
 

 

Response to Reviewer #1: 

This paper presents another approach to handle the problem of lacking three 

dimensional training images for multiple-point geostatistical simulations. The authors 

explain the differences between their approach and previously existing ones and 

perform thorough sensitivity analyses on the new parameters required by their 

implementation. However, they take some prior important decisions that go 

unchallenged, such as the choice of the probability aggregation methods, and the 

parameters used in them. A sensitivity analysis of these decisions would provide a more 

solid basis for the usage of the new approach.  

We are grateful for your insightful and constructive comments and suggestions. In order 

to more clearly present the probability aggregation strategy proposed in our paper, we 

moved the description of two existing formulas used in our work to a new section 

Background Information in the revised version (see P5L18-26 and P6L1-11). Thus the 

section 3.2 mainly focuses on the strategy for aggregating the pdfs from local 

sub-sections proposed in this work (see P9L7-22 and P10L1-13). The choice of the 

probability aggregation methods is described in P9L13-20. The sensitivity analysis of 

the weights of the probability aggregation formulas has been done in section 4.1.3 (see 

P18L2-16). 

My major criticism is on the tests performed during the benchmarking. They are purely 

statistical, yet this is a journal very much related to surface and subsurface hydrology. 

Readers of HESS and potential users of this method would be more appealed to use it if 

the benchmark would include, for instance, some solute transport simulations. 

Although this manuscript mainly focuses on the algorithm principle of reconstructing 

3-D models of subsurface structures by using multiple-point geostatistical techniques, 

several data sets in hydrology or hydrogeology are used to test our methods, such as 

pore structure of sandstone (see section 4.1), folds in subsurface aquifers (see section 

4.2), and a synthetic example: 3-D reconstruction of hydrofacies (see section 5). 

Therefore, we think that our method can be used to reconstruct 3-D models of complex 

heterogeneous structures in hydrology or hydrogeology and it meets the scope of HESS. 

 



 

 

Response to Reviewer #2: 

I read with interest the paper entitled “Locality-based 3D multiple-point statistics 

reconstruction using 2D geological cross-sections”. The paper describes a new 

methodology to build 3D realizations constrained by 2D sections that act as local 

training images and hard data for MPS algorithms. The method seems to give realistic 

results and perform better than existing algorithms. Globally, the paper and the 

presented results are convincing. However, I would like the following general 

comments to be addressed by the author: 

Thank you very much for your positive and constructive comments and suggestions. We 

have corrected all the issues you raised in the revised version. The following is a 

point-by-point response according to your comments. 

1. The introduction is a little bit messy, giving an overview of many papers related to 

MPS, but missing the point of highlighting the specific issues tackled by the paper. 

For example, the 2nd paragraph (P2L15) makes the history of MPS. This is not the 

point, you should rather insist on the importance of the TI (what you do in 

paragraph 3) and the description of the state of the art (relatively vague in the 

current version). Many sentences in the introduction are too vague such as “some 

assumptions have been implemented to reconstruct 3D models” (P3L14, which 

assumptions?) or “A promising reconstruction method … by adapting the DS 

algorithm. However, large-scale” (P3L16, the “however” refers to something that is 

not explained, the problem should be clearly stated). 

Thank you very much for your constructive suggestions. We rewrote most of the 

introduction to highlight the specific issues tackled by our paper. Specifically, the 

history of MPS is compressed in the revised manuscript (see P2L4-L13, L22; 

P3L4-8); vague descriptions have been corrected (see P3L16-22); and the 

limitations of the existing have been depicted clearly in the new version (see 

P2L26-32, P3L25-26, P3L29-34, and P4L1-2). 

2. I found the methodology section difficult to follow. Indeed, the proposed approach 

borrows some techniques from existing algorithms (mostly direct sampling), so that 

part of the methodology is described in other papers. Although, some parameters 

are common with DS, the philosophy is quite different as DS is never explicitly 

calculating cpdf. In that sense, the proposed methodology is closer to classical 



 

 

approaches such as snesim (except that the cpdf are not stored). I would therefore 

recommend to explicitly describe every part of the algorithm, without (too many) 

references to previous publications. Doing so, the methodology would be 

self-sufficient. Part of the methodology (dissimilarity metrics and MDS) is 

introduced in the result section and should be moved to the methodology. 

We are so sorry for that we did not describe the methodology section clearly. In the 

revised manuscript, we have reorganized the methodology section. Some existing 

information but used in the following sections was moved to a new section 

Background Information, such as the pattern distance (see section 2.1, P5L8-17) 

and the existing probability aggregation formulas (see section 2.2, P5L18-26 and 

P6L1-11). The description of dissimilarity metrics and MDS were also move to the 

section Background Information (see section 2.3, P6L12-17).  

3. In the parameter sensitivity, it is argued that some parameters are similar to DS, and 

thus the paper focuses on the new parameters. Nevertheless, although the proposed 

method borrow some ideas from DS, it is clear that the approach is different (In DS, 

you stop searching as soon as you find an occurrence with distance below the 

threshold, here you continue scanning to get the cpdf). Therefore, we cannot 

assume without checking that some parameters such as the threshold, the search 

neighborhood or the fraction of the TI that is investigated will have the same 

influence in DS and in the proposed approach. In addition, some interaction 

between the parameters is expected. For example, between the threshold and the 

maximum number of occurrence, or the number of available sections, some 

interactions can be expected. Indeed, if you increase the threshold, you will reach 

faster the maximum number of occurrence. 

Thanks a lot for your insightful suggestions. The interaction between two important 

parameters of DS (distance threshold t  and fraction of training image to scan f ) 

and two new parameters presented in our method (number of cross-sections 
csN  

and maximum number of matched patterns from each training image 
maxN ) has 

been added (see section 4.1.4 and Figure 8, P19L5-18 and P20). The results show 

that these two parameters have similar effects as in DS, so we did not discuss them 

separately. In addition, it will be repeated with the contents of Meerschman et al. 

(2013) in which the parameterization of DS was tested thoroughly. 

4. The application example is not a real application, but another synthetic benchmark 



 

 

using a real analog. Indeed, there is no verification data or specific application of 

the model. I would therefore merge section 3 and 4. 

Because section 3 (section 4 in the new version) mainly focuses the 

parameterization and performance analysis of the proposed method, and section 4 

(section 5 in the new version) aims to present a complete example in hydrology, so 

we kept this section, but changed the title to “Synthetic Example: 3-D 

Reconstruction of Hydrofacies” in the revised manuscript (see P26L5). 

Specific comments: 

5. P3L6-25. You don’t discuss the paper by Gueting et al. (2017) in the introduction, 

although it is a recent paper on the topic and you borrow some ideas later in the 

field example. You should reconsider this paragraph to describe with more details 

previous approaches and how your method is new. 

The description of the paper by Gueting et al. (2017) has been added in the 

introduction (see P3L32-34 and P4L1-2). In order to clearly explain the problems 

addressed in our paper, we added detailed descriptions of the limitations of existing 

methods in the revised version (see P3L25-26, P3L29-34, P4L1-2 and P4L19-23). 

6. P4L29-30. This sentence does not necessarily refer to the approach proposed by 

Comunian et al. (2012), but more globally, to any method assuming stationarity. It 

is always possible to use auxiliary variable to account for non-stationarity, as it is 

done by the s2Dcd approach in the application example. 

Thanks a lot for pointing it out. We have rewritten the corresponding sentences in 

the revised version (see P7L3-6). 

7. P5L3-8. For reconstruction algorithm, there might be a confusion between training 

image and hard data. Here, the sections that are used are both training images and 

hard data. To some extent, using the whole section as TI and the sub-sections as 

hard data is already a good way to locally constrain the simulations. The s2Dcd 

algorithm is already performing well in that sense. 

The sections that are used in our work are regarded as both training images and 

hard data, but it is different with s2Dcd. Obviously, s2Dcd uses a series of 2-D 

simulations to fill a 3-D domain, but a random simulation path containing all 

uninformed locations is used. The corresponding descriptions have been added in 

P4L19-22, P7L15-17, and P7L19-21. 



 

 

8. P5-L9-10. The choice of the subsections within domains is not necessarily selecting 

the most local information. Indeed, this depends on the location of the node within 

the subgrid, some other sections might be closer, for example when close to a 

domain boarder. Since the approach does not store any cpdf, you could center the 

sub-domain on the node and the TI would change for each node. This would avoid 

the issue of case 2 in Figure 2, where many nodes closer to the node to simulate are 

actually out of the TI. 

A great idea! But if we adopt this idea, the whole method proposed in this paper has 

to be changed. In fact, a 3-D domain is divided into several local parts according to 

the spatial relationship of the cross-sections, and then the MP statistics will be 

captured from the local surrounding sub-sections for a node to be simulated. This is 

a very good idea, and we will consider it in our future work.  

9. P7L18-20. I am not sure it is intuitive, you might expect that the parallel sections 

are somehow correlated (except in case of strong non-stationarity), the 

multiplication of probabilities could then make more sense... and otherwise for 

perpendicular directions (if the field is highly anisotropic, the orthogonal directions 

are bringing totally different information)... 

Because these two parallel sub-sections often contain similar patterns, and we just 

expect a larger number of samples and thus more robust pdf by uniting both of them, 

so we firstly use the additive method to aggregate the parallel ones, then a 

multiplicative method is used to combine the orthogonal pdfs. In order to depict it 

more clearly, the corresponding descriptions have been added in P9L15-20.  

10. P8L15-18. In short, you compute the cpdf using all the neighborhood whose 

distances are below the threshold, right? 

Yes, we compute the cpdf using patterns whose distances are below the threshold t. 

