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Abstract: Multiple-point statistics (MPS) has shown promise in representing complicated subsurface structures. For a
practical three-dimensional (3-D) application, however, one of the critical issues is the difficulty to obtain a credible 3-D
training image. However, bidimensional (2-D) training images are often available because established workflows exist to
derive 2-D sections from scattered boreholes and/or other samples. In this work, we propose a locality-based MPS approach
to reconstruct 3-D geological models on the basis of such 2-D cross-sections, making 3-D training images unnecessary. Only
several local training sub-sections closer to the central uninformed node are used in the MPS simulation. The main
advantages of this partitioned search strategy are the high computational efficiency and a relaxation of the stationarity
assumption. We embed this strategy into a standard MPS framework. Two probability aggregation formulas and their
combinations are used to assemble the probability density functions (pdfs) from different sub-sections. Moreover, a novel
strategy is adopted to capture more stable pdfs, where the distances between patterns and flexible neighborhoods are
integrated on several multiple grids. A series of sensitivity analyses demonstrate the stability of the proposed approach.
Several hydrogeological 3-D application examples illustrate the applicability of our approach in reproducing complex
geological features. The results, in comparison with previous MPS methods, show better performance in portraying
anisotropy characteristics and in CPU cost.

Keywords: Three-dimensional reconstruction, Multiple-point statistics, Locality, Cross-sections, Non-stationarity,

Probability aggregation

1. Introduction

3-D characterization of geological architectures plays a crucial role in the quantification of subsurface water, oil and ore
resources (Chen et al., 2017; Foged et al., 2014; Hoffman and Caers, 2007; Jackson et al., 2015; Kessler et al., 2013; Raiber
et al., 2012; Wambeke and Benndorf, 2016). Heterogeneity and connectivity of sedimentary reservoirs exert controls on
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underground fluid transport (Gaud et al., 2004; Renard and Allard, 2013; Weissmann et al., 1999) which is vital to quantify
and forecast the formation and distribution of subsurface resources. For a practical 3-D application, however, these attributes
are notoriously difficult to characterize and model since the informed data we can acquire are very sparse. Two-point
geostatistics (Goovaerts, 1998; Pyrcz and Deutsch, 2014; Ritzi, 2000) and object-based methods (Deutsch and Tran, 2002;
Maharaja, 2008; Pyrcz et al., 2009) are difficult to reproduce anisotropic features and connectivity patterns properly (Heinz
et al., 2003; Klise et al., 2009; Knudby and Carrera, 2005; Vassena et al., 2010) due to the lack of high-order statistics and
the difficulty in parameterization. To overcome the abovementioned limitations, multiple-point statistics (MPS) was
developed over the recent years and has shown prospects in modeling subsurface anisotropic structures, such as porous
media, hydrofacies, reservoir, and other sedimentary structures (Dell Arciprete et al., 2012; Hajizadeh et al., 2011; Hu and
Chugunova, 2008; Oriani et al., 2014; Pirot et al., 2015; Wu et al., 2006).

A first MPS approach was suggested by Guardiano and Srivastava (1993) which is designed to reproduce
heterogeneous geometries by extracting spatial patterns from training images directly rather than through variograms. A
training image is a conceptual model derived from observations, and it bears a crucial role in MPS-based stochastic
simulation. The first efficient implementation of MPS was developed by Strebelle (2002) on the basis of a tree structure.
Several attempts have thereafter focused on improving MPS algorithms (Arpat and Caers, 2007; Caers, 2001; Mariethoz et
al., 2010; Straubhaar et al., 2011; Tahmasebi et al., 2012; Wu et al., 2008; Yang et al., 2016; Zhang et al., 2006). With these
methods, training images are scanned with a fixed search template and the MPS patterns are stored in a tree or a list data
structure. An important difficulty lies in choosing the size of data template to best reproduce large-scale structures (Strebelle,
2002). The larger the size of the data event, the fewer replicates of this data event will be found over the training images for
inferring the corresponding conditional probability density function (cpdf). However, when the size of data template is too
small, large scale structures of the training image cannot be reproduced (Mariethoz et al., 2010). In addition, a search
template including too many nodes can lead to storing a large number of patterns, increasing CPU cost and memory
consumption. The multiple-grids concept (Tran, 1994; Strebelle, 2002) mitigates the above-mentioned limitations, but they
still present due to the rigidity of data templates and multiple grids. A more straightforward MPS method, Direct Sampling
(DS), was proposed by Mariethoz et al. (2010) where the high order statistics are sampled directly from the training image
without storing patterns and without the need of multiple grids. One of the main advantages of this approach is that several
types of distances between patterns can be considered, making it possible to simulate continuous variables, or even
multivariate simulation. As an approximation, pattern distance was used to express the matching degree between the
neighborhood of a node and a data event in the training image (Chugunova and Hu, 2008; Mariethoz et al., 2010, 2015).

