 164 

0.14°C based on manufacturer specifications and calibration tests we performed. Sensors were 165 

deployed using underwater epoxy or steel cables for connection to large boulders and other 166 

immobile channel structures and were shielded from direct sunlight (Isaak et al., 2013; Stamp et al., 167 

2014). Temperature records were subject to standard quality assurance-quality control measures as 168 

described elsewhere (Chandler et al., 2016).  169 
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 170 

The stream temperature dataset consisted of records from 226 sites across a range of elevations, 171 

stream sizes, and reach slopes (Figure 1; Table 1). Although we set the minimum threshold for 172 

record completeness at 70% during the five-year period, the average completeness of records was 173 

higher at 88%. Missing values in records were imputed using the MissMDA package (Missing 174 

Values with Multivariate Data Analysis; Josse and Husson, 2016) in R (R Core Team, 2014) 175 

because temporal covariation among proximate stream temperature sites is usually strong. That was 176 

confirmed in our dataset by the high correlations between observed daily temperatures and 177 

predictions from the imputation technique, which ranged from r = 0.98 to 0.99. All temperature 178 

records at the 226 sites were complete after imputation and consisted of 1,826 mean daily 179 

temperatures from December 1, 2010 to November 30, 2015. Climatological variation during the 180 

same period was described using discharge data downloaded from the National Water Information 181 

System database (https://waterdata.usgs.gov/usa/nwis/nwis) for a high-elevation gage site at 1,850 182 

m and a low-elevation gage site at 294 m and air temperature data from monitoring stations in the 183 

Cooperative Observer Network (https://www.ncdc.noaa.gov/data-access) that were near each gage 184 

(Figure 1). 185 

 186 

3 Data analysis 187 

3.1 PCA of thermal metrics 188 

Prior to calculating metrics for thermal characteristics, mean daily temperatures for 365 days were 189 

calculated from the five-years of data at each site to provide representative values for each day. 190 

Twenty-eight temperature metrics were then calculated to describe aspects of that annual record 191 

based on five categories associated with magnitude, variability, frequency, timing, and duration 192 

(Table 2). Metrics were similar to those used in previous studies of thermal regimes (Arismendi et 193 

al., 2013; Chu et al., 2010; Rivers-Moore et al., 2013; Steel et al., 2016) and in studies assessing the 194 

effects of peak summer temperatures on the distribution and abundance of aquatic organisms 195 

(Dunham et al., 2003; Huff et al., 2005; Isaak et al., 2017a). Relationships among the thermal 196 

metrics were described by conducting PCA on a data matrix in which columns represented the 28 197 

metrics and rows were the 226 monitoring sites. Linear combinations of the data were estimated 198 

with coefficients equal to the eigenvectors of their correlation matrix, which were the principal 199 

components (PCs; Pearson, 1901; Sergeant et al., 2016). The first principal component accounted 200 

for the largest possible variance in the dataset and succeeding components accounted for the largest 201 
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portions of the remaining variance while being orthogonal (i.e., uncorrelated) to the preceding 202 

components. Correlations, or loadings, between each metric and the PCs were also calculated to 203 

assist in subsequent interpretations. The Princomp procedure was used to conduct the PCA (SAS 204 

Institute, 2015). To understand geographical relationships, PC scores were mapped to the 226 205 

temperature sites and bivariate correlations were calculated with descriptors of major environmental 206 

gradients such as elevation, reach slope, and discharge.  207 

 208 

3.2 PCA of daily water temperatures 209 

To assess the consistency of spatial temperature patterns among monitoring sites, a T-mode PCA 210 

