Ref.: " Evaluation of Lacustrine Groundwater Discharge, Hydrologic Partitioning, and Nutrient Budgets in a Proglacial Lake in Qinghai-Tibet Plateau: Using 222Rn and Stable Isotopes" (Dr. Xin Luo)

Editor

I received comments from two reviewers, both suggested "minor revision". The reviewers are generally positive to the manuscript, but pinpoint some revisions needed to be done before its acceptance. After receiving the comments, I carefully read the manuscript again, and concur with the reviewers. Please reply to the comments/questions in detail and revise your manuscript accordingly.

- > We appreciate the overall positive comments for this study. In the revised MS, we have addressed all the comments raised by the two reviewers in details as shown below.
- We have also checked the MS carefully for typos, missing authors, and their affiliations, terminology, updates of data in tables, and updates of variables in equations.

Reviewer #1

General comments: This paper is focusing on the evaluation of LGD and its related nutrient budgets and hydrologic partitioning in proglacial lake of QTP. The work is great and the paper is overall well organized. Anyway, I have the following comments for the authors to consider.

Reply to General comments:

> We appreciate the overall positive comments for this study.

Specific comments

1. Authors should address more about why it's important to study proglacial lake, especially the ones in QTP, in the introduction part.

Well taken. We have added more description of the proglacial lakes, and lake dynamics in QTP under the influence of climate change and global warming. Some latest lake studies in the QTP were also reviewed (lines 81-104).

2. The primary productivity is calculated based on the dissolved inorganic nutrient budgets. Authors should be careful to do so. Did the authors consider the transformation between dissolved inorganic and particulate inorganic forms? Redfield ratio usually works in oceanic aquatic system. In lakes, the ratio is fairly variable.

- Good question, indeed, we noticed that the DIN and DIP relation cannot be used to quantify the primary production in the fresh lacustrine systems due to the high variability of Redfield ratios and the possibility of transformation between DIN/DIP. Based on the measurement results, DIN: DIP ratios in the lake water and groundwater are all much large than 16:1, indicating the phosphate limited conditions.
- As indicated by previous studies of glacial melting water bodies in the QTP, Arctic and Antarctic, the dominant form of dissolve phosphate is DIP, while the DOP contributes less than 10 % of the dissolved phosphate (Hawkings et al. 2016, Hodson 2007, Hodson et al. 2005, Liu et al. 2011, Mitamura et al. 2003). In the freshwater system, particular phosphate is highly bounded. Therefore, it is reasonable to assume that primary production in the lake

water is limited by DIP, and to assign glacial melting water as phosphate limited condition in this study.

The primary producers in the lake system consume the nutrient production under variant N: P ratios as indicated by previous studies (Downing and McCauley 1992). To avoid the ambiguous statements and conclusions, we discussed this term as the biological uptake/transformation of nutrients, and removed the ambiguous statements on primary production throughout the MS (lines 756-800).

3. Radon in air is important term to do balance calculation. Was the Rn in air measured? I did not see the information or data about this term in the manuscript or the SI.

> Yes, we placed RAD7 for air radon-222 measurement at the lake shore for about 4 hours, and the mean activity of the lake area is 1.51 ± 0.97 Bq m⁻³. We added the ambient air radon-222 activities in Table 1 and some descriptions in the methodology part (lines 268-271).

4. Line 53-60, these two sentences are both started with the locations. Please revise them.

▶ Well taken, these sentences were revised as suggested (lines 76-77).

5. Line 208, how often were the Ra-226 samples collected? Or just one sample, and you assume Ra-226 is constant? 6. Line 279, how long is $iA_cD^{*}t$? 7. Line 327, figure 5 is not attached.

- Due to the bad weather condition and large sampling volume, we could only obtain one ²²⁶Ra sample. However, radium in the lacustrine system is significantly lower compared to ²²²Rn, therefore, the decay input of ²²²Rn from ²²⁶Ra is minimal and negligible. Thus, the spatial heterogeneity of radon-222 will mount minimal effects on the final ²²²Rn mass balance models.
- The time step is set to be 5 min, in consistent with the ²²²Rn record interval. More statements were added in the revised MS (lines 365-366).
- Figure 5 was attached in the revised MS.

Technical corrections

1. Line 144, 0.7 or 7?

 \triangleright Well taken, this is 0.7 m s⁻¹, and change was made in the revision MS (line 205).

2. Line 195, the unit should be L min-1.

Well taken, unit was change to L min-1 (line 256).

3. Line 230, change "recently" to "recent".

Well taken, change was made (line 302).

4. Line 280, should be Equation (2).

- Well taken, change was made (line 367).
- 5. Line 383, two 18O?
- > Typo and change was made (line 477).

Reviewer #2

General comments: This is an interesting and generally well-written paper that makes a good contribution to understanding the groundwater surface water interactions and estimating the lacustrine groundwater discharge in mountainous proglacial lakes in the QTP. The abstract is correctly informative with some remarks (see below). The introduction and the site description take into account previous papers in exhaustive way. The methodological approach for data analysis is modern without particular novelties. High-resolution 222Rn activities, water level, both in water temperature and, wind speed together with stable isotopic data are quite impressive. Many studies have done to explain the high single digits in the whole paper.

We appreciated the overall positive comments.

4. Discussion

Do the adjoining lacustrine aquifers receive ('recharge') to sustain the inferred rate of groundwater discharge? And is the inferred width of the zone of lacustrine groundwater discharge compatible with the physics of the groundwater flow system and hydrological cycle?

- The regional precipitation recorded by the Jiuzhi station is to be around 90 mm d⁻¹ during Aug, 2015. When deploying an empirical infiltration coefficient of 0.2 for the lake basin, the aquifer recharge rates are yielded up to 18 mm d⁻¹, which is sufficient to maintain the water balance within the lacustrine aquifers. Moreover, as indicated by previous studies in an interior lake of the QTP, Nam Co, a lake located at the area with relatively high evaporation and lower precipitation, its LGD is estimated to be 5-8 mm d⁻¹ and is comparable to the results of this study. This also indirectly implicate that the LGD in this study is tenable and can be balanced by the recharge of the lacustrine aquifers, as Ximen Co basin is influenced by rather larger precipitation and lower evaporation compared to Nam Co.
- The inferred width of the zones of lacustrine groundwater discharge is also regarded as the seepage face. Previous studies have indicated that the groundwater seepage areas are mostly located along the transect within 10-20 m across the lakeshore (Luo et al. 2016, Luo et al. 2017, Rosenberry et al. 2015, Schafran and Driscoll 1993). While the deep groundwater system is rather constrained by the Precambrian bedrocks (Einarsdottir et al. 2017), and the LGD occurrence is considered to be constrained within the seepage faces along the lakeshores, and within the bathymetry of epilimnion.

Did you consider the lag time between recharge and chemical changes in the lacustrine aquifers?

The lag time between the recharge and the chemical changes in the lacustrine aquifers is not considered in this study for the following reasons: (1) For ²²²Rn, the equilibrium state is assigned as ²²²Rn will reach equilibrium states within short distance (sever centimeters) and elapsed time after the infiltration (Ku et al. 1992, Porcelli 2008). (2) Stable isotopes generally behave rather conservatively after entering the aquifer and there is negligible fractionation during the transport in the aquifer between the recharge and discharge. (3) The groundwater sampling locations were located at the immediate zones of the lake shore, and therefore, the dynamics the flow length and recharge lag time is minimal and negligible for the reactive

solutes of DIN and DIP, similar as suggested in many previous studies (Dimova and Burnett 2011, Dimova et al. 2013, Kluge et al. 2012, Luo et al. 2016).

Please consider the relationship between Fig 5 and Fig 6 to give a relevant illustration on chemical components and isotopic data.

We are sorry that we forgot to attach Figure 5 in the previous version. This figure was used to give a relevant illustration on chemical components and isotopic data.

Fig. 6 The conceptual model of ²²²Rn transient model looks well. But the associated illustration in the text is not convincing on the flow pathways for the 222Rn sources. Clearly some components of the conceptual understanding are not supported by the data. The manuscript would also benefit greatly from a more thorough literature review, which in-turn will help establish the objectives of the work. My main concern with the paper is with the 222Rn analysis that I don't think is well enough explained to be convincing. Doing a more thorough job on this will add material.

If we understood properly, this comment has two points: reliability of some components and literature review. The reviewer did not specify which components that were no supported by the data. We guess they could be lake evaporation and riverine inflow. To take account this comment, we have reviewed more relevant literatures and added more discussion on lake evaporation and riverine inflow (lines 684 to 713).

Conclusions

This section just summarizes the main findings of the project. In the introduction you make some general statements about the need to understand processes in these impacted lacustrine aquifers in general. In this section explain in more detail how your project helps us to understand processes in these environments more broadly; the paper will have more impact if researchers from elsewhere in the world can see relevance to their studies and a paper in a major international journal such as HESS needs to have broad appeal

To stress the research significance of this study, we have added more discussions to explain how the results of this study facilitate the understanding the environments more broadly (lines 857-863). We hope the updated MS can meet the board research interest of HESS.

References

Dimova, N.T. and Burnett, W.C. (2011) Evaluation of groundwater discharge into small lakes based on the temporal distribution of radon-222. Limnol. Oceanogr 56(2), 486-494.

Dimova, N.T., Burnett, W.C., Chanton, J.P. and Corbett, J.E. (2013) Application of radon-222 to investigate groundwater discharge into small shallow lakes. Journal of Hydrology.

Downing, J.A. and McCauley, E. (1992) The nitrogen: phosphorus relationship in lakes. Limnology and Oceanography 37(5), 936-945.

Einarsdottir, K., Wallin, M.B. and Sobek, S. (2017) High terrestrial carbon load via groundwater to a boreal lake dominated by surface water inflow. Journal of Geophysical Research: Biogeosciences, n/a-n/a.

Hawkings, J., Wadham, J., Tranter, M., Telling, J., Bagshaw, E., Beaton, A., Simmons, S.L., Chandler, D., Tedstone, A. and Nienow, P. (2016) The Greenland Ice Sheet as a hot spot of phosphorus weathering

and export in the Arctic. Global Biogeochemical Cycles.

Hodson, A. (2007) Phosphorus in glacial meltwaters. Glacier Science and Environmental Change, 81-82.

Hodson, A., Mumford, P., Kohler, J. and Wynn, P.M. (2005) The High Arctic glacial ecosystem: new insights from nutrient budgets. Biogeochemistry 72(2), 233-256.

Kluge, T., von Rohden, C., Sonntag, P., Lorenz, S., Wieser, M., Aeschbach-Hertig, W. and Ilmberger, J. (2012) Localising and quantifying groundwater inflow into lakes using high-precision< sup> 222</sup> Rn profiles. Journal of Hydrology.

Ku, T.-L., Luo, S., Leslie, B. and Hammond, D. (1992) Uranium-series disequilibrium: applications to earth, marine, and environmental sciences. 2. ed.

Liu, Y., Yao, T., Jiao, N., Tian, L., Hu, A., Yu, W. and Li, S. (2011) Microbial diversity in the snow, a moraine lake and a stream in Himalayan glacier. Extremophiles 15(3), 411-421.

Luo, X., Jiao, J.J., Wang, X.-s. and Liu, K. (2016) Temporal 222 Rn distributions to reveal groundwater discharge into desert lakes: implication of water balance in the Badain Jaran Desert, China. Journal of Hydrology 534, 87-103.

Luo, X., Jiao, J.J., Wang, X.-s., Liu, K., Lian, E. and Yang, S. (2017) Groundwater discharge and hydrologic partition of the lakes in desert environment: Insights from stable 18 O/2 H and radium isotopes. Journal of Hydrology 546, 189-203.

Mitamura, O., Seike, Y., Kondo, K., Goto, N., Anbutsu, K., Akatsuka, T., Kihira, M., Tsering, T.Q. and Nishimura, M. (2003) First investigation of ultraoligotrophic alpine Lake Puma Yumco in the pre-Himalayas, China. Limnology 4(3), 167-175.

Porcelli, D. (2008) Investigating groundwater processes using U-and Th-series nuclides. Radioactivity in the Environment 13, 105-153.

Rosenberry, D.O., Lewandowski, J., Meinikmann, K. and Nützmann, G. (2015) Groundwater - the disregarded component in lake water and nutrient budgets. Part 1: effects of groundwater on hydrology. Hydrological Processes 29(13), 2895-2921.

Schafran, G.C. and Driscoll, C.T. (1993) Flow path-composition relationships for groundwater entering an acidic lake. Water Resources Research 29(1), 145-154.

Evaluation of Lacustrine Groundwater Discharge, Hydrologic 2 Partitioning, and Nutrient Budgets in a Proglacial Lake in 3 Qinghai-Tibet Plateau: Using ²²²Rn and Stable Isotopes 4

Xin LUO ^{1, 2, 3} , Xingxing Kuang ⁴ , Jiu Jimmy Jiao ^{1, 2, 3*} , Sihai, Liang ⁵ , Rong Mao ^{1, 2} ,		Ι
⁴ , Xiaolang Zhang ^{1, <u>2, 4</u>, and Hailong <u>Li⁴</u>}		I
¹ Department of Earth Sciences, The University of Hong Kong, P. R. China		I
² The University of Hong Kong, Shenzhen Research Institute (SRI), Shenzhen, P. R.	, i	_
China		
³ The University of Hong Kong-Zhejiang Institute of Research and Innovation	1	F
(HKU-ZIRI), Hangzhou, PR China		
⁴ School of Environmental Science and Engineering, Southern University of Science		
and Technology, 1088 Xueyuan Rd., Shenzhen, China,		1
⁵ <u>School</u> of Water Resources & Environment, China University of Geosciences, 29		a
Xueyuan Road, Beijing, China		2

Deleted: Confidential

Deleted: X
Deleted: ³
Deleted: Liang ⁴
Deleted: ³
Deleted: ³
Deleted: Li ³

Formatted: Superscript

Deleted: ³

Deleted: School of Environmental Science and Engineering, South University of Science and Technology of China (SUSTC), Shenzhen, China.

Deleted: 4School

19 20

5

6

7

8

9

10

11

12

13

14

15

16

17

18

- 21 Corresponding author: Jiu Jimmy Jiao (jjiao@hku.hk)
- Department of Earth Sciences, The University of Hong Kong 22
- 23 Room 302, James Lee Science Building, Pokfulam Road, Hong Kong
- 24 Tel (852) 2857 8246; Fax (852) 2517 6912
- 25

40	Proglacial lakes are good natural laboratories to investigate groundwater and
41	glacier dynamics under current climate condition and to explore biogeochemical
42	cycling under pristine lake status. This study conducted a series of investigations of
43	²²² Rn, stable isotopes, nutrients and other hydrogeochemical parameters in Ximen Co
44	Lake, a remote proglacial lake in the east of Qinghai-Tibet Plateau (QTP). A radon
45	mass balance model was used to quantify the lacustrine groundwater discharge (LGD)
46	of the lake, leading to an LGD estimate of 10.3 \pm 8.2 mm d ⁻¹ . Based on the three end
47	member models of stable ¹⁸ O and Cl ⁻ , the hydrologic partitioning of the lake is
48	obtained, which shows that groundwater discharge only accounts for 7.0 % of the
49	total water input. The groundwater derived DIN and DIP loadings constitute 42.9 $\%$
50	and 5.5 % of the total nutrient loading to the lakes, indicating the significance of LGD
51	in delivering disproportionate DIN into the lake. This study presents the first attempt,
52	to evaluate the LGD and hydrologic partitioning in the glacial lake by coupling
53	radioactive and stable isotopic approaches and the findings advance the understanding
54	of nutrient budgets in the proglacial lakes of QTP. The study is also instructional in
55	revealing the hydrogeochemical processes in proglacial lakes elsewhere.
56	Keywords: Proglacial lake; ²²² Rn; lacustrine groundwater discharge; hydrologic
57	partitioning; nutrient budgets,

Deleted: _

•

Deleted: primary productivity

Deleted: The primary productivity of the lake water is calculated to be 0.41 mmol C $m^2 d^{-1}$. **Deleted:** s

