
Dear Dr. Freer,  

Please find our reviewer responses and descriptions of revisions to HESS-2018-266 below. In 

addition to the requested revisions, we have also improved the manuscript with these additional 

revisions: 1) revised all figures for improved clarity, 2) added one paragraph of new results that 

highlights additional nuances regarding stream temperature dynamics and associated basin 

properties, 3) fully revised and expanded the discussion section. We hope you find the revision 

and responses to reviewer comments satisfactory and look forward to future correspondence 

regarding this manuscript. Best regards, Dan Isaak 

  

 

Reviewer #1 comments 

General comments 

This manuscript presents an elegant analysis of different components (magnitude, frequency, 

duration, timing) of thermal events for a large number of time series points in the United states. 

Two variations of Principal Components Analysis (T-mode and S-mode analyses) refine the 

analysis very nicely into spatial regions and temporal seasons of thermal homogeneity and 

seasonality. By disaggregating time series into metrics, and accounting for high levels of 

redundancy between metrics, together with the PC analyses, this research presents a novel 

approach to optimising site locations for water temperature gauging networks. In my opinion, 

this is a very useful addition to thermal research in lotic systems. The approach is generic and 

applicable to a global audience. The manuscript is clearly and well written, methodologically 

elegant and scientifically sound. I recommend publication given minor comments corrected 

below.  

 

Our response: We much appreciate the reviewer’s kind words and attention to detail in their 

comments. We have made many of the suggested revisions as described below.  

 

Specific comments 

Section 3.1 – Does one need to specify that the study assumed stationarity in the data, in order to 

generate temperatures for 365 days based on five-year time series? 

 

Our response: There has been some focus in the recent literature on the possibility of 

nonstationary responses in stream temperatures due to climate forcing. However, that type of 

nonstationarity is generally expected over multi-decadal timespans and the prediction is based 

largely on mechanistic models rather than documentation from empirical trends in monitoring 

datasets. During the short five year study period we considered, nonstationarity was unlikely to 

be important and the 12% of missing daily observations were reconstructed from nearby sites 

with strong covariance using the missMDA statistical package in R.   

 

Line 207 – Please provide a summary of the environmental gradients; it may be worth including 

a table on these. 

 

Our response: Table 1 was expanded to include summaries of these gradients, which were 

elevation, drainage area, annual flow, and reach slope. 

 



Line 212 – Please explain why the thermal year started on 1 December. In South Africa, we 

typically use 1 October – 30 September for the Hydrological year, but I am aware that this varies 

regionally, being based on the onset of the highest discharge season. 

 

Our response: The water year in North America is also considered to start October 1 but in the 

climatological literature, seasons are slightly different and considered to be winter 

(Dec/Jan/Feb), spring (March/April/May), summer (June/July/Aug), and fall (Sept/Oct/Nov). 

Climatological considerations seemed more relevant in the present context, and the conventional 

three month seasonal periods also conveniently matched the water temperature patterns common 

to our study site. We describe our rationale for starting the thermal year on Dec 1 in the 

manuscript where we state “We started the thermal year on December 1 because temperatures 

usually reach their annual lows by this date and the 3-month period thereafter constituted a 

logical winter season (i.e., December, January, February).” 

 

Line 234 – It would make more sense to me to represent the thermal gradient per 100m. This 

would be a useful figure in defining a water temperature lapse rate. For air temperatures, this is 

typically expressed as something like 0.7°C per 100m. 

 

Our response: We agree and revised the values in Figure 2 accordingly. 

 

Technical comments 

Title and elsewhere in text: please check for correct spelling of “Principle [as in components]”, 

which needs to be corrected to PRINCIPAL and checked throughout text, as there are instances 

of both. Nothing serious – I get confused between these two spellings! 

 

Our response: Embarrassing on our part that we missed this. Inconsistent usage was changed to 

“principal” throughout. 

 

Lines 37-40: Sentence does not read well. Suggested revision “Knowledge of the local thermal 

regime, based on the annual sequence of temperatures characteristic to specific locations within a 

river network, is key to understanding natural conditions and diagnosing anthropogenic 

impairments.” 

 

Our response: This revision was made. 

 

Lines 62-64: Suggested revision “While that may bring..., most warm stream...correlated with 

each other and therefore redundant. If redundancy is also reflected across a broader...” 

 

Our response: This revision was made. 

 

Paragraph beginning line 146: Be explicit that these time series refer to water temperatures, as 

later on in the manuscript air temperatures are also used. 

 

Our response: This revision was made. 

 

Line 218 – “sites, an S-mode” 



 

Our response: This change was made. 

 

Line 253 – Figure 4a 

 

Our response: This change was made. 

 

Line 257 – insert Figure 4c 

 

Our response: This change was made. 

 

Table 1 – write US in full; standardise on number of decimal points down columns (also applies 

for Table 3). 

 

Our response: United States was spelled out. In the tables, we generally standardized on having 

two or three significant digits rather than the number of decimal points. We are glad to adjust this 

either way depending on the convention in HESS but have left the values unchanged for now.  

 

Figure 2 – I like this figure! Please include the range of R2 values, and I would recommend that 

the caption explicitly describes the month(s) with the highest thermal gradient. 

 

Our response: We added the R2 values to the figure but did not modify the caption to highlight a 

subset of months with the highest thermal gradients because we don’t think that information is 

inherently more useful than that for other months. 

 

Figure 4 – caption revision to say “...show principal component scores for axes 1-2...”. Please 

also check there are no other occurrences of “principle”. 

 

Our response: These revisions were made. 

 

Figure 7 – “...and discharge (c-f)” 

 

Our response: Caption was revised accordingly.  

 

References: Carlisle et al. 2017; Fuhrman et al. 2018; Isaak et al. 2016b; Josse and Husson 2012; 

Steel et al. 2017 not cited in text. 

 

Our response: These errors were corrected. 

 

Inconsistencies in citations: Line 51 – Rieman et al 2015a; Line 80 Piechota 2001 or 1997?; Line 

84 Gallacher 2016 or 2017?; line 90 Trumbo et al. Not referenced; line 175 – correct to R 

Development Core Team; Line 205 correct to SAS Institute Inc.; line 326 – spelling of Nusslé; 

line 352 – Jackson et al. 2017 or 2018? 

 

Our response: These inconsistencies were rectified. 

 



Table 3 not cited in text. 

 

Our response: An appropriate citation was added. 

 

  



Reviewer #2 comment: 

Anonymous Referee #2 

Received and published: 28 August 2018 

This manuscript provides a nice analysis, characterizing the spatial and temporal characteristics 

and controls of thermal regimes of stream water. The work is based on a novel application of 

Principal Component Analysis, including the highly interesting differentiation of T-mode and S-

mode PCA to illustrate both, temporal and spatial consistency of the stream temperature pattern. 

The paper is very well and concisely written, including a clear and complete description of the 

data and methods used. However and despite the flawless implementation of the analysis, the 

interpretation of the results and their implications remain somewhat superficial. After reading the 

manuscript, it seemed to me that the authors contented themselves with demonstrating how a 

well-known statistical tool can be applied with stream temperature data. The one finding that I 

found most interesting to demonstrate the value of PCA was that the authors could pin down the 

timing of the phase transitions. I may not see the forest for the trees but apart from that I am not 

sure what can be learned from the analysis. As far as I understand, the results essentially suggest 

that (1) stream temperature is mostly controlled by temperature magnitudes and lengths of winter 

periods (which again is related to temperature magnitude one would assume) and (2) stream 

temperature is more spatially homogeneous in winter than in summer. While the first does not 

really come as a surprise, it seems that the latter can also be inferred without PCA (or in other 

words: how is the information content of Figure 2 different to that of Figure 6?). I would thus be 

glad if the authors could invest a bit more effort in (1) highlighting the benefits of PCA with 

respect to other methods and (2) providing a somewhat stronger synthesis of their results – what 

are the novel aspects that can be learned from these results? 

