Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-266-RC1, 2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

HESSD

Interactive comment

Interactive comment on "Principle components of thermal regimes in mountain river networks" by Daniel J. Isaak et al.

N. Rivers-Moore (Referee)

blackfly1@vodamail.co.za

Received and published: 7 August 2018

Specific comments: Lines 37-40: Sentence does not read well. Suggested revision "Knowledge of the local thermal regime, based on the annual sequence of temperatures characteristic to specific locations within a river network, is key to understanding natural conditions and diagnosing anthropogenic impairments." Lines 62-64: Suggested revision "While that may bring..., most warm stream...correlated with each other and therefore redundant. If redundancy is also reflected across a broader..." Paragraph beginning line 146: Be explicit that these time series refer to water temperatures, as later on in the manuscript air temperatures are also used. Section 3.1 – Does one need to specify that the study assumed stationarity in the data, in order to generate temperatures for 365 days based on five-year time series? Line 207 – Please provide

Printer-friendly version

Discussion paper

a summary of the environmental gradients; it may be worth including a table on these. Line 212 - Please explain why the thermal year started on 1 December. In South Africa, we typically use 1 October – 30 September for the Hydrological year, but I am aware that this varies regionally, being based on the onset of the highest discharge season. Line 218 - "sites, an S-mode" Line 234 - It would make more sense to me to represent the thermal gradient per 100m. This would be a useful figure in defining a water temperature lapse rate. For air temperatures, this is typically expressed as something like 0.7°C per 100m. Line 253 - Figure 4a Line 257 - insert Figure 4c Table 1 - write US in full; standardise on number of decimal points down columns (also applies for Table 3). Figure 2 – I like this figure! Please include the range of R2 values, and I would recommend that the caption explicitly describes the month(s) with the highest thermal gradient. Figure 4 - caption revision to say "...show principal component scores for axes 1-2...". Please also check there are no other occurrences of "principle". Figure 7 - "...and discharge (c-f)" References: Carlisle et al. 2017; Fuhrman et al. 2018; Isaak et al. 2016b; Josse and Husson 2012; Steel et al. 2017 not cited in text. Inconsistencies in citations: Line 51 - Rieman et al 2015a; Line 80 Piechota 2001 or 1997?; Line 84 Gallacher 2016 or 2017?; line 90 Trumbo et al. Not referenced; line 175 - correct to R Development Core Team; Line 205 correct to SAS Institute Inc.; line 326 – spelling of Nusslé; line 352 – Jackson et al. 2017 or 2018?

Table 3 not cited in text.

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-266, 2018.

HESSD

Interactive comment

Printer-friendly version

Discussion paper