Deleted: and primary productivity

Deleted: ; primary productivity

67 **1. Introduction**

68	High altitude and latitude areas are intensively influenced by the melting of
69	glaciers due to climatic warming. Of particular importance are the proglacial areas,
70	such as proglacial lakes and moraines, because they are particularly affected by
71	climatic change induced glacier retreating and thawing of permafrost (Heckmann et
72	al., 2016;Barry, 2006;Slaymaker, 2011). The proglacial lakes are usually located close
73	to ice front of a glacier, ice cap or ice sheet, with the vicinity to the ice front
74	sometimes defined as the areas with subrecent moraines and formed by the last
75	significant glacier advances at the end of the Little Ice Age (Heckmann et al.,
76	2016;Barry, 2006;Slaymaker, 2011;Harris et al., 2009). These lakes are located in the
77	transition zones from glacial to non-glacial conditions, and can serve as natural
78	laboratories to explore hydrological processes, biogeochemical cycles and
79	geomorphic dynamics under current climatic conditions (Dimova et al.,
80	2015;Heckmann et al., 2015)
81	The Qinghai-Tibet Plateau (QTP), the third pole of the world, serves as the water
82	tower of most of the major rivers in Asian (Qiu, 2008). Unique landscapes such as endorheric
83	lakes, permafrost, glaciers, and headwater fluvial networks are developed due to the intensive
84	interaction between the atmosphere, hydrosphere, biosphere and cryosphere (Lei et al.,
85	2017;Zhang et al., 2017a;Zhang et al., 2017b;Yao et al., 2013;Yao et al., 2012). Distributed

Deleted: 2015

Deleted: 2015
Deleted: Proglacial
Deleted: providing

Deleted: (Qiu 2008)

Deleted: coherent

92	mountainous glaciers and lakes are the most representative landscapes and are highly	
93	sensitive to the climate changes. In the past decade, the lakes in the interior of the QTP show	
94	overall expanding with respect to an overall increase of precipitation, accelerated glacier	Delet
95	melting and permafrost degradation (Zhang et al., 2013;Zhang et al., 2017b;Zhang et al.,	
96	2017a;Heckmann et al., 2016;Yang et al., 2014). Some latest studies have made effects to	
97	depict the hydrologic partitioning of the majority of the lakes in the QTP based on long term	
98	observation of climatological parameters, and remote sensing approaches. However, so far a	Delet
99	quantitative evaluation of the water balance and hydrologic partitioning, especially the	
100	groundwater component of the lakes in the QTP is limited due to the scarcity of observational	
101	data. Therefore, there is a great need to conduct refined and systematical field observation to	Delet
102	provide groundtruth, dataset and tenable models to depict the water balance and hydrologic	Delet
103	partitioning of the lakes, especially proglacial lakes in the OTP (Yang et al., 2014; Zhang et al.,	
104	2017b) <u>.</u>	
105	_Mountainous proglacial lakes, formed by glacial erosion and filled by melting	Delet
106	glaciers, are widely distributed in the Qinghai-Tibet Plateau (QTP), especially along	
107	the substantial glacier retreating areas of Himalaya Mountains (MT.), Qilian MT.,	
108	Tienshan MT., etc. Characterized by higher elevations, small surface areas but	
109	relatively large depths, mountainous proglacial lakes in QTP lack systematic	
110	field-based hydrological studies due to their remote locations and difficulty in	

ted: and deepening

ted: as far as now,

	Deleted: refining and
	Deleted: led
-	Deleted: ed

ted:

conducting field work (Yao et al., 2012;Farinotti et al., 2015;Bolch et al., 2012). 117 118 There has been extensive recognition of the importance of groundwater discharge 119 to various aquatic systems for decades (Dimova and Burnett, 2011; Valiela et al., 120 1978; Johannes, 1980). Very recently, the topic of 'lacustrine groundwater discharge 121 (LGD)', which is comprehensively defined as groundwater exfiltration from lake 122 shore aquifers to lakes (Lewandowski et al., 2015;Rosenberry et al., 2015;Blume et al., 123 2013;Lewandowski et al., 2013), has been introduced. LGD is analogous of in 124 submarine groundwater discharge (SGD) in coastal environments. LGD also plays a 125 vital role in lake hydrologic partitioning, which is defined as the separation of 126 groundwater discharge/exfiltration, riverine inflow, riverine outflow infiltration, 127 surface evaporation and precipitation for the hydrological cycle of the lake (Luo et al., 128 2017;Good et al., 2015). LGD also serves as an importance component in delivering 129 solutes to lakes since groundwater is usually concentrated in nutrients, CH₄, dissolved 130 inorganic/organic carbon (DIC/DOC) and other geochemical components (Paytan et 131 al., 2015;Lecher et al., 2015;Belanger et al., 1985;Dimova et al., 2015). Nutrients and 132 carbon loading from groundwater greatly influences ratios of dissolved inorganic 133 nitrogen (DIN) to dissolved inorganic phosphate (DIP) (referred as N: P ratios 134 thereafter), ecosystem structure and the primary productivity of the lake aquatic

system (Nakayama and Watanabe, 2008;Belanger et al., 1985;Hagerthey and Kerfoot,

135

Formatted: Font: 11 pt

136 1998).

137	The approaches to investigate LGD include, 1) direct seepage meters (Shaw and
138	Prepas, 1990;Lee, 1977), 2) geo-tracers such as radionuclides, stable ² H and ¹⁸ O
139	isotopes (Gat, 1995;Kluge et al., 2007;Kraemer, 2005;Lazar et al., 2008), 3) heat and
140	temperature signatures (Liu et al., 2015;Sebok et al., 2013), 4) numerical modeling
141	(Winter, 1999;Smerdon et al., 2007;Zlotnik et al., 2009;Zlotnik et al., 2010) and <u>5)</u>
142	remote sensing (Lewandowski et al., 2013; Wilson and Rocha, 2016; Anderson et al.,
143	2013). Recently, some researchers started to investigate groundwater dynamics in
144	peri- and proglacial areas, mostly based on the approaches of numerical modeling
145	(Lemieux et al., 2008b;Lemieux et al., 2008c;Andermann et al., 2012;Scheidegger
146	and Bense, 2014;Lemieux et al., 2008a). However, the quantification of groundwater
147	and surface water exchange in proglacial lakes is still challenging due to limited
148	hydrogeological data and extremely seasonal variability of aquifer permeability
149	(Dimova et al., 2015;Callegary et al., 2013;Xin et al., 2013).
150	²²² Rn, a naturally occurring inert gas nuclide highly concentrated in groundwater,
151	can be more applicable in fresh aquatic systems and has been widely used as a tracer
152	to quantify groundwater discharge in fresh water lakes (Luo et al., 2016;Corbett et al.,
153	1997;Dimova et al., 2015;Dimova and Burnett, 2011;Dimova et al., 2013;Kluge et al.,
154	2007;Kluge et al., 2012;Schmidt et al., 2010) and terrestrial rivers and streams

Deleted: studies utilize
Deleted: various methods including
Deleted: (Lee 1977, Shaw and Prepas 1990),
Deleted: (Gat 1995, Kluge et al. 2007, Kraemer 2005, Lazar et al. 2008),
Deleted: ,

162	(Burnett et al., 2010;Cook et al., 2003;Cook et al., 2006;Batlle-Aguilar et al., 2014).
163	Of particular interest are investigations of temporal ²²² Rn distribution in lakes, since it
164	can be used to quantify groundwater discharge and reflect the locally climatological
165	dynamics (Dimova and Burnett, 2011;Luo et al., 2016). Temporal radon variations
166	give high resolution estimates of groundwater discharge to lakes over diel cycles,
167	allowing evaluation of LGD and the associated chemical loadings. However, there has
168	been no study of radon-based groundwater discharge in mountainous proglacial lakes,
169	especially for those lakes in the QTP.
170	This study aims to investigate the groundwater surface water interactions for the
171	proglacial lake of Ximen Co, by estimating the LGD and evaluating the hydrologic
172	partitioning of the lake. LGD is estimated with ²²² Rn mass balance model, and the
173	hydrologic partitioning of the lake is obtained with the three endmember model
174	coupling the mass balance of water, stable isotopes and Cl ⁻ . Moreover, LGD derived
175	nutrients are estimated and the nutrient budgets of the lake are depicted. This study,
176	to our knowledge, makes the first attempt to quantify the LGD, hydrologic partition,
177	and groundwater borne nutrients of the proglacial lake in QTP and elsewhere via the
178	approach integrating multiple tracers. This study provides insights of hydrologic
179	partitioning in a typical mountainous proglacial lake under current climate condition
180	and reveals groundwater borne chemical loadings in this proglacial lake in QTP and

Deleted: Then,

Deleted: Finally, primary productivity of the lake water is calculated based on the nutrient budgets.

elsewhere.

186

187 2. Methodology

188 2.1 Site descriptions

189 The Nianbaoyeze MT., located at the eastern margin of the QTP and being the 190 easternmost part of NW-SW trending Bayan Har Shan, is situated at the main water 191 divide of the upper reaches of Yellow River and Yangtze River (Figure 1). With a peak 192 elevation of 5369 m, the mountain rises about 500-800 m above the surrounding 193 peneplain and displays typical Pleistocene glacial landscapes such as moraines, 194 U-shaped valleys and cirques (Lehmkuhl, 1998;Schlutz and Lehmkuhl, 195 2009;Wischnewski et al., 2014). The present snow line is estimated to be at an 196 elevation of 5100 m (Schlutz and Lehmkuhl, 2009). Controlled by the South Asia and 197 East Asia monsoons, the mountain has an annual precipitation of 975 mm in the 198 southern part and 582 mm in the northwestern part, with 80 % occurring during May 199 and October (Yuan et al., 2014; Zhang and Mischke, 2009). The average temperature 200 gradient is about 0.55 °C per 100 m, and the closest weather station, locating in Jiuzhi 201 town (N: 33.424614°, E: 101.485998) at the lower plains of the mountain, recorded a 202 mean annual temperature of 0.1 °C. Snowfalls occur in nearly 10 months of the entire 203 year and there is no free-frost all year around (Böhner, 1996, 2006;Schlutz and Lehmkuhl, 2009). The precipitation, daily bin-averaged wind speed and temperature in Aug, 2015 were recorded to be 90 mm, 0.7 m s^{-1} and 9.5 °C from Jiuzhi weather station (Figure 2). The water surface evaporation was recorded to be 1429.8 mm in 2015 from Jiuzhi weather station.

208 Among the numerous proglacial lakes developed in the U-shaped valleys of the 209 Nianbaoyeze MT., Ximen Co lake is located at the northern margin of the mountain 210 with an elevation of 4030 m asl, and is well studied and easily accessible (Lehmkuhl, 211 1998;Zhang and Mischke, 2009;Schlutz and Lehmkuhl, 2009;Yuan et al., 2014). The 212 lake was formed in a deep, glacially eroded basin with a catchment area of 50 km², 213 and has a mean and a maximum depth of 40 m and 63.2 m, and a surface area of 3.6 214 km^2 . The vegetation around the lake is dominated by pine meadows with dwarf shrubs, 215 rosette plants and alpine cushion (Schlutz and Lehmkuhl, 2009;Zhang and Mischke, 216 2009; Yuan et al., 2014). Mostly recharged by the glacial and snowpack melting water 217 and regional precipitation, the lake is stratified with an epilimnion depth about 4.4 m 218 in the summer time. The lake is usually covered by ice in the winter time (Zhang and 219 Mischke, 2009). The superficial layer within the U-shaped valley is characterized by 220 peat, clay and fluvial gravels with a depth about 1-3.5 m. Discontinuous and isolated 221 permafrost is present at the slope of the valley above the elevation of about 4150 m. 222 The maximum frozen depth is about 1.5 m for the seasonal frozen ground around the

223	lake. The seasonal frozen ground serves as an unconfined aquifer during the unfrozen
224	months from July to October, and groundwater discharges into the epilimnion of the
225	lake (Wang, 1997;Schlutz and Lehmkuhl, 2009;Zhang and Mischke, 2009).

226

227 2.2 Sampling and field analysis

The field campaign to Ximen Co Lake was conducted in August, 2015, when it is 228 229 warm enough to take the water samples of different origins as the studied site is seasonally frozen. A ²²²Rn continuous monitoring station was setup at the southeast 230 part of the lake, where is fairly flat for setting up our tent and monitoring system. 231 232 Surface water samples were collected around the lake, rivers at the upstream and 233 downstream. Porewater samples were collected at one side of the lake as the other 234 side is steep and rocky. The basic water quality parameters of conductivity (EC), dissolved oxygen (DO), TDS, ORP, and pH in the water were recorded with the 235 multi-parameter meter (HANNA, Co.). Relative humidity was recorded with a 236 237 portable thermo-hydrometer (KTH-2, Co.). Lake water samples were taken with a peristaltic pump into 2.5 L glass bottles for ²²²Rn measurement with the Big Bottle 238 239 system (Durridge, Co.). Surface water samples were filtered with 0.45 µm filters 240 (Advantec, Co.) in situ and taken into 5 ml, 15 ml, 15 ml and 50 ml Nalgene centrifugation tubes for stable isotope, major anion, cation and nutrient analysis. 241

Deleted: from

Deleted: which

244	Porewater samples were taken from the lakes shore aquifers with a push point sampler
245	(M.H.E, Co.) connected to peristaltic pump (Solinst, Co.) (Luo et al., 2014;Luo et al.,
246	2016). 100 ml raw surface water or porewater was titrated with 0.1 μ M H ₂ SO ₄
247	cartridge (Hach, Co.) in situ to measure total alkalinity (Hasler et al., 2016;White et
248	al., 2016;Warner et al., 2013). Porewater was filtered with 0.45 µm syringe filters in
249	situ and taken into 5 ml, 15 ml, 15 ml and 50 ml Nalgene centrifugation tubes for
250	stable isotope, major anion, cation and nutrient analysis. 250 ml porewater was taken
251	for ²²² Rn measurement with RAD7 H ₂ O (Durridge, Co.). Samples for major cation
252	analysis were acidified with distilled HNO ₃ immediately after the sampling.
253	²²² Rn continuous monitoring station was set up at the northwest of the lake, close
254	to the downstream of the lake (Figure 1b). Lake water (about 0.5 m <u>in depth</u>) was
255	pumped with a DC pump (12 V) driven by lithium batteries (100 Ah) and sprinkled
256	into the chamber of RAD7 AQUA with a flow rate > 2 \underline{L} min ⁻¹ , where ²²² Rn in water
257	vapor was equilibrated with the air ²²² Rn. The vapor in the chamber was delivered
258	into two large dry units (Drierite, Co) to remove the moisture and circulated into
259	RAD7 monitor, where ²²² Rn activities were recorded every 5 mins. A temperature
260	probe (HOBO [@]) was insert into the chamber to record the temperature of the water
261	vapor. The monitoring was performed from 11: 31 am, Aug 22 nd to 6: 30 am, Aug 24 th ,
262	2015. During the period of 1:50-4:30 pm on Aug 22 nd , a sudden blizzard occurred,

Deleted: (Advantec, Co.)

Deleted: L

265	leading to an hourly precipitation about 0.6 mm to the lake area. Daily and hourly	
266	climatological data such as wind speed, air temperature and precipitation were	
267	retrieved from the nearest weather station in Jiuzhi town (N: 33.424614°, E:	
268	101.485998). Moreover, another RAD7 was placed at the lakes hore to measure ²²² Rn	
269	in the ambient air around the lake, Due to extremely low, activities, the monitoring	
270	period was conducted only for 4 hours, and the mean activity was adopted as the	
271	background radon-222 activity to be used in the mass balance model. Water level and	1
272	temperature fluctuations were recorded with a conductivity-temperature-depth diver	
273	(Schlumberger, Co.) fixed at about 20 cm below the lake surface and calibrated with	
274	local atmospheric pressure recorded by a baro-diver (Schlumberger, Co.) above the	
275	lake. To correct for dissolved ²²⁶ Ra supported ²²² Rn, one radium sample was extracted	
276	from 100 L lake water with MnO2 fiber as described elsewhere (Luo et al.,	
277	2014;Moore, 1976).	
270		

278

279 2.3 Chemical analysis

Major ions were measured with ICS-1100 (Dionex. Co.) in the Department of Earth Sciences, the University of Hong Kong. The uncertainties of the measurements are less than 5 %. Nutrients, DIN and DIP were analyzed with flow injection analysis equipped with auto-sampler (Lachat. Co.) in the School of Biological Sciences, the Deleted: monitor
Deleted: set
Formatted: Superscript
Deleted: s
Deleted: s

Deleted: when constructing

289	University of Hong Kong. Stable ¹⁸ O and ² H isotopes were measured with	
290	MOA-ICOS laser absorption spectrometer (Los Gatos Research (LGR) Triple Isotope	
291	Water Analyzer (TIWA-45EP)) at State Key Laboratory of Marine Geology, Tongji	
292	University, Shanghai. The stable isotopic standards and the recovery test have been	D
293	fully described elsewhere (Luo et al., 2017). The measurement uncertainty is better	
294	than 0.1 % for 18 O and 0.5 % for 2 H. 226 Ra was detected with RAD7 with the method	
295	described elsewhere (Kim et al., 2001;Lee et al., 2012;Luo et al., 2018).	
296		
297	2.4 Radon transient model	
298	Previous studies employed a steady state radon-222 mass balance model to	
299	quantify LGD to lentic system such as lakes and wetlands (Dimova and Burnett,	
300	2011;Luo et al., 2016). This model assumes that radon input derived from	
301	groundwater inflow, diffusion and river inflow are balanced by the radon losses of	
302	atmospheric evasion, decay and river outflow. However, recent studies revealed that	D
303	the steady state is mainly reached after 2-15 days of constant metrological conditions,	
304	and most lentic system cannot be treated as steady state due to rapid radon-222	D D
305	degassing to the atmosphere driven by wind-induced turbulence (Gilfedder et al.,	
306	2015; Dimova and Burnett, 2011).	