No matter which MPS algorithm is used, a suitable training image is the fundamental requirement. Although such
algorithms are gaining popularity in hydrogeological applications (Hermans et al., 2015; He et al., 2014; Hgyer et al., 2017;
Hu and Chugunova, 2008; Huysmans et al., 2014; Jha et al., 2014; Mahmud et al., 2015), they still suffer from one vital
limitation: the lack of training images, especially for 3-D situations. Object-based or process-based techniques are one
possibility to build 3-D training images (de Marsily et al., 2005; de Vries et al., 2009; Feyen and Caers, 2004; Maharaja,
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2008; Pyrcz et al., 2009). Besides inherent limitations in the parameterization of these algorithms, it is also challenging to
reproduce the various aspects of geological geometries from a high-resolution outcrop map, or even from insufficient
borehole data (Comunian et al., 2014; Pirot et al., 2015). To overcome this difficulty of obtaining 3-D training images,
scholars have attempted to use low-dimensional data (e.g. boreholes, cross-sections, outcrop and remote sensing images) to
reconstruct 3-D models directly instead of a training image in the entire 3-D domain (Bayer et al., 2011; Comunian et al.,
2011; Hu et al., 2011; Weissmann et al., 2015). In particular, a reconstruction method of partial data sets was proposed by
Mariethoz and Renard (2010) by using and adapting the DS algorithm. However, large-scale 3-D models contain millions of
nodes, thus a very large number of scan attempts will be carried out for each simulated node by using this method, especially
in early stages of a simulation due to the sparse known data. Therefore, this method still suffers from a severe computational
burden for fine 3-D applications. Moreover, it assumes stationarity of the modeled domain, which is not often the case in
practice. Comunian et al. (2012) proposed an approach to tackle the lack of a full 3-D training image using sequential 2-D
simulations with conditioning data (s2Dcd): a 3-D domain is filled by preserving an overall coherence due to that a series of
2-D simulations performed using 2-D training images along orthogonal directions. However, this strategy is difficult to
characterize the connectivity of structures in all directions of a 3-D domain, because each 2-D simulation only considers the
high-order statistics in this direction. Moreover, it also suffers from the limitation of nonstationarity of geological
phenomena due to the global search in a 2-D plane. To integrate the benefits of the both approaches, Gueting et al. (2017)
proposed a new combination of the two existing approaches. The combination is achieved by starting with the sequential
two-dimensional approach (Comunian et al., 2012), and then switching to the three-dimensional reconstruction approach
(Mariethoz and Renard, 2010). However, the above-mentioned limitations of the two approaches still remain because this
combination is an optimization of the workflow, and does not substantially improve the methods. To combine the cpdfs from
different directions, several probability aggregation methods were tested and discussed (Allard et al., 2012; Bordley, 1982;
Genest and Zidek, 1986; Journel, 2002; Krishnan, 2008; Mariethoz et al., 2009; Stone, 1961). Other 3-D applications to
represent geological structures using MPS and partial data include filling in the shadow zone of a 3-D seismic cube (Wu et
al., 2008), generating small scale 3-D models of porous media (Okabe and Blunt, 2007) and building a 3-D training image
with digital outcrop data (Pickel et al., 2015).

From another perspective, using very common workflows, geologists can obtain 2-D geological maps or sections from
scattered boreholes and/or other samples by studying analogs (Caumon et al., 2009). With increasingly sophisticated data
acquisition methods, 2-D high-resolution images can be acquired. For example, large-scale outcrop maps can be captured by
using terrestrial lidar (Dai et al., 2005; Heinz et al., 2003; Nichols et al., 2011; Pickel et al., 2015; Zappa et al., 2006), and
fine-scale pore images can be derived from progressive imaging techniques (Zhang et al., 2010). Therefore, there are many
ways to acquire low-dimensional data for reconstructing a full 3-D model. In practice, however, these works using real
geological analogs or sections as training images still face significant non-stationarity due to the heterogeneity of geological

phenomena and processes (Comunian, 2011; de Vries et al., 2009).
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To address the insufficient access to a 3-D training image and the challenge of non-stationarity, we present a new
strategy to reconstruct 3-D geological heterogeneities using 2-D cross-sections instead of an entire training image. Compared
to previous MPS implementations relying on partial data, our proposal is to use only several local sub-sections closer to the
simulated node as training images, rather than full planes perpendicular to the x, y and z directions (Comunian et al., 2012)
or searching in the entire 3-D domain (Mariethoz and Renard, 2010). Against to the filling by a series of 2-D simulations in
s2Dcd (Comunian et al., 2012), a random simulation path containing all uninformed locations is used so that MP statistics in
a 3-D domain are captured. The local sub-sections are able to offer more coherent and reliable statistics since they are
spatially closer to the simulated node which is going to be simulated. Moreover, the original cross-sections are divided into
many sub-sections according to their spatial relationships, thus non-stationarity is reduced since it is restricted into a local
cube consisting of six or fewer sub-sections. In principle, our proposal can be applied into any multiple-point stochastic
simulation method. In this work, we embed this strategy into a standard MPS framework called ENESIM (Guardiano and
Srivastava, 1993). The blocking strategy proposed in this work can significantly reduce the search space of training images,
which makes it possible to get a 3-D reconstruction using ENESIM for a reasonable CPU cost. As with DS, in our method
MP statistics are not stored and the neighborhood is flexible. To integrate the patterns from different sub-sections, two
probability aggregation formulas and their combinations are used. As an approximation of the matching degree between
neighborhoods and data events, pattern distances are used to enhance the stability of cpdfs. Furthermore, we adapt multiple-
grids into our approach, where the geometries of data templates are not fixed for grids of different scales. Besides cross-
sections, any other scattered samples can also be involved into the proposal as conditional data (hard data).

The remainder of this paper is organized as follows. Section 2 gives background information used in the following
sections. Section 3 presents the main concepts of the locality-based 3-D MPS reconstruction using 2-D cross-sections and the
detailed steps of the proposed approach. Section 4 shows a parameter sensitivity analysis and the performance comparison
with other MPS algorithms. Section 5 gives a synthetic example in hydrogeology to illustrate the effectiveness of our
approach when facing the real geological field data. The final section discusses some concluding remarks and ideas for
future work.

2. Background Information
2.1. Pattern Distance

A pattern distance d{N, , N, } is an approximation of the dissimilarity between patterns, which is used to compare

the neighborhood of a node currently simulated with a data event in the training image (Mariethoz et al., 2010). Approximate

matches are accepted by using a distance threshold t. Namely for a data event N, from the simulation grid, when the

condition d{N, ,N,} <t (t > 0) is met, the pattern N, from the training image will be used to update the current cpdf.

For a categorical variable, the distance can be formulated as:
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For a non-stationary training image from an actual geological phenomenon, repeatability of spatial patterns could be
weak so that it is hard to acquire a stable cpdf. Therefore, we adopt a patterns distance with a threshold as an approximation
to sample more patterns and get a more stable cpdf.

2.2. Probability Aggregation

Allard et al. (2012) presented a comprehensive literature review for aggregating probability distributions. These can be
divided into additive methods and multiplicative methods according to their mathematical properties. Linear Pooling formula
(Stone, 1961) is a widely used method (for example, it was used by Okabe and Blunt, 2007) based on the addition of
probabilities. It is appealing because of its flexibility and simplicity. Multiplicative methods include Bordley/Tau models and
log-linear pooling (based on odd ratios) (Bordley, 1982; Journel, 2002; Genest and Zidek, 1986).