(Richman, 1986) was done on a data matrix of mean daily temperatures in which the columns were 211 

the 365 days starting on December 1 and the rows were the 226 monitoring sites. In this analysis, 212 

the number of principle components explaining significant variation indicates the number of distinct 213 

spatial phases that occur throughout the year (Gallacher et al., 2016). Eigenvector loadings on the 214 

dominant PCs were plotted for each day of the year to describe when each phase occurred, and 215 

mean daily temperatures were mapped during these periods for visualization.  216 

 217 

To assess temporal covariance among sites, a S-mode PCA (Richman, 1986) was done by 218 

transposing the T-mode data matrix so that monitoring sites were columns and the time ordered 219 

daily mean temperatures were rows. Because hydroclimatic conditions among years could have 220 

affected the results, the S-mode PCA was done not only for the five-year averages of daily water 221 

temperatures but also on the disaggregated time series of 1,826 daily values at the 226 monitoring 222 

sites. Concordance between the S-mode PC scores, air temperature, and discharge were examined 223 

posthoc by plotting standardized time-series and calculating bivariate correlations. 224 

 225 

4. Results 226 

Water temperatures within the study area network exhibited spatial and temporal variation reflective 227 

of the local topography, drainage basin characteristics, and annual hydroclimatic cycles. The annual 228 

temperature cycle is illustrated in Figure 2 by the slopes of linear regressions between mean 229 

monthly temperatures and elevation at the 226 monitoring sites throughout the course of one year in 230 

2013. No trend occurred relative to elevation during cold winter months (0˚C / m) when many sites 231 

had water temperatures at or near 0˚C and were often exposed to subzero air temperatures. As 232 

temperatures warmed during the spring a small elevation trend appeared, which became most 233 
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pronounced (approximately -0.0037˚C / m) when peak temperatures occurred during the months of 234 

July and August. Examples of inter-annual variation are shown in Figure 3, which contrasts the 235 

extreme conditions observed in 2011 and 2015. The former year was relatively cool with a large 236 

winter snow accumulation and subsequent spring runoff, whereas 2015 had below average snowfall, 237 

low runoff, and particularly warm early summer air temperatures. As a result, the median discharge 238 

date occurred 1–2 months earlier in 2015 than in 2011 and peak water temperatures were 4–5 °C 239 

warmer.  240 

 241 

Four PCs accounted for 93.4% of the variation in the 28 temperature metrics (Table 4). The first PC 242 

explained 49% of the variation and was strongly correlated with metrics that represented magnitude 243 

and variability during most seasonal periods. Correlations between PC1 scores and elevation (r = -244 

0.59) and mean flow (r = 0.58) suggested gradients in these environmental factors were important 245 

controls on this component of thermal regimes (Table 5). PC2 explained 29% of thermal variation 246 

and represented the length and intensity of the winter period, with strong loadings for mean winter 247 

temperature, minimum temperature, and timing metrics that determine growing season length based 248 

on degree day accumulations. PC3 accounted for 9.8% of total variation and was associated with 249 

summer temperature variability and two timing metrics, whereas PC4 accounted for 5.6% of 250 

thermal variance. An ordination plot of scores from the two dominant PCs showed a symmetrical 251 

distribution except for several sites with large positive scores on the first axis that were from large 252 

rivers at low elevations and had the warmest temperatures (Figure 4). A map of PC1 scores 253 

indicated that the spatial pattern in magnitude and variability (Figure 4b) was congruent with the 254 

network scenario of mean August temperatures as would be expected (Figure 1). In fact, the 255 

correlation between PC1 scores and the August scenario predictions at the 226 monitoring sites was 256 

strong at r = 0.86. The PC2 map showed several clusters of stream sites with high scores scattered 257 

throughout the study area. Those sites tended to occur in higher elevation basins where reach slopes 258 

were low (Table 5). 259 

 260 

In the T-mode analysis, the first two PCs explained 88% of the total variation in mean daily 261 

temperatures. A plot of the daily eigenvector loadings indicated that one distinct spatial phase 262 

occurred in the winter and a second phase spanned the year’s remainder (Figure 5). Phase 263 

transitions occurred around days 100 and 350, which closely aligned with the abatement and onset 264 

of subzero air temperatures in the study area (Figure 2). Figure 6 illustrates the spatial patterns 265 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-266
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 25 June 2018
c© Author(s) 2018. CC BY 4.0 License.