307 Ximen Co lake is demonstrated to be highly stratified with an epilimnion of 4.4 eleted: has

eleted: ly

eleted: ly eleted: be

312	m (Zhang and Mischke, 2009). The lake was formed by glacier erosion and the
313	lakebed is characterized by granite bedrock with a thin sedimentary clay layer.
314	Previous studies have indicated that sediment consisting of clay, soils and gravels has
315	been developed on the bedrock and forms the lake shore aquifer with a thickness of
316	0.7-3.3 m (Schlutz and Lehmkuhl 2009). Porewater sampled in the aquifer immediate,
317	behind the lake shore can well represent groundwater discharging into the lake, as
318	suggested previously (Lewandowski et al., 2015;Rosenberry et al., 2015;Schafran and
319	Driscoll, 1993). LGD has been widely considered to occur within the first few meters
320	of the lake shore (Schafran and Driscoll, 1993;Rosenberry et al., 2015;Lee et al., 1980)
321	and groundwater is considered to predominately discharge into the epilimnion since
322	deep groundwater flow is highly limited by the Precambrian bedrock (Einarsdottir et
323	al., <u>2017</u>). <u>Due to negligible hydrological connection between the epilimnion and</u>
324	hypolimnion, ²²² Rn mass balance model is established to quantify LGD to the
325	epilimnion from the lake shore.
326	The governing equation of radon-222 transient mass balance model within a 1 x
327	1 x z cm (where z is the depth in cm) can be expressed as (Gilfedder et al., 2015):
328	$z\frac{\partial I_{w}}{\partial t} = F_{gw} + (I_{226}_{Ra} - I_{w}) \times z \times \lambda_{222} + F_{diff} - F_{atm} $ (1)
329	where F_{gw} , F_{diff} , F_{atm} [Bq m ⁻² d ⁻¹] are ²²² Rn loadings from LGD, water-sediment

330 diffusion and water-air evasion, respectively; z [m] is the lake water level depth

Deleted: with a thickness of 0.7-3.3 m

1	Deleted: , which consists of clay, soils and
	gravels
١	Deleted: ly

Deleted: 2016

Deleted: Therefore,

Deleted: Due to negligible hydrological connection between the epilimnion and hypolimnion, LGD for the lake can be quantified with ²²²Rn mass balance model for the epilimnion. recorded by the diver. λ_{222} is the decay constant of ²²²Rn with a value of 0.186 d⁻¹. $\lambda_{222} \times I_{226_{Ra}}$ and $\lambda_{222} \times I_w$ account for the production and decay of ²²²Rn [Bq m⁻² d⁻¹] in the water column, respectively. I_w and $I_{228_{Ra}}$ [Bq m⁻²] represent ²²²Rn and ²²⁶Ra inventories in the epilimnion, and are expressed as: $I_w = H \times C_w$ and $I_{228_{Ra}} = H \times C_{228_{Ra}}$, respectively; where H [m] is the depth of the epilimnion; C_w and $C_{228_{Ra}}$ is the ²²²Rn and ²²⁶Ra activity [Bq m⁻³], respectively.

348 The model is valid under the following assumptions: 1) The epilimnion is well mixed which is the actual condition for most natural boreal and high altitude glacial 349 lakes (Zhang and Mischke, 2009; Åberg et al., 2010). 2) ²²²Rn input from riverine 350 351 water inflow, and loss from the lake water outflow and infiltration into the lake shore aquifer is negligible compared to the groundwater borne ²²²Rn, because ²²²Rn 352 353 concentration of groundwater is 2-3 orders of magnitude larger than that of lake water (Dimova and Burnett, 2011;Dimova et al., 2013). Generally, ²²²Rn in the epilimnion is 354 sourced from LGD and decay input from parent isotope of ²²⁶Ra under secular 355 356 equilibrium, and is mainly lost via atmospheric evasion and radioactive decay.

 F_{atm} is the key sinking component of the transient model and is finally a function of wind speed and water temperature, both of which are temporal variant variables (Supplementary information). Lake water level *z* is also a temporal variant variable which represents the fluctuations of water volume of the epilimnion. This equation is 1 discretized by the forward finite difference method, and the groundwater flux at each

time step can be solved as follow

$$[^{222}Rn_{t+\Delta t}] = \frac{[z \times {}^{22}Rn_t + [F_{diff} + F_{gw} - F_{atm} - {}^{2}Rn_t^{\dagger} \times \lambda \times z] \times \Delta t}{z}$$
(2)

where ${}^{222}Rn_{t+\Lambda t}$ and ${}^{222}Rn_{t+\Lambda t}$ [Bq m⁻³] is the ${}^{222}Rn$ activity at current time step and at 364 365 the previous time steps, respectively, and Δt [min] is the time step which is set to be 5 min in consistence with the ²²²Rn record interval. With the inverse calculation based 366 on Equation (2), the groundwater inflow at each time step can be obtained. However, 367 large errors of the final LGD calculation will be induced by even a small amount of 368 noise in the measured ²²²Rn data due to the ${}^{222}Rn_{t+M} - {}^{222}Rn_{t}$ term being with the 369 measure uncertainty. To reduce the random errors of the measured ²²²Rn 370 371 concentrations, the time window with a width of 1 hour is proposed to smooth the 372 curve (Supplementary information). 373 374 3. Results 375 3.1 Time series data Figure 2 shows the basic climatological parameters of the lake catchment during 376 377 the campaign month. There are discrete rainfall events occurring throughout the

378 month with an average rainfall of 3.1 mm d^{-1} . The temperature <u>during</u> the month

ranges from 5.0 - 12.5 °C within an average of 9.3 °C. The daily averaged wind speed

380 ranges from $0.7 - 2.5 \text{ m s}^{-1}$, with an average of 1.7 m s⁻¹. ²²²Rn temporal distribution

Formatted: Superscript

Deleted: 4

Deleted: throughout

Deleted: generally

384	and other time series data are shown in Figure 3a and listed in Supplementary Table 1.
385	Generally, 222 Rn concentration varies from 32.2 to 273 Bq m ⁻³ , with an average of
386	144.2 \pm 27.7 Bq m ⁻³ . ²²² Rn over the monitoring period shows typical diel cycle, much
387	higher at nighttime and lower in the day time. Figures 3b-3d show, the time series data
388	of temperature (5 mins interval), nearshore lake water level (1 min interval), and wind
389	speed (1 hour interval). Temperature and lake water level also show typical diel cycles,
390	but with antiphase fluctuations with each other. Temperature is higher during the
391	daytime and lower at nighttime. However a sudden decrease of temperature was
392	recorded due to the sudden blizzard (Figure 3b). Water level is higher at nighttime and
393	lower during the daytime, with a strong fluctuation due to the turbulence caused by
394	the blizzard (Figure 3c). The variability might reflect the dynamics of groundwater
395	input and surface water inflow. The air temperature of the lake area is in phase with
396	the water temperature. Wind speed is normally higher during the daytime and lower at
397	nighttime (Figure 3d).
398	The variation of ²²² Rn is nearly in antiphase with the fluctuations of lake water

temperature and air temperature, indicating that the dominated controlling factors of ²²²Rn fluctuations are water temperature and wind speed (Figure 3a). This phenomenon is reasonable as lake water ²²²Rn is predominately lost via atmospheric evasion, which is the function of wind speed and water temperature (Dimova et al., Deleted: s

404 2015; Dimova and Burnett, 2011; Dimova et al., 2013). High water temperature and wind speed leads to elevated atmospheric evasion and causes the decline of ²²²Rn 405 406 concentration in the lake water. However, there is a sudden reduction of radon activity from 2: 00 pm to 4: 00 pm on Jul 22nd, 2015, when the snow event led to a sudden 407 408 decrease of water temperature, increase of wind speed, and large surface water turbulence as indicated by water level fluctuations (Figures 3a-3d). ²²²Rn in the 409 porewater is 2-3 orders of magnitude larger than ²²²Rn in the lake water, suggesting 410 that ²²²Rn is an ideal tracer to estimate the LGD (Supplementary Table 1). ²²²Rn 411 concentrations in surface water range from 22.2 to 209 Bq m⁻³, with an average of 412 92.5 Bq m⁻³ (n = 12), which is in the range of 222 Rn continuous monitoring results, 413 suggesting reliable ²²²Rn measurements (Supplementary Table 2). 414

415

416 3.2 Geochemical results

417	The results of major ions, nutrients and stable isotopes in different water
418	endmembers are shown in Figures 4 and 5. Cl ⁻ ranges from 0.6 to 2.1 mg L ⁻¹ in the
419	surface water (including riverine inflow water, lake water and downstream water), 0.4
420	to 2.7 mg L^{-1} in porewater and has a much higher concentration of 5.9 mg L^{-1} in
421	rainfall water. Na ⁺ ranges from 1.6 to 3.4 mg L^{-1} in the surface water, 1.2 to 4.4 mg
422	L^{-1} in porewater and has a concentration of 4.4 mg L^{-1} in rainfall water. SO ₄ ²⁻ ranges

Deleted:

424	from 1.2 to 2.3 mg L^{-1} in the surface water, 0.4 to 1.7 mg L^{-1} in porewater and has a
425	significant low concentration of 0.01 mg L^{-1} in rainfall water. Ca ²⁺ ranges from 3.0 to
426	12.4 mg L ⁻¹ in lake water, 3.4 to 12.5 mg L ⁻¹ in porewater and has a significant <u>ly</u> high
427	concentration of 20.5 mg L^{-1} in rainfall water. Other concentrations of major ions are
428	listed in Supplementary Table 2. As shown in Figure 4d and Supplementary Table 2,
429	$\delta^{18}O$ in the lake water ranges from - 13.06 ‰ to - 12.11 ‰, with an average of -
430	12.41 ‰ (n = 7), and δ^2 H ranges from - 91.83 ‰ to - 87.47 ‰, with an average of -
431	89.0 ‰ (n = 7). δ^{18} O in the riverine inflow water ranges from - 13.44 ‰ to - 13.29 ‰,
432	with an average of $-13.37 \ \text{\sc mm}$ (n = 2), and $\delta^2 H$ ranges from - 93.25 $\ \text{\sc mm}$ to $-91.92 \ \text{\sc mm}$,
433	with an average of - 92.59 ‰ (n = 2). $\delta^{18}O$ in the downstream water ranges from -
434	12.51 ‰ to - 12.18 ‰, with an average of - 12.35 ‰ (n = 3), and $\delta^2 H$ ranges from -
435	88.96 ‰ to - 87.1 ‰, with an average of - 87.98 ‰ (n = 3). δ^{18} O in the porewater
436	ranges from - 12.66 ‰ to - 11.52 ‰, with an average of - 11.97 ‰ (n = 8), and $\delta^2 H$
437	ranges from -91.3 ‰ to -82.87 ‰, with an average of -85.5 ‰ (n = 8). DIN in the
438	surface water (including riverine inflow water, lake water and downstream water)
439	ranges from 6.6 to 16.9 μ M, with an average of 10.3 μ M, and DIP from 0.36 to 0.41
440	μ M, with an average of 0.38 μ M. DIN for the porewater ranges from 0.7 to 358.8 μ M,
441	with an average of 92.8 $\mu M,$ and DIP from 0.18 to 0.44 μM with an average of 0.31
442	μM (Figure 5).

Deleted: The concentrations of

445 **4. Discussion**

446 4.1 Proglacial hydrologic processes and geochemical implications

447	Generally, major ion concentrations in the lake water and porewater of Ximen
448	Co lake are significantly lower than those in <u>major rivers</u> , streams and other tectonic
449	lakes in the QTP (Yao et al., 2015; Wang et al., 2010; Wang et al., 2016b), and are
450	similar to those of snow and glaciers (Liu et al., 2011), suggesting that the lake water
451	is mainly originated from glacier and snow melting. Ion concentrations in the lake and
452	porewater of Ximen Co lake are much lower than those of rainfall collected in Jiuzhi
453	town. This suggests that lake water is less influenced by precipitation (Figures 4a-4c).
454	The concentrations of major ions in the porewater are high compared to the lake water,
455	indicating weathering affects from the aquifer grains. The ratios of $\mbox{Ca}^{2+}/\mbox{Na}^{+}$ in the
456	porewater and groundwater is >1, also suggesting influences of weathering digenesis
457	of major ions from the seasonal frozen ground at the lake shore aquifer (Weynell et al.,
458	2016;Yao et al., 2015;Wang et al., 2010).

The isotopic compositions of the lake water and porewater are significantly isotopic<u>ally</u> depleted, with values close to the compositions of glaciers and surface snow in the QTP, suggesting the lake is dominantly recharged from snow and glacier melting (Cui et al., 2014;Wang et al., 2016a;Zongxing et al., 2015). The relation of Deleted: main

464	$\delta^{18}O$ versus δ^2H for the lake water is $\delta^2H=4.25\ x\ \delta^{18}O$ - 35.99, with a slope much
465	lower than that of the global meteoric water line (GMWL) (Figure 4d), suggesting the
466	effects of lake surface evaporation. The relation of $\delta^{18}O$ versus δ^2H for the porewater
467	is $\delta^2 H = 6.93 \text{ x } \delta^{18} O$ - 2.67, overall on GWML (Figure 4d). Deuterium excesses is
468	defined as $\Delta D = \delta D - 8 \ge \delta^{18} O$ (Dansgaard, 1964). The value of ΔD is dependent on
469	airmass origins, altitude effect and the kinetic effects during evaporation (Hren et al.,
470	2009). Global meteoric water has a ΔD of + 10 ‰. In the QTP, glacier/snowpack
471	melting water usually has large positive ΔD , while the precipitations derived from
472	warm and humid summer monsoon has lower ΔD (Ren et al., 2017;Ren et al., 2013).
473	In this study, ΔD of surface water, lake and porewater ranges from $+$ <u>8.5</u> to $+$ <u>11.8</u> ‰,
474	closed to the glacier melting water but much smaller than that of the local
475	precipitation of $+$ <u>18.8</u> ‰, This indicates the stream and lake water are mainly
476	originated from glacial/snowpack melting rather than precipitation (Gat, 1996;Wang
477	et al., 2016a;Lerman et al., 1995). The slopes of $\delta^2 \underline{H}$ versus δ^{18} O in lake water and
478	porewater are 4.25 and 6.93, both of which are lower than that of GMWL due to
479	surface evaporation. Lake water is more intensively influenced by evaporation
480	compared to porewater. The plots of $\delta^{18}O$ versus Cl ⁻ , and δ^2H versus Cl ⁻ are well
481	clustered for porewater end member (orange area), lake water end member (blue area),
482	riverine inflow water end member (yellow area), and precipitation water (Figures 4e

	Deleted: 37.1
	Deleted: 41.2
-	Deleted: larger
	Deleted: 29.72

Deleted: ¹⁸O

488	and 4f), suggesting stable $\delta^{18}O$ and δ^2H isotopes and Cl $$ can serve as tracers to
489	quantify the hydrologic partitioning of the lake by setting three endmember models.
490	The concentrations of DIN and DIP are all within the ranges of other glacial
491	melting water and proglacial lake water (Hawkings et al., 2016;Hodson, 2007;Hudson
492	et al., 2000;Tockner et al., 2002;Hodson et al., 2005). Briefly, rainfall and upstream
493	lake water such as YN-4 <u>have the highest DIN concentrations</u> , indicating the glacier
494	melting and precipitation could be important DIN sources in proglacial areas
495	(Dubnick et al., 2017;Anderson et al., 2017). DIN in porewater is overall higher
496	compared to the lake water, suggesting the porewater to be DIN effective source; and
497	DIP concentration, is higher in the lake water compared to porewater, suggesting the
498	porewater is a DIP sink (Figure 5). The N: P ratios in the lake water and porewater are
499	averaged to be 27.1 and 320.5, respectively, both much larger than the Redfield Ratio
500	(N: $P = 16:1$) in water and organism in most aquatic system and within the range of
501	other proglacial lakes (Anderson et al., 2017). This also suggests that the lake water
502	and porewater are under phosphate limited condition. N: P ratio in the rainfall water is
503	30.4, similar to the lake water. The average N: P ratio of porewater is much higher
504	than that of lake water, indicating DIN enrichment in the lake shore aquifers (Figure
505	5). In pristine groundwater, NO_3^- is the predominated form of <u>dissolved nitrogen</u> and
506	is highly mobile within the oxic aquifers, leading to much higher DIN concentrations

Deleted: has

Deleted: s

Deleted: N

510	in the porewater; DIP has high affinity to the aquifer grains, resulting in much lower
511	DIP concentrations in the porewater (Lewandowski et al., 2015;Rosenberry et al.,
512	2015;Slomp and Van Cappellen, 2004). Thus, in analogous to surface runoff from
513	glacier/snowpack melting, LGD can be also regarded as an important DIN source for
514	the proglacial lakes. Because of very high DIN and N: P ratios in the porewater, a
515	relatively small portion of LGD delivers considerable nutrients into the glacial lake,
516	shifting the aquatic N: P ratios and affecting the proglacial aquatic ecosystem
517	(Anderson et al., 2017).