But we used a parameter Nmax to control the number of matched patterns since if 

this number is large enough, scanning to training images will be not necessary (see 

P13L1-3 and section 4.1.2). 

11. P9L1-3. Multi-grid approach. The description is not clear. How do you divide the 

data event within several grids? I thought you were selecting all the data and 

previously simulated nodes within the radius. Are you only considering neighboring 

nodes that are on the current grid? Or you just mean that for the first grid there are 



 

 

less points simulated? In practice, everything depends on the radius. Please clarify. 

We are so sorry for the unclear description of the multiple-grids used in our work. 

In the revised version, we added the corresponding description (see P10L24-26). In 

fact, the neighboring nodes (hard data and previously simulated nodes) around the 

central node on the current grid are selected to build a data event according to the 

radius R  and the maximum number of points in the neighborhood. Therefore, a 

large data event is divided into several small parts placed on the different grids 

which results in smaller neighborhoods on each grid.   

12. P9L4-5. I understand that you take the "diagonal nodes” (figure 3) for the smaller 

grid as they are previously simulated in the multi-grid 2, but the other nodes should 

also be consider (horizontally and vertically) according to your radius, thus 8 nodes 

in 2D and 26 nodes in 3D, no? The remark about 3D is strange since you are only 

considering 3 directions in 2D, this is not a 3D neighborhood or am I missing 

something? How do you consider previously simulated points or hard data that are 

out of the 2D planes? Are they simply disregarded, or somehow projected on the 

plane? 

Yes, other nodes will be considered in other two directions. Thank you very much 

for pointing it out. We have deleted this sentence and added the corresponding 

description to make it more clear (see P10L29 and P11L2-4). In the local search 

strategy proposed in this work, three planes through the current simulated node in 

three orthogonal directions are considered. Other nodes out of the 2D planes will be 

disregarded (see P11L2-4). 

13. P18. Figure 9. The red line shows the proportion in the cross-section, what about 

the “true” proportion? 

The proportions of facies in the 3-D reference have been added and marked by 

black lines in this Figure in the revised version (see P22L4-6 and Figure 10). 

14. P19L6-14. You could actually quantify how realizations are realistic using kernel 

smoothing (to average the information of the different realizations in a metrics), 

estimating the density distribution of the realizations around the reference. You can 

refer to the already cited paper of Hermans et al. (2015) for an application of MDS 

in the context of 3D MPS in hydrology. 

Very useful comment! We have used kernel smoothing to estimate the density 



 

 

distribution of the realizations of three different MPS approaches around the 

reference (see P24L1-5). Moreover, the related information about kernel smoothing 

has been added in section 2.3 in the new version (see P6L18-22). 

15. P20L15-16. Still, in DS no cpdf is computed as the first matching sample is 

selected. Here, you continue scanning, so the effect of those parameters is not 

necessarily similar. For example, an interaction between t, the number of sections 

and Nmax is expected. 

The interaction between t  , f , 
csN  and 

maxN  has been added in the revised 

version (see section 4.1.4 and Figure 8, P19L5-18 and P20). 

16. P22L6. You say that the number of sections is insufficient, but you don’t provide 

guidelines about a sufficient density to use your algorithm. What if the sections are 

not oriented in orthogonal directions? 

A recommended density for the number of sections has been given in P14L18-19. If 

the sections are not straight or orthogonal, we need to project them in orthogonal 

directions. The detailed description has been added in the revised manuscript (see 

P31L6-10 and P32Figure19). 

17. P23L2-3. A short description of the auxiliary variable would be welcome. I guess it 

describes the proportion of facies in the different zones along the vertical direction. 

It does not have to be long. 

A short description of the auxiliary variable has been added in revised manuscript 

(see P27L6-8). 

18. P26L2-3. “partial lower dimensional data” is not true. You can only use 2D 

orthogonal sections in a sufficient amount. Borehole or analogs cannot be used 

since you argue that local information is important. 

In order to illustrate how partial lower dimensional data are used in our work, we 

added a figure and the corresponding description in the revised version (see 

P31L6-10 and P32Figure19). 

19. P26L7. But you need a lot of 2D sections, which is a clear drawback of the method. 

When there are very few or no sections in a direction, a feasible solution has been 

suggested by Gueting et al. (2017) where sequential 2D simulations are performed 

to obtained some sections first, and then both the original informed data and the 



 

 

obtained sections are used to reconstruct the model of the entire 3-D domain (see 

P14L19-21).  

Technical comments: 

20. P12L6-7. Does the “maximum search distance” correspond to the Radius of 

previous sections? 

Thanks a lot for pointing it out! We have used consistent description for this in the 

revised manuscript (see P14L6 and P21L7) 

21. P21L9. You previously mentioned (P17L15) that s2Dcd was using DS with 4 

processors. Please check. 

It has been corrected in the revised version (see P25L14-19). 

22. P23L11. I think it should be Figure 17 instead of 16. 

Thank you for pointing it out! It has been corrected in the revised version (see 

P28L3-4). 

 



 

 

Response to Reviewer #3: 

This paper presents a locality-based MPS approach to reconstruct 3D geological models 

based on easily available 2D training images. To fulfil the objective, the MPS search 

engine roams over only several local sub-sections closer to the simulated node, instead 

of using a full training image. The authors also perform a parameter sensitivity analysis 

and the performance comparison with other previous 3D reconstruction techniques, 

illustrating the effectiveness of their approach using synthetic and real geological data. 

The results identify better performance both in portraying complex heterogeneous 

structures and in CPU cost. 

All together it is a very good paper, well written and showing a clear and valuable 

contribution that deserves publication. However, a number of significant issues need to 

be addressed for this manuscript to be publishable. Therefore, the authors are 

nevertheless invited to consider carefully the following comments to improve their 

manuscript. 

Thank you very much for your positive and constructive comments and suggestions. We 

have corrected all the issues you raised in the revised version. The following is a 

point-by-point response according to your comments. 

General comments: 

1. I am not totally convinced with the overall contribution of this method compared to 

s2Dcd. This needs to be explained in detail how the proposed technique differs 

from s2Dcd, which is now lacking in the introductory part.  

We are so sorry for that. We have added some descriptions in the revised 

manuscript to explain the differences between our method and s2Dcd clearly (see 

P3L29-32 and P4L19-22). 

2. The MDS shows slight improvement in terms of MP simulations using the 

proposed scheme. The computational benefit only appears with abundant sections 

available in each direction, which is in practice seldom existing and also mentioned 

as a limitation in the manuscript. Moreover, the improvement with reproduction of 

non-stationary patterns might have sampling effect as only one realization is 

considered from each method.  

We used kernel smoothing to estimate the density distribution of the realizations of 



 

 

three different MPS approaches around the reference (see P24L1-5). The result 

quantifies the advantages of our approach compared to DS and s2Dcd. Because 4 

processors are used in DS and s2Dcd, so our method presents the speedups of about 

4 compared to s2Dcd and about 120 compared to DS in this test (see P25L14-19). 

In addition, if there are very few or no sections in a direction, a feasible solution has 

been suggested by Gueting et al. (2017) where sequential 2D simulations are 

performed to obtained some sections first, and then both the original informed data 

and the obtained sections are used to reconstruct the model of the entire 3-D 

domain (see P14L19-21). Moreover, we drew the histograms of the four informed 

segments and the local models of 10 realizations for each MPS method in Figure 

18c in the revised manuscript (see P31Figure18c). The result also illustrates the 

advantages of our approach in reproducing non-stationary patterns (see P30L2-8). 

3. Overall, I am struggled to understand the flow of the methodology section, e.g. how 

the multigrid concept is implemented in searching the neighborhoods, or am I 

missing something in the workflow of the algorithm? I would also like to see the 

effects of using various number of multigrid in the form of sensitivity analysis. 

We are so sorry for that we did not describe the multiple-grids used in this work 

clearly. In the revised version, we added the corresponding description (see 

P10L24-26 and P11L2-4). In fact, the neighboring nodes (hard data and previously 

simulated nodes) around the central node on the current grid are selected to build a 

data event according to the radius R  and the maximum number of points in the 

neighborhood. Therefore, a large data event is divided into several small parts 

placed on the different grids which results in smaller neighborhoods on each grid. 

Moreover, the effect of the multiple-grids used in this work on computational 

efficiency is same as the existing ones, so we do not analyze its sensitivity. The 

main contribution of our strategy focuses on the ability to reproduce features with 

different scales. It can be observed that our method allows reproducing 

heterogeneous structures at different scales (see P29Figure17cd). 

Specific Comments: 

4. P7L2-3: Rewrite the sentence. 

This sentence has been rewritten in the revised manuscript (see P16L8-10). 

5. P12L12: the connectivity ‘becomes’ 



 

 

It has been corrected in the revised version (see P14L12). 

6. P12L14: I would prefer to see an example of artifacts clearly visible on a section of 

the reconstructed model (maybe with the example of 6x6x6 model in Figure 5), to 

have the feeling of how bad it is and also to justify the logic behind not using too 

many cross-sections. 

The first section along X direction of a reconstruction for each case has been added 

in Figure 5 in the revised manuscript (see P15Figure5). It can be seen that using too 

many cross-sections will lead to a number of artifacts.  

7. P12L18: it ‘is’ related 

It has been corrected in the revised version (see P14L17). 

8. Figure 5: Describe the black and gray lines by adding legend or in figure caption. I 

think the black lines represent the reference model? Also add the axes labels in 

variogram and connectivity plots. 

Yes, the black lines represent the corresponding features of the reference models. 

We have added the descriptions for the black and gray lines and the axes labels in 

variogram and connectivity plots in the revised manuscript (see P15). 

9. P14L8-10: Rewrite the sentence as it’s hard to follow in this format. 

This sentence has been rewritten in the revised manuscript (see P16L8-10). 