 

Our response: We agree with the overall critique that greater interpretation of results would be 

beneficial so have revised and expanded the discussion in a subsequent revision. As for the 

reviewer’s first comment that “(1) stream temperature is mostly controlled by temperature 

magnitudes and lengths of winter periods (which again is related to temperature magnitude one 

would assume)”, the statement in the parenthetical clause is incorrect in conflating temperature 

magnitude with the length of the winter period. Our analysis reveals that these are instead two 

distinct aspects of thermal regimes in the mountain streams we studied. Streams with similar 

mean or maximum summer temperatures appear to vary considerably with regards to their winter 

period lengths when temperatures are largely homothermous. Exploring why that variation 

occurs was a useful addition to a discussion revision. The reviewer’s latter point that “(2) stream 

temperature is more spatially homogeneous in winter than in summer. […], it seems that the 

latter can also be inferred without PCA (or in other words: how is the information content of 

Figure 2 different to that of Figure 6?)” is accurate but had previously been documented only at a 

few sites using time series plots like Figure 2. The T-mode PCA results put that site-level pattern 

into a broader context composed of hundreds of sites across large river basins. In this particular 

dataset, the thermal pattern across all the sites during the winter was largely consistent but that 

consistency was unknown prior to the analysis. Moreover, it is unlikely to be repeated in 

subsequent analyses we are planning with larger datasets that encompass greater climatic and 

hydrological diversity, so these PCA tools may help us identify subdomains regionally wherein 

stream thermal regimes behave differently. Here again, we think the revised discussion section 

has done much to bring out these points.  

 



Technical comments: 

p.7,l.204: what is a “Princomp procedure”? 

 

Our response: This was the statistical script run in the SAS software to perform the analysis. The 

reference to SAS was moved forward in this sentence so it is adjacent to the “Princomp 

procedure” reference for clarity. 

 

p.7,l.212: is there a specific reason to run the T-mode PCA on the 5-year mean values of the 

daily mean temperatures? In other words, why use 365 days (i.e. columns) and not the full data 

set of 1826 as in the S-mode analysis? 

 

Our response: We judged it unlikely that appreciable inter-annual differences would be observed 

in the spatial phases revealed by the T-mode analysis given the large elevational gradient in the 

study area and because the dominant patterns in PC loadings were driven by cold and warm 

season cycles (Figure 5). Showing one annual cycle of tradeoffs between PC1 and PC2 was 

easier to present and read, so we elected to run the analysis on the 5-year mean daily values. We 

were less certain regarding the potential consistency of inter-annual variation in temporal 

patterns described using the S-mode analysis, so ran that analysis on the disaggregated water 

temperature records as well. In retrospect, the results based on the disaggregated records yielded 

similar insights as those based on the 5-year mean dailies, so little new information was gained 

except to re-enforce the fact that water temperatures respond strongly to variation in air 

temperature and discharge across a range of climate year conditions. 

 

other than being repeated 4 more times in the plot of loadings.  Displaying the pattern over the 

course the dominant annual scale variability should be more informative for readers and more 

easily grasped. 

 

p.18,table 1: the values for reach slope seem excessively small. Should the unit perhaps be 

[m/m]? Please check. 

 

Our response: Yes, the units were in m/m rather than % and the label was changed accordingly. 
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Abstract. Description of thermal regimes in flowing waters is key to understanding physical 6 

processes, enhancing predictive abilities, and improving bioassessments. Spatially and temporally 7 

sparse datasets, especially in logistically challenging mountain environments, have limited studies 8 

on thermal regimes but inexpensive sensors coupled with crowd-sourced data collection efforts 9 

provide efficient means of developing large datasets for robust analyses. Here, thermal regimes are 10 

assessed using annual monitoring records compiled from several natural resource agencies in the 11 

northwestern United States that spanned a five-year period (2011–2015) at 226 sites across several 12 

contiguous montane river networks. Regimes were summarized with 28 metrics and principal 13 

components analysis (PCA) was used to determine those metrics which best explained thermal 14 

variation on a reduced set of orthogonal axes. Four principal components (PC) accounted for 93.4% 15 

of the variation in the temperature metrics, with the first PC (49% of variance) associated with 16 

metrics that represented magnitude and variability and the second PC (29% of variance) associated 17 

with metrics representing the length and intensity of the winter season. Another variant of PCA, T-18 

mode analysis, was applied to daily temperature values and revealed two distinct phases of spatial 19 

variability—a homogeneous phase during winter when daily temperatures at all sites were < 3 °C 20 

and a heterogeneous phase throughout the year’s remainder when variation among sites was more 21 

pronounced. Phase transitions occurred in March and November, and coincided with the abatement 22 

and onset of subzero air temperatures across the study area. S-mode PCA was conducted on the 23 

same matrix of daily temperature values after transposition and indicated that two PCs accounted 24 

for 98% of the temporal variation among sites. The first S-mode PC was responsible for 96.7% of 25 

that variance and correlated with air temperature variation (r = 0.92) whereas the second PC 26 

accounted for 1.3% of residual variance and was correlated with discharge (r = 0.84). Thermal 27 

regimes in these mountain river networks were relatively simple and responded coherently to 28 

external forcing factors, so sparse monitoring arrays and small sets of summary metrics may be 29 

adequate for their description. PCA provided a computationally efficient means of extracting key 30 

information elements from the temperature dataset used here and could be applied broadly to 31 

facilitate comparisons among more diverse stream types and develop classification schemes for 32 

thermal regimes. 33 

 34 

1 Introduction 35 

Temperatures of flowing waters control many physicochemical processes (Likens and Likens, 1977; 36 

Gordon et al., 1991; Ducharne, 2007) and affect the ecology of aquatic organisms and communities 37 

(Isaak et al., 2017a; Neuheimer and Taggart, 2007; Woodward et al., 2010). Knowledge of thermal 38 

regimes, characterized as the annual sequence of temperature conditions specific to locations within 39 

river networks (Caissie, 2006), is key to understanding natural conditions and diagnosing 40 

anthropogenic impairments. Seminal work by Poff and colleagues (Poff and Ward, 1989; Poff et al., 41 

1997) created a robust framework for describing flow regimes based on metric descriptions of 42 

magnitude, frequency, timing, duration, and variability that are largely transferrable to thermal 43 
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regimes (Poole et al., 2004; Olden and Naiman, 2010). Recent studies have contributed useful 52 

derivations of temperature metrics (Arismendi et al., 2013; Chu et al., 2010; Rivers-Moore et al., 53 

2013; Steel et al., 2016) or classification schemes based on a small number of pre-selected metrics 54 

(Maheu et al., 2016) but the limited availability of annual temperature records (Orr et al., 2015; 55 

Isaak et al., 2018a) has slowed broad development and adoption of thermal regime concepts. Data 56 

inadequacies are often compounded for montane riverscapes that are difficult to sample (Brown and 57 

Hannah, 2008; Isaak et al., 2013), a shortfall that needs to be overcome given the importance of 58 

these areas as climate refugia for cold-water biodiversity (Brown et al., 2009; Isaak et al., 2016a; 59 