518

519 4.2 Estimation of LGD

Figure 6a shows all the sinks and sources of radon with the epilimnion of the lake. 520 Within ²²²Rn transient mass balance model, the dominant ²²²Rn loss is atmospheric 521 degassing/evasion. Generally, ²²²Rn degassing rate is the function of the radon-222 522 concentration gradient at the water-air interface and the parameter of gas piston 523 524 velocity k, which is finally the function of wind speed and water temperature (Dimova and Burnett, 2011;Gilfedder et al., 2015). To evaluate ²²²Rn evasion rate, this study 525 526 employs the widely used method proposed by MacIntyre et al. (1995) which is also detailed described in supplementary information. Based on the field data of ²²²Rn 527 concentration in the lake water, wind speed and temperature log, the radon degassing 528

Deleted: Supplementary

Deleted: Information

rate is calculated in a range of 0.8 to 265.2 Bq m² d⁻¹, with an average 42.0 of Bq m² d^{-1} .

In addition to the atmospheric loss and sedimentary diffusion inputs, ²²²Rn is also 533 sinked via radioactive decay, and sourced from decay of parent isotope of ²²⁶Ra. The 534 decay loss of ²²²Rn fluctuates in phase with the distribution of ²²²Rn concentration 535 monitored by RAD 7 AQUA. The equations to estimate benthic fluxes are shown in 536 supplementary information. The decay loss is calculated to be 26.4 to 223.4 Bq $m^{-2} d^{-1}$, 537 with an average of 118.0 \pm 22.7 Bq m⁻² d⁻¹. ²²⁶Ra concentration is 0.01 Bq m⁻³ for the 538 lake water. Under secular equilibrium, the ²²⁶Ra decay input can be calculated by 539 multiplying ²²⁶Ra concentration in the lake water with λ_{222} (Corbett et al., 1997;Kluge 540 et al., 2007;Luo et al., 2016). ²²⁶Ra decay input is calculated to be 0.83 Bq m⁻² d⁻¹, 541 which is significantly low compared to other ²²²Rn sources to the epilimnion. 542 With the obtained sinks and sources of ²²²Rn in the lake, and the constants given in 543 Table 1, LGD rate can be obtained by dividing the groundwater derived ²²²Rn with its 544 545 concentration in groundwater endmember. The obtained LGD rate, ranges from -23.7 mm d⁻¹ to 90.0 mm d⁻¹, with an average of 10.3 \pm 8.2 mm d⁻¹ (Figure 7). The LGD 546 rate range is relatively smaller than the daily lake water level variations (≈ 50 mm), 547 548 indicating that the lake water level variation could be a combined effect of surface runoff and LGD (Hood et al., 2006). The negative values of LGD rate reflect the 549

Deleted: less

551	return groundwater flow due to infiltration into the porewater. Normally, the
552	dominant values are positive, indicating LGD rate is significant compared to water
553	infiltration, into lake_shore aquifer. The temporal variation of LGD rate could be
554	attributed to the fluctuations of the hydraulic gradient in the proglacial areas (Hood et
555	al., 2006;Levy et al., 2015). As indicated by ΔD (mostly > 10) of surface water, the
556	lake and the upstream water is considered to be mainly recharged from
557	glacial/snowpack melting rather other precipitations.

To assess the magnitude of uncertainty of 222 Rn transient model, the sensitivity of estimated LGD to changes in other variables is examined. A sensitivity coefficient *f* is proposed to evaluate this uncertainty according to Langston et al. (2013)

561
$$f = (\Delta F_{LGD} / F_{LGD}) / (\Delta y_i / y_i)$$
(3)

where ΔF_{LGD} is the amount of change in F_{LGD} from the original value. Δy_i is the 562 amount of change in the other variable of y_i from the original value. Thus, higher f 563 564 indicates a large uncertainty of final LGD estimate. The uncertainty mainly stems from ²²²Rn measurements in different water endmembers, the atmospheric loss and 565 water level record. The uncertainties of ²²²Rn measurement are about 10 % and 15-20 566 % in groundwater and lake water endmember, respectively. The uncertainty of 567 atmospheric loss is derived from uncertainty of ²²²Rn in lake water (with an 568 uncertainty of 15-20 %), temperature (with an uncertainty ≈ 5 %) and wind speed 569

Deleted: s

571 (with an uncertainty \approx 5 %). Thus, the final LGD estimate has an <u>integrated</u> 572 uncertainty of 35-40 %.

573

574 **4.3 Hydrologic partitioning**

Compared to the groundwater labeled radionuclide of ²²²Rn, stable ¹⁸O/²H 575 576 isotopes are advantageous in the investigation of evaporation processes due to their 577 fractionations from water to vapor and have been widely used to investigate the 578 hydrologic cycle of lakes in various environments (Stets et al., 2010;Gat, 1995;Gonfiantini, 1986;Gibson et al., 1993). With the field data of stable isotopic 579 composition and Cl⁻ concentrations in different water endmembers, groundwater input, 580 581 surface water input, lake water outflow and infiltration, and evaporation can be 582 partitioned by coupling stable isotopic mass balance model with Cl⁻ mass balance 583 model (Figure 6b).

The model, consisting of the budgets of stable isotopes and Cl⁻, and water masses for the epilimnion, is used to quantify riverine inflow, lake water outflow and infiltration, and evaporation (LaBaugh et al., 1995;LaBaugh et al., 1997;Gibson et al., 2016). The model is valid under the following assumptions: (1) constant density of water; (2) no long-term storage change in the reservoir; (3) well-mixed for the epilimnion (Gibson, 2002;Gibson et al., 2016;Gibson and Edwards, 2002;LaBaugh et Deleted:

al., 1997). The above assumptions are reasonably tenable during the short monitoring

592 period. The model can be fully expressed as

$$F_{in} + F_{LGD} + F_p = F_E + F_{out} \tag{4}$$

$$F_{in} \times \delta_{in} + F_{LGD} \times \delta_{gw} + F_p \times \delta_p = F_E \times \delta_E + F_{out} \times \delta_L$$
(5)

595
$$F_{in} \times [C1]_{in} + F_{LG} \times [C1]_{g^{+}w} F \times [C1]_{p} = F \times [c]_{h}$$
(6)

where F_{in} [mm d⁻¹] is the surface water inflow to the lake; F_{gw} [mm d⁻¹] is LGD rate. 596 F_p [mm d⁻¹] is the mean daily rainfall rate during the sampling period. F_E [mm d⁻¹] is 597 the lake evaporation. F_{out} [mm d⁻¹] is the lake water outflow via runoff and 598 infiltration into the lake shore aquifer. δ_{in} , δ_{gw} , δ_E and δ_p are the isotopic compositions 599 of surface water inflow, LGD, and evaporative flux, respectively. The values of δ_{in} , 600 δ_{gw} and δ_p are obtained from field data and the composition of δ_E are caluated as 601 shown in supplementary information. $[Cl^{-}]_{in}$, $[Cl^{-}]_{gw}$, $[Cl^{-}]_{L}$ and $[Cl^{-}]_{p}$ are the 602 603 chloride concentrations in the inflow water, porewater, lake water and precipitation, 604 respectively.

Deleted:,

The components of the mass balance model can be obtained from the field data of isotopic composition and Cl⁻ concentrations in different water endmembers. The average ¹⁸O composition -13.37 ‰ of riverine inflow water is taken as the value of the input parameter δ_{in} . δ^{18} O and δ^{2} H in the groundwater endmember and lake water end member are calculated to be -12.41 ‰ and -87.18 ‰, respectively. δ^{18} O and δ^{2} H

611	in the rainfall are measured to be -5.47 ‰ and -24.98 ‰, respectively. With the
612	measured values of δ_L , h , δ_{in} , and the estimated ε and δ_a , the isotopic composition
613	of δ_{E} is calculated to be -35.11 ‰, which is in line with the results of alpine and
614	arctic lakes elsewhere (Gibson, 2002;Gibson et al., 2016;Gibson and Edwards, 2002).
615	The values of $[Cl^-]_{in}$, $[Cl^-]_{gw}$, and $[Cl^-]_L$ are calculated to be 0.91 mg L ⁻¹ , 1.48
616	mg L^{-1} and 1.02 mg L^{-1} , respectively. All the parameters used in the model are shown
617	in Table 2.
618	According to Equations 4-6, the uncertainties of calculations of F_{in} , F_{out} and E are
619	mainly derived from the uncertainty of F_{LGD} and the compositions of Cl ⁻ , δ D and δ^{18} O
620	in different water endmembers as suggested in previous studies (Genereux,
621	1998;Klaus and McDonnell, 2013). The compositions of Cl ⁻ , δD and $\delta^{18}O$ in surface
622	water, groundwater endmembers have an uncertainty of 5 %. The uncertainty of δ_E is
623	reasonably assumed to be ≈ 20 % . Thus, considering the uncertainty propagation of
624	all the above parameters, the uncertainties of F_{in} , F_{out} and E would be scaled up to
625	70-80 % of the final estimates.

626

627 4.4 The hydrologic partitioning of the glacial lake

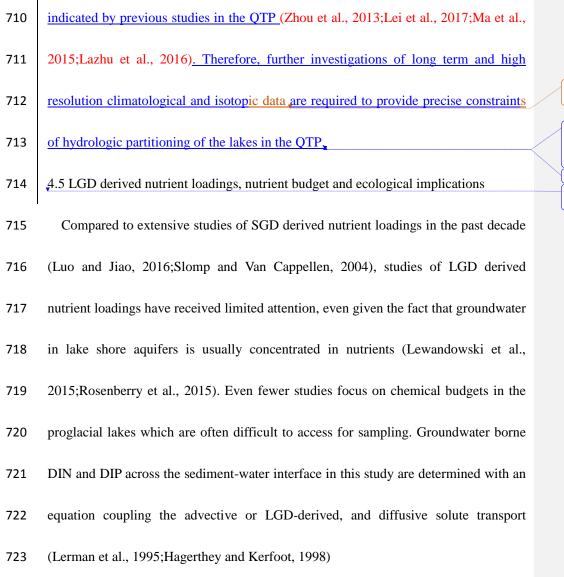
Based on the three endmember model of ¹⁸O and Cl⁻, the riverine inflow rate was calculated to be 135.6 \pm 119.0 mm d⁻¹, and the lake outflow rate is estimated to be

630	141.5 \pm 132.4 mm d ⁻¹ ; the evaporation rate is calculated to be 5.2 \pm 4.7 mm d ⁻¹ . The
631	summary of the hydrologic partitioning of the lake is shown in Figure 8a. Generally,
632	the proglacial lake is mostly recharged by the riverine inflow from the snowpack or
633	the glacier melting. The groundwater discharge contributes about only 7.0 % of the
634	total water input to the lake, indicating groundwater input does not dominate water
635	input to the proglacial lake. The recent review on LGD rate by Rosenberry et al.
636	(2015) suggests that the median of LGD rate in the literatures is 7.4 mm d^{-1} (0.05 mm
637	d^{-1} to 133 mm d^{-1}), which is about 2/3 of LGD rate in this study. This difference may
638	be due to the hydrogeological setting of the lake shore aquifer. This aquifer is formed
639	by grey loam, clayey soil and sand (Lehmkuhl, 1998;Schlutz and Lehmkuhl, 2009),
640	which is with relatively high permeability.
641	Previous studies have indicated that groundwater forms a key component of
641 642	Previous studies have indicated that groundwater forms a key component of proglacial hydrology (Levy et al., 2015). However, there have been limited
642	proglacial hydrology (Levy et al., 2015). However, there have been limited
642 643	proglacial hydrology (Levy et al., 2015). However, there have been limited quantitative studies of groundwater contribution to hydrologic budget of proglacial
642 643 644	proglacial hydrology (Levy et al., 2015). However, there have been limited quantitative studies of groundwater contribution to hydrologic budget of proglacial areas. This study <u>further</u> summarizes the groundwater discharge studies over the
642 643 644 645	proglacial hydrology (Levy et al., 2015). However, there have been limited quantitative studies of groundwater contribution to hydrologic budget of proglacial areas. This study <u>further</u> summarizes the groundwater discharge studies over the glacial forefield areas, <u>Based on long term hydrological and climatological parameter</u>

Deleted: The lake water is mainly lost via surface water outflow and infiltration to the lake shore aquifers. The evaporation constitutes relatively small ratio (≈ 3.5 %) of total water losses. The annual evaporation rate was recorded to be 1429.8 mm (equivalent to 3.92 mm d⁻¹) in 2015 by the Jiuzhi weather station, lower than the obtained evaporation in this study. This may be due to much higher evaporation in August during the monitoring period. Formatted: Font color: Red Formatted: Font color: Red

Deleted: Brown et al. (2006), (Zhou et al. 2013)

Formatted: Superscript


662	Taillon Glacier in French and found that groundwater contributes 6-10 % of the
663	stream water immediate downwards of the glacier. Using water mass balance model,
664	Hood et al. (2006) shows that groundwater inflow is substantial in the hydrologic
665	partitioning of the proglacial Lake O'Hara in front of Opabin Glacier in Canada and
666	comprised of 30 -74 % of the total inflow. Roy and Hayashi (2008) studied the
667	proglacial lakes of Hungabee lake and Opabin lake at glacier forefield of Opabin
668	Glacier and found that groundwater component is predominant water sources of the
669	lakes and consisted of 35-39 % of the total water input of the lakes. Langston et al.
670	(2013) further investigated a tarn immediate in front of Opabin Glacier and indicated
671	the tarn is predominantly controlled by groundwater inflow/outflow, which consisted
672	of 50-100 % of total tarn volume. Magnusson et al. (2014) studied the streams in the
673	glacier forefield of Dammagletscher, Switzerland and revealed that groundwater
674	contributed only 1-8 % of the total surface runoff. Groundwater contribution in this
675	study is similar to those obtained the mountainous proglacial areas in Europe, but
676	much lower than those obtained in the proglacial areas of polar regions. It is
677	concluded that proglacial lakes/streams in front of mountainous glaciers are mainly
678	recharged by surface runoff from glacier/snowpack melting. This might be due to
679	well-developed stream networks and limited deep groundwater flow (Einarsdottir et
680	al., 2017;Brown et al., 2006;Magnusson et al., 2014). However, proglacial tarns and

681	lakes in the polar areas are predominantly controlled by groundwater discharge, due		
682	to less connectivity of surface runoff and high shallow and deep groundwater		
683	connectivity (Langston et al., 2013;Hood et al., 2006;Roy and Hayashi, 2008).		
684	The evaporation constitutes relatively small ratio (≈ 3.5 %) of total water losses. The		Deleted: The lake water surface water outflow ar
685	annual evaporation rate was recorded to be 1429.8 mm (equivalent to 3.92 mm d ⁻¹) in		lake shore aquifers. Formatted: Indent: First h
686	2015 by the Jiuzhi weather station, lower than the obtained evaporation in this study.		
687	This may be due to much higher evaporation in August during the monitoring period.		
688	The estimation of evaporation in this study generally represents the upper limit of the		Deleted: ese studies
689	lake, as the sampling campaign was conducted during the summer time when the		Deleted: s Deleted: Eastern QTP
690	highest evaporation might occur. The lake surface evaporation derived from the pan		Deleted: is
			Deleted: over
691	evaporation in the QTP ranges from \sim 700 mm yr ⁻¹ in the eastern QTP to over 1400	$\langle -$	Deleted: ≈
692	mm yr ⁻¹ in the interior lakes of the QTP (Zhang et al., 2007;Ma et al., 2015;Yang et		Formatted: Superscript Formatted: Superscript
693	al., 2014). The evaporation of this study is rather in line with the previous evaporation		Pormaned ; Superscript
694	observation in the eastern QTP, stressing the tenability of evaporation in this study.		
695	The runoff input is predominated recharge component (> 90 %) compared to other		
696	components, with an area normalized value comparable to previous studies of runoff		
697	input in other glacial melting dominant lakes in the QTP (Zhou et al., 2013; Zhang et		Deleted: e
698	al., 2011;Biskop et al., 2016). The runoff input and the lake evaporation of the study		
699	area, however, are subject to highly daily, seasonal and inter-annual variability as		

1: The lake water is mainly lost via water outflow and infiltration to the re aquifers.

d: Indent: First line: 0 ch

Deleted: ese studies
Deleted: s
Deleted: Eastern QTP
Deleted: is
Deleted: over
Deleted: ≈

$$F_{j} = -nD_{j}^{m}\frac{dC_{j}}{dx} + v_{gw}C_{j}$$
(7)

where $-nD_j^m \frac{dC_j}{dx}$ is the diffusion input and $v_{gw}C_j$ is the LGD derived fluxes, F_j [μ M m⁻² d⁻¹] is the mol flux of nutrient species *j* (representing DIN or DIP). *n* is the sediment porosity. D_j^m is the molecular diffusion coefficient of nutrient species *j*,

Deleted: es

Deleted: (Ma et al. 2015, Zhang et al. 2007)(Zhang et al. 2013) Formatted: Font color: Red Deleted: .