10. P14L14: 120? or 160 or 320? 

Thanks a lot for pointing it out! It should be 160 and has been corrected in the 

revised version (see P16L14). 

11. P17L19: analyze ‘the’ performance. 

Thank you for pointing it out! We have added “the” before “performance” in 

P21L15. 

12. P17L21: our method 

It has been corrected in the revised version (see P21L17). 

13. Figure 8: Caption is incomplete 

The caption of Figure 9 has been corrected in the revised version (see P22L2). 

14. Figure 9: The proportions of the facies in the 3D reference could be added as well 



 

 

in the plot for comparison. 

The proportions of facies in the 3-D reference have been added and marked by 

black lines in this Figure in the revised version (see P22L4-6 and Figure 10). 

15. P20L15-16: A brief summary of all other optimized parameters would be helpful 

for the readers. 

A brief summary of all other parameters for computational efficiency has been 

added in the revised version (see P25L2-4). 

16. Figure 13: The figure is redundant as all these numbers are already in the tables. 

This figure and the corresponding description have been deleted in the revised 

version (see P24L14-19, P25L1-2 and P25L6-8). 

17. P21L9: s2Dcd uses DS as an external MPS engine as mentioned in P17 L15-16, 

therefore s2Dcd also runs on 4 processors, I believe. However, the authors claimed 

the opposite here. Please clarify. 

It has been corrected in the revised version (see P25L14-19). 

18. P22L6: parts ‘of’ subdomains 

It has been corrected in the revised version (see P26L10). 

19. P23L5-6: Figure 17 compares the dissimilarity between the sections extracted from 

the realizations and the informed sections, and I am guessing the sections are 

selected as random and the authors avoid the sections those are already used as 

training images? 

In fact, all the sections along two directions are exacted, which include both 

reconstructed sections and informed sections. For each realization, 70 sections (67 

reconstructed sections and 3 informed sections) from xz direction and 280 sections 

(275 reconstructed sections and 5 informed sections) from yz direction are used to 

draw the MDS maps respectively. The corresponding descriptions have been added 

in the revised manuscript (see P27L10-14). 

20. P23L11: Figure 17 instead of Figure 16. 

Thank you for pointing it out! It has been corrected in the revised version (see 

P28L3-4). 

21. P25L1: The segments in Figure 18b are chosen from three local models, so is there 



 

 

any sampling effect when you select the sections to compare the reproduction of 

non-stationary patterns? What if you take an ensemble of sections from few 

realizations to compare the techniques? 

Three segments are randomly selected from the three local models. We drew the 

histograms of the four informed segments and the local models of 10 realizations 

for each MPS method in Figure 18c in the revised manuscript (see P31Figure18c 

and P30L2-8). If the surrounding sub-sections of a local area do not contain an 

attribute but it exists in other locations, the patterns with this attribute will not be 

moved to this local area in our approach. The corresponding description has been 

added in P30L2-8. 
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Abstract: Multiple-point statistics (MPS) has shown promise in representing complicated subsurface structures. For a 

practical three-dimensional (3-D) application, however, one of the critical issues is the difficulty to obtain a credible 3-D 

training image. However, bidimensional (2-D) training images are often available because established workflows exist to 15 

derive 2-D sections from scattered boreholes and/or other samples. In this work, we propose a locality-based MPS approach 

to reconstruct 3-D geological models on the basis of such 2-D cross-sections, making 3-D training images unnecessary. Only 

several local training sub-sections closer to the central uninformed node are used in the MPS simulation. The main 

advantages of this partitioned search strategy are the high computational efficiency and a relaxation of the stationarity 

assumption. We embed this strategy into a standard MPS framework. Two probability aggregation formulas and their 20 

combinations are used to assemble the probability density functions (pdfs) from different sub-sections. Moreover, a novel 

strategy is adopted to capture more stable pdfs, where the distances between patterns and flexible neighborhoods are 

integrated on several multiple grids. A series of sensitivity analyses demonstrate the stability of the proposed approach. 

Several hydrogeological 3-D application examples illustrate the applicability of our approach in reproducing complex 

geological features. The results, in comparison with previous MPS methods, show better performance in portraying 25 

anisotropy characteristics and in CPU cost. 

Keywords: Three-dimensional reconstruction, Multiple-point statistics, Locality, Cross-sections, Non-stationarity, 

Probability aggregation 

1. Introduction 

3-D characterization of geological architectures plays a crucial role in the quantification of subsurface water, oil and ore 30 

resources (Chen et al., 2017; Foged et al., 2014; Hoffman and Caers, 2007; Jackson et al., 2015; Kessler et al., 2013; Raiber 

et al., 2012; Wambeke and Benndorf, 2016). Heterogeneity and connectivity of sedimentary reservoirs exert controls on 
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underground fluid transport (Gaud et al., 2004; Renard and Allard, 2013; Weissmann et al., 1999) which is vital to quantify 

and forecast the formation and distribution of subsurface resources. For a practical 3-D application, however, these attributes 

are notoriously difficult to characterize and model since the informed data we can acquire are very sparse. Two-point 

geostatistics (Goovaerts, 1998; Pyrcz and Deutsch, 2014; Ritzi, 2000) and object-based methods (Deutsch and Tran, 2002; 

Maharaja, 2008; Pyrcz et al., 2009) are difficult to reproduce anisotropic features and connectivity patterns properly (Heinz 5 

et al., 2003; Klise et al., 2009; Knudby and Carrera, 2005; Vassena et al., 2010) due to the lack of high-order statistics and 

the difficulty in parameterization. A variety of two-point geostatistical approaches (Goovaerts, 1998; Journel, 1993; Pyrcz 

and Deutsch, 2014; Ritzi, 2000) have been employed to reproduce 3-D models of subsurface sedimentary structures and 

facies distribution. Unfortunately, two-point geostatistics cannot capture high-order statistics and hence it cannot properly 

reproduce anisotropic features and connectivity patterns (Heinz et al., 2003; Klise et al., 2009; Knudby and Carrera, 2005; 10 

Lee et al., 2007; Phelps and Boucher, 2009; Vassena et al., 2010). Object-based methods allow a realistic reconstruction of 

the heterogeneous lithofacies (Deutsch and Tran, 2002; Maharaja, 2008; Pyrcz et al., 2009), but it is not always possible to 

parameterize complicated geological phenomena by a few geometric parameters from irregular data (Comunian et al., 2012). 

To overcome the abovementioned limitations, multiple-point statistics (MPS) was developed over the recent years and has 

shown excellent prospects in modeling subsurface anisotropic structures, such as porous media, hydrofacies, reservoir, and 15 

other sedimentary structures (Comunian et al., 2011; Dell Arciprete et al., 2012; Hajizadeh et al., 2011; Hu and Chugunova, 

2008; Oriani et al., 2014; Pirot et al., 2015; Tahmasebi et al., 2014; Wu et al., 2006). 

A first MPS approach was suggested by Guardiano and Srivastava (1993) which is designed to reproduce 

heterogeneous geometries by extracting spatial patterns from training images directly rather than through variograms. A 

training image is a conceptual model derived from observations, and it bears a crucial role in MPS-based stochastic 20 

simulation. The first efficient implementation of MPS was developed by Strebelle (2002) on the basis of a tree structure. 

Later, the memory-efficient implementation IMPALA based on lists of data events was developed (Straubhaar et al., 2011). 

Several attempts have thereafter focused on improving MPS algorithms (Arpat and Caers, 2007; Caers, 2001; Mariethoz et 

al., 2010; Straubhaar et al., 2011; Tahmasebi et al., 2012; Wu et al., 2008; Yang et al., 2016; Zhang et al., 2006). With these 

methods, training images are scanned with a fixed search template and the MPS patterns are stored in a tree or a list data 25 

structure. For the currently simulated node, the conditional probability density function (cpdf) is calculated according to the 

current data event. An important difficulty lies in choosing the size of data template to best reproduce large-scale structures 

(Strebelle, 2002). The larger the size of the data event, the fewer replicates of this data event will be found over the training 

images for inferring the corresponding conditional probability density function (cpdf). However, when the size of data 

template is too small, large scale structures of the training image cannot be reproduced (Mariethoz et al., 2010). In addition, 30 

a search template including too many nodes can lead to storing a large number of patterns, increasing CPU cost and memory 

consumption. The multiple-grids concept (Tran, 1994; Strebelle, 2002) mitigates the above-mentioned limitations, but they 

still present due to the rigidity of data templates and multiple grids. A more straightforward MPS method, Direct Sampling 

(DS), was proposed by Mariethoz et al. (2010) where the high order statistics are sampled directly from the training image 
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without storing patterns and without the need of multiple grids. One of the main advantages of this approach is that several 

types of distances between patterns can be considered, making it possible to simulate continuous variables, or even 

multivariate simulation. As an approximation, pattern distance was used to express the matching degree between the 

neighborhood of a node and a data event in the training image (Chugunova and Hu, 2008; Mariethoz et al., 2010, 2015). For 

the pdf-based MPS methods, using the distances between patterns greatly decreases the amount of stored patterns. Some 5 

patch-based methods (Arpat and Caers, 2007; Honarkhah and Caers, 2010; Tahmasebi et al., 2012; Zhang et al., 2006) were 

proposed on the basis of this concept. By means of computer graphics, two very efficient MPS algorithms (Li et al., 2016; 

Mahmud et al., 2014) were developed to decrease the computational burden of traditional methods. 