Quaglietta et al. 2018) and as the focus of costly regional conservation strategies (Roni et al., 2002; 60 

Rieman et al., 2015). 61 

 62 

Despite existing limitations, the importance of temperature to stream biota is well recognized and 63 

inculcated to regulatory standards based on metrics used within threshold-based approaches (Poole 64 

et al., 2004; Todd et al., 2008). Most often, those metrics represent some aspect of conditions during 65 

warm summer months when temperature sensitive species or life stages are thought to be most 66 

vulnerable (Ice et al., 2004; McCullough, 2010), which contributes to the preponderance of short 67 

monitoring records spanning only these months (Isaak et al., 2017b). However, thermally mediated 68 

ecological processes occur throughout the year (Neuheimer and Taggart, 2007; Olden and Naiman, 69 

2010), so adequate understanding requires broader characterization of thermal conditions from 70 

annual datasets. While that may bring additional complexity, most warm season metrics are strongly 71 

correlated and therefore redundant (Isaak and Hubert, 2001; Dunham et al., 2005; Steel et al., 2016). 72 

If redundancy is also the norm among a broader array of annual temperature metrics, then 73 

multivariate data reduction techniques might be useful for identifying a few key aspects of thermal 74 

regimes.  75 

 76 

Supporting that idea, Rivers-Moore et al. (2013) used Principal Components Analysis (PCA) to 77 

describe covariation among 39 temperature metrics calculated for 82 South African stream sites and 78 

found that two PCs accounted for 75% of the total variation among metrics. Similarly in the field of 79 

hydrology, Olden and Poff (2003) examined 171 flow metrics calculated from 420 gage sites across 80 

the United States (U.S.) and found that two to four PCs accounted for 76–97% of variation in the 81 

dataset. In addition to metric-based PCA that is commonly used in the hydrological sciences, 82 

several other PCA variants are standard analytical tools in the field of climatology and may be 83 
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relevant for characterizing the dynamics of thermal regimes (Richman, 1986; Demsar et al., 2013). 86 

Most notably, PCA can be done on repeated measurements of a single variable to identify common 87 

spatial or temporal behavior among monitoring stations. In the climatology literature, for example, 88 

empirical orthogonal function analysis (S-mode PCA in the taxonomy of Richman (1986)) is used 89 

to determine which sites covary temporally as a means of developing regionalization schemes for 90 

precipitation, air temperatures, or wind speeds (Piechota et al., 1997; Jimenez et al., 2008; Martins 91 

et al., 2012). If common temporal patterns are identified, it suggests potential redundancy in the 92 

monitoring network and the information can be used to refine future sampling designs. The closely 93 

allied T-mode PCA identifies dominant spatial patterns in datasets and the times when these phases 94 

occur (Richman, 1986; Gallacher et al., 2017). A single dominant spatial pattern suggests the spatial 95 

distribution of a variable is temporally consistent whereas more than one spatial phase suggests 96 

change points and different states. 97 

 98 

The advent of inexpensive sensors, combined with regulatory requirements and concerns about 99 

climate change, have led to the recent expansion in temperature monitoring networks for rivers and 100 

streams (Isaak et al., 2010; Rivers-Moore et al., 2013; Hilderbrand et al., 2014; Luce et al., 2014a; 101 

Trumbo et al., 2014; Hannah and Garner, 2015; Jackson et al., 2016; Molinero et al., 2015; Daigle 102 

et al., 2016; Mauger et al., 2016; Steele et al., 2016). What was once a data dearth is becoming a 103 

deluge and opportunities exist to study thermal regimes with robust datasets. Here, we use annual 104 

temperature records compiled from several natural resource agencies for 226 monitoring sites in a 105 

mountainous landscape to conduct an initial assessment of thermal regimes. We limit the 106 

geographic scope of our effort to several adjacent river basins in the northwestern U.S. that are 107 

geologically and topographically similar but which have particularly dense monitoring networks to 108 

maximize analytical flexibility. Our objectives were to: 1) provide a basic description of the annual 109 

thermal characteristics in mountain rivers and streams because these are rare within the literature, 2) 110 

develop metrics to describe thermal regime characteristics based on magnitude, frequency, timing, 111 

duration, and variability, and 3) explore spatiotemporal variation among those metrics and 112 

temperature dynamics in relation to basin morphology and hydroclimatic conditions to better 113 

discern the principal components of thermal regimes and their regulating factors. 114 

 115 

2 Study area 116 
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The study area encompasses 79,500 km2 of mountainous, topographically complex terrain that 126 

spans a broad elevation range of 200–3,600 m at a latitude of 45° N (Figure 1). Climate is 127 

characterized by cold, wet winters with moderate to heavy snow accumulations at high elevations 128 

and hot, dry summers. Hydrographs are typical of snowmelt runoff systems, with high flows during 129 

spring and early summer and low flows during late summer, fall, and winter (Figure 2). Vegetation 130 

is dominated by conifer forests except at low elevations and south facing aspects where grasses and 131 

shrubs predominate. Wildfires are common within the landscape and burned 8% of the area from 132 

2011 to 2015 (Morgan et al., 2014). Parent geology consists mostly of resistant granites of the Idaho 133 

Batholith and a smaller easterly portion of intrusive volcanics (Bond and Wood, 1978; Meyer et al., 134 

2001). Both geologies are heavily dissected and stream valleys are V-shaped except for some alpine 135 

valleys at the highest elevations that were once glaciated. Human population densities are low 136 

except along wider segments of river valleys where fertile floodplains and easy access to water 137 

accommodate small amounts of agriculture and ranching. Most of the study area is publically 138 

owned (81%) and federally administered by the United States National Forest Service and Bureau 139 

of Land Management for a variety of land-use, recreational, and conservation purposes. Unpaved 140 

road networks have been developed in some drainages for timber harvest but many drainages are 141 

protected in large wilderness areas with minimal anthropogenic effects or roads (Swanson, 2015). 142 

 143 

2.1 River networks and temperature dataset  144 

Rivers and streams within the study area were delineated using the 1:100,000-scale National 145 

Hydrography Dataset (NHD; http://www.horizon-systems.com/NHDPlus/index.php; McKay et al., 146 

2012), which was attributed with mean annual flow values from data at the Western U.S. Stream 147 

Flow Metrics website 148 

(http://www.fs.fed.us/rm/boise/AWAE/projects/modeled_stream_flow_metrics.shtml; Wenger et 149 

al., 2010). To highlight the perennial subset of the network where temperature monitoring occurred, 150 

reaches with annual flows less than 0.03 m3/s were removed from the network, as were reaches with 151 

channel slopes >15%, and those coded as intermittent in the NHD (Fcode = 46003). Filtering 152 

reduced the original network extent from 58,000 km to 29,600 km with streams flowing at 153 

elevations of 221–3,105 m. To visualize thermal heterogeneity in the network, a scenario 154 

representing mean August temperatures for a baseline climate period of 1993–2011 was 155 

downloaded from the Northwestern Stream Temperature website (NorWeST: 156 

https://www.fs.fed.us/rm/boise/AWAE/projects/NorWeST.html; Isaak et al., 2016b) and linked to 157 

http://www.horizon-systems.com/NHDPlus/index.php
http://www.fs.fed.us/rm/boise/AWAE/projects/modeled_stream_flow_metrics.shtml
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the NHD reaches (Figure 1). Several large rivers drain the area in a generally westerly direction, the 158 

largest of which is the Salmon River with a mean annual discharge of 315 m3/s and a basin that 159 

comprised 44% of the study area. Six large dams and reservoirs occur in downstream portions of the 160 

network (three in the Boise River basin, two in the Payette River basin, and one in the Clearwater 161 