732	which is given to be 4.8 x 10^{-5} m ² d ⁻¹ for DIP (Quigley and Robbins, 1986), and 8.8 x
733	10^{-5} m ² d ⁻¹ for DIN (Li and Gregory, 1974), respectively. C_{j} [µM] is the
734	concentration of nutrient species j. $x[m]$ is the sampling depth. v_{gw} is LGD rate
735	estimated by ²²² Rn mass balance model and has a value of 10.3 ±8.2 mm d ⁻¹ . $\frac{dC_j}{dx}$ is
736	the concentration gradient of nutrient species <i>j</i> across the water-sedimentary interface.
737	Substituting the constants and the field data of DIN and DIP in to Equation 6, LGD
738	derived nutrient loadings are calculated to be 954.3 $\mu mol~m^{-2}~d^{-1}$ and 3.2 $\mu mol~m^{-2}~d^{-1}$
739	for DIN and DIP, respectively. Riverine inflow brings 1195.0 $\mu mol~m^{-2}~d^{-1}$ DIN, 52.9
740	$\mu mol\ m^{-2}\ d^{-1}$ DIP into the lake. Lake water outflow derived nutrient loss is estimated
741	to be 1439.9 $\mu mol~m^{-2}~d^{-1}$ and 54.7 $\mu mol~m^{-2}~d^{-1}$ for DIN and DIP, respectively.
742	Nutrients in the lake can be also sourced from atmospheric deposit (mostly in form of
743	precipitation). With the nutrient concentrations in the rain water during the monitoring
744	period, the wet deposit is calculated to be 76 $\mu mol~m^{-2}~d^{-1}$ and 2.5 $\mu mol~m^{-2}~d^{-1},$ for
745	DIN and DIP, respectively. The loadings of DIN to the lakes are mainly from surface
746	runoff and LGD, which comprised of 42.9 % and 53.7 % of the total DIN loadings,
747	Groundwater derived DIP input, however, constitutes only 6.3 % of the total DIP
748	inputs to the lake, indicating groundwater borne DIP is less contributive to the
749	nutrient budget of the lake compared to DIN. Very recent studies on polar regions
750	have indicated that the glacier/snowpack water is the main N sources to the proglacial

Deleted: ..

752	lakes (Anderson et al., 2013; Dubnick et al., 2017). However, they do not consider the	
753	contribution of groundwater borne N, in spite of the high groundwater connectivity in	
754	the proglacial areas (Roy and Hayashi, 2008). This study stresses that groundwater	Delet
755	borne DIN could be comparable to the surface runoff derived DIN.	Delet
756	Based on nutrient results, the lake is considered to be an oligotrophic lake, similar	Move
757	to other glacier melting dominant lakes in the QTP (Mitamura et al., 2003;Liu et al.,	produc be con
758	2011), Phytoplankton is good dissolved organic phosphate (DOP) recyclers and will	of DIN calcula
759	overcome inorganic P limitation though DOP cycling in most template lakes (Hudson	surplu µmol 1
760	et al., 2000). However, this may be not applicable for the glacial melting water and	Delet Field (
761	the peri/pro-glacial lake water. Previous studies show that phosphate nutrients, are	Delet
762	dominated by DIP and particulate phosphate, and the DOP contributes less than 10 %	Delet
763	of the dissolved phosphate (Cole et al., 1998;Hawkings et al., 2016;Hodson, 2007).	Field (
		Delet
764	Thus DOP recycling is not likely to low N: P ratio under these conditions. Thus, the	Delet
765	primary production (PP) is therefore considered to be controlled by the DIP loadings.	consui convei
766	The sum of DIN and DIP inputs minus the calculated DIN and DIP outputs leads to	ratio (of 0.4
767	surpluses of 785.4 μ mol m ⁻² d ⁻¹ and 3.9 μ mol m ⁻² d ⁻¹ for DIN and DIP, respectively.	Moved
768	The surpluses are expected to be consumed by the phytoplankton and converted into	Delet
769	the PP under phosphate limited conditions. As primary producers in the fresh	Delet
770	lacustrine system consume the nutrient under variant N: P ratios (7.1 to 44.2, mean:	Delet Delet
		<u> </u>

Deleted: elsewhere

eleted: and under phosphate limited ondition

Moved down [1]: Thus, the primary
production (PP) is therefore considered to
be controlled by the DIP loadings. The sum
of DIN and DIP inputs minus the sum of the
calculated DIN and DIP outputs leads to
surpluses of 785.4 $\mu mol~m^{\text{-2}}~d^{\text{-1}}$ and 3.9
$\mu mol \ m^{-2} \ d^{-1}$ for DIN and DIP, respectively.
Deleted: d
Field Code Changed
Deleted: ?
Deleted: ?
Deleted: is?
Field Code Changed
Deleted: are
Deleted: er
Deleted: The surpluses are expected to be
consumed by the phytoplankton and
converted into the PP under the Red Field
ratio (C: N: P = 106: 16: 1), leading to a PP
of 0.41 mmol C m ⁻² d ⁻¹ .
Moved (insertion) [1]
Deleted: ?
Deleted: difference between the
Deleted: sum of
Deleted: and
Deleted: minus
Deleted: sum of the

estimated to be 89.3 μ M m² d⁻¹. Therefore, the nutrient budgets for DIN and DIP 799 800 can be finally conceptualized in Figures 8b and 8c. 801 4.6. Implications, prospective and limitations 802 Mountainous proglacial lakes are readily developed in glacier forefields of QTP and 803 other high mountainous glacial such as Europe Alps and Pamir at central Asian 804 (Heckmann et al. 2016). The proglacial lakes are always trapping system of sediment 805 and sinks for water and chemical originated from glacier/snowpack melting and groundwater. In analogous to cosmogenic isotopes such as ¹⁰Be serving as a tool to 806 quantify the sediment sources, approaches integrating ²²²Rn and stable isotopes 807 808 provides both qualitatively and quantitatively evaluations of groundwater 809 contributions and hydrologic partitioning in these remote and untapped lacustrine 810 systems. Thus, it is expected that the multiple aqueous isotopes is considered to be 811 effective tools to investigate the LGD and hydrologic partitioning in other proglacial 812 lakes. This study is mainly limited by the relatively short sampling and monitoring 813 period. As a special hydrologic regime, the lake shore aquifers of the proglacial lakes 814 are experiencing frozen-unfrozen transition seasonally, and the dominant recharge of 815 glacial melting could be fluctuated significantly due to air temperature variation. 816 Therefore, future groundwater and hydrological studies can be extended to longtime

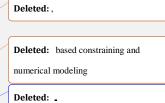
22.9) (Downing and McCauley, 1992), the biological uptake of DIN is roughly

798

Field Code Changed

Formatted: Superscript
Deleted: The
Formatted: Font: Times New Roman
Formatted: Superscript
Deleted: are
Deleted: as summarized
Deleted: The estimated primary
Deleted: The estimated primary productivity is lower than most temperate
1 5
productivity is lower than most temperate
productivity is lower than most temperate eutrophicated and ologotrophic lakes (Cole

826	sampling and monitoring of stable isotopes and ²²² Rn in different water endmembers	
827	to reveal the seasonally hydrological and hydrogeological dynamics and their impacts	
828	on local biogeochemical cycles and ecological systems. Special concerns would be	
829	placed on how surface/groundwater interactions and the associated biogeochemical	
830	processes in response to the seasonal frozen ground variations and glacier/snowpack	
831	melting intensity	Deleted:
832		
833	5. Conclusion	Deleted:
834	A ²²² Rn continuous monitoring is conducted at Ximen Co Lake, a proglacial lake	
835	located at the east QTP. A dynamic ²²² Rn mass balance model constrained by radium	
836	mass balance and water level fluctuation is used to quantify temporal distribution of	
837	LGD of the lake. The obtained LGD over the monitoring time ranges from -23.7	
838	mm d ⁻¹ to 80.9 mm d ⁻¹ , with an average of 10.3 \pm 8.2 mm d ⁻¹ . Thereafter, a three	
839	endmember model consisting of the budgets of water, stable isotopes and Cl ⁻ is used	
840	to depict the hydrologic partitioning of the lake. Riverine inflow, lake water outflow	
841	via surface runoff, and surface evaporation are estimated to be 135.6 mm d ⁻¹ , 141.5	
842	mm d^{-1} and 5.2 mm d^{-1} , respectively. LGD derived nutrient loading is estimated to be	
843	785.4 μ mol m ⁻² d ⁻¹ and 3.2 μ mol m ⁻² d ⁻¹ for DIN and DIP, respectively. This study also	Deleted: U within the la
844	implicates that LGD constitutes relatively small portion of the proglacial hydrologic	estimated to


d: _

d: Upon depicting nutrient budget he lake, the primary productivity is ed to be 0.41 mol C m⁻² d⁻¹.

850	partitioning, however, delivers nearly a half of the nutrient loadings to the proglacial
851	lake.

852	This study presents the first attempt to quantify LGD and the associated nutrient
853	loadings to the proglacial lake of QTP. To our knowledge, there is almost no study on
854	the groundwater-lake water interaction in the high altitude proglacial lakes in QTP.
855	This study demonstrates that ²²² Rn based approach can be used to investigate the
856	groundwater dynamics in the high altitude proglacial lakes. The method is
857	instructional to similar studies in other proglacial lakes in the QTP and elsewhere. For
858	a comprehensive understanding the hydrological and biogeochemical dynamics in the
859	OTP, interdisciplinary and multi-approach integrated studies are in great need. Of
860	particular importance are the lake hydrology and groundwater surface water
861	interaction studies based on multiple approaches such as remote sensing products.
862	long term and high resolution observation of climatological parameters and isotopic
863	data,
864	•

Deleted: ,

865 Acknowledgements

This study was supported by grants from the National Natural Science Foundation of
China (NSFC, No.41572208) and (NSFC, 91747204), and the Research Grants
Council of Hong Kong Special Administrative Region, China (HKU17304815), and

875	the seed fund programed granted by HKU-ZIRI. The authors thank Mr. Buming Jiang	
876	for his kind help in the field works during the campaign and Ergang Lian for his help	
877	in stable isotope analysis. The authors thank Jessie Lai for her help in FIA analysis in	
878	School of Biological Sciences, HKU. Supporting data are included as in the files of	
879	supplementary information 2 and 3; Climatological data are purchased through	
880	http://www.weatherdt.com/shop.html; any additional data may be obtained from L.X.	
881	(email: xinluo@hku.hk);	
882	References	Deleted:
883	Åberg, J., Jansson, M., and Jonsson, A.: Importance of water temperature and	
884	thermal stratification dynamics for temporal variation of surface water CO_2 in a	Formatted
885	boreal lake, Journal of Geophysical Research: Biogeosciences (2005–2012), 115,	
886	10.1029/2009JG001085, 2010.	
887	Andermann, C., Longuevergne, L., Bonnet, S., Crave, A., Davy, P., and Gloaguen, R.:	
888	Impact of transient groundwater storage on the discharge of Himalayan rivers, Nat	
889	Geosci, 5, 127-132, Doi 10.1038/Ngeo1356, 2012.	
890	Anderson, L., Birks, J., Rover, J., and Guldager, N.: Controls on recent Alaskan lake	
891	changes identified from water isotopes and remote sensing, Geophysical Research	
892	Letters, 40, 3413-3418, 2013.	
893	Anderson, N. J., Saros, J. E., Bullard, J. E., Cahoon, S. M., McGowan, S., Bagshaw, E. A.,	
894	Barry, C. D., Bindler, R., Burpee, B. T., and Carrivick, J. L.: The Arctic in the Twenty-First	
895	Century: Changing Biogeochemical Linkages across a Paraglacial Landscape of	
896	Greenland, BioScience, 67, 118-133, 2017.	
897	Barry, R. G.: The status of research on glaciers and global glacier recession: a review,	
898	Progress in Physical Geography, 30, 285-306, 2006.	
899	Batlle-Aguilar, J., Harrington, G. A., Leblanc, M., Welch, C., and Cook, P. G.: Chemistry	
900	of groundwater discharge inferred from longitudinal river sampling, Water Resour	
901	Res, 50, 1550-1568, 10.1002/2013WR013591, 2014.	
902	Belanger, T. V., Mikutel, D. F., and Churchill, P. A.: Groundwater seepage nutrient	
903	loading in a Florida Lake, Water Res, 19, 773-781,	G
904	http://dx.doi.org/10.1016/0043-1354(85)90126-5, 1985.	Formatted

1: Subscript

1: Default Paragraph Font

906 Biskop, S., Maussion, F., Krause, P., and Fink, M.: Differences in the water-balance 907 components of four lakes in the southern-central Tibetan Plateau, Hydrol Earth Syst

908 Sc, 20, 209, 2016.

- 909 Blume, T., Krause, S., Meinikmann, K., and Lewandowski, J.: Upscaling lacustrine
- groundwater discharge rates by fiber-optic distributed temperature sensing, Water
 Resour Res, 49, 7929-7944, 10.1002/2012WR013215, 2013.
- Böhner, J.: Säkulare Klimaschwankungen und rezente Klimatrends Zentral-undHochasiens, Goltze, 1996.
- Böhner, J.: General climatic controls and topoclimatic variations in Central and HighAsia, Boreas, 35, 279-295, 2006.
- 916 Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S.,
- 917 Fujita, K., Scheel, M., Bajracharya, S., and Stoffel, M.: The State and Fate of 918 Himalayan Glaciers, Science, 336, 310-314, 2012.
- 919 Brown, L. E., Hannah, D. M., Milner, A. M., Soulsby, C., Hodson, A. J., and Brewer, M.
- J.: Water source dynamics in a glacierized alpine river basin (Taillon-Gabiétous,
 French Pyrénées), Water Resour Res, 42, 2006.
- Burnett, W. C., Peterson, R. N., Santos, I. R., and Hicks, R. W.: Use of automated radon
 measurements for rapid assessment of groundwater flow into Florida streams,
 Journal of Hydrology, 380, 298-304, 2010.
- Callegary, J. B., Kikuchi, C. P., Koch, J. C., Lilly, M. R., and Leake, S. A.: Review:
 Groundwater in Alaska (USA), Hydrogeol J, 21, 25-39, 10.1007/s10040-012-0940-5,
 2013.
- Cole, J., Nina, J., and Caraco, F.: Atmospheric exchange of carbon dioxide in a
 low-wind oligotrophic lake measured by the addition of SF₆, Limnol Oceanogr, 43,
 647-656, 1998.
- 931 Cook, P., Lamontagne, S., Berhane, D., and Clark, J.: Quantifying groundwater
 932 discharge to Cockburn River, southeastern Australia, using dissolved gas tracers
 933 222Rn and SF6, Water Resour Res, 42, 2006.
- 934 Cook, P. G., Favreau, G., Dighton, J. C., and Tickell, S.: Determining natural
 935 groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic
 936 environmental tracers, Journal of Hydrology, 277, 74-88,
- 936
 environmental
 tracers,
 Journal
 of
 Hydrology,

 937
 http://dx.doi.org/10.1016/S0022-1694(03)00087-8, 2003.
- 938 Corbett, D. R., Burnett, W. C., Cable, P. H., and Clark, S. B.: Radon tracing of 939 groundwater input into Par Pond, Savannah River site, Journal of Hydrology, 203, 940 209-227, 1997.
- 941 Cui, X., Ren, J., Qin, X., Sun, W., Yu, G., Wang, Z., and Liu, W.: Chemical characteristics
- 942 and environmental records of a snow-pit at the Glacier No. 12 in the Laohugou Valley,
- 943 Qilian Mountains, Journal of Earth Science, 25, 379-385, 2014.