No matter which MPS algorithm is used, a suitable training image is the fundamental requirement. Although such 

algorithms are gaining popularity in hydrogeological applications (Hermans et al., 2015; He et al., 2014; Høyer et al., 2017; 10 

Hu and Chugunova, 2008; Huysmans et al., 2014; Jha et al., 2014; Mahmud et al., 2015), they still suffer from one vital 

limitation: the lack of training images, especially for 3-D situations. Object-based or process-based techniques are one 

possibility to build 3-D training images (de Marsily et al., 2005; de Vries et al., 2009; Feyen and Caers, 2004; Maharaja, 

2008; Pyrcz et al., 2009). Besides inherent limitations in the parameterization of these algorithms, it is also challenging to 

reproduce the various aspects of geological geometries from a high-resolution outcrop map, or even from insufficient 15 

borehole data (Comunian et al., 2014; Pirot et al., 2015). To overcome this difficulty of obtaining 3-D training images, 

scholars have attempted to use low-dimensional data (e.g. boreholes, cross-sections, outcrop and remote sensing images) to 

reconstruct 3-D models directly instead of a training image in the entire 3-D domain (Bayer et al., 2011; Comunian et al., 

2011; Hu et al., 2011; Weissmann et al., 2015). some assumptions have been implemented to reconstruct 3-D models using 

low-dimensional data (e.g. boreholes, cross-sections, outcrop and remote sensing images) directly instead of a training image 20 

in the entire 3-D domain (Bayer et al., 2011; Comunian et al., 2011; Hu et al., 2011; Weissmann et al., 2015). In particular, 

A promisinga reconstruction method of partial data sets was proposed by Mariethoz and Renard (2010) by using and 

adapting the DS algorithm. However, large-scale 3-D models contain millions of nodes, thus a very large number of scan 

attempts will be carried out for each simulated node by using this method, especially in early stages of a simulation due to 

the sparse known data. Therefore, this method still suffers from a severe computational burden for fine 3-D applications. 25 

Moreover, it assumes stationarity of the modeled domain, which is not often the case in practice. Comunian et al. (2012) 

proposed an approach to tackle the lack of a full 3-D training image using sequential 2-D simulations with conditioning data 

(s2Dcd): a 3-D domain is filled by preserving an overall coherence due to that a series of 2-D simulations performed using 2-

D training images along orthogonal directions. However, this strategy is difficult to characterize the connectivity of 

structures in all directions of a 3-D domain, because each 2-D simulation only considers the high-order statistics in this 30 

direction. Moreover, it also suffers from the limitation of nonstationarity of geological phenomena due to the global search in 

a 2-D plane. To integrate the benefits of the both approaches, Gueting et al. (2017) proposed a new combination of the two 

existing approaches. The combination is achieved by starting with the sequential two-dimensional approach (Comunian et al., 

2012), and then switching to the three-dimensional reconstruction approach (Mariethoz and Renard, 2010). However, the 
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above-mentioned limitations of the two approaches still remain because this combination is an optimization of the workflow, 

and does not substantially improve the methods. To combine the cpdfs from different directions, several probability 

aggregation methods were tested and discussed (Allard et al., 2012; Bordley, 1982; Genest and Zidek, 1986; Journel, 2002; 

Krishnan, 2008; Mariethoz et al., 2009; Stone, 1961). Other 3-D applications to represent geological structures using MPS 

and partial data include filling in the shadow zone of a 3-D seismic cube (Wu et al., 2008), generating small scale 3-D 5 

models of porous media (Okabe and Blunt, 2007) and building a 3-D training image with digital outcrop data (Pickel et al., 

2015). 

From another perspective, using very common workflows, geologists can obtain 2-D geological maps or sections from 

scattered boreholes and/or other samples by studying analogs (Caumon et al., 2009). With increasingly sophisticated data 

acquisition methods, 2-D high-resolution images can be acquired. For example, large-scale outcrop maps can be captured by 10 

using terrestrial lidar (Dai et al., 2005; Heinz et al., 2003; Nichols et al., 2011; Pickel et al., 2015; Zappa et al., 2006), and 

fine-scale pore images can be derived from progressive imaging techniques (Zhang et al., 2010). Therefore, there are many 

ways to acquire low-dimensional data for reconstructing a full 3-D model. In practice, however, these works using real 

geological analogs or sections as training images still face significant non-stationarity due to the heterogeneity of geological 

phenomena and processes (Comunian, 2011; de Vries et al., 2009). 15 

To address the insufficient access to a 3-D training image and the challenge of non-stationarity, we present a new 

strategy to reconstruct 3-D geological heterogeneities using 2-D cross-sections instead of an entire training image. Compared 

to previous MPS implementations relying on partial data, our proposal is to use only several local sub-sections closer to the 

simulated node as training images, rather than full planes perpendicular to the x, y and z directions (Comunian et al., 2012) 

or searching in the entire 3-D domain (Mariethoz and Renard, 2010). Against to the filling by a series of 2-D simulations in 20 

s2Dcd (Comunian et al., 2012), a random simulation path containing all uninformed locations is used so that MP statistics in 

a 3-D domain are captured. The local sub-sections are able to offer more coherent and reliable statistics since they are 

spatially closer to the simulated node which is going to be simulated. Moreover, the original cross-sections are divided into 

many sub-sections according to their spatial relationships, thus non-stationarity is reduced since it is restricted into a local 

cube consisting of six or fewer sub-sections. In principle, our proposal can be applied into any multiple-point stochastic 25 

simulation method. In this work, we embed this strategy into a standard MPS framework called ENESIM (Guardiano and 

Srivastava, 1993). The blocking strategy proposed in this work can significantly reduce the search space of training images, 

which makes it possible to get a 3-D reconstruction using ENESIM for a reasonable CPU cost. As with DS, in our method 

MP statistics are not stored and the neighborhood is flexible. To integrate the patterns from different sub-sections, two 

probability aggregation formulas and their combinations are used. As an approximation of the matching degree between 30 

neighborhoods and data events, pattern distances are used to enhance the stability of cpdfs. Furthermore, we adapt multiple-

grids into our approach, where the geometries of data templates are not fixed for grids of different scales. Besides cross-

sections, any other scattered samples can also be involved into the proposal as conditional data (hard data).  
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The remainder of this paper is organized as follows. Section 2 gives background information used in the following 

sections. Section 32 presents the main concepts of the locality-based 3-D MPS reconstruction using 2-D cross-sections and 

the detailed steps of the proposed approach. Section 43 shows a parameter sensitivity analysis and the performance 

comparison with other MPS algorithms. Section 54 gives a synthetic example in hydrogeologycomprehensive application 

case to illustrate the effectiveness of our approach when facing the real geological field data. The final section discusses 5 

some concluding remarks and ideas for future work. 

2. Background Information 

2.1. Pattern Distance 

A pattern distance { , }X Yd N N  is an approximation of the dissimilarity between patterns, which is used to compare 

the neighborhood of a node currently simulated with a data event in the training image (Mariethoz et al., 2010). Approximate 10 

matches are accepted by using a distance threshold t . Namely for a data event 
XN  from the simulation grid, when the 

condition { , }  ( 0)X Yd t t N N  is met, the pattern 
YN  from the training image will be used to update the current cpdf. 

For a categorical variable, the distance can be formulated as: 

1

0     if  ( ) ( ),1
{ , } = [0,1],        

1     if  ( ) ( ).  

n
i i

X Y i i

i i i

Z x Z y
d a where a

Z x Z yn 


  


N N                           (1) 

For a non-stationary training image from an actual geological phenomenon, repeatability of spatial patterns could be 15 

weak so that it is hard to acquire a stable cpdf. Therefore, we adopt a patterns distance with a threshold as an approximation 

to sample more patterns and get a more stable cpdf. 

2.2. Probability Aggregation 

Allard et al. (2012) presented a comprehensive literature review for aggregating probability distributions. These can be 

divided into additive methods and multiplicative methods according to their mathematical properties. Linear Pooling formula 20 

(Stone, 1961) is a widely used method (for example, it was used by Okabe and Blunt, 2007) based on the addition of 

probabilities. It is appealing because of its flexibility and simplicity. Multiplicative methods include Bordley/Tau models and 

log-linear pooling (based on odd ratios) (Bordley, 1982; Journel, 2002; Genest and Zidek, 1986).  

2.2.1. Linear Pooling Formula 

The linear pooling formula, proposed by Stone (1961), probably is the most intuitive way of aggregating the 25 

probabilities 
1,..., nP P  of an event A .  
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1

( ) ( )
n

G i i

i

P A w P A


    with 
1,..., .nw w R                                                        (2) 

In this formula, 
iw  are positive weights and their sum must equal one to obtain a global probability [0,1]GP  .  

2.2.2. Log-Linear Pooling Formula 

TheA log-linear pooling operator formula is a linear operator of the logarithms of the probabilities (Genest and Zidek, 

1986). If a prior probability 
0 ( )P A  must be included, the log-linear pooling formulait is written as: 5 

1
1

0

1

( ) ( ) ( ) .
n

ii i

n
w w

G i

i

P A P A P A




                                                                  (3) 

0
1

n

ii
w


  is needed to verify external Bayesianity. There are no other constraints whatsoever on the weights 

iw , 

0,...,i n . The sum 
1

n

ii
S w


  plays an important role in this formula. If 1S  , the prior probability 

0P  is filtered 

out because 
0 0w  . Otherwise, if 1S  , the prior probability has a negative weight and 

GP  is further away from 
0P  than 

other probabilities. Conversely, if 1S  , 
GP  is always closer to 

0P . Therefore, we can adjust the influence of the prior 10 

probability 
0P  on the aggregated result 

GP  by changing the value of S . 