9 

 

characteristic of the two phases by mapping mean daily water temperatures at the monitoring sites 266 

on days 50 and 250, which occurred in mid-January and late July, respectively. Temperatures 267 

during the winter phase were spatially homogenous and exhibited a narrow range from 0 °C to 2.5 268 

°C whereas the non-winter phase was heterogeneous and had a broader temperature range from 7.6 269 

°C to 23.4 °C.  270 

 271 

In the S-mode analysis, the first PC accounted for 98% of the variation when applied to the average 272 

year of 365 daily temperatures at the 226 monitoring sites. Nearly an identical result was obtained 273 

when the analysis was repeated on the disaggregated time-series of 1,826 daily temperatures, as 274 

PC1 then explained 96.7% of total variation (Figure 7a). The correlation between PC1 scores and 275 

mean daily air temperatures in the disaggregated series was strong (r = 0.94), suggesting that water 276 

temperatures responded in a coherent manner to temporal variation in air temperatures at the two 277 

monitoring stations. A second PC accounted for 1.3% of water temperature variation in the 278 

disaggregated series and was strongly correlated with mean daily discharge at the two flow gages (r 279 

= 0.83). Plots of the PC scores revealed nonlinearities in the air-water temperature relationship 280 

likely caused by subzero air temperatures during portions of the year and hysteresis wherein 281 

discharge levels mediated water temperature responses to air temperature variation (Figure 7c, d, e, 282 

f). In the latter case, water temperatures were less sensitive to air temperature variation on the 283 

ascending limb of the hydrograph than on the descending limb. 284 

 285 

5 Discussion 286 

5.1. Thermal regime characteristics  287 

Thermal regimes in the mountain river networks we studied were relatively simple and responded 288 

coherently to climatic conditions and runoff patterns. Little evidence existed for subdomains or 289 

regionalization within the study area, probably because streams drained similar geologies and 290 

sample sites spanned a limited spatial extent relative to the scales at which heterogeneity in weather 291 

patterns occurred. Moreover, strong seasonal climate cycles and annual pulses of snowmelt runoff 292 

are dominant temporal factors that also served to synchronize temporal variation in water 293 

temperatures across this landscape. At larger spatial extents, a greater range of hydroclimates and 294 

geological conditions should increase stream diversity and distinctive thermal behaviors would be 295 

expected to emerge that are characteristic of regionalization. In a continental-scale assessment, 296 

Maheu et al. (2016) concluded that streams in the northwestern U.S. exhibit at least four types of 297 
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thermal regimes but the density of sampling locations supporting that claim was relatively sparse 298 

and opens the possibility that additional types may exist.  299 

 300 

Similar to previous studies that have assessed multiple thermal metrics (Isaak and Hubert, 2001; 301 

Dunham et al., 2005; Steele et al., 2016), we observed strong correlations and redundancies among 302 

metrics. The metric-based PCA suggested that 2–3 metrics were adequate for describing the main 303 

components of thermal regimes in the study networks. The first component could be represented by 304 

any of several non-winter magnitude metrics that loaded strongly on PC1 (e.g., mean annual 305 

temperature, annual degree days, mean spring, summer, or fall temperatures, short-term 306 

maximums); whereas PC2 could be represented by metrics for winter magnitude or growing season 307 

length. The relative simplicity of thermal regimes in this mountain landscape was similar to that 308 

observed by Rivers-Moore et al. (2013) in a comparable PCA for South African streams. The 309 

metrics assessed in each study differed slightly and our mountain streams had a distinct 310 

homogenous winter phase characterized by near zero temperatures but in both instances, PC1 311 

accounted for ~50% of variation and PC2 accounted for ~30% of variation.  312 

 313 

5.2. Implications for monitoring and bioassessments 314 

Within mountain landscapes characterized by uniform geohydroclimates, the coherent behavior we 315 

observed among sites suggests that a limited number of monitoring stations can represent temporal 316 

dynamics in thermal regimes. Those sites would need to be spread geographically and along major 317 

environmental gradients and replicated to mitigate against sensor losses, but 10–30 stations might 318 

prove sufficient at scales comparable to our study area. Given low costs, the availability of standard 319 

protocols (Isaak et al., 2013; Stamp et al., 2014), and growing interest in temperature monitoring 320 