Deleted: ~ Formatted: Subscript

945 Dansgaard, W.: Stable isotopes in precipitation, Tellus A, 16, 1964.

946 Dimova, N., Paytan, A., Kessler, J. D., Sparrow, K., Garcia-Tigreros Kodovska, F., Lecher,

947 A. L., Murray, J., and Tulaczyk, S. M.: The current magnitude and mechanisms of

groundwater discharge in the Arctic: a case study from Alaska, Environ Sci Technol,49, 12036-12043, 2015.

Dimova, N. T., and Burnett, W. C.: Evaluation of groundwater discharge into small
lakes based on the temporal distribution of radon-222, Limnol. Oceanogr, 56,

- 952 486-494, 2011.
- Dimova, N. T., Burnett, W. C., Chanton, J. P., and Corbett, J. E.: Application of
 radon-222 to investigate groundwater discharge into small shallow lakes, Journal of
 Hydrology, 2013.

Downing, J. A., and McCauley, E.: The nitrogen: phosphorus relationship in lakes,Limnol Oceanogr, 37, 936-945, 1992.

- Dubnick, A., Wadham, J., Tranter, M., Sharp, M., Orwin, J., Barker, J., Bagshaw, E., and
 Fitzsimons, S.: Trickle or treat: The dynamics of nutrient export from polar glaciers,
- 960 Hydrol Process, 31, 1776-1789, 10.1002/hyp.11149, 2017.
- 961 Einarsdottir, K., Wallin, M. B., and Sobek, S.: High terrestrial carbon load via 962 groundwater to a boreal lake dominated by surface water inflow, Journal of
- 963 Geophysical Research: Biogeosciences, <u>122 (1)</u>, <u>15-29</u>, 10.1002/2016JG003495, 2017.
- Farinotti, D., Longuevergne, L., Moholdt, G., Duethmann, D., Molg, T., Bolch, T.,
 Vorogushyn, S., and Guntner, A.: Substantial glacier mass loss in the Tien Shan over
 the past 50 years, Nature Geosci, 8, 716-722, 10.1038/ngeo2513
- 967 http://www.nature.com/ngeo/journal/v8/n9/abs/ngeo2513.html#supplementary-inf968 ormation, 2015.
- Gat, J.: Stable isotopes of fresh and saline lakes, in: Physics and chemistry of lakes,Springer, 139-165, 1995.
- Gat, J.: Oxygen and hydrogen isotopes in the hydrologic cycle, Annual Review of Earthand Planetary Sciences, 24, 225-262, 1996.
- Genereux, D.: Quantifying uncertainty in tracer-based hydrograph separations, WaterResour Res, 34, 915-919, 1998.
- 975 Gibson, J., Edwards, T., Bursey, G., and Prowse, T.: Estimating evaporation using stable
- 976 isotopes: quantitative results and sensitivity analysis for, Nordic Hydrology, 24, 79-94,977 1993.
- Gibson, J. J.: Short-term evaporation and water budget comparisons in shallow Arctic
 lakes using non-steady isotope mass balance, Journal of Hydrology, 264, 242-261,
 2002.
- 981 Gibson, J. J., and Edwards, T. W. D.: Regional water balance trends and 982 evaporation-transpiration partitioning from a stable isotope survey of lakes in

Deleted: n/a-n/a

984 northern Canada, Global Biogeochem Cy, 16, 10-11-10-14, 10.1029/2001GB001839,
985 2002.

986 Gibson, J. J., Birks, S. J., and Yi, Y.: Stable isotope mass balance of lakes: a 987 contemporary perspective, Quaternary Science Reviews, 131, Part B, 316-328,

988 http://dx.doi.org/10.1016/j.quascirev.2015.04.013, 2016.

- Gilfedder, B., Frei, S., Hofmann, H., and Cartwright, I.: Groundwater discharge to
 wetlands driven by storm and flood events: Quantification using continuous
 Radon-222 and electrical conductivity measurements and dynamic mass-balance
 modelling, Geochim Cosmochim Ac, 165, 161-177, 2015.
- Gonfiantini, R.: Environmental isotopes in lake studies, Handbook of environmentalisotope geochemistry, 2, 113-168, 1986.

995 Good, S. P., Noone, D., and Bowen, G.: Hydrologic connectivity constrains partitioning

- 996 of global terrestrial water fluxes, Science, 349, 175-177, 10.1126/science.aaa5931,997 2015.
- Hagerthey, S. E., and Kerfoot, W. C.: Groundwater flow influences the biomass and
 nutrient ratios of epibenthic algae in a north temperate seepage lake, Limnol
 Oceanogr, 43, 1227-1242, 1998.
- Harris, C., Arenson, L. U., Christiansen, H. H., Etzelmüller, B., Frauenfelder, R., Gruber,
 S., Haeberli, W., Hauck, C., Hölzle, M., and Humlum, O.: Permafrost and climate in
 Europe: Monitoring and modelling thermal, geomorphological and geotechnical
 responses, Earth-Science Reviews, 92, 117-171, 2009.
- Hasler, C. T., Midway, S. R., Jeffrey, J. D., Tix, J. A., Sullivan, C., and Suski, C. D.:
 Exposure to elevated pCO2 alters post-treatment diel movement patterns of
 largemouth bass over short time scales, Freshwater Biology, 61, 1590-1600,
 10.1111/fwb.12805, 2016.
- Hawkings, J., Wadham, J., Tranter, M., Telling, J., Bagshaw, E., Beaton, A., Simmons, S.
 L., Chandler, D., Tedstone, A., and Nienow, P.: The Greenland Ice Sheet as a hot spot
 of phosphorus weathering and export in the Arctic, Global Biogeochem Cy, <u>30 (2)</u>,
 <u>191-210</u>, 2016.
- Heckmann, T., McColl, S., and Morche, D.: Retreating ice: research in pro-glacial areas
 matters, Earth Surface Processes and Landforms, 41, 271-276, 10.1002/esp.3858,
 2016.
- 1016 Hodson, A., Mumford, P., Kohler, J., and Wynn, P. M.: The High Arctic glacial 1017 ecosystem: new insights from nutrient budgets, Biogeochemistry, 72, 233-256, 2005.
- Hodson, A.: Phosphorus in glacial meltwaters, Glacier Science and EnvironmentalChange, 81-82, 2007.
- Hood, J. L., Roy, J. W., and Hayashi, M.: Importance of groundwater in the waterbalance of an alpine headwater lake, Geophysical Research Letters, 33,

Formatted: Default Paragraph Font

Deleted: Heckmann, T., McColl, S., and Morche, D.: Retreating ice: research in proglacial areas matters, Earth Surface Processes and Landforms, 2015. 1026 10.1029/2006GL026611, 2006.

1027 Hren, M. T., Bookhagen, B., Blisniuk, P. M., Booth, A. L., and Chamberlain, C. P.: δ_{1}^{18} , O

1028 and δD of streamwaters across the Himalaya and Tibetan Plateau: Implications for

1029 moisture sources and paleoelevation reconstructions, Earth Planet Sc Lett, 288,

- 1030 20-32, 2009.
- Hudson, J. J., Taylor, W. D., and Schindler, D. W.: Phosphate concentrations in lakes,Nature, 406, 54-56, 2000.
- 1033 Johannes, R. E.: The Ecological Significance of the Submarine Discharge of 1034 Groundwater, Mar Ecol-Prog Ser, 3, 365-373, 1980.
- 1035Kim, G., Burnett, W. C., Dulaiova, H., Swarzenski, P. W., and Moore, W. S.:1036Measurement of Ra-224 and Ra-226 activities in natural waters using a radon-in-air
- 1037 monitor, Environ Sci Technol, 35, 4680-4683, 2001.
- Klaus, J., and McDonnell, J.: Hydrograph separation using stable isotopes: Review and
 evaluation, Journal of Hydrology, 505, 47-64, 2013.
- Kluge, T., Ilmberger, J., Rohden, C. v., and Aeschbach-Hertig, W.: Tracing and
 quantifying groundwater inflow into lakes using a simple method for radon-222
 analysis, Hydrol Earth Syst Sc, 11, 1621-1631, 2007.
- Kluge, T., von Rohden, C., Sonntag, P., Lorenz, S., Wieser, M., Aeschbach-Hertig, W.,
 and Ilmberger, J.: Localising and quantifying groundwater inflow into lakes using
 high-precision.²²²Rn profiles, Journal of Hydrology, 450, 70-81, 2012.
- 1046 Kraemer, T. F.: Radium isotopes in Cayuga Lake, New York: Indicators of inflow and 1047 mixing processes, Limnol Oceanogr, 50, 158-168, 2005.
- LaBaugh, J. W., Rosenberry, D. O., and Winter, T. C.: Groundwater contribution to the
 water and chemical budgets of Williams Lake, Minnesota, 1980-1991, Can J Fish
 Aquat Sci, 52, 754-767, 1995.
- LaBaugh, J. W., Winter, T. C., Rosenberry, D. O., Schuster, P. F., Reddy, M. M., and Aiken, G. R.: Hydrological and chemical estimates of the water balance of a closedbasin lake in north central Minnesota, Water Resour Res, 33, 2799-2812, 1997.
- Langston, G., Hayashi, M., and Roy, J. W.: Quantifying groundwater-surface water interactions in a proglacial moraine using heat and solute tracers, Water Resour Res, 49, 5411-5426, 10.1002/wrcr.20372, 2013.
- Lazar, B., Weinstein, Y., Paytan, A., Magal, E., Bruce, D., and Kolodny, Y.: Ra and Th
 adsorption coefficients in lakes—Lake Kinneret (Sea of Galilee)"natural experiment",
 Geochim Cosmochim Ac, 72, 3446-3459, 2008.
- Lazhu, Yang, K., Wang, J., Lei, Y., Chen, Y., Zhu, L., Ding, B., and Qin, J.: Quantifying
 evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau, Journal
 of Geophysical Research (Atmospheres), 121, 7578-7591, 2016.
- 1063 Lecher, A. L., Kessler, J., Sparrow, K., Garcia-Tigreros Kodovska, F., Dimova, N., Murray,

Deleted:
Formatted: Superscript
Deleted:

Deleted: < sup>	
Formatted: Superscript	
Deleted:	

1068 J., Tulaczyk, S., and Paytan, A.: Methane transport through submarine groundwater

discharge to the North Pacific and Arctic Ocean at two Alaskan sites, Limnol Oceanogr,
61 (S1), S344-355, 2015.

1071 Lee, C. M., Jiao, J. J., Luo, X., and Moore, W. S.: Estimation of submarine groundwater

discharge and associated nutrient fluxes in Tolo Harbour, Hong Kong, Sci Total Environ,
433, 427-433, 10.1016/j.scitotenv.2012.06.073, 2012.

1074 Lee, D. R.: A device for measuring seepage flux in lakes and estuaries, Limnol 1075 Oceanogr, 22, 140-147, 1977.

1076 Lee, D. R., Cherry, J. A., and Pickens, J. F.: Groundwater transport of a salt tracer1077 through a sandy lakebed, Limnol Oceanogr, 25, 45-61, 1980.

1078Lehmkuhl, F.: Extent and spatial distribution of Pleistocene glaciations in eastern1079Tibet,QuaternInt,45-46,123-134,

1080 http://dx.doi.org/10.1016/S1040-6182(97)00010-4, 1998.

Lei, Y., Yao, T., Yang, K., Sheng, Y., Kleinherenbrink, M., Yi, S., Bird, B. W., Zhang, X.,
Zhu, L., and Zhang, G.: Lake seasonality across the Tibetan Plateau and their varying
relationship with regional mass changes and local hydrology, Geophysical Research
Letters, 44, 892-900, 2017.

Lemieux, J. M., Sudicky, E. A., Peltier, W. R., and Tarasov, L.: Dynamics of groundwater
recharge and seepage over the Canadian landscape during the Wisconsinian
glaciation, Journal of Geophysical Research: Earth Surface (2003–2012), 113,
10.1029/2007JF000838, 2008a.

Lemieux, J. M., Sudicky, E. A., Peltier, W. R., and Tarasov, L.: Simulating the impact of glaciations on continental groundwater flow systems: 1. Relevant processes and model formulation, Journal of Geophysical Research: Earth Surface, 113, n/a-n/a, 1092 10.1029/2007JF000928, 2008b.

Lemieux, J. M., Sudicky, E. A., Peltier, W. R., and Tarasov, L.: Simulating the impact of glaciations on continental groundwater flow systems: 2. Model application to the Wisconsinian glaciation over the Canadian landscape, Journal of Geophysical Research: Earth Surface (2003–2012), 113, 10.1029/2007JF000929, 2008c.

1097 Lerman, A., Imboden, D., and Gat, J.: Physics and chemistry of lakes, New York, 1995.

1098 Levy, A., Robinson, Z., Krause, S., Waller, R., and Weatherill, J.: Long-term variability

of proglacial groundwater-fed hydrological systems in an area of glacier retreat,Skeiðarársandur, Iceland, Earth Surface Processes and Landforms, 40, 981-994,

1101 10.1002/esp.3696, 2015.

Lewandowski, J., Meinikmann, K., Ruhtz, T., Pöschke, F., and Kirillin, G.: Localization of
lacustrine groundwater discharge (LGD) by airborne measurement of thermal
infrared radiation, Remote Sens Environ, 138, 119-125,
http://dx.doi.org/10.1016/j.rse.2013.07.005, 2013.

Formatted: Default Paragraph Font

1106 Lewandowski, J., Meinikmann, K., Nützmann, G., and Rosenberry, D. O.: Groundwater

1107 - the disregarded component in lake water and nutrient budgets. Part 2: effects of

1108 groundwater on nutrients, Hydrol Process, 29, 2922-2955, 10.1002/hyp.10384, 2015.

1109 Li, Y. H., and Gregory, S.: Diffusion of Ions in Sea-Water and in Deep-Sea Sediments,

1110 Geochim Cosmochim Ac, 38, 703-714, 1974.

1111 Liu, C., Liu, J., Wang, X. S., and Zheng, C.: Analysis of groundwater–lake interaction by

distributed temperature sensing in Badain Jaran Desert, Northwest China, Hydrol
Process, <u>30 (9)</u>, <u>1330-1341</u>, 2015.

Liu, Y., Yao, T., Jiao, N., Tian, L., Hu, A., Yu, W., and Li, S.: Microbial diversity in the snow, a moraine lake and a stream in Himalayan glacier, Extremophiles, 15, 411-421, 2011.

Luo, X., Jiao, J. J., Moore, W., and Lee, C. M.: Submarine groundwater discharge
estimation in an urbanized embayment in Hong Kong via short-lived radium isotopes
and its implication of nutrient loadings and primary production, Mar Pollut Bull, 82,
144-154, 2014.

Luo, X., and Jiao, J. J.: Submarine groundwater discharge and nutrient loadings in Tolo Harbor, Hong Kong using multiple geotracer-based models, and their implications of red tide outbreaks, Water Res, 102, 11-31,

1124 http://dx.doi.org/10.1016/j.watres.2016.06.017, 2016.

1125 Luo, X., Jiao, J. J., Wang, X.-s., and Liu, K.: Temporal ²²²Rn distributions to reveal

groundwater discharge into desert lakes: implication of water balance in the BadainJaran Desert, China, Journal of Hydrology, 534, 87-103, 2016.

Luo, X., Jiao, J. J., Wang, X.-s., Liu, K., Lian, E., and Yang, S.: Groundwater discharge
 and hydrologic partition of the lakes in desert environment: Insights from stable
 ¹⁸O/²H and radium isotopes, Journal of Hydrology, 546, 189-203, 2017.

1131 Luo, X., Jiao, J. J., Liu, Y., Zhang, X., Liang, W., and Tang, D.: Evaluation of Water

1132 Residence Time, Submarine Groundwater Discharge, and Maximum New Production

1133 Supported by Groundwater Borne Nutrients in a Coastal Upwelling Shelf System,

1134 Journal of Geophysical Research: Oceans, 123, 631-655, 2018.

1135 Ma, N., Zhang, Y., Szilagyi, J., Guo, Y., Zhai, J., and Gao, H.: Evaluating the 1136 complementary relationship of evapotranspiration in the alpine steppe of the 1137 Tibetan Plateau, Water Resour Res, 51, 1069-1083, 10.1002/2014WR015493, 2015.