2.3. Multidimensional Scaling and Kernel Smoothing 

Tan et al. (2014) proposed a distance-based approach to evaluate the quality of MP simulation outcomes where the 

Jensen–Shannon (JS) divergence is used to depict the dissimilarity of MP histograms as a quantitative metric. The 

information in the dissimilarity of MP histograms can be visualized using multidimensional scaling (MDS) (Caers, 2011). 15 

MDS approximates these distances by a lower-dimensional Euclidean distance in Cartesian space, which facilitates the 

visualization of the dissimilarity of MP histograms. 

Hermans et al. (2015) used an adaptive kernel smoothing (see Park et al., 2013) to estimate the probability density of 

the data variable for each kind of realizations ( * | )if Ref R  in the d-dimension space inferred from MDS. This allows 

estimating the probability density distribution of the realizations around the reference. For each kind of realizations, its 20 

probability relative to the reference ( | )iP R Ref  can be calculated by using Bayes’ rule: 

1

( * | ) ( )
( | ) ( | *) .

( * | ) ( )

i i
i i N

i i

i

f P
P P

f P


 



Ref R R
R Ref R Ref

Ref R R

                                             (4) 
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3. Methodology 

3.1. Local Search Strategy of 3-D MPS Reconstruction  

In the above-mentioned MPS methods using partial data whether searching an entire 3-D domain or complete sections, 

Comunian et al. (2012) presented a commonly used 3-D MP simulation approach using 2-D training images. The key idea is 

to capture 3-D MP statistics by using two/three orthogonal training images and then merging the MP statistics from different 5 

directions into an integrated pdf. However, any locations of the training images are scanned even they are far away from the 

simulated node so that one spatial pattern will be carried to a distant position. Therefore, the use of theseis methods isis 

restricted to stationary training images, which are in practice seldom available. In this work, we propose a local search 

strategy that allows palliating this problem, by taking into account the spatial relationships of the real geological cross-

sections in a given 3-D domain.  10 

As illustrated in Figure 1, a 3-D domain is segmented into nine small blocks by six cross-sections from three orthogonal 

directions where there are two sections in each direction. Every local block is surrounded by n  local sub-sections 

(1 6n  ). It should be noted that, sometimes, local blocks are not closed (i.e. the surrounding sub-sections are less than 

six) (Figure 1b); and it is also allowed sections along some planes are missing; however, at least one section should be 

provided. For each unknown node in the local block (e.g. the gray cubes in Figure 1c), the MP statistics are captured from 15 

the surrounding sub-sections rather than from the entire sections. Namely, there are n  corresponding training images for 

each simulated node. These local sub-sections are the parts of the global cross-sections which are closer to the uninformed 

nodes in the local block, thus they are more likely to be regarded as statistically representative. Data events are selected from 

the informed nodes (hard data) on three planes parallel to the sub-sections and through the current simulated node in three 

orthogonal directions by using a flexible neighborhood. 20 
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Six cross-sections (two sections in each direction)

Six sub-sections

Two local domains Three sub-sections

(a) (b) (c)

 
Figure 1. Local sub-sections divided by their spatial relationships and the corresponding training images. (a) Six cross-sections in a 3-D 

domain: two sections along each direction; (b) two local domains: a central cube and a corner cube; (c) corresponding sub-sections 

(training images). 

Another important point is related to handling of the search window when scanning a sub-section. Here, we allow all 5 

locations of a sub-section to be visited by the central node of a data event. The neighbor nodes of the data event can be 

placed in other adjacent sub-sections when matching with the training images. As shown in Figure 2, the area inside the blue 

line is the search window. If only the nodes of the data event are from the sub-section itself (case 1 on the figure), the 

training patterns are seriously reduced. We adopt a search strategy where neighbor nodes can be searched in the neighboring 

sub-sections (case 2 on the figure). Its main advantages are the coherence of the spatial patterns in a realization and the larger 10 

number of training patterns available. In addition, the size of the data events is constrained by the boundary of the global 

section, as illustrated in Mariethoz et al. (2010).  
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1

2

 
Figure 2. Search window in sub-sections. 

If more cross-sections are available, a finer spatial subdivision can be used. In this case, the size of each sub-section is 

smaller and the computational cost is reduced significantly. However, extremely small training images cannot offer enough 

spatial patterns, thus a minimal sub-section size has to be considered. In practice, if there are many sections in each direction, 5 

a feasible solution is to select several ones as the references and others are used as conditioning data only.  

3.2. Strategy for Aggregating the pdfs from Local Sub-Sections 

As an additive aggregation method, the linear pooling formula corresponds to a mixture model, which is related to the 

union of events and to the logical operator OR (Allard et al., 2012). This method is thus used to unite several independent 

probabilities into a global term 
GP . The log-linear pooling formula, based on the multiplication of probabilities, is related to 10 

the intersection of events and to the logical operator AND. Therefore, we usually use such a method to aggregate the 

probabilities with significant correlation to acquire a conjunction probability. 

In this study, n  pdfs (1 6n  ) are computed from the surrounding local sub-sections (Figure 1). For the illustrative 

case proposed here, a local 3-D domain is surrounded by six sub-sections, and six pdfs are being aggregated. There are two 

parallel sub-sections (training images) in each direction. Intuitively, an An additive aggregation operator seems is more 15 

appropriate to combine such two disjunctive probability distributions, since these two parallel sub-sections often contain 

similar patterns, and we just expect a larger number of samples and thus more robust pdf by uniting both. Then, three 

orthogonal pdfs are obtained. We then join these pdfs containing the statistics from different directions with obvious 

anisotropic features. This scenario needs a multiplicative method to combine the orthogonal pdfs so as to retain the features 

in all directions. In summary, an optimal probability aggregation strategy is proposed by the procedure described below: 20 

1. Aggregate the pdfs collected along the same direction for parallel sub-sections using the linear pooling formula 

described in section 2.2.1. 
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2. Aggregate the orthogonal pdfs from the above step by using the log-linear pooling formula described in section 

2.2.2. 

Of course, the probability aggregation step is not required when for step 1 there is only one sub-section along a given 

plane, and for step 2 the pdf that along some direction are missing are simply not included in the aggregation process. For the 

step 1, the weights 
1w  and 

2w  are related to the distances between the current location and the two parallel sub-sections 
1d  5 

and 
2d  s, and computed as: 

1
1

1 2

1
=

1 1

d
w

d d
, 2

2

1 2

1
=

1 1

d
w

d d
.                                                             (35) 

Such parameterization ensures that within-block trends are accounted for.  

For the step 2, an influence of the prior probability is desired to tune the other orthogonal pdfs. Thus, we usually use 

00 1w  , and set ( 1,..., )iw i n  equal, i.e. 
0(1 )iw w n  , where n is the number of pdfs to be aggregated. However, 10 

the weights ( 1,..., )iw i n  can also change, for example, they can vary at each simulation step as described in Comunian et 

al. (2012), according to the contributions of the different training images, while sum still respects the condition 

0
1

n

ii
w


 . 

3.3. Flexible Search Template on Multiple Grids 

When large neighborhoods are considered, it is more difficult to find matching data events in the training image and 15 

thus a larger distance threshold t  is required to obtain a sufficient number of samples for an acceptable cpdf. This can lead 

to degrading small-scale features or the removal of categories that have a low proportion. To address this issue, we propose a 

novel implementation of multiple grids where the search template is flexible and the distance threshold t  varies according to 

the radius of the neighborhood.  

As illustrated in Figure 3, an example of multiple grids with three levels is used to show the relationship between 20 

neighborhoods, search radius R  and distance threshold t  on different grids. A neighborhood is identified by the informed 

and/or simulated nodes located in the circle with a radius R  and the current node (the gray nodes in Figure 3) as a central. 

The initial radius 
0R  and distance threshold 

0t  for the first grid are assigned as the input parameters. The radius R  linearly 

reduces to 1 from the first to the last grid, and the threshold t  similarly varies from 1 to 0. The neighboring nodes (hard data 

and previously simulated nodes) around the central node on the current grid are selected to build a data event according to 25 

the radius R  and the maximum number of points in the neighborhood. Therefore, aA large data event is divided into several 

small parts placed on the different grids which results in smaller neighborhoods on each grid. An acceptable threshold t  is 

thus assigned to each neighborhood. For the last grid, the radius is reduced to 1 and at most there are eight nodes in a 

neighborhood (Figure 3 is a 2-D sketch of multiple grids, but we mainly focus on 3-D simulations in this paper). This 
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strategy considers that small data events located on the last grid are much more repetitive (thus easier to find) than the large 

data events of the first grid. Figure 3 shows the flexible use of multiple grids on one plan through the current node. In the 

local search strategy proposed in this work, three planes through the current simulated node in three orthogonal directions 

are considered. Thus the same strategy will be applied on other two planes.  

 5 
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Figure 3: An example of multiple grids and the corresponding neighborhoods, search radius R  and distance threshold t . 

3.4. Step-by-Step Algorithm Using the Local Search Strategy 

Based on the strategies proposed in the above sections, the detailed steps of our simulation algorithm proceed as 

illustrated in Algorithm 1. 10 

Algorithm 1: Reconstruct 3-D geological structures using 2-D cross-sections 

1  Load data files, assign all points of the training data (cross-sections and other samples) into the SG. 

2 Record the indexes of the sections in x, y, z directions and compute the prior proportions 
pP  of the local domains. 

3  For each multiple grid g : 

4 Define a random simulation path for grid g  according to the remaining nodes.  

5 Do until all uninformed nodes in g  have been visited: 

6  Get the index of current node x , and identify its neighborhood 
xN . 

7  Obtain the indexes of the closest sections around x : 0 1{ , }x x , 0 1{ , }y y , 0 1{ , }z z . 

8   Randomly scan the sub-sections (TIs) and get the corresponding cpdfs (see algorithm 2). 
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9  Get the prior proportion p  of the local domain according to the location of the node x .  