River basin) but these affect thermal conditions in less than 300 km of river and no temperature data 162 

were used from these sections. Spatial attributes and environmental characteristics of the study area 163 

network are summarized in Table 1. 164 

 165 

To obtain a water temperature dataset for analysis, we intersected the filtered network with the 166 

NorWeST database of daily temperature summaries (Chandler et al., 2016) and extracted data for 167 

sites that had mean daily temperature values on at least 70% of the days from December 1, 2010 to 168 

November 30, 2015. We started the thermal year on December 1 because temperatures usually 169 

reach their annual lows by this date and the 3-month period thereafter constituted a logical winter 170 

season (i.e., December, January, February). Subsequent three-month periods were considered to be 171 

spring (March, April, May), summer (June, July, August), and fall seasons (September, October, 172 

November). NorWeST temperature records were supplemented with additional data solicited from 173 

hydrologists and fisheries biologists employed by the Idaho Department of Fish and Game and the 174 

U.S. Forest Service, and we also downloaded data from online databases maintained by the 175 

Columbia Habitat Monitoring Program (https://www.champmonitoring.org/Home/Index) and the 176 

NOAA Northwest Fisheries Science Center (https://www.webapps.nwfsc.noaa.gov/WaterQuality/). 177 

Geographic gaps in monitoring were identified using geospatial analysis (e.g., Jackson et al., 2016) 178 

and additional sensors were strategically deployed where needed (Isaak et al., 2010; 2013). Data 179 

from the different sources were recorded at a variety of sub-daily intervals, so records were 180 

summarized to mean daily temperatures for standardization. Data were collected using different 181 

sensor models (TidbiT, Stowaway, and Pendant models from Onset Computer Corporation, 182 

Pocasset, Massachusetts, USA; Temp101a model from MadgeTech, Warner, New Hampshire, 183 

USA), which had measurement accuracies of +/-0.2°C to +/-0.5°C and resolutions of 0.02°C to 184 

0.14°C based on manufacturer specifications and calibration tests we performed. Sensors were 185 

deployed using underwater epoxy or steel cables for connection to large boulders and other 186 

immobile channel structures and were shielded from direct sunlight (Isaak et al., 2013; Stamp et al., 187 

2014). Temperature records were subject to standard quality assurance-quality control measures as 188 

described elsewhere (Chandler et al., 2016).  189 
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 191 

The stream temperature dataset consisted of records from 226 sites across a range of elevations, 192 

stream sizes, and reach slopes (Figure 1; Table 1). Although we set the minimum threshold for 193 

record completeness at 70% during the five-year period, the average completeness of records was 194 

higher at 88%. Missing daily values were imputed using the MissMDA package (Missing Values 195 

with Multivariate Data Analysis; Josse and Husson, 2016) in R (R Development Core Team, 2014) 196 

because temporal covariation among proximate stream temperature sites is usually strong. That was 197 

confirmed in our dataset by the high correlations between observed daily temperatures and 198 

predictions from the imputation technique, which ranged from r = 0.98 to 0.99. All temperature 199 

records at the 226 sites were complete after imputation and consisted of 1,826 mean daily 200 

temperatures from December 1, 2010 to November 30, 2015. Climatological variation during the 201 

same period was described using discharge data downloaded from the National Water Information 202 

System database (https://waterdata.usgs.gov/usa/nwis/nwis) for a high-elevation gage site at 1,850 203 

m and a low-elevation gage site at 294 m and air temperature data from monitoring stations in the 204 

Cooperative Observer Network (https://www.ncdc.noaa.gov/data-access) that were near the gage 205 

sites (Figure 1). 206 

 207 

3 Data analysis 208 

3.1 PCA of thermal metrics 209 

Prior to calculating metrics for thermal characteristics, mean daily temperatures for 365 days were 210 

calculated from the five years of data at each site to provide representative values. Twenty-eight 211 

temperature metrics were then calculated to describe aspects of those annual records based on five 212 

categories associated with magnitude, variability, frequency, timing, and duration (Tables 2 and 3). 213 

Metrics were similar to those used in previous studies of thermal regimes (Arismendi et al., 2013; 214 

Chu et al., 2010; Rivers-Moore et al., 2013; Steel et al., 2016) and in studies assessing the effects of 215 

peak summer temperatures on the distribution and abundance of aquatic organisms (Dunham et al., 216 

2003; Huff et al., 2005; Isaak et al., 2017a). A wide range of variability occurred among sites where 217 

mean annual temperatures ranged from 3.1 °C to 10.3 °C and annual standard deviations ranged 218 

from 2.51 °C to 7.40 °C (Table 3). Relationships among the thermal metrics were described by 219 

conducting PCA on a data matrix in which columns represented the 28 metrics and rows were the 220 

226 monitoring sites. Linear combinations of the data were estimated with coefficients equal to the 221 

eigenvectors of their correlation matrix, which were the principal components (PCs; Pearson, 1901; 222 

https://waterdata.usgs.gov/usa/nwis/nwis
https://www.ncdc.noaa.gov/data-access
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Sergeant et al., 2016). The first principal component accounted for the largest possible variance in 223 

the dataset and succeeding components accounted for the largest portions of the remaining variance 224 

while being orthogonal (i.e., uncorrelated) to the preceding components. Correlations, or loadings, 225 

between each metric and the PCs were also calculated to assist in subsequent interpretations. The 226 

Princomp Procedure in SAS (SAS Institute Inc., 2015) was used to conduct the PCA. To describe 227 

geographical relationships, PC scores were mapped to the 226 temperature sites and bivariate 228 

correlations were calculated with descriptors of network conditions such as elevation, reach slope, 229 

and discharge summarized in Table 1.  230 

 231 

3.2 PCA of daily water temperatures 232 

To assess the consistency of spatial temperature patterns among monitoring sites, a T-mode PCA 233 

(Richman, 1986) was done on a data matrix of mean daily temperatures in which the columns were 234 

the 365 days starting on December 1 and the rows were the 226 monitoring sites. In this analysis, 235 

the number of principal components explaining significant variation indicates the number of distinct 236 

spatial phases that occur throughout the year (Gallacher et al., 2016). Eigenvector loadings on the 237 

dominant PCs were plotted for each day of the year to describe when each phase occurred, and 238 

mean daily temperatures were mapped during these periods for visualization.  239 

 240 

To assess temporal covariance among sites, an S-mode PCA (Richman, 1986) was done by 241 

transposing the T-mode data matrix so that monitoring sites were columns and the time ordered 242 

daily mean temperatures were rows. Because hydroclimatic conditions among years could have 243 

affected the results, the S-mode PCA was done not only for the five-year averages of daily water 244 

temperatures but also on the disaggregated time series of 1,826 daily values at the 226 monitoring 245 

sites. Concordance between the S-mode PC scores, air temperature, and discharge were examined 246 

posthoc by plotting standardized time-series and calculating bivariate correlations. 247 