(Daigle et al., 2016; Isaak et al., 2017b), monitoring arrays could also be crowd-sourced effectively 321 

if site locations were coordinated and chosen strategically using geospatial analyses to describe and 322 

stratify networks for sample allocation (Jackson et al., 2016). Monitoring networks might also be 323 

supplemented by incorporating sites established for other factors such as documenting thermal 324 

responses to habitat restoration efforts (Nichols and Ketcheson, 2013) or disturbances associated 325 

with land management, wildfires, or livestock grazing (Mahlum et al., 2011; Nussel et al., 2015). In 326 

fact, those factors motivated collection of many of the datasets compiled for this analysis, although 327 

supplementation with additional sites was needed to ensure representative coverage. If one 328 

monitoring goal is to develop accurate prediction maps showing spatial variation in one or more 329 
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thermal metrics (e.g., Isaak et al., 2017b), sites may also need to be more densely sampled than the 330 

above considerations otherwise suggest. Spatial autocorrelation in temperature metric values is 331 

minimal beyond network distances of 10–100 km (Isaak et al., 2010), so similar sensor spacing is 332 

required to generate the most accurate maps. Given the extent of most river networks, that would 333 

often translate to a large number of sites but most of these could be monitored for short periods 334 

while temporal dynamics were represented by a subset of long-term sites since temporal covariance 335 

among sites would be strong.  336 

 337 

Water temperature is often monitored because of its importance to aquatic organism phenology 338 

(Neuheimer and Taggart, 2007), distributions, and abundance (Isaak et al., 2017a). The majority of 339 

previous assessments, however, focus on biothermal relationships associated with magnitude 340 

metrics, which has prompted calls to “move beyond the mean” and consider thermal regimes more 341 

broadly (Steel et al., 2012; Dillon et al., 2016). PCA is a useful tool for pursuing that goal, in that it 342 

enables identification and selection of meaningful metrics that are distinct from mean conditions 343 

while also providing eigenvector loadings that describe orthogonal axes which could be used to 344 

replace summary metrics with uncorrelated synthetic temperature variables. In either instance, the 345 

relevance of thermal regime components should be more readily ascertained in biological models 346 

(Garcia et al., 2014), the potential for multicollinearity and model bias reduced, and confusion 347 

caused by the proliferation and use of redundant thermal metrics partially stemmed (Roberts et al., 348 

2013; DeWeber and Wagner, 2018). New challenges will emerge regarding the need to measure or 349 

predict relevant thermal metrics in concert with biological phenomena but growing temperature 350 

databases and ongoing advances in network scale stream-temperature models may soon provide 351 

those capabilities (Gallice et al., 2015; Isaak et al., 2017b; Jackson et al., 2017).  352 

 353 

5.3. Conclusion 354 

Our analysis of thermal regimes follows previous work that has proven fundamental to advancing 355 

the understanding of hydrologic regimes (Poff et al., 1997; Olden and Poff, 2003) but also adds 356 

novel applications of T-mode and S-mode PCA from the field of climatology that hold utility for 357 

stream temperature research and monitoring design. Thermal conditions in the mountain river 358 

networks studied here were strongly coherent through time, exhibited two distinct spatial phases, 359 

and were adequately described by a few principle components or allied metrics. A logical next step 360 

is application of PCA tools to larger stream and river temperature datasets that span regional, 361 
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continental, or intercontinental scales to discern distinct regime aspects and the geographic domains 362 