10  Combine the cpdfs and p  into a joint pdf using the strategy presented in section 32.2. 

11  Randomly draw a value from the final pdf, and assign it to location x . 

12 End 

13  End 

 

As mentioned above, we capture the MP statistics from several sub-sections of a local domain. Thus, the corresponding 

prior proportion should also be computed on the basis of these surrounding sub-sections (step 2). Obviously, step 8 is the 

most important procedure in our simulation algorithm, and the idea is inspired from ENESIM (Guardiano and Srivastava, 

1993) and DS (Mariethoz et al., 2010). The main procedure is demonstrated in Algorithm 2. 5 

Algorithm 2: Scan a local sub-section (training image) in one certain direction 

Input: x : current simulation location; id : index of the training image that will be scanned;  

 0 1 0 1, , ,    : indexes of the closest training image s in the other two directions. 

Output: cpdf: conditional probability density function from the current training image. 

1   Function 
0 1 0 1ScanTI( , , , , , cpdf,& )x id    N  

2 Get the sub-section sub _ S  (training image) according to the id  and 0 1 0 1, , ,    ; 

3 Set a random path p , and initialize the counter of matched patterns 0sum  ;  

4 for : 0 .size()i p   such that .size()i p f   do 

5  Sample a location in the training image and get the neighborhood 
Y

N ; 

6  Compute the distance { , }d
X Y

N N  using equation (41) presented in section 2.1; 

7  if { , }d t
X Y

N N  then 

8   update the cpdf according to the facies of the central point in the training image; 

9   ++sum ; 

10  end if 

11  if 
maxsum > N  then 

12   break; 

13  end if 

14 end for 

15  end Function 

 

The fraction of the scanned training image f  and the distance threshold t  are borrowed from DS and they play the 

same roles. 
0 1 0 1, , ,     are the indexes of the closest training images in the other two directions and they are used to 
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determine the current sub-section (training image). A new parameter, the maximum number of matched patterns from the 

training image maxN  is adopted to avoid unnecessary searches. For some small neighborhoods, especially in the last multiple 

grid, the cpdf will rapidly stabilize with the increasing number of matched patterns.  

4. Parameterization and Performance Analysis 

In this section, we apply our method on several synthetic cases where the cross-sections are extracted from existing 3-D 5 

references. Using these examples, we perform a parameter sensitivity analysis and compare it with two widely used methods, 

DS-based 3-D reconstruction (Mariethoz and Renard, 2010) and s2Dcd (Comunian et al., 2012). The workflows and 

algorithms proposed in this work are developed in the C++ programming language. All experiments presented in this paper 

are implemented on a laptop computer with Intel 4-Cores i5-62000U Quad-core CPU 2.30 GHz, 8 GB RAM and 64 bit 

Windows 10.  10 

4.1. Parameter Sensitivity 

The majority of parameters of our approach are similar to DS. Therefore, only the sensitivity of three parameters 

specific to our approach are tested against the 3-D reference shown in Figure 4, considering CPU cost and statistical and 

geometrical features of the realizations obtained. All cross-sections used in the following tests in the section 43.1 are 

extracted from this 3-D model. 15 

 

X Y

Z

 
Figure 4. A sample of Berea sandstone from Okabe and Blunt (2007) is used as a 3-D reference (100 × 100 × 100 voxels). The crimson 

color represents pores and the yellow color represents matrix. The porosity of this model is 20.33%.  

 20 
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4.1.1. Number of Cross-Sections 

The number of cross-sections 
csN  is a new parameter in our approach. They are not only regarded as the training 

images and conditioning data, but also control the computing speed and the quality of the reconstructions. Figure 5 and 

Table 1 show different reconstructions and their statistical properties by increasing the sections in every direction. In this test, 

the number of cross-sections 
csN  in each direction increases from one to six, and other parameters are fixed: maximum 5 

search distance radius = 50, maximum number of points in a neighborhood = 35, distance threshold 
0 0.2t  , fraction of 

training image to scan 0.8f  , maximum of matched patterns from each training image = 100, number of multiple grids = 

3, weights of the probability aggregation 
0 1 2 3 0.25w w w w    . We obtain 20 realizations for each set of cross-

sections. The main difference between the different settings is the improvement of computational efficiency with the 

increase in cross-sections. The proportion of pores (porosity) is reproduced at a similar level for each group, Also, when 10 

increasing the number of cross-sections 
csN , the number of geobodies gets closer to the reference, and the variability is 

decreased and the connectivity is more and more becomes stable, which are caused by the increase of conditioning data (i.e. 

informed cross-sections). On the other hand, using too many cross-sections will lead to a number of artifacts since the 

training sub-sections for each sub-block are very small, resulting in insufficient number of samples (see the sections 

extracted from the reconstructions in Figure 5). As a consequence, we recommend that several sections can be chosen if 15 

there are abundant candidates in one direction, which must ensure that the features of selected ones are diverse and contain 

enough spatial patterns, but not incurring artifacts. In this test, 3 or 4 sections in each direction are recommended, but it is 

related to the size of simulation grid in other 3-D application. In general, one informed section for every 50 grid cells in one 

direction in the simulation grid is recommended. When there are very few or no sections in a direction, a feasible solution 

has been suggested by Gueting et al. (2017) where sequential 2D simulations are performed to obtained some sections first, 20 

and then both the original informed data and the obtained sections are used to reconstruct the model of the entire 3-D domain.  
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Figure 5. Reconstructions and their statistical properties with increasing the number of sections in each direction. The first section along X 

direction of a reconstruction for each case is presented here. We only present the connectivity functions computed along the coordinate Y 

since their features are similar in three directions. The black lines represent the corresponding features of the reference models, and the 

gray lines represent the features of the reconstructions.  5 
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Table 1. Comparison of the performance of the tests in Figure 5. All the statistics are the averages of 20 realizations. 

Test csN  Sub-blocks 
Porosity (%) 

No. of geobodies Time (s) 
Training sections Results 

1×1×1 3 8 19.07 16.36 1781 1382 

2×2×2 6 27 21.35 19.95 908 718 

3×3×3 9 64 18.70 16.22 572 396 

4×4×4 12 125 19.62 16.21 471 271 

5×5×5 15 216 19.81 16.80 340 183 

6×6×6 18 343 19.74 17.32 326 127 

3-D Ref.    20.33 144  

 

4.1.2. Maximum Number of Matched Patterns from Each Training Image 

Table 2 shows the statistics of 20 realizations obtained by varying the maximum of matched patterns from each training 

image 
maxN , which is a novel parameter adopted in this work to avoid the unnecessary searches during obtaining a cpdf 5 

from training images. Other parameters are the same as in the former test presented in Figure 5, except for the sections in 

each direction which are fixed to 3. We find that the computational cost increases sharply when 
max >160N  and then 

stabilizes. Concerning the compared statistical properties, low values of 
maxN  result in variabilities are closer to the 

reference with bigger variances which is due to because it is almost like sampling the result directly from training images 

resulting inand the role of cpdfs is lost. For the remaining cases, the statistics are similar except for a decrease of variances 10 

with increasing maxN  (Table 2). In order to better grasp the effect of maxN , three cases are selected ( maxN  = 5, 40, 320) and 

the corresponding realizations are shown in Figure 6a-c. The connectivity functions vary in a large range for small 
maxN  

values. Conversely, they become more stable when increasing maxN  (Figure 6d). The variance of variables bears the same 

tendency by increasing maxN  (Figure 6e). Consequently, maxN  = 40 to 120 160 is recommended resulting in a balance 

between a stable cpdf and computational cost.  15 
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Table 2. Comparison of the performance for 20 realizations with three sections in each direction, and varying the maximum of matched 

patterns from each training image maxN . Other parameters are fixed and are same with the test of Figure 5. All the statistical values are 

the mean of 20 realizations.   represents no constraint for maxN . 

maxN  Porosity (%) Variance No. of geobodies Time (s) 

5 18.39 0.150 365 132 

10 17.22 0.143 440 161 

20 16.69 0.139 486 200 

40 16.47 0.138 505 251 

80 16.48 0.138 510 417 

160 16.38 0.137 519 495 

320 16.50 0.138 503 549 

640 16.66 0.139 508 587 

  16.89 0.138 497 589 

Ref. 18.70 0.152 144  
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Figure 6. Reconstructions and their statistical properties with maxN = 5, 40, 320 selected from Table 2. 
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4.1.3. Weights of the Probability Aggregation Formulas 

In this work, the strategy for aggregating the pdfs from local sub-sections includes two steps. In the first step the 

weights of Linear Pooling Formula for two parallel sub-sections are selected depending on the distances between the current 

location and the two sub-sections in the first step. Therefore, the weights are automatically set and do not need to be set. In 5 

the second step, the appropriate weights for the prior probability distribution and three orthogonal cpdfs are to be selected by 

the user. Figure 7 shows different realizations obtained by varying the four weights 0 1 2 3, , ,w w w w . Here we increase the 

weight of the prior probability distribution 0w  and let the other three weights equal, since the cpdfs from three orthogonal 

directions have the same contribution. Of course, if users think the cpdf of one direction is more important than others, they 

can be changed, under the constraint that 
3

0
1ii

w


 . It can be observed that when 0 =0w , the spatial structures are well 10 

reproduced, but with larger variance (Figure 7a) since all spatial patterns are inferred from the MP statistics of the 

surrounding sub-sections rather than using prior information. When increasing 0w , the continuity connectivity of the spatial 

structures is degraded, but the facies proportions are closer to the reference (Figure 7b). Finally, in the extreme case of 

(Figure 7c) the connectivity continuity of spatial structures is lost. Therefore, 00 0.25w   is a recommended range and 

other three weights can be determined by the importance (e.g. complexity or variety of patterns) of the sections in each 15 

direction.  