 248 

4. Results 249 

Water temperatures within the study area network exhibited spatial and temporal variation that 250 

reflected the local topography and annual hydroclimatic cycle. The annual temperature cycle is 251 

illustrated in Figure 2 by the slopes of linear regressions between mean monthly temperatures and 252 

elevation at the 226 monitoring sites throughout the course of the year in 2013. No elevation trend 253 

occurred during cold winter months when many sites had water temperatures at or near 0˚C and 254 
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were frequently exposed to subzero air temperatures. As temperatures warmed during the spring a 259 

small elevation trend appeared, which became most pronounced (approximately -0.37˚C / 100 m) 260 

during peak temperatures in the months of July and August. Examples of inter-annual variation are 261 

shown in Figure 3, which contrasts the extreme conditions observed in 2011 and 2015. The former 262 

year was relatively cool with a large winter snow accumulation and spring runoff, whereas 2015 263 

had below average snowfall, low runoff, and particularly warm early summer air temperatures. As a 264 

result, the median discharge date occurred 1–2 months earlier in 2015 than in 2011 and peak water 265 

temperatures were 4–5 °C warmer.  266 

 267 

Four PCs accounted for 93.4% of the variation in the 28 temperature metrics (Table 4). The first PC 268 

explained 49% of the variation and was strongly correlated with metrics that represented magnitude 269 

and variability during most seasonal periods. Correlations between PC1 scores and elevation (r = -270 

0.59) and mean flow (r = 0.58) suggested gradients in these network characteristics were important 271 

controls on this component of thermal regimes (Table 5). PC2 explained 29% of thermal variation 272 

and represented the length and intensity of the winter period, with strong loadings for mean winter 273 

temperature, minimum temperature, and timing metrics that determined growing season length. PC3 274 

accounted for 9.8% of total variation and was associated with summer temperature variability and 275 

two timing metrics, whereas PC4 accounted for 5.6% of thermal variance. An ordination plot of 276 

scores from the two dominant PCs showed a symmetrical distribution except for several sites with 277 

large positive scores on the first axis that were from large rivers at low elevations and had the 278 

warmest temperatures (Figure 4a). A map of PC1 scores indicated that the spatial pattern in 279 

magnitude and variability (Figure 4b) was congruent with the network scenario of mean August 280 

temperatures as would be expected (Figure 1). In fact, the correlation between PC1 scores and the 281 

NorWeST August scenario predictions at the 226 monitoring sites was strong at r = 0.86. The PC2 282 

map showed several clusters of stream sites with high scores scattered throughout the study area 283 

(Figure 4c), which tended to be associated with lower reach slopes (Table 5). 284 

 285 

In the T-mode analysis, the first two PCs explained 88% of the total variation in mean daily 286 

temperatures. A plot of the daily eigenvector loadings indicated that one distinct spatial phase 287 

occurred in the winter and a second phase spanned the year’s remainder (Figure 5). Phase 288 

transitions occurred around days 100 and 350, which closely aligned with the abatement and onset 289 

of subzero air temperatures in the study area (Figure 2). Figure 6 illustrates the spatial patterns 290 
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characteristic of the two phases by mapping mean daily water temperatures at the monitoring sites 293 

on days 50 and 250, which occurred in mid-January and late July, respectively. Temperatures 294 

during the winter phase were spatially homogenous and exhibited a narrow range from 0 °C to 2.5 295 

°C whereas the non-winter phase was heterogeneous and had a broader temperature range from 7.6 296 

°C to 23.4 °C.  297 

 298 

In the S-mode analysis, the first PC accounted for 98% of the variation when applied to the average 299 

year of 365 daily temperatures at the 226 monitoring sites. Nearly an identical result was obtained 300 

when the analysis was repeated on the disaggregated time-series of 1,826 daily temperatures, as 301 

PC1 then explained 96.7% of total variation (Figure 7a). The correlation between PC1 scores and 302 

mean daily air temperatures in the disaggregated series was strong (r = 0.92), suggesting that water 303 

temperatures were responding coherently to variability in air temperatures across the study area. A 304 

second PC accounted for 1.3% of water temperature variation in the disaggregated series and was 305 

strongly correlated with variation in mean daily discharge (r = 0.84). A plot of PC1 versus PC2 306 

indicated that variation along these axes corresponded to monthly and seasonal periods (Figure 7b). 307 

As was expected, little variation occurred during the cold winter months but during spring and early 308 

summer, variation was observed along both axes as air temperatures warmed and snowmelt runoff 309 

created a large discharge pulse. Once discharge returned to baseflow conditions in late summer, 310 

variability along PC1 was the primary signal until air temperatures cooled significantly in late fall 311 

and the homothermous period began.  312 

 313 

Although PC1 and PC2 are linearly uncorrelated, the loop structure of Figure 7b indicates there was 314 

some mutual information and that one driver of temperature variation was out of phase with the 315 

other. Examining this more closely by plotting the site loading values on each component from the 316 

S-mode analysis, we see little variability among the loadings for PC1 relative to the much larger 317 

range of loading values for PC2 (Figure 8). This confirms that PC1 represented the common 318 

behavior among all stream sites and that deviations in timing of water temperature increases and 319 

decreases were dictated by PC2. As a result, when annual temperature signals were reconstructed 320 

for two sites from the PCs based on the mean loading value for PC1 and +/- 0.16 for PC2 to 321 

represent strong negative and positive loadings, the expected timing shift was apparent (Figure 9). 322 

Notably, the site with the -0.16 PC2 loading had a later, sharper rise in water temperature that 323 

peaked in late summer approximately one month after the site with the positive loading. The 324 
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correspondence of PC2 with stream discharge in Figure 7a suggests the timing shift could be related 325 

to runoff patterns. And indeed, the annual unit-area runoff for the basins associated with the 226 326 

sites was a strong predictor of the PC2 loadings in a linear regression (r2 = 0.51; Figure 10). Site 327 

elevation provides some indication of rainfall-snowfall fraction that may help explain timing shifts 328 

but this covariate added little predictive capacity beyond annual runoff when examined across all 329 

sites (r2 = 0.54). However, when sites with basin sizes less than 50 km2 were examined (because 330 

site elevation relates more strongly to mean basin elevation in smaller basins), elevation accounted 331 

for a large increase in the explainable variance of PC2 loadings beyond that attributable to annual 332 

runoff (r2 = 0.69). Although orographic enhancement of precipitation is evident in the study area, 333 

there is enough difference in circulation patterns across the north-south extent of the area that 334 

elevation and annual runoff were only weakly correlated in the small basins (r = -0.2), so the 335 

elevation effect was largely independent of annual precipitation. As a result, both factors appeared 336 

to contribute to the PC2 loadings such that either wetter or colder locations had more negative 337 

loadings and later rises in water temperatures. 338 

 339 

5 Discussion 340 

5.1 Thermal regimes in mountain settings 341 

Thermal regimes in the mountain river networks we studied were simple and responded relatively 342 

coherently to climatic variability across a geomorphically consistent area with few reservoirs. 343 

Strong seasonal patterns in water temperatures characteristic of temperate latitudes were apparent in 344 

response to the primary signal set by the annual air temperature cycle and accompanying changes in 345 

solar radiation. Not surprisingly given the pronounced elevational gradients in the study landscape, 346 

the dominant regime aspect represented by PC1 in the metric-based PCA was associated with 347 

magnitude. Less expected was that many of the variability metrics also loaded heavily on the first 348 

PC because variation has been treated as a distinct element of thermal regimes (e.g., Steel et al., 349 