where they are operable. Results from such undertakings would support the broad framework 363 

already outlined by Maheu et al. (2016) but if accomplished with spatially dense datasets, might 364 

also provide information relevant to local prescriptions concerning biological or habitat 365 

impairments (Rivers-Moore et al., 2013). As research on the topic of thermal regimes matures, 366 

syntheses with flow regime concepts and datasets could also be sought to more fully describe the 367 

hydroclimatic conditions of flowing waters.  368 
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Table 1. Descriptive statistics for spatial attributes of 226 monitoring sites with annual temperature 556 

data from mountain river networks in the northwestern U.S. 557 

  
Mean Median SD Minimum Maximum 

Elevation (m) 
 

1392 1407 464 280 2369 

Drainage area (km2) 687 47.3 3011 2.18 34865 

Mean annual flow (m3/s) 7.37 0.692 26.4 0.0253 281 

Reach slope (%) 0.0389 0.0273 0.0403 0 0.206 

  558 
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Table 2. Temperature metrics used to describe thermal regimes of mountain rivers and streams.  559 

Category Thermal metric Definition 

Magnitude M1. Mean annual temperature Average of mean daily temperatures during a year 

 M2. Mean winter temperature Average of mean daily temperatures during December, January, and February 

 M3. Mean spring temperature Average of mean daily temperatures during March, April, and May 

 M4. Mean summer temperature Average of mean daily temperatures during June, July, and August 

 M5. Mean August temperature Average of mean daily temperatures during August 

 M6. Mean fall temperature Average of mean daily temperatures during September, October, and 

November 

 M7. Minimum daily temperature Lowest mean daily temperature during a year 

 M8. Minimum weekly average 

temperature 

Lowest seven-day running average of mean daily temperature during a year 

 M9. Maximum daily temperature Highest mean daily temperature during a year 

 M10. Maximum weekly average 

temperature 

Highest seven-day running average of mean daily temperature during a year 

 M11. Annual degree days Cumulative total of degree days during a year (1°C for 24 hours = 1 degree 

day) 

Variability V1. Annual standard deviation Standard deviation of mean daily temperature during a year 

 V2. Winter standard deviation Standard deviation of mean daily temperature during winter months 

 V3. Spring standard deviation Standard deviation of mean daily temperature during spring months 

 V4. Summer standard deviation Standard deviation of mean daily temperature during summer months 

 V5. Fall standard deviation Standard deviation of mean daily temperature during fall months 

 V6. Range in extreme daily 

temperatures 

Difference between minimum and maximum mean daily temperatures during a 

year (M9 minus M7) 

 V7. Range in extreme weekly 

temperatures 

Difference between minimum and maximum weekly average temperatures 

during a year (M10 minus M8) 

Frequency F1. Frequency of hot days Number of days with mean daily temperatures >20 °C 

 F2. Frequency of cold days Number of days with mean daily temperatures <2 °C 

Timing T1. Date of 5% of degree days Number of days from December 1st until 5% of degree days are accumulated 

 T2. Date of 25% of degree days Number of days from December 1st until 25% of degree days are accumulated 

 T3. Date of 50% of degree days Number of days from December 1st until 50% of degree days are accumulated 

 T4. Date of 75% of degree days Number of days from December 1st until 75% of degree days are accumulated 

 T5. Date of 95% of degree days Number of days from December 1st until 95% of degree days are accumulated 

Duration D1. Growing season length Number of days between the 95% and 5% of degree days (T5 minus T1) 

 D2. Duration of hot days Longest number of consecutive days with mean daily temperatures >20 °C 

 D3. Duration of cold days Longest number of consecutive days with mean daily temperatures <2 °C 

  560 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-266
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 25 June 2018
c© Author(s) 2018. CC BY 4.0 License.