 

0 1 2 30, = 0.333w w w w   0 1 2 30.25, 0.25w w w w    0 1 2 30.7, 0.1w w w w   

Porosity = 0.157, Variance = 0.161
Number of Geobodies = 229 

Porosity = 0.173, Variance = 0.145
Number of Geobodies = 551 

Porosity = 0.128, Variance = 0.119
Number of Geobodies = 1364 

(a) (b) (c)

 
Figure 7. Three realizations obtained by varying the weights of the probability aggregation formulas. Three sections in each direction are 

used and other parameters are same with the test of Figure 5. 20 
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For the other parameters involved in our algorithm, most of them are similar to the parameterization of DS which have 

been tested thoroughly in Meerschman et al. (2013). However, our method allows larger initial values for the neighborhood 

size and the distance threshold because multiple grids are used so that these initial values are decreased with increasing the 

level of multiple grids.  

4.1.4. Interaction between t , f , 
csN and 

maxN  5 

In this section, we compare the interaction between two important parameters of DS (distance threshold t  and fraction 

of training image to scan f ) and two new parameters presented in our method (number of cross-sections 
csN  and maximum 

number of matched patterns from each training image 
maxN ). Figure 8 shows the interaction between t , f , 

csN , 
maxN . 

Running our algorithm with 0.2f   and 0.4t   results in noisy realizations. This is not surprising since any patterns can 

be accepted even if it bears a large pattern distance { , }X Yd N N . Of course, the algorithm will be very fast under these 10 

parameters because the scan for training image will be stopped at the beginning. Meerschman et al. (2013) tested thoroughly 

for the parameterization of DS. In their test, when 0.5f   and 0.2t  , the realizations are acceptable. However, here the 

results still contain many noises since the local search strategy reduces the size of the actually scanned training images. As 

the increase of t , f , 
csN and 

maxN , the results become satisfactory. The recommended range of 
csN and 

maxN  have been 

given in the above sections. In our method, it is advised to use 0.8f   and 0.1t  . Compared to DS, more strictly 15 

restrictions for t  and f  are adopted due to the local search strategy used in our method. Same as the effect of t  and f , 

csN and 
maxN  also control the computational efficiency and the quality of simulations. Therefore, when setting the 

parameters, we should consider finding a balance between the quality of results and the computational cost. 

 



20 

 

0
.2

,
0

.4
f

t



 

0
.5

,
0

.2
f

t



 

1,
0

.0
5

f
t




 

1 1 1, 5cs maxN N    2 2 2, 40cs maxN N    4 4 4, 320cs maxN N    

Porosity: 15.49%; Time: 33.8s
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Number of Geobodies: 3489

Porosity: 18.43%; Time: 28.9s
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Number of Geobodies: 1851

Porosity: 16.42%; Time: 587.6s
Number of Geobodies: 513

Porosity: 19.98%; Time: 405.3s
Number of Geobodies: 334

Porosity: 16.26%; Time: 284.8s
Number of Geobodies: 276

 

Figure 8. Interaction between  t , f , 
csN and 

maxN . These first sections in three directions of each realization are presented. The 

porosity, CPU time and the number of geobodies are the average of 10 realizations. 
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4.2. Comparison of Reproducing Heterogeneities with Existing Methods 

To verify the validity of our approach for reproducing heterogeneous structures, we compare it with two MPS 

implementations that use partial data: DS (Mariethoz and Renard, 2010) and s2Dcd (Comunian et al., 2012). As shown in 

Figure 98, six cross-sections extracted from a 3-D model of folds (180 ×150 × 120 voxels) (Mariethoz and Kelly, 2011) are 5 

utilized in this test. s2Dcd is a wrapper library that requires an external MPS engine. In order to ensure comparability, here 

DS is employed as the engine of s2Dcd. The detailed parameters are as follows: maximum search distance radius = 40, 

maximum number of points in a neighborhood = 40, distance threshold 
0 0.2t  , fraction of training image to scan 0.8f  , 

maximum of matched patterns from each training image = 100, level of multiple grids = 3, weights of the probability 

aggregation 
0 1 2 3 0.25w w w w    . In other two methods, a smaller distance threshold 0.05t   is considered and other 10 

essential parameters are same with our method. Because the implementation of DS is parallel, we use 4 processors to carry 

out this test in DS and s2Dcd. Only one processor is used in our method because our implementation is not parallel. In 

Figure 98, one selected realization for each method is presented. From their visual appearance, it looks that s2Dcd and our 

method have the similar performance for reproducing the patterns shown in 3-D reference and informed cross-sections. 

Therefore, histograms, variograms, and connectivity functions are used to further analyze the performance. Figure 109 15 

shows the comparison of proportions of the facies for the realizations by using three MPS methods. 20 realizations are 

performed for each method. It can be seen that the facies proportions with our methods are closer to the proportions of the 

reference model and the informed cross-sections. The variograms and the connectivity functions on three directions for the 

3-D reference and the generated 20 realizations of each method are shown in Figures 1110 and 1211, indicating that all three 

methods are able to reproduce the basic statistics of the 3-D reference, but the lines of the proposed method are generally 20 

closer to the reference.  
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Figure 98. Realizations of three different MPS reconstruction methods. In our method, the parameters. 
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Figure 109. Proportions of the facies for 20 reconstructions by using three MPS methods. The black and red horizontal lines represents the 5 
proportions of facies in the 3-D reference and the cross-sections used as training images respectively. 
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Figure 1110. Comparison of the variograms between DS, s2Dcd and our approach. 
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Figure 1211. Comparison of the connectivity functions in three directions with three MPS methods. 5 

Tan et al. (2014) proposed a distance-based approach to evaluate the quality of MP simulation outcomes where the 

Jensen–Shannon (JS) divergence is used to depict the dissimilarity of MP histograms as a quantitative metric. The 

information in the dissimilarity of MP histograms can be visualized using multidimensional scaling (MDS) (Caers, 2011). 

MDS approximates these distances by a lower-dimensional Euclidean distance in Cartesian space, which facilitates the 

visualization of the dissimilarity of MP histograms. To further compare the models obtained using the three different MPS 10 

approaches, MDS plots are constructed by calculating the distance of MP histograms between all the realizations of three 

approaches and a 3-D reference. The resulting MDS map is shown in Figure 1312 and it can be observed that the realizations 

of our method are closer to the reference in the MDS map than the results obtained by the other two approaches. In addition, 



24 

 

kernel smoothing is used to estimate the density distribution of the realizations of three different MPS approaches around the 

reference. The probabilities of the realizations are calculated from kernel density estimation by using the equation (4) 

described in section 2.3. According to the reference model, the three different approaches have quite similar probabilities 

with 29, 33, and 38% for DS, s2Dcd, and our approach, respectively. However, our approach still gains the highest 

probability. 5 
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Figure 1312. MDS representation for 20 realizations of each MPS method. 

 

In practice, there is no fully informed 3-D reference and we only have several informed cross-sections. Thus, the 

statistical features of the reconstructions (e.g. variograms, connectivity functions and MDS plots) are close to the reference 10 

but no one can surpass it in the above test. However, these comparisons are still able to validate the reproduction of spatial 

patterns for the different MPS approaches.  

4.3. Computational Performance 

In this section we focus on the analysis of computational performance. For the test illustrated in sSection 43.1.1 and 

43.1.2 have already analyzed the influence of , the average time per realization for different number of cross-sections, shown 15 

in Figure 13a, decreases rapidly with increasing the number of cross-sections 
csN  and from one to six in each direction. 

Although this factor seriously affects the computational efficiency, we should strike a balance between the computational 

efficiency and variability of spatial patterns which is described in detail in section 3.1.2. For the maximum of matched 

patterns from each training image maxN . depicted in section 3.1.2, the computational cost increases sharply in the first half 
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part by changing maxN , and then approximately tends to be stable (Figure 13b). Thus, a good choice for this factor is close 

to the turning point before the curve tends to be stable. Section 4.1.4 tested the interaction between t , f , 
csN and 

maxN . 

The results indicated that the effect of t  and f  on the computational efficiency in our method is the same as in DS. The 

computational performance of other parameters has been assessed clearly by Meerschman et al. (2013). The weights of the 

probability aggregation formulas do not affect CPU time.  5 
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Figure 13. Effect of (a) the number of cross-sections in each direction and (b) the maximum of matched patterns from each training image. 

The times are averaged on 20 realizations. 

A comparison of computational performance between DS, s2Dcd and our approach is presented in Figure 14. Because 

our method is sensitive to the number of input cross-sections, we offer two and four sections in each direction respectively, 10 

and the computational efficiencies are shown in Figures 14a and 14b with increasing the total number of grid cells. Other 

parameters are the same as the test in section 3.2. Note that a different time axis is used for DS-based reconstruction because 

it uses much more CPU time than the other two methods, even though four processors are used for DS-based reconstruction. 

As shown in Figures 14a, s2Dcd and our approach presents similar computationalbetter computational performance but 

much better than DS-based 3-D reconstruction since the MP statistics are captured from a smaller domain composed of 15 

several 2-D sections in s2Dcd and our approach. Because four processors are used in DS and s2Dcd, thus our approach 

presents the speedups of about 4 compared to s2Dcd and about 120 compared to DS in this test (Figures 14a). When 

increasing the number of cross-sections, the search space is divided into more subdomains in our approach so as to achieve a 

much better performance than s2Dcd and DS (see Figure 14b).  
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Figure 14. Comparison of computational performance between DS, s2Dcd and our approach with increasing the size of output grid: (left) 

two cross-sections and (right) four cross-sections in each direction. Note that different time axises are used in the two subplots, and four 

processors are used for DS-based reconstruction and s2Dcd but only one for our method.  