MacIntyre, S., Wannikhof, R., Chanton, J. P., Matson, P. A., and Hariss, R. C.: Biogenic
Trace Gases: Measuring Emissions from Soil and Water, 52 pp., 1995.

1140 Magnusson, J., Kobierska, F., Huxol, S., Hayashi, M., Jonas, T., and Kirchner, J. W.: Melt

1141 water driven stream and groundwater stage fluctuations on a glacier forefield

- 1142 (Dammagletscher, Switzerland), Hydrol Process, 28, 823-836, 2014.
- 1143 Mitamura, O., Seike, Y., Kondo, K., Goto, N., Anbutsu, K., Akatsuka, T., Kihira, M.,

Formatted: Default Paragraph Font
Formatted: Superscript
Deleted:

-	Formatted: Superscript
-	Deleted:
Ľ	Formatted: Superscript
	Deleted:

- 1147 Tsering, T. Q., and Nishimura, M.: First investigation of ultraoligotrophic alpine Lake
- 1148 Puma Yumco in the pre-Himalayas, China, Limnology, 4, 167-175, 2003.
- 1149 Moore, W. S.: Sampling radium-228 in the deep ocean, Deep Sea Res., 23, 647-651,1150 1976.
- 1151 Nakayama, T., and Watanabe, M.: Missing role of groundwater in water and nutrient1152 cycles in the shallow eutrophic Lake Kasumigaura, Japan, Hydrol Process, 22,
- 1153 1150-1172, 2008.
- 1154 Paytan, A., Lecher, A. L., Dimova, N., Sparrow, K. J., Kodovska, F. G.-T., Murray, J.,
- 1155 Tulaczyk, S., and Kessler, J. D.: Methane transport from the active layer to lakes in the
- 1156 Arctic using Toolik Lake, Alaska, as a case study, Proceedings of the National Academy
- 1157 of Sciences, 112, 3636-3640, 2015.
- 1158 Qiu, J.: China: the third pole, Nature News, 454, 393-396, 2008.
- 1159 Quigley, M. A., and Robbins, J. A.: Phosphorus release processes in nearshore
- 1160 southern Lake Michigan, Can J Fish Aquat Sci, 43, 1201-1207, 1986.
- 1161 Ren, W., Yao, T., Yang, X., and Joswiak, D. R.: Implications of variations in δ_{A}^{18} O and δ D
- 1162 in precipitation at Madoi in the eastern Tibetan Plateau, Quatern Int, 313–314, 56-61,
- 1163 https://doi.org/10.1016/j.quaint.2013.05.026, 2013.
- Ren, W., Yao, T., Xie, S., and He, Y.: Controls on the stable isotopes in precipitation and surface waters across the southeastern Tibetan Plateau, Journal of Hydrology,
- 1166 545, 276-287, http://dx.doi.org/10.1016/j.jhydrol.2016.12.034, 2017.
- 1167 Rosenberry, D. O., Lewandowski, J., Meinikmann, K., and N ji tzmann, G.:
- 1168 Groundwater-the disregarded component in lake water and nutrient budgets. Part 1:
- effects of groundwater on hydrology, Hydrol Process, 29, 2895-2921, 2015.
- Roy, J. W., and Hayashi, M.: Groundwater exchange with two small alpine lakes in theCanadian Rockies, Hydrol Process, 22, 2838-2846, 2008.
- 1172 Schafran, G. C., and Driscoll, C. T.: Flow path-composition relationships for 1173 groundwater entering an acidic lake, Water Resour Res, 29, 145-154, 1993.
- 1174 Scheidegger, J. M., and Bense, V. F.: Impacts of glacially recharged groundwater flow
- systems on talik evolution, Journal of Geophysical Research: Earth Surface, 119,758-778, 10.1002/2013JF002894, 2014.
- 1177 Schlutz, F., and Lehmkuhl, F.: Holocene climatic change and the nomadic 1178 Anthropocene in Eastern Tibet: palynological and geomorphological results from the 1179 Nianbaoyeze Mountains, Quaternary Science Reviews, 28, 1449-1471, 2009
- 1179 Nianbaoyeze Mountains, Quaternary Science Reviews, 28, 1449-1471, 2009.
- Schmidt, A., Gibson, J. J., Santos, I. R., Schubert, M., Tattrie, K., and Weiss, H.: The
 contribution of groundwater discharge to the overall water budget of two typical
 Boreal lakes in Alberta/Canada estimated from a radon mass balance, Hydrol Earth
- 1183 Syst Sc, 14, 79-89, 2010.
- 1184 Sebok, E., Duque, C., Kazmierczak, J., Engesgaard, P., Nilsson, B., Karan, S., and

Formatted: Superscript

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font
Formatted: Font: (Default) Times New

1185 Frandsen, M.: High-resolution distributed temperature sensing to detect seasonal
1186 groundwater discharge into Lake Væng, Denmark, Water Resour Res, 49, 5355-5368,

1187 2013.

Shaw, R. D., and Prepas, E. E.: Groundwater-lake interactions: I. Accuracy of seepage
meter estimates of lake seepage, Journal of Hydrology, 119, 105-120,
http://dx.doi.org/10.1016/0022-1694(90)90037-X, 1990.

- Slaymaker, O.: Criteria to distinguish between periglacial, proglacial and paraglacialenvironments, Quaestiones Geographicae, 30, 85-94, 2011.
- Slomp, C. P., and Van Cappellen, P.: Nutrient inputs to the coastal ocean through
 submarine groundwater discharge: controls and potential impact, Journal of
 Hydrology, 295, 64-86, Doi 10.1016/J.Jhyfrol.2004.02.018, 2004.
- Smerdon, B., Mendoza, C., and Devito, K.: Simulations of fully coupled lakegroundwater exchange in a subhumid climate with an integrated hydrologic model,
 Water Resour Res, 43, 2007.
- 1199 Stets, E. G., Winter, T. C., Rosenberry, D. O., and Striegl, R. G.: Quantification of 1200 surface water and groundwater flows to open- and closed-basin lakes in a 1201 headwaters watershed using a descriptive oxygen stable isotope model, Water 1202 Resour Res, 46, 10.1029/2009WR007793, 2010.
- Tockner, K., Malard, F., Uehlinger, U., and Ward, J.: Nutrients and organic matter in a
 glacial river-floodplain system (Val Roseg, Switzerland), Limnol Oceanogr, 47, 266-277,
 2002.
- Valiela, I., Teal, J. M., Volkmann, S., Shafer, D., and Carpenter, E. J.: Nutrient and
 Particulate Fluxes in a Salt-Marsh Ecosystem Tidal Exchanges and Inputs by
 Precipitation and Groundwater, Limnol Oceanogr, 23, 798-812, 1978.
- Wang, C., Dong, Z., Qin, X., Zhang, J., Du, W., and Wu, J.: Glacier meltwater runoff
 process analysis using δD and δ18O isotope and chemistry at the remote Laohugou
 glacier basin in western Qilian Mountains, China, Journal of Geographical Sciences,
 26, 722-734, 2016a.
- 1213 Wang, J., Zhu, L., Wang, Y., Ju, J., Xie, M., and Daut, G.: Comparisons between the 1214 chemical compositions of lake water, inflowing river water, and lake sediment in Nam
- 1215 Co, central Tibetan Plateau, China and their controlling mechanisms, Journal of Great
- 1216 Lakes Research, 36, 587-595, 2010.
- Wang, R., Liu, Z., Jiang, L., Yao, Z., Wang, J., and Ju, J.: Comparison of surface waterchemistry and weathering effects of two lake basins in the Changtang Nature Reserve,
- 1219 China, Journal of Environmental Sciences, 41, 183-194,
- 1220 http://dx.doi.org/10.1016/j.jes.2015.03.016, 2016b.
- Wang, S.: Frozen ground and environment in the Zoige Plateau and its surroundingmountains (In Chinese with English abstract), Journal of Glaciology and Geocryology,

Formatted: Default Paragraph Font

1223	19, 39-46, 1997.	
1224	Warner, N. R., Christie, C. A., Jackson, R. B., and Vengosh, A.: Impacts of shale gas	
1225	wastewater disposal on water quality in western Pennsylvania, Environ Sci Technol,	
1226	47, 11849-11857, 2013.	
1227	Weynell, M., Wiechert, U., and Zhang, C.: Chemical and isotopic (O, H, C) composition	
1228	of surface waters in the catchment of Lake Donggi Cona (NW China) and implications	
1229	for paleoenvironmental reconstructions, Chemical Geology, 435, 92-107,	
1230	http://dx.doi.org/10.1016/j.chemgeo.2016.04.012, 2016.	Formatted: Default Paragraph Font
1231	White, D., Lapworth, D. J., Stuart, M. E., and Williams, P. J.: Hydrochemical profiles in	
1232	urban groundwater systems: New insights into contaminant sources and pathways in	
1233	the subsurface from legacy and emerging contaminants, Sci Total Environ, 562,	
1234	962-973, http://dx.doi.org/10.1016/j.scitotenv.2016.04.054, 2016.	Formatted: Default Paragraph Font
1235	Wilson, J., and Rocha, C.: A combined remote sensing and multi-tracer approach for	
1236	localising and assessing groundwater-lake interactions, International Journal of	
1237	Applied Earth Observation and Geoinformation, 44, 195-204, 2016.	
1238	Winter, T. C.: Relation of streams, lakes, and wetlands to groundwater flow systems,	
1239	Hydrogeol J, 7, 28-45, 1999.	
1240	Wischnewski, J., Herzschuh, U., Rühland, K. M., Bräuning, A., Mischke, S., Smol, J. P.,	
1241	and Wang, L.: Recent ecological responses to climate variability and human impacts	
1242	in the Nianbaoyeze Mountains (eastern Tibetan Plateau) inferred from pollen, diatom	
1243	and tree-ring data, Journal of paleolimnology, 51, 287-302, 2014.	
1244	Xin, W., Yongjian, D., Shiyin, L., Lianghong, J., Kunpeng, W., Zongli, J., and Wanqin, G.:	
1245	Changes of glacial lakes and implications in Tian Shan, central Asia, based on remote	
1246	sensing data from 1990 to 2010, Environmental Research Letters, 8, 044052, 2013.	
1247	Yang, K., Wu, H., Qin, J., Lin, C., Tang, W., and Chen, Y.: Recent climate changes over	
1248	the Tibetan Plateau and their impacts on energy and water cycle: A review, Global	
1249	and Planetary Change, 112, 79-91, 2014.	
1250	Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan, K., Zhao, H.,	
1251	Xu, B., Pu, J., Lu, A., Xiang, Y., Kattel, D. B., and Joswiak, D.: Different glacier status	
1252	with atmospheric circulations in Tibetan Plateau and surroundings, Nature Clim.	
1253	Change, 2, 663-667,	
1254	http://www.nature.com/nclimate/journal/v2/n9/abs/nclimate1580.html#supplemen	Formatted: Default Paragraph Font
1255	tary-information, 2012.	
1256	Yao, T., Masson-Delmotte, V., Gao, J., Yu, W., Yang, X., Risi, C., Sturm, C., Werner, M.,	
1257	Zhao, H., He, Y., Ren, W., Tian, L., Shi, C., and Hou, S.: A review of climatic controls on	
1258	$\delta 180$ in precipitation over the Tibetan Plateau: Observations and simulations,	
1259	Reviews of Geophysics, 51, 525-548, 10.1002/rog.20023, 2013.	
1260	Yao, Z., Wang, R., Liu, Z., Wu, S., and Jiang, L.: Spatial-temporal patterns of major ion	

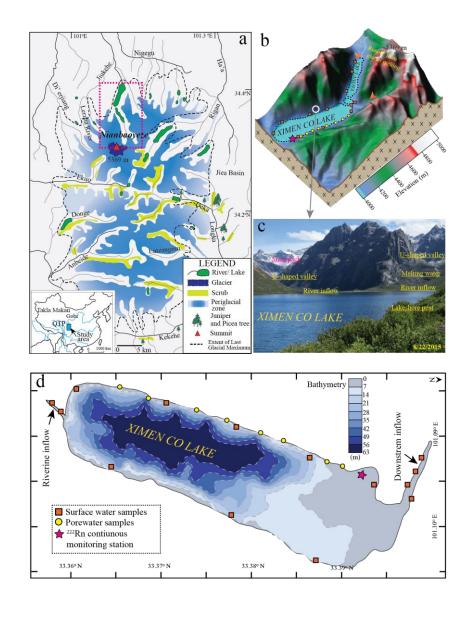
chemistry and its controlling factors in the Manasarovar Basin, Tibet, Journal ofGeographical Sciences, 25, 687-700, 10.1007/s11442-015-1196-5, 2015.

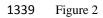
1263 Yuan, H., Liu, E., Shen, J., Zhou, H., Geng, Q., and An, S.: Characteristics and origins of

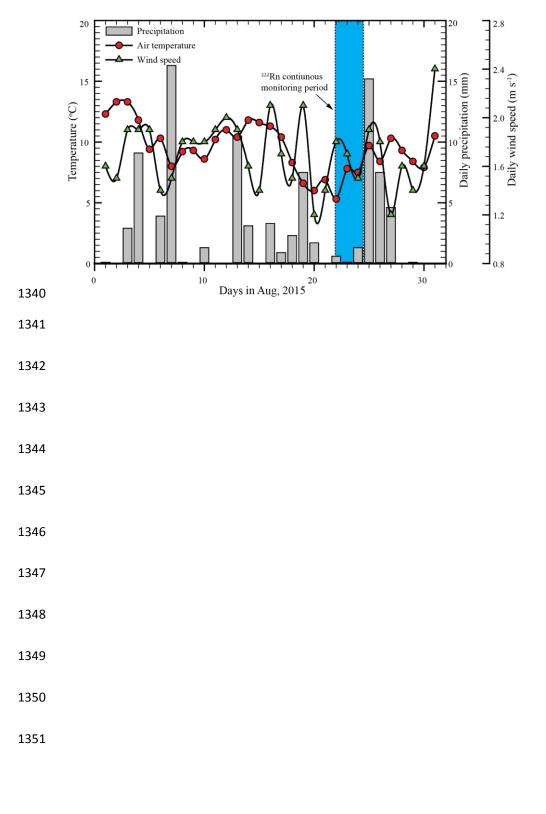
1264 heavy metals in sediments from Ximen Co Lake during summer monsoon season, a

1265 deep lake on the eastern Tibetan Plateau, J Geochem Explor, 136, 76-83,

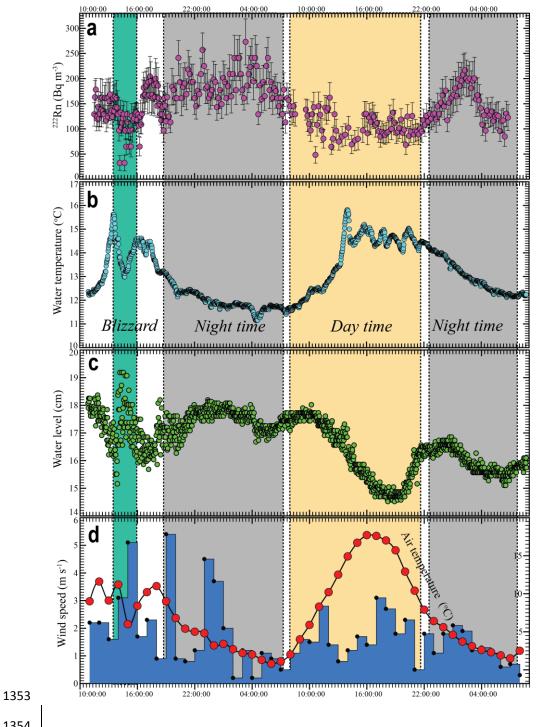
1266 http://dx.doi.org/10.1016/j.gexplo.2013.10.008, 2014.