2.2.1. Linear Pooling Formula

The linear pooling formula, proposed by Stone (1961), probably is the most intuitive way of aggregating the

probabilities P,,..., P, of anevent A.
n
P,(A) =Y WPR(A) with w,..,w, eR". )
i=1
In this formula, w; are positive weights and their sum must equal one to obtain a global probability P, [0,1].

2.2.2. Log-Linear Pooling Formula

The log-linear pooling formula is a linear operator of the logarithms of the probabilities (Genest and Zidek, 1986). If a

prior probability P;j(A) must be included, it is written as:
1*2?_1Wi L W,
Po(A) oc Ry(A) =" TR(A)"™. (3)
i=1

n
Zi:O W, = 1 is needed to verify external Bayesianity. There are no other constraints whatsoever on the weights W, ,

i=0,..,n. The sum S = Zin:lwi plays an important role in this formula. If S =1, the prior probability P, is filtered

out because W, = 0. Otherwise, if S >1, the prior probability has a negative weight and P, is further away from P, than
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other probabilities. Conversely, if S <1, P, is always closer to P,. Therefore, we can adjust the influence of the prior

probability P, on the aggregated result P, by changing the value of S .

2.3. Multidimensional Scaling and Kernel Smoothing

Tan et al. (2014) proposed a distance-based approach to evaluate the quality of MP simulation outcomes where the
Jensen-Shannon (JS) divergence is used to depict the dissimilarity of MP histograms as a quantitative metric. The
information in the dissimilarity of MP histograms can be visualized using multidimensional scaling (MDS) (Caers, 2011).
MDS approximates these distances by a lower-dimensional Euclidean distance in Cartesian space, which facilitates the
visualization of the dissimilarity of MP histograms.

Hermans et al. (2015) used an adaptive kernel smoothing (see Park et al., 2013) to estimate the probability density of

the data variable for each kind of realizations f (Ref*|R;) in the d-dimension space inferred from MDS. This allows

estimating the probability density distribution of the realizations around the reference. For each kind of realizations, its

probability relative to the reference P(R, | Ref) can be calculated by using Bayes’ rule:

f (Ref*|R,)P(R,)

P(R,; |Ref) ~ P(R,; | Ref*) =
Y. f(Ref*|R)P(R,)

(4)

3. Methodology
3.1. Local Search Strategy of 3-D MPS Reconstruction

In the above-mentioned MPS methods using partial data whether searching an entire 3-D domain or complete sections,
any locations of the training images are scanned even they are far away from the simulated node so that one spatial pattern
will be carried to a distant position. Therefore, the use of these methods is restricted to stationary training images, which are
in practice seldom available. In this work, we propose a local search strategy that allows palliating this problem, by taking
into account the spatial relationships of the real geological cross-sections in a given 3-D domain.

As illustrated in Figure 1, a 3-D domain is segmented into nine small blocks by six cross-sections from three orthogonal
directions where there are two sections in each direction. Every local block is surrounded by n local sub-sections
(1<n<6). It should be noted that, sometimes, local blocks are not closed (i.e. the surrounding sub-sections are less than
six) (Figure 1b); and it is also allowed sections along some planes are missing; however, at least one section should be
provided. For each unknown node in the local block (e.g. the gray cubes in Figure 1c), the MP statistics are captured from
the surrounding sub-sections rather than from the entire sections. Namely, there are n corresponding training images for

each simulated node. These local sub-sections are the parts of the global cross-sections which are closer to the uninformed



nodes in the local block, thus they are more likely to be regarded as statistically representative. Data events are selected from
the informed nodes (hard data) on three planes parallel to the sub-sections and through the current simulated node in three
orthogonal directions by using a flexible neighborhood.

5 Six cross-sections (two sections in each direction) Two local domains Three sub-sections
Figure 1. Local sub-sections divided by their spatial relationships and the corresponding training images. (a) Six cross-sections in a 3-D

domain: two sections along each direction; (b) two local domains: a central cube and a corner cube; (c) corresponding sub-sections
(training images).
Another important point is related to handling of the search window when scanning a sub-section. Here, we allow all
10 locations of a sub-section to be visited by the central node of a data event. The neighbor nodes of the data event can be
placed in other adjacent sub-sections when matching with the training images. As shown in Figure 2, the area inside the blue
line is the search window. If only the nodes of the data event are from the sub-section itself (case 1 on the figure), the
training patterns are seriously reduced. We adopt a search strategy where neighbor nodes can be searched in the neighboring
sub-sections (case 2 on the figure). Its main advantages are the coherence of the spatial patterns in a realization and the larger
15 number of training patterns available. In addition, the size of the data events is constrained by the boundary of the global
section, as illustrated in Mariethoz et al. (2010).
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Figure 2. Search window in sub-sections.

If more cross-sections are available, a finer spatial subdivision can be used. In this case, the size of each sub-section is
smaller and the computational cost is reduced significantly. However, extremely small training images cannot offer enough
spatial patterns, thus a minimal sub-section size has to be considered. In practice, if there are many sections in each direction,

a feasible solution is to select several ones as the references and others are used as conditioning data only.

3.2. Strategy for Aggregating the pdfs from Local Sub-Sections

As an additive aggregation method, the linear pooling formula corresponds to a mixture model, which is related to the

union of events and to the logical operator OR (Allard et al., 2012). This method is thus used to unite several independent

probabilities into a global term P, . The log-linear pooling formula, based on the multiplication of probabilities, is related to

the intersection of events and to the logical operator AND. Therefore, we usually use such a method to aggregate the
probabilities with significant correlation to acquire a conjunction probability.