5. Synthetic Example: 3-D Reconstruction of Hydrofacies Application Example 5 

To further demonstrate the applicability of our algorithm, an example from a real geological application is presented in 

this section. The Descalvado aquifer analog dataset (Figure 15) depicts the complex hydrofacies of a small area (28m × 7m × 

5.8m) in Brazil (Bayer et al., 2015). In the original dataset, there are five cross-sections derived from outcrops, which are 

marked by black lines in Figure 15a. They are referenced in a 3-D domain consisting of 280 × 70 × 58 voxels. These sections 

allow creating only two parts so of subdomains, which is insufficient for an application of our method. Therefore, we borrow 10 

the strategy of Gueting et al. (2017) to insert three additional sections in yz direction using sequential 2-D MP simulation 

approach (s2Dcd) firstly which are marked by blue lines in Figure 15a. Then, all the tests are implemented on the basis of 

eight cross-sections (three in xz direction and five in yz direction) which are shown in Figure 15b. 
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Figure 15. Descalvado aquifer analog dataset (Bayer et al., 2015). (a) 3-D presentation of the informed cross-sections: three sections in xz 

direction, and five sections in yz direction; (b) 2-D presentation of these informed sections. 

 

Figure 16 shows realizations obtained by using three different MPS approaches on the basis of the above-mentioned 5 

dataset. The white lines indicate the locations of informed sections in each realization. Note that an auxiliary variable along 

the z coordinate is used in s2Dcd and our approach., It is a continuous variable to control the changing trend of the 

hydrofacies along the z coordinate and the detailed description is given by Comunian et al. (2012). To further reveal the 

performance of the different approaches, we use MDS maps to visualize the dissimilarity of MP histograms (Figure 17), 

similarly as in section 43.2. However here we use it to reveal the dissimilarity between all the reconstructed sections exacted 10 

from the realizations and the eight informed sections along the two directions, rather than different 3-D realizations. Thus, 

for each realization, 70 sections (67 reconstructed sections and 3 informed sections) from xz direction and 280 sections (275 

reconstructed sections and 5 informed sections) from yz direction are used to draw the MDS maps along the two directions 

respectively. MDS is very appropriate to present the dissimilarity for this kind of applications because we only have partial 

cross-sections instead of an entire 3-D training image. Therefore, it is necessary to assess the dissimilarity between the 15 
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reconstructed sections and informed sections. As shown in Figure 15, the sections from xz and yz directions are very 

different, such as the correlation lengths and the complexity of structures. Thus, we draw different MDS maps respectively 

for the xz and yz directions (Figures 16a 17a and 16b17b). Individual sections from the realizations are compared in Figures 

16c 17c and 16d17d. Overall, it can be observed both visually and in the MDS maps that the sections obtained from our 

approach are closest to the informed sections.  5 
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Figure 16. Three realizations using three different MPS approaches: (a) DS, (b) s2Dcd with the coordinate z as auxiliary variable; and (c) 

our approach with the coordinate z as auxiliary variable.  
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Figure 17. MDS maps of sections extracted from realizations using three different MPS approach. (a) MDS map of 70 sections for each 

realization along xz direction; (b) MDS map of 280 sections for each realization along yz direction; (c) selected sections for each method 

according to the JS divergence in xz direction; (d) selected sections in yz direction. 

 5 

Our method is able to reduce the non-stationarity effect of real geological data to a certain extent due to the local search 

strategy. As shown in the above analysis, the patterns in the informed cross-sections are very complicated where the 

distribution of hydrofacies is anisotropic and non-stationary, especially for the facies with a lower proportion. As illustrated 

in Figure 18a, a local domain is surrounded by four segments from the informed cross-sections. It should be noted that there 

is no facies 2 in all the four segments. We extract the local parts from three realizations by using different MPS approaches. 10 
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Then we check all the segments of the three local models, and we find that facies 2 is reproduced in this local area in the 

realizations of DS and s2Dcd. Three segments are randomly selected from the three local models, and they are shown in 

Figure 18b where the boundaries of facies 2 are marked by red lines. Figure 18c shows the histograms of the four informed 

segments and the local models of 10 realizations for each MPS method. It can be observed that, although there is no facies 2 

in the closest four segments, it is reproduced in this local area by DS and s2Dcd. Conversely, our approach can maintain the 5 

distribution of facies well since all the MP statistics are captured from the surrounded sub-sections. If the surrounding sub-

sections of a local area do not contain an attribute but it exists in other locations, the patterns with this attribute will not be 

moved to this local area in our approach. This indicates that our approach allows involving the non-stationary geological 

analogs in the 3-D real applications, and spatial patterns are restricted into a local domain so that they are not carried to 

faraway locations. 10 
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Figure 18. Comparison of reproduction of non-stationary patterns. (a) a local domain and the four corresponding segments; (b) three 

selected segments from the realizations obtained using different approaches in the local area; (c) histograms of the four informed segments 

and the three local models of 10 realizations for each MPS method. 

 5 

In the real-world applications, the geological sections or other analogs are not always straight or orthogonal. Therefore 

we need to project them in orthogonal directions. Figure 19 illustrates the process of projecting the tortuous sections to the 

parallel planes along a given direction. The same strategy can be used to address the issues in other directions. After that the 

original sections will be used as hard data and the projected sections will be only as training images. Thus other scattered 

samples (e.g. boreholes, outcrops) also can be involved as hard data. 10 
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Figure 19. Process of projecting real-world sections to parallel planes along a given direction: the process in (a) 3-D space and (b) xy 

plane.  

6. Discussion and Conclusion 

In this paper, we presented a novel method for reconstructing 3-D complex heterogeneous structures by using partial 5 

lower dimensional data. Indeed, this is a very general issue since inferring high-dimensional patterns from low-dimensional 

data (e.g. boreholes, outcrops and other analogs) is a very common workflow for geologists. In practice, reliable 3-D models 

of complex geological structures are still difficult to construct due to the heterogeneity of geological phenomena and 

processes, even though there are many real geological analogs or sections that can be used. Our method makes it possible to 

reconstruct 3-D structures with MPS when no 3-D training image is available. The synthetic experiments and practical 10 

applications presented in this paper demonstrate the capacity to reconstruct such heterogeneous structures. 

As compared to the previous MPS implementations that use partial data, the proposed method requires several local 

training sub-sections surrounding a simulated node, rather than a full section (Comunian et al., 2012) or points in a 3-D 

domain (Mariethoz and Renard, 2010). The local search strategy proposed in this paper allows to compute more reliable MP 

statistics because it avoids that spatial patterns from faraway locations are considered in the simulation of the current node. 15 

In this strategy, the original cross-sections are divided into many sub-sections according to their spatial relationships. 

Therefore, the non-stationarity of real geological analogs is reduced to a certain extent because the training patterns cannot 

be borrowed from further than a local subdomain. Of course, besides cross-sections, other scattered samples also can be 

included as hard data. 

Moreover, our approach increases the computational efficiency compared with existing MPS methods. The local search 20 

strategy allows acquiring MP statistics from the local sub-sections so that the searches are significantly reduced. Its good 



33 

 

computational performance makes it potentially applicable to real 3-D modeling problems such as porous media, hydrofacies, 

reservoir, and other complex sedimentary structures. In addition, a new parameter, the maximum of matched patterns from 

each training image is adopted to avoid the unnecessary searches. The experimental results demonstrated that a reasonable 

choice for this parameter can not only ensure to capture a stable cpdf, but also gain a further performance speed-up.  

The method presented here retains many advantages of DS (Mariethoz et al., 2010), such as unnecessary storing for MP 5 

statistics, pattern distances, flexible neighborhood. Nevertheless, we propose an adaptive and flexible implementation of the 

search template on multiple grids where the radius of the neighborhood, the distance threshold and the size of data events 

decrease linearly with the rising of levels of multiple grids. As a result, a big data event is divided into several small parts 

placed on the different grids, which results in a smaller neighborhood on each grid. An acceptable distance threshold is 

assigned to the first grid to make it easier to obtain a stable cpdf and to capture the large-scale features from the original 10 

sparse samples. For the last grid, the radius of neighborhood is reduced to one and the highest criterion is carried out for the 

threshold (i.e. t = 0) which avoids the small-scale features or lower proportion facies are filtered out. Hence, the simulation 

of each multi-grid is simulated with different parameters, allowing for flexibility in simulating different structures at 

different scales.  

Another important advantage of our approach is the probability aggregation strategy where the combinations of two 15 

different formulas are used to combine the cpdfs from different sub-sections. First, an additive aggregation method, linear 

pooling formula is used to combine two disjunctive probability distributions from each pair of parallel sub-sections to obtain 

a more stable pdf. The weights of this step are related to the distances between the current location and the two parallel sub-

sections. Such parameterization is able to ensure the pattern trend changing from one sub-section to another one. And then, 

we aggregate the orthogonal pdfs and prior probability distribution by using a multiplicative method, log-linear pooling 20 

formula. This step can enhance the capability for reconstructing connectivity of spatial patterns in comparison with the 

method using a series of 2-D MPS simulations to fill a 3-D domain along given orthogonal directions (Comunian et al., 

2012). 

The limitations of our method come from that it is not always possible to obtain abundant sections in each direction, 

and extremely small local blocks cannot offer enough spatial patterns, thus a minimal sub-section size has to be considered. 25 

In addition, our method is not able to perform the simulation of continuous variables. The proposed method can be further 

improved to overcome these limitations. Another possible direction is to parallelize the proposed MPS implementation and 

further enhance its computational performance.  
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