20 

 

Table 3. Descriptive statistics for temperature metrics used to describe thermal regimes at 226 561 

monitoring sites in mountain river networks. Statistics were calculated from the imputed time-series 562 

and mean daily values for the period 2011–2015.  563 

 Mean (°C) Median (°C) SD (°C) Minimum (°C) Maximum (°C) 

M1. Mean annual temperature 5.36 5.10 1.44 3.10 10.34 

M2. Mean winter temperature 0.75 0.63 0.60 -0.10 4.03 

M3. Mean spring temperature 3.67 3.47 1.61 1.14 9.38 

M4. Mean summer temperature 11.2 10.9 2.68 6.55 19.1 

M5. Mean August temperature 12.5 12.1 2.78 7.78 22.5 

M6. Mean fall temperature 5.71 5.50 1.53 3.04 11.5 

M7. Minimum daily temperature 0.21 0.14 0.35 -0.45 2.18 

M8. Minimum weekly average temperature 0.31 0.23 0.40 -0.42 2.69 

M9. Maximum daily temperature 13.5 13.0 3.00 8.26 23.5 

M10. Maximum weekly average temperature 13.2 12.7 2.99 7.96 23.2 

M11. Annual degree days 1956 1863 527 1132 3775 

V1. Annual standard deviation 4.43 4.27 1.05 2.51 7.40 

V2. Winter standard deviation 0.30 0.29 0.16 0.00 0.87 

V3. Spring standard deviation 1.62 1.57 0.72 0.33 5.36 

V4. Summer standard deviation 1.99 1.88 0.61 0.61 4.45 

V5. Fall standard deviation 3.43 3.34 0.73 2.13 6.05 

V6. Range in extreme daily temperatures 13.3 12.8 3.06 7.50 23.3 

V7. Range in extreme weekly temperatures 12.9 12.3 3.06 6.99 22.9 

F1. Frequency of hot days 0.81 0 5.82 0 61 

F2. Frequency of cold days 131 132 35.6 0 212 

T1. Date of 5% of degree days 109 113 25.5 44 168 

T2. Date of 25% of degree days 193 194 10.9 148 217 

T3. Date of 50% of degree days 237 238 5.01 215 251 

T4. Date of 75% of degree days 276 276 2.99 264 288 

T5. Date of 95% of degree days 323 323 4.78 309 340 

D1. Growing season length 214 210 29.7 141 296 

D2. Duration of hot days 0.691 0 5.61 0 61 

D3. Duration of cold days 124 124 39.0 0 207 

  564 
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Table 4. Loadings of 28 temperature metrics on the first four principal components in a PCA of 565 

annual temperature records from mountain river networks in the northwestern U.S. 566 