In this study, n pdfs (1< N <6) are computed from the surrounding local sub-sections (Figure 1). For the illustrative
case proposed here, a local 3-D domain is surrounded by six sub-sections, and six pdfs are being aggregated. There are two
parallel sub-sections (training images) in each direction. An additive aggregation operator is more appropriate to combine
such two disjunctive probability distributions, since these two parallel sub-sections often contain similar patterns, and we just
expect a larger number of samples and thus more robust pdf by uniting both. Then, three orthogonal pdfs are obtained. We
then join these pdfs containing the statistics from different directions with obvious anisotropic features. This scenario needs a
multiplicative method to combine the orthogonal pdfs so as to retain the features in all directions. In summary, an optimal
probability aggregation strategy is proposed by the procedure described below:

1. Aggregate the pdfs collected along the same direction for parallel sub-sections using the linear pooling formula

described in section 2.2.1.
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2. Aggregate the orthogonal pdfs from the above step by using the log-linear pooling formula described in section
2.2.2.
Of course, the probability aggregation step is not required when for step 1 there is only one sub-section along a given

plane, and for step 2 the pdf that along some direction are missing are simply not included in the aggregation process. For the

step 1, the weights w, and w, are related to the distances between the current location and the two parallel sub-sections d,

and d, s, and computed as:

_wd, 14,
"“Ya, +vd, "7 7d 1 vd, ©)

Such parameterization ensures that within-block trends are accounted for.

For the step 2, an influence of the prior probability is desired to tune the other orthogonal pdfs. Thus, we usually use

0<w, <1,andset w,(i =1,...,n) equal, i.e. w, = (1—w,)/n, where n is the number of pdfs to be aggregated. However,
the weights w, (i =1,...,n) can also change, for example, they can vary at each simulation step as described in Comunian et

al. (2012), according to the contributions of the different training images, while sum still respects the condition

n
oW =1,

3.3. Flexible Search Template on Multiple Grids

When large neighborhoods are considered, it is more difficult to find matching data events in the training image and
thus a larger distance threshold t is required to obtain a sufficient number of samples for an acceptable cpdf. This can lead
to degrading small-scale features or the removal of categories that have a low proportion. To address this issue, we propose a
novel implementation of multiple grids where the search template is flexible and the distance threshold t varies according to
the radius of the neighborhood.

As illustrated in Figure 3, an example of multiple grids with three levels is used to show the relationship between
neighborhoods, search radius R and distance threshold t on different grids. A neighborhood is identified by the informed
and/or simulated nodes located in the circle with a radius R and the current node (the gray nodes in Figure 3) as a central.

The initial radius R, and distance threshold t, for the first grid are assigned as the input parameters. The radius R linearly

reduces to 1 from the first to the last grid, and the threshold t similarly varies from 1 to 0. The neighboring nodes (hard data
and previously simulated nodes) around the central node on the current grid are selected to build a data event according to
the radius R and the maximum number of points in the neighborhood. Therefore, a large data event is divided into several
small parts placed on the different grids which results in smaller neighborhoods on each grid. An acceptable threshold T is
thus assigned to each neighborhood. For the last grid, the radius is reduced to 1 and at most there are eight nodes in a

neighborhood. This strategy considers that small data events located on the last grid are much more repetitive (thus easier to

9



find) than the large data events of the first grid. Figure 3 shows the flexible use of multiple grids on one plan through the
current node. In the local search strategy proposed in this work, three planes through the current simulated node in three
orthogonal directions are considered. Thus the same strategy will be applied on other two planes.
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Figure 3: An example of multiple grids and the corresponding neighborhoods, search radius R and distance threshold T .

3.4. Step-by-Step Algorithm Using the Local Search Strategy

Based on the strategies proposed in the above sections, the detailed steps of our simulation algorithm proceed as

illustrated in Algorithm 1.

Algorithm 1: Reconstruct 3-D geological structures using 2-D cross-sections

1 Load data files, assign all points of the training data (cross-sections and other samples) into the SG.
2 Record the indexes of the sections in X, y, z directions and compute the prior proportions P, of the local domains.

3 For each multiple grid §:

4 Define a random simulation path for grid § according to the remaining nodes.

5 Do until all uninformed nodes in § have been visited:

6 Get the index of current node X, and identify its neighborhood N, .

7 Obtain the indexes of the closest sections around X : {X,, X, }, {Y,, Yo} {20, 2}

8 Randomly scan the sub-sections (TIs) and get the corresponding cpdfs (see algorithm 2).
9

Get the prior proportion p of the local domain according to the location of the node X.

10



10 Combine the cpdfs and P into a joint pdf using the strategy presented in section 3.2.
11 Randomly draw a value from the final pdf, and assign it to location X.

12 End

13 End

As mentioned above, we capture the MP statistics from several sub-sections of a local domain. Thus, the corresponding
prior proportion should also be computed on the basis of these surrounding sub-sections (step 2). Obviously, step 8 is the
most important procedure in our simulation algorithm, and the idea is inspired from ENESIM (Guardiano and Srivastava,

5 1993) and DS (Mariethoz et al., 2010). The main procedure is demonstrated in Algorithm 2.

Algorithm 2: Scan a local sub-section (training image) in one certain direction

Input: X: current simulation location; id : index of the training image that will be scanned;
Xos X1» Vo 71 - indexes of the closest training image s in the other two directions.

Output: cpdf: conditional probability density function from the current training image.

1 Function ScanTI(N,,id, ¥y, 7., 7o, 71, &cpdf)

2 Get the sub-section sub S (training image) according to the id and Xor X1 Vor Vi

3 Set a random path P, and initialize the counter of matched patterns SUm=20;
4 for i:=0— p.size() suchthat i < p.size()x f do
5 Sample a location in the training image and get the neighborhood N ;
6 Compute the distance d{N,, N} using equation (1) presented in section 2.1;
7 if d{N,,N,}<t then
8 update the cpdf according to the facies of the central point in the training image;
9 sum++;
10 end if
11 if sum>N__ then
12 break;
13 end if
14 end for

15 end Function

The fraction of the scanned training image f and the distance threshold t are borrowed from DS and they play the
same roles. y,, x,,7,,7, are the indexes of the closest training images in the other two directions and they are used to

determine the current sub-section (training image). A new parameter, the maximum number of matched patterns from the

11
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training image N is adopted to avoid unnecessary searches. For some small neighborhoods, especially in the last multiple

ax

grid, the cpdf will rapidly stabilize with the increasing number of matched patterns.