2012; Kovach et al., 2018). The concurrence of magnitude and variability metrics probably also 350 

relates to elevation and changes in the importance of groundwater buffering, which both cools 351 

streams and dampens diurnal and seasonal variations (Cassie and Luce, 2017). For example, the 352 

coldest streams at the highest elevations are usually strongly buffered by groundwater inputs 353 

derived from large annual snowpacks in mountain environments and often show limited thermal 354 

variability (Luce et al., 2014a; Isaak et al., 2016). Downstream from the headwaters, the 355 

proportional inputs of groundwater decrease and streams are more coupled to climatic variability 356 
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even as their average temperatures increase due to solar gains over longer flow distances (Caissie 368 

2006). In contrast to the metrics associated with PC1, metrics that described the winter period and 369 

the extent of the growing season largely defined PC2. This “winter” PC is probably common to 370 

stream thermal regimes in mountain landscapes where subzero air temperatures are frequent and 371 

result in prolonged periods with water temperatures near 0 °C. The orthogonal nature of PC1 and 372 

PC2 suggests that streams with otherwise similar magnitude and variance structures will sometimes 373 

differ substantially with regards to their winter and growing seasons—a distinction that could have 374 

important implications for biological communities or stream physicochemical processes. 375 

 376 

Our results also suggest that important local nuances in water temperature dynamics like the 377 

differences in timing of spring warming and peak temperatures may emerge from the interactions 378 

among annual climate cycles, basin geomorphology, and hydrology. Because precipitation, air 379 

temperatures, snowpack, runoff volume, and runoff timing are all evolving in response to climate 380 

change in mountain environments across the study region (Mote et al., 2005; Luce et al., 2013) and 381 

globally (Stewart, 2009), better understanding of these connections is needed. In particular, more 382 

insight to the relationship of water temperatures with annual unit-area runoff and whether the 383 

underlying mechanisms relate to changes in snowpack accumulation (Luce et al., 2014b; Lute and 384 

Luce, 2017), snowmelt timing and rate (Musselman et al., 2017), the volume of water stored in 385 

groundwater (e.g. Tague et al., 2007), or the outcomes of extreme low flows (e.g. Kormos et al., 386 

2016; Luce and Holden, 2009) could lead to better predictions about water temperatures and the 387 

evolution of thermal regimes in response to expected changes in air temperatures and precipitation. 388 

 389 

5.2 Implications for modeling and monitoring 390 

Water temperature models are often developed for use in ecological assessments and to understand 391 

how habitat degradation or restoration efforts may affect thermal regimes (Benyahya et al., 2007; 392 

Gallice et al., 2015; Dugdale et al., 2017). Our results, like several previous studies that have 393 

compared multiple temperature metrics (Isaak and Hubert, 2001; Rivers-Moore et al., 2013; Steele 394 

et al., 2016), confirm that numerous metrics are strongly correlated and provide redundant 395 

information. The specific choice of a metric, therefore, may not be critical as long as it represents an 396 

important aspect of a thermal regime and is suited to the goals of a study. Metrics associated with 397 

temperature magnitude and variability, which have been the focus of most modeling efforts, are 398 

good choices because they represent significant portions of the information about thermal regimes 399 
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and have been shown on many occasions to be important determinants of ecological attributes such 536 

as species distributions and abundance or physical processes in streams and rivers (Isaak et al., 537 

2017a; Webb et al., 2008). Our preferred metrics in previous research have been mean August or 538 

mean summer temperatures because the data records for their calculation are typically available at 539 

the largest number of sites in mountain environments, which maximizes sample sizes and 540 

minimizes the distances over which interpolations are made when developing and applying 541 

network-scale temperature models (e.g., Detenbeck et al., 2016; Isaak et al. 2017b). Metrics based 542 

on longer-term means rather than short-term daily or weekly maxima are also more stable and easier 543 

to predict (Isaak et al. 2010; Turschwell et al., 2016), although a focus on the latter metrics is often 544 

mandated within regulatory environments and may negate these considerations (Todd et al., 2008; 545 

McCullough 2010). Comparatively little effort has gone towards modeling temperature metrics 546 

associated with growing season length or the dates of spring and winter season onset, despite the 547 

significant information these metrics provide about thermal regimes and their relevance to the 548 

phenology and life histories of organisms that constitute aquatic communities (Huryn and Wallace, 549 

2000; Neuheimer and Taggart, 2007). These aspects of thermal regimes, as well as magnitude and 550 

variability characteristics, are also likely to be evolving in response to climate change, so new 551 

models are needed to provide forecasting abilities about changes later this century. Rather than 552 

focusing on individual metrics, researchers could also instead use PCA to efficiently summarize 553 

multiple temperature metrics and then model the eigenvector loadings that define one or more of the 554 

principal components. This approach would maximize the amount of thermal information 555 

represented by a response metric but would yield results that were more ambiguous to interpret. 556 

 557 

The growth of new stream and river temperature monitoring and data collection activities has been 558 

remarkable in recent years. Although optimization of those efforts ultimately depends on local 559 

considerations, some general guidelines emerge from this work that may be applicable to other 560 

areas. For example, the coherent behavior we observed among temperatures at many sites suggests 561 

that a limited number of monitoring stations will often be sufficient to represent the temporal 562 

dynamics of thermal regimes. Those stations would need to be spread geographically and along 563 

major environmental gradients and replicated to mitigate against sensor losses, but 20–30 stations 564 

might prove sufficient at scales comparable to our study area. Given low sensor costs and the 565 

availability of standardized data collection protocols (Isaak et al., 2013; Stamp et al., 2014), 566 

monitoring arrays could also be crowd-sourced effectively if site locations were coordinated and 567 
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chosen strategically using geospatial analyses to describe and stratify networks for sample 579 

allocation (Jackson et al., 2016). Monitoring networks might also be supplemented by incorporating 580 

data from sites established for other purposes such as documenting thermal responses to habitat 581 

restoration efforts (Nichols and Ketcheson, 2013) or disturbances associated with land management, 582 

wildfires, or livestock grazing (Mahlum et al., 2011; Nusslé et al., 2015). In fact, those factors 583 

motivated collection of many of the datasets compiled for this analysis, although supplementation 584 

with additional sites was needed to ensure adequate coverage within the study area.  585 

 586 

If one of the goals of temperature data collection efforts is to develop accurate prediction maps that 587 

show spatial variation in one or more thermal metrics (e.g., Isaak et al., 2017b; Steel et al., 2016), 588 

monitoring sites may need to be established more densely than the temporal considerations 589 

discussed above otherwise suggest. Spatial autocorrelation in temperature metric values is minimal 590 

in mountain river networks beyond distances of 10–100 km (Isaak et al., 2010; Zimmerman and Ver 591 

Hoef 2017), so this level of sensor spacing would be required to generate the most accurate maps. 592 

Given the extent of many river networks, that could translate into a large number of sites but most 593 

of these could be monitored for short periods while temporal dynamics were represented by a subset 594 

of long-term sites because temporal covariance among sites would be strong. Costs associated with 595 

numerous sensor deployments could be prohibitive, so aggregation of existing data sets from 596 

multiple natural resource agencies into a centralized database often becomes an attractive option. 597 

Moreover, if those central databases are made publically accessible, professionals from the 598 

contributing agencies may begin to coordinate data collection activities more consistently and 599 

effectively across larger areas (e.g., Isaak et al. 2018b).  600 

 601 

As new data collection and database development efforts proceed, it is commonly the case that 602 

temperature records have inconsistent period lengths or missing values. Usually it is desirable to 603 

have complete records for analysis, so missing values are sometime imputed based on the 604 

correlations between two monitoring site records that strongly covary (e.g., Rivers-Moore et al., 605 