Temperature metric PC1 PC2 PC3 PC4 

M1. Mean annual temperature 0.99 -0.07 -0.05 -0.03 

M2. Mean winter temperature 0.26 -0.92 0.14 0.00 

M3. Mean spring temperature 0.91 -0.19 -0.25 0.04 

M4. Mean summer temperature 0.97 0.21 -0.06 -0.05 

M5. Mean August temperature* 0.95 0.22 0.16 -0.10 

M6. Mean fall temperature 0.96 -0.18 0.14 -0.08 

M7. Minimum daily temperature -0.02 -0.86 0.08 -0.02 

M8. Minimum weekly average temperature -0.03 -0.90 0.08 0.00 

M9. Maximum daily temperature 0.95 0.26 0.09 -0.08 

M10. Maximum weekly average temperature 0.95 0.25 0.09 -0.07 

M11. Annual degree days 0.99 -0.07 -0.05 -0.03 

V1. Annual standard deviation 0.90 0.41 0.01 -0.07 

V2. Winter standard deviation 0.69 -0.54 0.16 0.00 

V3. Spring standard deviation 0.71 0.30 -0.55 0.04 

V4. Summer standard deviation 0.42 0.32 0.78 -0.14 

V5. Fall standard deviation 0.87 0.39 0.19 -0.12 

V6. Range in extreme daily temperatures 0.93 0.33 0.08 -0.07 

V7. Range in extreme weekly temperatures 0.93 0.33 0.08 -0.07 

F1. Frequency of hot days 0.47 -0.01 0.30 0.82 

F2. Frequency of cold days -0.70 0.61 0.09 0.11 

T1. Date of 5% of degree days 0.02 0.96 -0.10 0.01 

T2. Date of 25% of degree days -0.43 0.74 0.46 -0.08 

T3. Date of 50% of degree days -0.45 0.37 0.79 -0.16 

T4. Date of 75% of degree days -0.19 -0.51 0.72 -0.19 

T5. Date of 95% of degree days 0.30 -0.88 0.12 -0.09 

D1. Growing season length 0.03 -0.97 0.11 -0.03 

D2. Duration of hot days 0.44 -0.03 0.32 0.84 

D3. Duration of cold days -0.64 0.66 0.07 0.11 

Variance explained (%): 49.0% 29.0% 9.8% 5.6% 

Cumulative variance (%): 49.0% 78.0% 87.8% 93.4% 

Eigenvalue: 13.73 8.12 2.74 1.56 
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Table 5. Correlations among stream temperature principle components and spatial attributes of 226 568 

monitoring sites with annual data from river networks in the northwestern U.S. 569 

  

Elevation 

Mean 

flow 

Reach 

slope 

 

PC1 

 

PC2 

 

PC3 

 

PC4 

Elevation 1       

Mean flow -0.34 1      

Reach slope -0.10 -0.23 1     

PC1 -0.59 0.58 -0.34 1    

PC2 0.27 -0.06 -0.49 0.00 1   

PC3 -0.23 0.35 0.13 0.00 0.00 1  

PC4 0.12 0.54 -0.02 0.00 0.00 0.00 1 

 570 

  571 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-266
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 25 June 2018
c© Author(s) 2018. CC BY 4.0 License.



23 

 

Fig. 1. Locations of 226 monitoring sites overlaid on an August stream temperature scenario for the 572 

29,600 km network in the study area. Stars denote where air temperature and stream discharge data 573 

were obtained from a low-elevation site (294 m, northern station) and a high-elevation site (1850 m, 574 

southern station).  575 

  576 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-266
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 25 June 2018
c© Author(s) 2018. CC BY 4.0 License.



24 

 

Fig. 2. Linear regression trends between elevation and mean monthly temperatures at 226 river and 577 

stream sites during 2013. Data values are not shown for clarity; slope values next to the regression 578 

trend lines are °C / m elevation. 579 
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Fig. 3. Annual cycle of mean daily water temperatures (a), air temperatures (b), and discharge (c) at 581 

a high-elevation site and a low-elevation site during two contrasting climate years. Discharge values 582 

at the high elevation site are multiplied by ten for better visibility.  583 

 584 
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Fig. 4. PCA ordination plot of 226 stream sites based on 28 thermal metrics derived for annual data 586 

from mountain rivers and streams (a). Panels b and c show principle component scores mapped to 587 

network locations. 588 
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Fig. 5. T-mode PCA results showing the principle component eigenvector loadings throughout a 590 

year to determine when dominant spatial phases occurred in water temperatures at 226 sites in 591 

mountain rivers and streams in the northwestern U.S. 592 
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Figure 6. Thermal patterns during two periods with distinct spatial phases based on T-mode PCA 594 

results (a). Day 50 occurs in mid-January and was chosen to represent the homogenous winter 595 

period (b) whereas day 250 occurs in late July and represents the heterogeneous period (c).  596 
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Fig. 7. S-mode PCA results showing principle component scores to describe temporal patterns in 598 

mean daily water temperatures among 226 stream sites during five years (a and b). Daily air 599 

temperatures and discharge values from two monitoring stations are aligned with the PCs for 600 

comparative purposes. Graphs to the right show pairwise correlations among water temperature, air 601 

temperature, and discharge.  602 
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