4. Parameterization and Performance Analysis

In this section, we apply our method on several synthetic cases where the cross-sections are extracted from existing 3-D
references. Using these examples, we perform a parameter sensitivity analysis and compare it with two widely used methods,
DS-based 3-D reconstruction (Mariethoz and Renard, 2010) and s2Dcd (Comunian et al., 2012). The workflows and
algorithms proposed in this work are developed in the C++ programming language. All experiments presented in this paper
are implemented on a laptop computer with Intel 4-Cores i5-62000U Quad-core CPU 2.30 GHz, 8 GB RAM and 64 bit
Windows 10.

4.1. Parameter Sensitivity

The majority of parameters of our approach are similar to DS. Therefore, only the sensitivity of three parameters
specific to our approach are tested against the 3-D reference shown in Figure 4, considering CPU cost and statistical and
geometrical features of the realizations obtained. All cross-sections used in the following tests in the section 4.1 are extracted

from this 3-D model.

Figure 4. A sample of Berea sandstone from Okabe and Blunt (2007) is used as a 3-D reference (100 <100 x< 100 voxels). The crimson
color represents pores and the yellow color represents matrix. The porosity of this model is 20.33%.
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4.1.1. Number of Cross-Sections

The number of cross-sections N is a new parameter in our approach. They are not only regarded as the training

images and conditioning data, but also control the computing speed and the quality of the reconstructions. Figure 5 and

Table 1 show different reconstructions and their statistical properties by increasing the sections in every direction. In this test,

the number of cross-sections N in each direction increases from one to six, and other parameters are fixed: maximum
search radius = 50, maximum number of points in a neighborhood = 35, distance threshold t, = 0.2, fraction of training
image to scan f =0.8, maximum of matched patterns from each training image = 100, number of multiple grids = 3,
weights of the probability aggregation w, =w, =W, = w, = 0.25. We obtain 20 realizations for each set of cross-sections.

The main difference between the different settings is the improvement of computational efficiency with the increase in cross-
sections. The proportion of pores (porosity) is reproduced at a similar level for each group, Also, when increasing the

number of cross-sections N, the number of geobodies gets closer to the reference, and the variability is decreased and the

o
connectivity becomes stable, which are caused by the increase of conditioning data (i.e. informed cross-sections). On the
other hand, using too many cross-sections will lead to a number of artifacts since the training sub-sections for each sub-block
are very small, resulting in insufficient number of samples (see the sections extracted from the reconstructions in Figure 5).
As a consequence, we recommend that several sections can be chosen if there are abundant candidates in one direction,
which must ensure that the features of selected ones are diverse and contain enough spatial patterns, but not incurring
artifacts. In this test, 3 or 4 sections in each direction are recommended, but it is related to the size of simulation grid in other
3-D application. In general, one informed section for every 50 grid cells in one direction in the simulation grid is
recommended. When there are very few or no sections in a direction, a feasible solution has been suggested by Gueting et al.
(2017) where sequential 2D simulations are performed to obtained some sections first, and then both the original informed

data and the obtained sections are used to reconstruct the model of the entire 3-D domain.
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Table 1. Comparison of the performance of the tests in Figure 5. All the statistics are the averages of 20 realizations.

Porosity (%)

Test N Sub-blocks — - No. of geobodies  Time (s)

Training sections Results
1x1x1 3 8 19.07 16.36 1781 1382
2%2%2 6 27 21.35 19.95 908 718
3x3x%3 9 64 18.70 16.22 572 396
4x4x4 12 125 19.62 16.21 471 271
5x5%5 15 216 19.81 16.80 340 183
6X6%6 18 343 19.74 17.32 326 127
3-D Ref. 20.33 144

4.1.2. Maximum Number of Matched Patterns from Each Training Image

Table 2 shows the statistics of 20 realizations obtained by varying the maximum of matched patterns from each training

image N which is a novel parameter adopted in this work to avoid the unnecessary searches during obtaining a cpdf

max !
from training images. Other parameters are the same as in the former test presented in Figure 5, except for the sections in
each direction which are fixed to 3. We find that the computational cost increases sharply when N__ >160 and then
stabilizes. Concerning the compared statistical properties, low values of N __ result in variabilities because it is almost like
sampling the result directly from training images and the role of cpdfs is lost. For the remaining cases, the statistics are
similar except for a decrease of variances with increasing N

(Table 2). In order to better grasp the effect of N three

max max !

cases are selected (N, =5, 40, 320) and the corresponding realizations are shown in Figure 6a-c. The connectivity
functions vary in a large range for small N values. Conversely, they become more stable when increasing N, (Figure
6d). The variance of variables bears the same tendency by increasing N, (Figure 6e). Consequently, N . =40 to 160 is

recommended resulting in a balance between a stable cpdf and computational cost.

Table 2. Comparison of the performance for 20 realizations with three sections in each direction, and varying the maximum of matched
patterns from each training image Nmax . Other parameters are fixed and are same with the test of Figure 5. All the statistical values are

the mean of 20 realizations. 0O represents no constraint for N max -

Nmax Porosity (%) Variance No. of geobodies Time (s)
5 18.39 0.150 365 132
10 17.22 0.143 440 161
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20 16.69 0.139 486 200

40 16.47 0.138 505 251
80 16.48 0.138 510 417
160 16.38 0.137 519 495
320 16.50 0.138 503 549
640 16.66 0.139 508 587
o0 16.89 0.138 497 589
Ref. 18.70 0.152 144

(b) N, =40 (c)N, =320

1r (d) Connectivity in the Y direction 0.16- (e) Variograms
0.8H .
> Reference L
E _______ Np =5 g 0.12
.= 0.6f Np = 40 c
L3] ©
4] =
=i (0 0.08F Reference
c > | F 0 eeeees Np=5
8 Np =40
o2t 0 g, ettt ¥ eeeees Np = 320
0.04f
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Lag distance (pixels) Lag distance (pixels)

Figure 6. Reconstructions and their statistical properties with N max = 9, 40, 320 selected from Table 2.