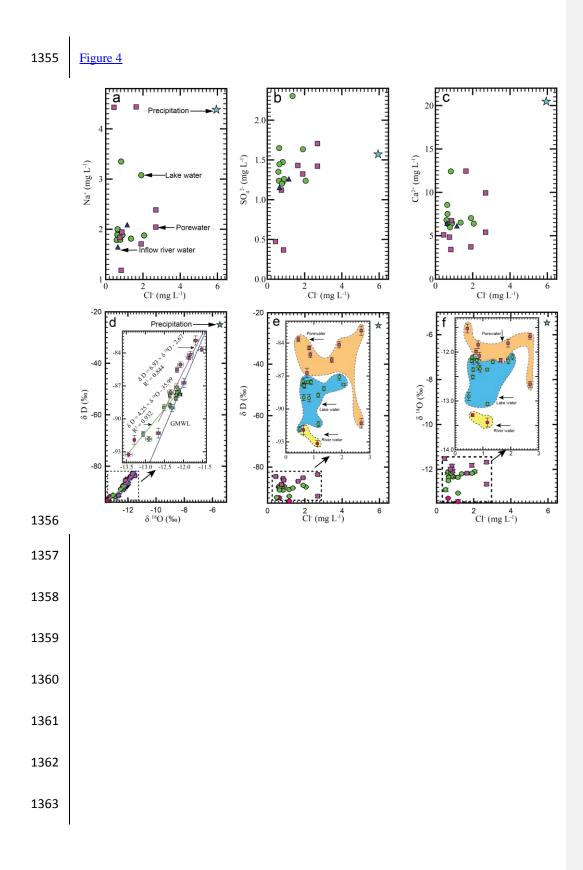

- Zhang, B., Wu, Y., Zhu, L., Wang, J., Li, J., and Chen, D.: Estimation and trend
 detection of water storage at Nam Co Lake, central Tibetan Plateau, Journal of
 Hydrology, 405, 161-170, 2011.
- 1270 Zhang, C., and Mischke, S.: A Lateglacial and Holocene lake record from the
 1271 Nianbaoyeze Mountains and inferences of lake, glacier and climate evolution on the
 1272 eastern Tibetan Plateau, Quaternary Science Reviews, 28, 1970-1983, 2009.
- 1273 Zhang, G., Yao, T., Xie, H., Kang, S., and Lei, Y.: Increased mass over the Tibetan
- 1274 Plateau: from lakes or glaciers?, Geophysical Research Letters, 40, 2125-2130, 2013.
- 1275 Zhang, G., Yao, T., Piao, S., Bolch, T., Xie, H., Chen, D., Gao, Y., O'Reilly, C. M., Shum, C.,
- and Yang, K.: Extensive and drastically different alpine lake changes on Asia's high
 plateaus during the past four decades, Geophysical Research Letters, 44, 252-260,
 2017a.
- 1279 Zhang, G., Yao, T., Shum, C., Yi, S., Yang, K., Xie, H., Feng, W., Bolch, T., Wang, L., and
 1280 Behrangi, A.: Lake volume and groundwater storage variations in Tibetan Plateau's
 1281 endorheic basin, Geophysical Research Letters, 44, 5550-5560, 2017b.
- Zhang, Y., Liu, C., Tang, Y., and Yang, Y.: Trends in pan evaporation and reference and
 actual evapotranspiration across the Tibetan Plateau, Journal of Geophysical
 Research: Atmospheres (1984–2012), 112, 10.1029/2006JD008161, 2007.
- Zhou, S., Kang, S., Chen, F., and Joswiak, D. R.: Water balance observations reveal
 significant subsurface water seepage from Lake Nam Co, south-central Tibetan
 Plateau, Journal of Hydrology, 491, 89-99, 2013.
- I288 Zlotnik, V. A., Olaguera, F., and Ong, J. B.: An approach to assessment of flow regimes
 of groundwater-dominated lakes in arid environments, Journal of hydrology, 371,
 I290 22-30, 2009.
- I291 Zlotnik, V. A., Robinson, N. I., and Simmons, C. T.: Salinity dynamics of discharge lakesin dune environments: Conceptual model, Water Resour Res, 46, 2010.
- 1293 Zongxing, L., Qi, F., Wei, L., Tingting, W., Xiaoyan, G., Zongjie, L., Yan, G., Yanhui, P.,
- Rui, G., and Bing, J.: The stable isotope evolution in Shiyi glacier system during the ablation period in the north of Tibetan Plateau, China, Quatern Int, 380, 262-271, 2015.
- 1297

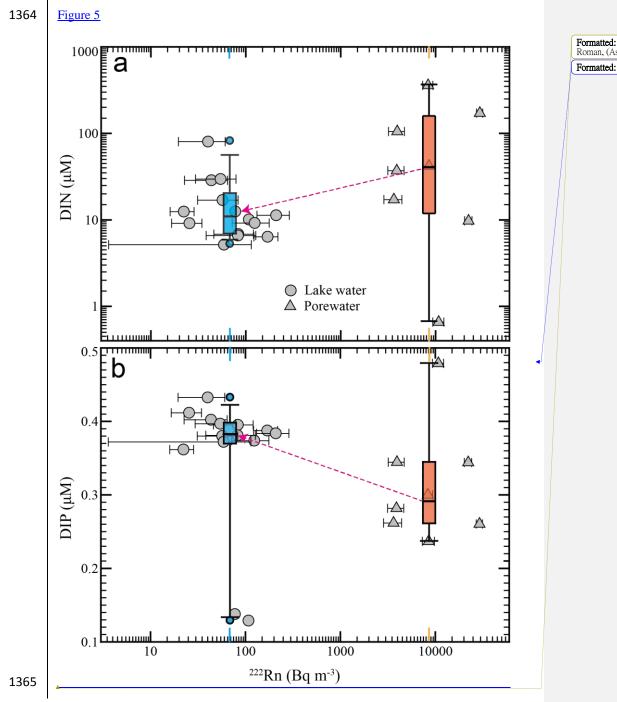

1298	Figure captions
1299	
1300	Figure 1 The geological and topographic map of the Yellow River Source Region,
1301	Nianbaoyeze glacial mountains (a), and the sampling settings of the Ximen Co Lake
1302	(b), with the bathymetry map of the lake (d). (c) Photograph of the Ximen Co Lake
1303	and the surrounding geomorphic settings looking northeast direction on 22 Aug 2015,
1304	showing the late-laying snowpack in the U-shaped valleys of the north part of
1305	Nianbaoyeze MT.
1306	
1307	Figure 2 The climatological parameters (wind speed, air temperature, and
1308	precipitation) in the Aug, 2015 recorded from Jiuzhi weather station.
1309	
1310	Figure 3 The temporal distributions of ²²² Rn (a), water temperature (b), water level
1311	fluctuation recorded by the divers (c), and hourly wind speed and air temperature
1312	recorded in Jiuzhi weather station (d).
1313	
1314	Figure 4 The cross plots of Cl ⁻ versus Na ⁺ (a), $SO_4^{2^-}$ versus Cl ⁻ (b), Ca ²⁺ versus Cl ⁻
1315	(c); The relations of 2 H versus 18 O (d), Cl ⁻ versus 2 H (e), and Cl ⁻ versus 18 O (f).
1316	
1317	Figure 5 Cross plots of ²²² Rn versus DIN (a) and DIP (b).
1318	
1319	Figure 6 The conceptual model of ²²² Rn transient model (a), and three endmember
1320	model (b).
1321	
1322	Figure 7 The results of the final LGD derived from ²²² Rn transient model.
1323	
1324	Figure 8 The hydrologic partition of the proglacial lake of Ximen CO (a), and the
1325	budgets of DIN (b) and DIP (c).
1220	
1326	
4007	
1327	
1220	
1328	
1270	
1329	
1330	
T000	

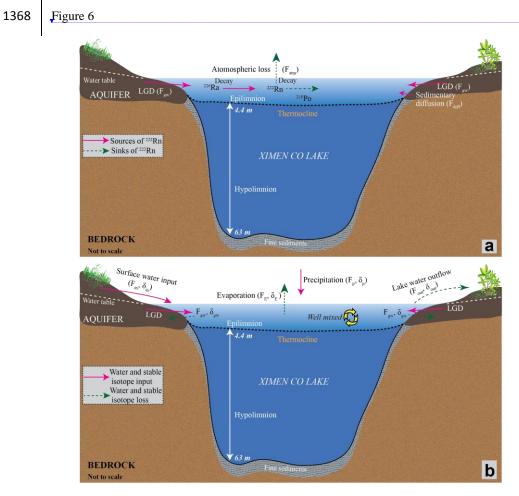

Deleted: _

.

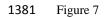


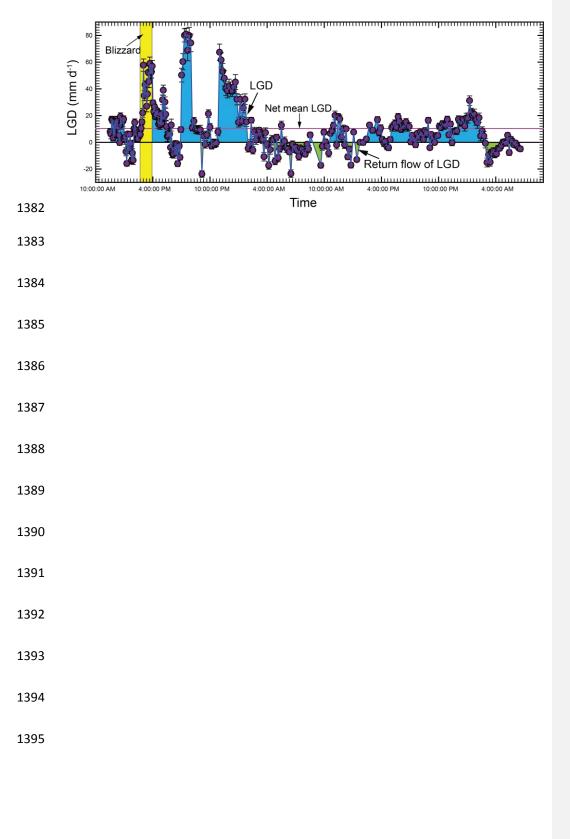


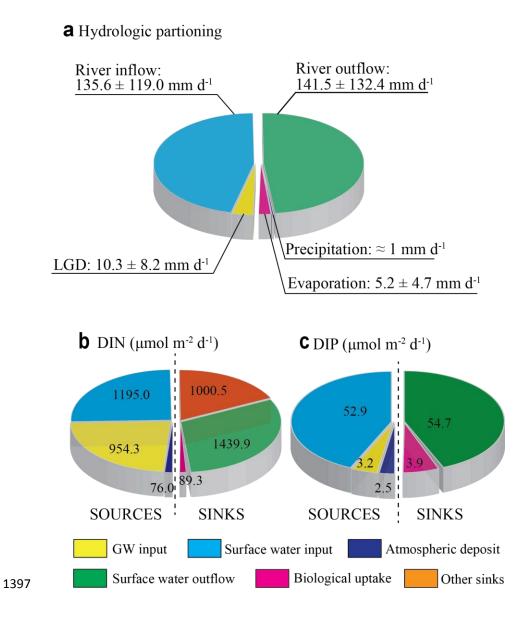




Formatted: Font: (Default) Times New Roman, (Asian) 宋体, 11 pt Formatted: Indent: Left: 0 cm, Hanging: 1


1366


1367


Deleted: .

- •
- -

1396 Figure 8

Parameters	Units or values	Estimated Uncertainty (%)	Evaluation
Wind speed (ω_{10})	$0.2 - 5.4 \text{ m s}^{-1}$	n.a	From Jiuzhi weather stations
Water-air temperature	11.2 - 15.6 °C	n.a	Recorded with probe in the chamber; sensitive to temperature results
Molecular diffusion of ²²² Rn in water (D_m)	9.2×10^{-6} - 1.0×10^{-5} cm ² s ⁻¹	n.a	1.16×10^{-6} at 20 °C; adjustable for temperature
Molecular diffusion of 222 Rn in sediments (D_s)	2.2×10^{-6} - 2.5×10^{-5} cm ² s ⁻¹	n.a	Adjusted for temperature, sediment porosity
Dynamic viscosity (μ)	$1.1 \times 10^{-3} - 1.3 \times 10^{-3} \text{cm}^2 \text{ s}^{-1}$	n.a	Calculated based on water temperature, density and salinity
Schmidt number (S_c)	1078.6 - 1371.6 [-]	n.a	Calculated as the ratio of v to D_m
Water depth (H)	4.4 m	n.a	Epilimnion depth of Ximen Co Lake
Decay constant 222 Rn (λ_{222})	$0.186 d^{-1}$	n.a	Constant
$a = 1 + 1 + \frac{222}{2} a = 2$	11000 1000 P - 3	8 site s	Measured; final result for water flux inversely proportional to ²²² Rn
Groundwater endmember 222 Rn (C_{gw})	$11200 \pm 1200 \text{ Bq m}^{-3}$	dependantdependent	for groundwater concentration
Lake water endmember 222 Rn (C_l)	21.6- 418.8 Bq m ⁻³	15-25%	Measured with RAD 7 AQUA
Ambient air 222Rn (Cair)	$1.51 \pm 0.97 \text{ Bq m}^{-3}$	<u>15-25 %</u>	Measured with RAD 7 under open loop conditions
Atmospheric ²²² Rn (C_a)	$1.5 \pm 1.0 \text{ Bq m}^{-3}$	20-25%	Measured or assumed value, model not sensitive to radon in air variation
K _{air/water}	0.29 - 0.33 [-]	n.a	Calculated based on temperature in the chamber and salinity in lake water
Porosity <i>n</i>	0.31	n.a	Assumed based on literatures
Tortuosity θ	2.05	n.a	Calculated based on porosity
Piston velocity (κ)	$0.004 - 1.11 \text{ m d}^{-1}$	20-25%	Calculated from Equation 3 in supplementary information
²²⁶ Ra concentration in lake waters (C_{226Ra})	0.01 Bq m ⁻³	≈10%	Measured with RAD7
Diffusive flux of 222 Rn (F_{diff})	$0.68 - 213.5 \text{ Bq m}^{-2} \text{ d}^{-1}$	n.a	Calculated from Equation 9 in supplementary information
Atmospheric flux of 222 Rn (F_{atm})	$0.7 - 213.5 \text{ Bq m}^{-2} \text{ d}^{-1}$	n.a	Calculated from Equation 1 in supplementary information
Groundwater flux of 222 Rn (F_{gw})	14.7 - 349.8 Bq m ⁻² d ⁻¹	n.a	Calculated from Equation 1
Inventory of 222 Rn (I)	Bq m ⁻²	n.a	Measured with RAD7 AQUA
Groundwater discharge (Q_{gw})	$10.3 \pm 8.2 (3.5-38.6) \text{ mm d}^{-1}$	n.a	Calculated from Equation 1

Input parameter	Description	Values (using ¹⁸ O as a tracer)	Parametric sources
h	Relatively humidity	0.63	Measured by the humidity meter
$T(^{\mathrm{o}}\mathrm{C})$	Water temperature	15.66	Monitored with divers
$\delta_{surface}$ (¹⁸ O) ‰	Surface water isotopic compositions	-12.45	Average value of surface inflow samples
$\delta_{gw}(^{18}\text{O})$ ‰	Groundwater isotopic compositions	-11.97	Average value of porewater samples
δ_L (¹⁸ O) ‰	Lake water isotopic compositions	-12.54	Average value of Ximen Co Lake water samples
F_{gw} (mm/d)	LGD rates	14.18	Calculated based on ²²² Rn mass balance model
ε^* (¹⁸ O) ‰	Effective equilibrium isotopic enrichment factor	10.12	Equations 13-14 in supplementary information
C_k (¹⁸ O) ‰	Kinetic constant for ¹⁸ O	14.2	Constants based on evaporating experiment
$\varepsilon_k (^{18}\mathrm{O})$ ‰	Kinetic enrichment factor	5.2	From Equation 15 in supplementary information
ε (¹⁸ O) ‰	Total isotopic enrichment factor	15.33	The sum of ε^* and C_k
$\alpha^{*}(^{18}\text{O})$ ‰	Effective isotopic equilibrium factor	1.01	$\alpha^{*=1+\epsilon^{*}}$
$\delta_a (^{18}\mathrm{O})$ ‰	Isotopic composition of ambient air	-23.12	Estimated with δ_{in} and δ_a
δ_{in} (¹⁸ O) ‰	Isotopic composition of surface inflow water	-13.41	Average value of surface inflow water
δ_E (¹⁸ O) ‰	Isotopic compositions of evaporating vapor	-35.1	From Equation 12 in supplementary information
$[Cl^{-}]_{in}$ (mgL ⁻¹)	Chloride concentrations in surface inflow water	0.91	Filed data
$[Cl^{-}]_{L}(mgL^{-1})$	Chloride concentrations in lake water	1.02	Filed data
$[Cl^{-}]_{gw}(mgL^{-1})$	Chloride concentrations in groundwater	1.48	Filed data

Table 2 Input parameters for the three endmember model of Ximen Co Lake