2013). However, the process can be tedious if required at more than a few sites, so an efficient 606 

improvement is offered by the imputation technique described by Josse and Husson (2012) that is 607 

easily used in the MissMDA software package (Josse and Husson, 2016) for the R statistical 608 

program (R Core Team, 2014). This technique examines and uses correlations among multiple site 609 

records simultaneously to estimate missing values by first applying standard PCA to the incomplete 610 
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data set where missing values are replaced with the respective record mean. Data are then 626 

reconstructed from the PCs, and the initial analysis step is repeated but with missing values replaced 627 

using estimates from the reconstructed data. The process is repeated until convergence, and the 628 

missing values in the original data records are ultimately replaced with estimates from the last PCA 629 

reconstruction (Josse and Husson, 2012). Care should be taken against overreliance on the 630 

technique to impute particularly sparse records but the MissMDA package provides a useful tool for 631 

addressing gaps when working with large temperature datasets or time-series of other measurements 632 

common to hydrology such as gage discharge records (e.g., Isaak et al., 2018a). 633 

 634 

5.3 Conclusions  635 

Our analysis of thermal regimes follows previous work that has proven fundamental to advancing 636 

the understanding of hydrologic regimes (Poff et al., 1997; Olden and Poff, 2003) but also adds 637 

novel applications of PCA variants from the field of climatology that hold utility for stream 638 

temperature research and monitoring design. Insights from those analyses indicate that thermal 639 

conditions in the mountain river networks studied here were strongly coherent through time, 640 

exhibited two distinct spatial phases, could be adequately described by a few principal components 641 

or allied metrics, and reflected landscape geomorphology and hydroclimatic conditions. A logical 642 

next step involves application of these PCA techniques to larger stream and river temperature 643 

datasets at regional, continental, or intercontinental scales to encompass greater heterogeneity and 644 

discern the geographic domains over which distinct thermal regimes are operable. Across 645 

sufficiently diverse landscapes, we might expect to find classes of thermal regimes that, at a 646 

minimum, mimicked previously described classes of hydrologic regimes (e.g., rainfall, snowmelt, 647 

spring-groundwater, and regulated) but possible divergences from, or additions to, those categories 648 

would be useful to ascertain. In a national-scale assessment for the United States, Maheu et al. 649 

(2015) classified stream thermal regimes into six categories but the 135 temperature stations that 650 

supported the analysis were limited in comparison to a drainage network comprised of millions of 651 

kilometers. Subsequent iterations on that effort could document additional, undescribed thermal 652 

classes and might also prove beneficial by developing detailed maps of classification schemes to aid 653 

in assessments of ecological conditions or anthropogenic effects on stream thermal regimes. As 654 

research on the topic of thermal regimes matures, syntheses with flow regime concepts and 655 

databases could also be sought to more fully describe the hydroclimatic conditions of flowing 656 

waters. 657 
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Data availability. All water temperature data used in this study are available at the NorWeST website 660 

(https://www.fs.fed.us/rm/boise/AWAE/projects/NorWeST.html) whereas the full data set that includes air temperature 661 

and discharge data are available at the lead author’s ResearchGate profile entry for this study 662 

(https://www.researchgate.net/profile/Daniel_Isaak). 663 
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Table 1. Descriptive statistics for spatial attributes of the study network and 226 monitoring sites 917 

with annual temperature data in the northwestern United States. 918 

Network reaches Mean Median SD Minimum Maximum 

Elevation (m) 1,493  1,533  536  221  3,105  

Drainage area (km2) 915  17.7  4,359  0.005  34,865  

Mean annual flow (m3/s) 9.73  0.229  43.2  0.0253  379  

Reach slope (m/m) 0.0584  0.0519  0.0429   0 0.150  

      

Monitoring sites      

Elevation (m) 1,392 1,407 464 280 2,369 

Drainage area (km2) 687 47.3 3,011 2.18 34,865 

Mean annual flow (m3/s) 7.37 0.692 26.4 0.0253 281 

Reach slope (m/m)  0.0389 0.0273 0.0403 0 0.150 
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Table 2. Temperature metrics used to describe thermal regimes of mountain rivers and streams.  920 

Category Thermal metric Definition 

Magnitude M1. Mean annual temperature Average of mean daily temperatures during a year 

 M2. Mean winter temperature Average of mean daily temperatures during December, January, and February 

 M3. Mean spring temperature Average of mean daily temperatures during March, April, and May 

 M4. Mean summer temperature Average of mean daily temperatures during June, July, and August 

 M5. Mean August temperature Average of mean daily temperatures during August 

 M6. Mean fall temperature Average of mean daily temperatures during September, October, and 

November 

 M7. Minimum daily temperature Lowest mean daily temperature during a year 

 M8. Minimum weekly average 

temperature 

Lowest seven-day running average of mean daily temperature during a year 

 M9. Maximum daily temperature Highest mean daily temperature during a year 

 M10. Maximum weekly average 

temperature 

Highest seven-day running average of mean daily temperature during a year 

 M11. Annual degree days Cumulative total of degree days during a year (1°C for 24 hours = 1 degree 

day) 

Variability V1. Annual standard deviation Standard deviation of mean daily temperature during a year 

 V2. Winter standard deviation Standard deviation of mean daily temperature during winter months 

 V3. Spring standard deviation Standard deviation of mean daily temperature during spring months 

 V4. Summer standard deviation Standard deviation of mean daily temperature during summer months 

 V5. Fall standard deviation Standard deviation of mean daily temperature during fall months 

 V6. Range in extreme daily 

temperatures 

Difference between minimum and maximum mean daily temperatures during a 

year (M9 minus M7) 

 V7. Range in extreme weekly 

temperatures 

Difference between minimum and maximum weekly average temperatures 

during a year (M10 minus M8) 

Frequency F1. Frequency of hot days Number of days with mean daily temperatures >20 °C 

 F2. Frequency of cold days Number of days with mean daily temperatures <2 °C 

Timing T1. Date of 5% of degree days Number of days from December 1st until 5% of degree days are accumulated 

 T2. Date of 25% of degree days Number of days from December 1st until 25% of degree days are accumulated 

 T3. Date of 50% of degree days Number of days from December 1st until 50% of degree days are accumulated 

 T4. Date of 75% of degree days Number of days from December 1st until 75% of degree days are accumulated 

 T5. Date of 95% of degree days Number of days from December 1st until 95% of degree days are accumulated 

Duration D1. Growing season length Number of days between the 95% and 5% of degree days (T5 minus T1) 

 D2. Duration of hot days Longest number of consecutive days with mean daily temperatures >20 °C 

 D3. Duration of cold days Longest number of consecutive days with mean daily temperatures <2 °C 
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Table 3. Descriptive statistics for temperature metrics used to describe thermal regimes at 226 922 

monitoring sites in mountain river networks. Statistics were calculated from the imputed time-series 923 

and mean daily values for the period 2011–2015.  924 

 Mean (°C) Median (°C) SD (°C) Minimum (°C) Maximum (°C) 