4.1.3. Weights of the Probability Aggregation Formulas

In this work, the strategy for aggregating the pdfs from local sub-sections includes two steps. In the first step the
weights of Linear Pooling Formula for two parallel sub-sections are selected depending on the distances between the current
location and the two sub-sections in the first step. Therefore, the weights are automatically set and do not need to be set. In
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the second step, the appropriate weights for the prior probability distribution and three orthogonal cpdfs are to be selected by

the user. Figure 7 shows different realizations obtained by varying the four weights W,,W,, W, , W, . Here we increase the

weight of the prior probability distribution W, and let the other three weights equal, since the cpdfs from three orthogonal

directions have the same contribution. Of course, if users think the cpdf of one direction is more important than others, they

can be changed, under the constraint that Z?:O W, = 1. It can be observed that when W, =0, the spatial structures are well
reproduced, but with larger variance (Figure 7a) since all spatial patterns are inferred from the MP statistics of the
surrounding sub-sections rather than using prior information. When increasing W, , the connectivity of the spatial structures
is degraded, but the facies proportions are closer to the reference (Figure 7b). Finally, in the extreme case of (Figure 7c) the
connectivity of spatial structures is lost. Therefore, 0 < W, < 0.25 is a recommended range and other three weights can be

determined by the importance (e.g. complexity or variety of patterns) of the sections in each direction.

Porosity = 0.157, Variance = 0.161 Porosity = 0.173, Variance = 0.145 Porosity = 0.128, Variance = 0.119
Number of Geobodies = 229 Number of Geobodies = 551 Number of Geobodies = 1364

w, =0,w=w, =w, =0.333  w,=0.25w, =w, =w, =0.25 w, =0.7,w, =w, =w, =0.1

Figure 7. Three realizations obtained by varying the weights of the probability aggregation formulas. Three sections in each direction are
used and other parameters are same with the test of Figure 5.

For the other parameters involved in our algorithm, most of them are similar to the parameterization of DS which have
been tested thoroughly in Meerschman et al. (2013). However, our method allows larger initial values for the neighborhood
size and the distance threshold because multiple grids are used so that these initial values are decreased with increasing the

level of multiple grids.
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4.1.4. Interaction between t, f, N and N__

In this section, we compare the interaction between two important parameters of DS (distance threshold t and fraction

of training image to scan f ) and two new parameters presented in our method (number of cross-sections N, and maximum

N

cs! max *

number of matched patterns from each training image N__ ). Figure 8 shows the interaction between t, f, N

max
Running our algorithm with f =0.2 and t = 0.4 results in noisy realizations. This is not surprising since any patterns can
be accepted even if it bears a large pattern distance d{N, ,N,}. Of course, the algorithm will be very fast under these
parameters because the scan for training image will be stopped at the beginning. Meerschman et al. (2013) tested thoroughly
for the parameterization of DS. In their test, when f =0.5 and t =0.2, the realizations are acceptable. However, here the
results still contain many noises since the local search strategy reduces the size of the actually scanned training images. As

the increase of t, f, N and N__ , the results become satisfactory. The recommended range of N and N __ have been

max '
given in the above sections. In our method, it is advised to use f >0.8 and t <0.1. Compared to DS, more strictly
restrictions for t and f are adopted due to the local search strategy used in our method. Same as the effect of t and f ,
N, and N . also control the computational efficiency and the quality of simulations. Therefore, when setting the

parameters, we should consider finding a balance between the quality of results and the computational cost.
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o =1xIx1, N . o =2%2x2, N, o =4x4x4, N_ . =320

Porosity: 15.49%; Time: 33.8s Porosity: 17.81%; Time: 17.3s Porosity: 16.04%; Time: 8.5s
Number of Geobodies: 9627 Number of Geobodies: 8859 Number of Geobodies: 8536

f=02 t=04

f=05 t=0.2

Porosity: 15.86%; Time: 54.4s Porosity: 18.43%; Time: 28.9s Porosity: 16.11%; Time: 19.7s
Number of Geobodies: 3489 Number of Geobodies: 2776 Number of Geobodies: 1851

f=1 t=0.05

Porosity: 16.42%; Time: 587.6s Porosity: 19.98%; Time: 405.3s Porosity: 16.26%; Time: 284.8s
Number of Geobodies: 513 Number of Geobodies: 334 Number of Geobodies: 276

Figure 8. Interaction between t, f, NCS and Nmax. These first sections in three directions of each realization are presented. The

porosity, CPU time and the number of geobodies are the average of 10 realizations.
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4.2. Comparison of Reproducing Heterogeneities with Existing Methods

To verify the validity of our approach for reproducing heterogeneous structures, we compare it with two MPS
implementations that use partial data: DS (Mariethoz and Renard, 2010) and s2Dcd (Comunian et al., 2012). As shown in
Figure 9, six cross-sections extracted from a 3-D model of folds (180 <150 < 120 voxels) (Mariethoz and Kelly, 2011) are
utilized in this test. s2Dcd is a wrapper library that requires an external MPS engine. In order to ensure comparability, here

DS is employed as the engine of s2Dcd. The detailed parameters are as follows: maximum search radius = 40, maximum

number of points in a neighborhood = 40, distance threshold t, =0.2, fraction of training image to scan f =0.8,

maximum of matched patterns from each training image = 100, level of multiple grids = 3, weights of the probability

aggregation W, =W, =W, =W, = 0.25. In other two methods, a smaller distance threshold t =0.05 is considered and other

essential parameters are same with our method. Because the implementation of DS is parallel, we use 4 processors to carry
out this test in DS and s2Dcd. Only one processor is used in our method because our implementation is not parallel. In
Figure 9, one selected realization for each method is presented. From their visual appearance, it looks that s2Dcd and our
method have the similar performance for reproducing the patterns shown in 3-D reference and informed cross-sections.
Therefore, histograms, variograms, and connectivity functions are used to further analyze the performance. Figure 10 shows
the comparison of proportions of the facies for the realizations by using three MPS methods. 20 realizations are performed
for each method. It can be seen that the facies proportions with our method are closer to the proportions of the reference
model and the informed cross-sections. The variograms and the connectivity functions on three directions for the 3-D
reference and the generated 20 realizations of each method are shown in Figures 11 and 12, indicating that all three methods
are able to reproduce the basic statistics of the 3-D reference, but the lines of the proposed method are generally closer to the

reference.
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Facies 1
Facies 2

3D reference Cross-sections used in this test

A realization of DS A realization of s2Dcd A realization of our approach

Figure 9. Realizations of three different MPS reconstruction methods.
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5 Figure 10. Proportions of the facies for 20 reconstructions by using three MPS methods. The black and red horizontal lines represent the
proportions of facies in the 3-D reference and the cross-sections used as training images respectively.
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Figure 12. Comparison of the connectivity functions in three directions with three MPS methods.

To further compare the models obtained using the three different MPS approaches, MDS plots are constructed by
calculating the distance of MP histograms between all the realizations of three approaches and a 3-D reference. The resulting
MDS map is shown in Figure 13 and it can be observed that the realizations of our method are closer to the reference in the
MDS map than the results obtained by the other two approaches. In addition, kernel smoothing is used to estimate the
density distribution of the realizations of three different MPS approaches around the reference. The probabilities of the
realizations are calculated from kernel density estimation by using the equation (4) described in section 2.3. According to the
reference model, the three different approaches have quite similar probabilities with 29, 33, and 38% for DS, s2Dcd, and our

approach, respectively. However, our approach still gains the highest probability.
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Figure 13. MDS representation for 20 realizations of each MPS method.

In practice, there is no fully informed 3-D reference and we only have several informed cross-sections. Thus, the
statistical features of the reconstructions (e.g. variograms, connectivity functions and MDS plots) are close to the reference
but no one can surpass it in the above test. However, these comparisons are still able to validate the reproduction of spatial

patterns for the different MPS approaches.

4.3. Computational Performance
Section 4.1.1 and 4.1.2 have already analyzed the influence of the number of cross-sections N and the maximum of

matched patterns from each training image N, . Section 4.1.4 tested the interaction between t, f, N_and N__ . The
results indicated that the effect of t and f on the computational efficiency in our method is the same as in DS. The

computational performance of other parameters has been assessed clearly by Meerschman et al. (2013). The weights of the
probability aggregation formulas do not affect CPU time.

A comparison of computational performance between DS, s2Dcd and our approach is presented in Figure 14. Because
our method is sensitive to the number of input cross-sections, we offer two and four sections in each direction respectively,
and the computational efficiencies are shown in Figures 14a and 14b with increasing the total number of grid cells. Other
parameters are the same as the test in section 3.2. Note that a different time axis is used for DS-based reconstruction because
it uses much more CPU time than the other two methods, even though four processors are used for DS-based reconstruction.

As shown in Figures 14a, our approach presents better computational performance than DS-based 3-D reconstruction since
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the MP statistics are captured from a smaller domain composed of several 2-D sections in s2Dcd and our approach. Because
four processors are used in DS and s2Dcd, thus our approach presents the speedups of about 4 compared to s2Dcd and about
120 compared to DS in this test (Figures 14a). When increasing the number of cross-sections, the search space is divided into

more subdomains in our approach so as to achieve a much better performance than s2Dcd and DS (see Figure 14b).
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Figure 14. Comparison of computational performance between DS, s2Dcd and our approach with increasing the size of output grid: (left)
two cross-sections and (right) four cross-sections in each direction. Note that different time axises are used in the two subplots, and four
processors are used for DS-based reconstruction and s2Dcd but only one for our method.

5. Synthetic Example: 3-D Reconstruction of Hydrofacies

To further demonstrate the applicability of our algorithm, an example from a real geological application is presented in
this section. The Descalvado aquifer analog dataset (Figure 15) depicts the complex hydrofacies of a small area (28m x7m x
5.8m) in Brazil (Bayer et al., 2015). In the original dataset, there are five cross-sections derived from outcrops, which are
marked by black lines in Figure 15a. They are referenced in a 3-D domain consisting of 280 <70 %58 voxels. These sections
allow creating only two parts of subdomains, which is insufficient for an application of our method. Therefore, we borrow
the strategy of Gueting et al. (2017) to insert three additional sections in yz direction using sequential 2-D MP simulation
approach (s2Dcd) firstly which are marked by blue lines in Figure 15a. Then, all the tests are implemented on the basis of

eight cross-sections (three in xz direction and five in yz direction) which are shown in Figure 15b.
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Figure 15. Descalvado aquifer analog dataset (Bayer et al., 2015). (a) 3-D presentation of the informed cross-sections: three sections in xz
direction, and five sections in yz direction; (b) 2-D presentation of these informed sections.

Figure 16 shows realizations obtained by using three different MPS approaches on the basis of the above-mentioned
dataset. The white lines indicate the locations of informed sections in each realization. Note that an auxiliary variable along
the z coordinate is used in s2Dcd and our approach. It is a continuous variable to control the changing trend of the
hydrofacies along the z coordinate and the detailed description is given by Comunian et al. (2012). To further reveal the
performance of the different approaches, we use MDS maps to visualize the dissimilarity of MP histograms (Figure 17),
similarly as in section 4.2. However here we use it to reveal the dissimilarity between all the reconstructed sections exacted
from the realizations and the eight informed sections along the two directions, rather than different 3-D realizations. Thus,
for each realization, 70 sections (67 reconstructed sections and 3 informed sections) from xz direction and 280 sections (275
reconstructed sections and 5 informed sections) from yz direction are used to draw the MDS maps along the two directions
respectively. MDS is very appropriate to present the dissimilarity for this kind of applications because we only have partial

cross-sections instead of an entire 3-D training image. Therefore, it is necessary to assess the dissimilarity between the
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reconstructed sections and informed sections. As shown in Figure 15, the sections from xz and yz directions are very
different, such as the correlation lengths and the complexity of structures. Thus, we draw different MDS maps respectively
for the xz and yz directions (Figures 17a and 17b). Individual sections from the realizations are compared in Figures 17¢ and
17d. Overall, it can be observed both visually and in the MDS maps that the sections obtained from our approach are closest

5 to the informed sections.

(@)

Hydrofacies Codes: F ’ ’ E ’

4 5 6 7

Figure 16. Three realizations using three different MPS approaches: (a) DS, (b) s2Dcd with the coordinate z as auxiliary variable; and (c)
our approach with the coordinate z as auxiliary variable.
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Figure 17. MDS maps of sections extracted from realizations using three different MPS approach. (a) MDS map of 70 sections for each
realization along xz direction; (b) MDS map of 280 sections for each realization along yz direction; (c) selected sections for each method
according to the JS divergence in xz direction; (d) selected sections in yz direction.