M1. Mean annual temperature 5.36 5.10 1.44 3.10 10.34 

M2. Mean winter temperature 0.75 0.63 0.60 -0.10 4.03 

M3. Mean spring temperature 3.67 3.47 1.61 1.14 9.38 

M4. Mean summer temperature 11.2 10.9 2.68 6.55 19.1 

M5. Mean August temperature 12.5 12.1 2.78 7.78 22.5 

M6. Mean fall temperature 5.71 5.50 1.53 3.04 11.5 

M7. Minimum daily temperature 0.21 0.14 0.35 -0.45 2.18 

M8. Minimum weekly average temperature 0.31 0.23 0.40 -0.42 2.69 

M9. Maximum daily temperature 13.5 13.0 3.00 8.26 23.5 

M10. Maximum weekly average temperature 13.2 12.7 2.99 7.96 23.2 

M11. Annual degree days 1956 1863 527 1132 3775 

V1. Annual standard deviation 4.43 4.27 1.05 2.51 7.40 

V2. Winter standard deviation 0.30 0.29 0.16 0.00 0.87 

V3. Spring standard deviation 1.62 1.57 0.72 0.33 5.36 

V4. Summer standard deviation 1.99 1.88 0.61 0.61 4.45 

V5. Fall standard deviation 3.43 3.34 0.73 2.13 6.05 

V6. Range in extreme daily temperatures 13.3 12.8 3.06 7.50 23.3 

V7. Range in extreme weekly temperatures 12.9 12.3 3.06 6.99 22.9 

F1. Frequency of hot days 0.81 0 5.82 0 61 

F2. Frequency of cold days 131 132 35.6 0 212 

T1. Date of 5% of degree days 109 113 25.5 44 168 

T2. Date of 25% of degree days 193 194 10.9 148 217 

T3. Date of 50% of degree days 237 238 5.01 215 251 

T4. Date of 75% of degree days 276 276 2.99 264 288 

T5. Date of 95% of degree days 323 323 4.78 309 340 

D1. Growing season length 214 210 29.7 141 296 

D2. Duration of hot days 0.691 0 5.61 0 61 

D3. Duration of cold days 124 124 39.0 0 207 
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Table 4. Loadings of 28 temperature metrics on the first four principal components in a PCA of 926 

annual temperature records from mountain river networks in the northwestern United States. 927 
Temperature metric PC1 PC2 PC3 PC4 

M1. Mean annual temperature 0.99 -0.07 -0.05 -0.03 

M2. Mean winter temperature 0.26 -0.92 0.14 0.00 

M3. Mean spring temperature 0.91 -0.19 -0.25 0.04 

M4. Mean summer temperature 0.97 0.21 -0.06 -0.05 

M5. Mean August temperature 0.95 0.22 0.16 -0.10 

M6. Mean fall temperature 0.96 -0.18 0.14 -0.08 

M7. Minimum daily temperature -0.02 -0.86 0.08 -0.02 

M8. Minimum weekly average temperature -0.03 -0.90 0.08 0.00 

M9. Maximum daily temperature 0.95 0.26 0.09 -0.08 

M10. Maximum weekly average temperature 0.95 0.25 0.09 -0.07 

M11. Annual degree days 0.99 -0.07 -0.05 -0.03 

V1. Annual standard deviation 0.90 0.41 0.01 -0.07 

V2. Winter standard deviation 0.69 -0.54 0.16 0.00 

V3. Spring standard deviation 0.71 0.30 -0.55 0.04 

V4. Summer standard deviation 0.42 0.32 0.78 -0.14 

V5. Fall standard deviation 0.87 0.39 0.19 -0.12 

V6. Range in extreme daily temperatures 0.93 0.33 0.08 -0.07 

V7. Range in extreme weekly temperatures 0.93 0.33 0.08 -0.07 

F1. Frequency of hot days 0.47 -0.01 0.30 0.82 

F2. Frequency of cold days -0.70 0.61 0.09 0.11 

T1. Date of 5% of degree days 0.02 0.96 -0.10 0.01 

T2. Date of 25% of degree days -0.43 0.74 0.46 -0.08 

T3. Date of 50% of degree days -0.45 0.37 0.79 -0.16 

T4. Date of 75% of degree days -0.19 -0.51 0.72 -0.19 

T5. Date of 95% of degree days 0.30 -0.88 0.12 -0.09 

D1. Growing season length 0.03 -0.97 0.11 -0.03 

D2. Duration of hot days 0.44 -0.03 0.32 0.84 

D3. Duration of cold days -0.64 0.66 0.07 0.11 

Variance explained (%): 49.0% 29.0% 9.8% 5.6% 

Cumulative variance (%): 49.0% 78.0% 87.8% 93.4% 

Eigenvalue: 13.73 8.12 2.74 1.56 
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Table 5. Correlations among stream temperature principal components and spatial attributes of 226 929 

monitoring sites with annual data from river networks in the northwestern United States. 930 

  

Elevation 

Mean 

flow 

Reach 

slope 

 

PC1 

 

PC2 

 

PC3 

  

PC4 

Elevation 1        

Mean flow -0.34 1       

Reach slope -0.10 -0.23 1      

PC1 -0.59 0.58 -0.34 1     

PC2 0.27 -0.06 -0.49 0.00 1    

PC3 -0.23 0.35 0.13 0.00 0.00 1   

PC4 0.12 0.54 -0.02 0.00 0.00 0.00  1 

 931 
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Fig. 1. Locations of 226 monitoring sites overlaid on an August stream temperature scenario for the 933 

29,600 km network in the study area. Stars denote where air temperature and stream discharge data 934 

were obtained from a low-elevation site (294 m, northern station) and a high-elevation site (1850 m, 935 

southern station).  936 
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Fig. 2. Linear regression trends between elevation and mean monthly temperatures at 226 river and 938 

stream sites during 2013 (data values are not shown for clarity). Values next to the trend lines are 939 

regression slopes and r2 values from the regressions. 940 
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Fig. 3. Annual cycle of mean daily water temperatures (a), air temperatures (b), and discharge (c) at 942 

a high-elevation site and a low-elevation site during two contrasting climate years. Discharge values 943 

at the high elevation site are multiplied by ten for better visibility.  944 
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Fig. 4. Ordination plot that shows principal component scores of the first two axes derived from 946 

water temperature data measured at 226 sites and summarized with 28 thermal metrics (a). Panels b 947 

and c show principal component scores mapped to network locations. 948 
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Fig. 5. T-mode PCA results showing times when dominant spatial phases occurred in water 950 

temperatures at 226 sites based on principal component eigenvector loadings during an average 951 

year. 952 
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Figure 6. Thermal patterns during two periods with distinct spatial phases based on T-mode PCA 955 

results (a). Day 50 occurs in mid-January and represents the homogenous winter period (b) whereas 956 

day 250 occurs in late July and represents the heterogeneous period (c).  957 
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Fig. 7. S-mode PCA results showing principal component scores that describe temporal patterns in 959 

mean daily water temperatures for 226 stream sites during five years (a). Average daily air 960 

temperatures and discharge values from two monitoring stations are aligned with the principal 961 

component scores for comparative purposes. A plot of PC1 versus PC2 reveals that variation along 962 

the two axes differs by monthly and seasonal periods (b).  963 
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Fig. 8. Plot of S-mode eigenvector loadings from 226 stream sites on PC1 and PC2. Note that the 968 

range of variation in the PC1 loadings is small relative to the loadings along PC2, which indicates 969 

that most of the differences among sites were associated with the second principal component.  970 

 971 
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Fig. 9. Annual water temperature timing patterns reconstructed from S-mode PCs using the mean 974 

eigenvector loading value for PC1 and +/- 0.16 for PC2 to demonstrate the effects of strong 975 

negative loadings and positive loadings on PC2.   976 

 977 

 978 
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Fig. 10. Relationship between the S-mode eigenvector loadings from PC2 and the annual unit-area 980 

runoff in basins upstream of 226 water temperature sites.   981 
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