Our method is able to reduce the non-stationarity effect of real geological data to a certain extent due to the local search
strategy. As shown in the above analysis, the patterns in the informed cross-sections are very complicated where the
distribution of hydrofacies is anisotropic and non-stationary, especially for the facies with a lower proportion. As illustrated
in Figure 18a, a local domain is surrounded by four segments from the informed cross-sections. It should be noted that there

is no facies 2 in all the four segments. We extract the local parts from three realizations by using different MPS approaches.
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Then we check all the segments of the three local models, and we find that facies 2 is reproduced in this local area in the
realizations of DS and s2Dcd. Three segments are randomly selected from the three local models, and they are shown in
Figure 18b where the boundaries of facies 2 are marked by red lines. Figure 18c shows the histograms of the four informed
segments and the local models of 10 realizations for each MPS method. It can be observed that, although there is no facies 2
in the closest four segments, it is reproduced in this local area by DS and s2Dcd. Conversely, our approach can maintain the
distribution of facies well since all the MP statistics are captured from the surrounded sub-sections. If the surrounding sub-
sections of a local area do not contain an attribute but it exists in other locations, the patterns with this attribute will not be
moved to this local area in our approach. This indicates that our approach allows involving the non-stationary geological
analogs in the 3-D real applications, and spatial patterns are restricted into a local domain so that they are not carried to

faraway locations.
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Figure 18. Comparison of reproduction of non-stationary patterns. (a) a local domain and the four corresponding segments; (b) three
selected segments from the realizations obtained using different approaches in the local area; (c) histograms of the four informed segments
and the local models of 10 realizations for each MPS method.

In the real-world applications, the geological sections or other analogs are not always straight or orthogonal. Therefore
we need to project them in orthogonal directions. Figure 19 illustrates the process of projecting the tortuous sections to the
parallel planes along a given direction. The same strategy can be used to address the issues in other directions. After that the
original sections will be used as hard data and the projected sections will be only as training images. Thus other scattered

samples (e.g. boreholes, outcrops) also can be involved as hard data.
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Figure 19. Process of projecting real-world sections to parallel planes along a given direction: the process in (a) 3-D space and (b) xy
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6. Discussion and Conclusion

In this paper, we presented a novel method for reconstructing 3-D complex heterogeneous structures by using partial
lower dimensional data. Indeed, this is a very general issue since inferring high-dimensional patterns from low-dimensional
data (e.g. boreholes, outcrops and other analogs) is a very common workflow for geologists. In practice, reliable 3-D models
of complex geological structures are still difficult to construct due to the heterogeneity of geological phenomena and
processes, even though there are many real geological analogs or sections that can be used. Our method makes it possible to
reconstruct 3-D structures with MPS when no 3-D training image is available. The synthetic experiments and practical

applications presented in this paper demonstrate the capacity to reconstruct such heterogeneous structures.

As compared to the previous MPS implementations that use partial data, the proposed method requires several local
training sub-sections surrounding a simulated node, rather than a full section (Comunian et al., 2012) or points in a 3-D
domain (Mariethoz and Renard, 2010). The local search strategy proposed in this paper allows to compute more reliable MP
statistics because it avoids that spatial patterns from faraway locations are considered in the simulation of the current node.
In this strategy, the original cross-sections are divided into many sub-sections according to their spatial relationships.
Therefore, the non-stationarity of real geological analogs is reduced to a certain extent because the training patterns cannot
be borrowed from further than a local subdomain. Of course, besides cross-sections, other scattered samples also can be

included as hard data.

Moreover, our approach increases the computational efficiency compared with existing MPS methods. The local search

strategy allows acquiring MP statistics from the local sub-sections so that the searches are significantly reduced. Its good
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computational performance makes it potentially applicable to real 3-D modeling problems such as porous media, hydrofacies,
reservoir, and other complex sedimentary structures. In addition, a new parameter, the maximum of matched patterns from
each training image is adopted to avoid the unnecessary searches. The experimental results demonstrated that a reasonable

choice for this parameter can not only ensure to capture a stable cpdf, but also gain a further performance speed-up.

The method presented here retains many advantages of DS (Mariethoz et al., 2010), such as unnecessary storing for MP
statistics, pattern distances, flexible neighborhood. Nevertheless, we propose an adaptive and flexible implementation of the
search template on multiple grids where the radius of the neighborhood, the distance threshold and the size of data events
decrease linearly with the rising of levels of multiple grids. As a result, a big data event is divided into several small parts
placed on the different grids, which results in a smaller neighborhood on each grid. An acceptable distance threshold is
assigned to the first grid to make it easier to obtain a stable cpdf and to capture the large-scale features from the original
sparse samples. For the last grid, the radius of neighborhood is reduced to one and the highest criterion is carried out for the
threshold (i.e. t = 0) which avoids the small-scale features or lower proportion facies are filtered out. Hence, the simulation
of each multi-grid is simulated with different parameters, allowing for flexibility in simulating different structures at

different scales.

Another important advantage of our approach is the probability aggregation strategy where the combinations of two
different formulas are used to combine the cpdfs from different sub-sections. First, an additive aggregation method, linear
pooling formula is used to combine two disjunctive probability distributions from each pair of parallel sub-sections to obtain
a more stable pdf. The weights of this step are related to the distances between the current location and the two parallel sub-
sections. Such parameterization is able to ensure the pattern trend changing from one sub-section to another one. And then,
we aggregate the orthogonal pdfs and prior probability distribution by using a multiplicative method, log-linear pooling
formula. This step can enhance the capability for reconstructing connectivity of spatial patterns in comparison with the
method using a series of 2-D MPS simulations to fill a 3-D domain along given orthogonal directions (Comunian et al.,
2012).

The limitations of our method come from that it is not always possible to obtain abundant sections in each direction,
and extremely small local blocks cannot offer enough spatial patterns, thus a minimal sub-section size has to be considered.
In addition, our method is not able to perform the simulation of continuous variables. The proposed method can be further
improved to overcome these limitations. Another possible direction is to parallelize the proposed MPS implementation and

further enhance its computational performance.
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