
Responses to the comments from Anonymous Referee #2 

We are very grateful to the reviewer for the positive and careful review. The 
thoughtful comments have helped improve the manuscript. The reviewer’s comments 
are italicized and marked in blue, and our responses immediately follow. 

 

In this revised manuscript, the authors have successfully addressed my major 
concerns in my previous review. Most importantly, they are using global temperature 
changes instead of local ones. They also included a 3 degree limit additionally to 1.5 
and 2. Both of these improvements significantly increase the appeal of the manusript 
to a wider readership. The manuscript is overall well written. I still find that the 
methods, in detail the processing of the input data, is not described enough (see major 
comments below). As a result, I still recommend major revisions. However, I believe 
that the authors should face no difficulties providing this additional information and 
the manuscript can be published subsequently. 

Response: Thanks for your careful review and positive comments, and we are glad to 
see the revised manuscript has met your major comments and suggestions. We have 
now added an appendix to clarify data processing methods. Please see our responses 
below for details. 

 

Major comment: 

l. 117ff: This paragraph describes the processing of the data set. Important details are 
not mentioned. Questions that need to be answered are: 

1.) How are CMIP5 data and observations interpolated? 

2.) How was the correction method by Li et al. modified? 

3.) How was daily precipitation and temperature disaggregated to 6-hourly resolution 
using CRUNCEP data? 

4.) It should be mentioned clearly that only precipitation and temperature have been 
used from the CMIP5 models. 

5.) What does it mean that other variables have been taken from CRUNCEP? Have 
these been resampled somehow? Have climatological values been used? 

The last question regarding direct use of CRUNCEP data is critical because it is not 
clear whether physical consistency among forcing variables is maintained. For 
example, is shortwave radiation influenced by precipitation? Please comment. Please 
also mention this as a limitation of the study that it is unclear how the climate change 
signal by GCMs might be affected by using CRUNCEP data for a majority of forcing 
variables. 

These details can be provided in an appendix. 

Response: Thanks for the comments and suggestions. We have now added an 
Appendix Section for these details as follows: 



“Appendix: Details of Processing Climate Forcings 

The land surface hydrological model CLM-GBHM requires a list of input climate 
forcings, i.e. precipitation, near surface air temperature, incident solar radiation, air 
pressure, specific humidity and wind speed. These variables were generated from 
three datasets in this study: CMIP5 daily simulations during both historical 
(1961-2005) and future (2006-2099) periods, CRUNCEP 6-hourly dataset during 
1959-2005, and China Meteorological Administration (CMA) daily station 
observations during 1961-2005. All datasets were firstly regridded to the same 
resolution (0.01 degree) by using bilinear interpolation method for further processing. 

After spatial interpolation, daily precipitation and temperature from CMIP5 
simulations were adjusted to remove their monthly biases compared to CMA 
observations, by applying a correction method to each model at each grid cell 
separately. This method modified the widely used quantile-mapping method (CDFm) 
and processed historical and future timeseries in different ways. For historical period, 
bias-corrected monthly variable x (i.e., precipitation or temperature) was calculated 
based on CDFm: 

 1
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where F is cumulative distribution function of variable x, subscripts sim, obs, his, 
biased, corrected represent simulated value, observed value, historical period, value 
with bias and value after bias correction at monthly scale, respectively. The basic 
assumption of CDFm is that the climate distribution does not change much over time, 
however, this is invalid considering intense global warming in the future. Therefore, 
an equidistant CDF matching method (EDCDFm; Li et al., 2010) was applied for 
future projections, which assumes that the difference between simulated and observed 
values remains the same over time: 
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where subscript fut represents future period. After bias correction at monthly scale, 
new daily precipitation (temperature) series were generated based on the ratio 
(difference) between the new and old CMIP5 simulated monthly means: 

 , , , ,( / )d corrected m corrected m biased d biasedP P P P  , (A3) 

 , , , ,( )d corrected m corrected m biased d biasedT T T T   , (A4) 

where P and T represent precipitation and temperature, subscripts d and m represent 
daily value and corresponding monthly mean, respectively.  

In order to temporally disaggregate daily temperature and precipitation to a 6-hours 
interval during both historical and future periods, the diurnal cycle information from 
CRUNCEP dataset was introduced. By looping the CRUNCEP data during 1959-2005 
(47 years) twice, we could also generate “future data” (2006-2099, 94 years). By 



using the same disaggregation method that downscales variables from monthly to 
daily, temporal downscaling from daily to 6-hourly scales was achieved: 

 6 , , , 6 ,( / )h corrected d corrected d CRUNCEP h CRUNCEPP P P P  , (A5) 

 6 , , , 6 ,( )h corrected d corrected d CRUNCEP h CRUNCEPT T T T   , (A6) 

where subscript 6h represents 6-hourly values. It should be mentioned that only 
precipitation and temperature have been used from CMIP5 models, with other climate 
forcing variables (i.e., incident solar radiation, air pressure, specific humidity and 
wind speed series) directly taken from CRUNCEP dataset. Whether physical 
consistency among all climate forcing variables was maintained or not by simply 
introducing CRUNCEP dataset was not considered in this study, and it is unclear how 
the climate change signals by GCMs might be affected by using CRUNCEP data for a 
majority of forcing variables. Although resampling methods (e.g., Schaake Shuffle) 
that are widely used in temporal downscaling for seasonal forecasting might result in 
more consistent forcing variables, whether such consistency (e.g., 
temperature-humidity relationship) holds for future projection given the changing 
climate is unknown. More sophisticated downscaling techniques (either statistical or 
dynamical) are needed for further studies.” (L417-464) 

 

l. 342ff: In this paragraph, please do not refer to warming levels because those 
conflict with the RCP scenarios. For example, warming levels are reached at different 
RCP scenarios at different points in time. A statement such as that (l. 344ff: "RCPs 
scenario uncertainty accounts for 14.3% of temperature uncertainty at 1.5 °C 
warming level with this proportion increasing to 33% (63.7%) at 2 °C (3 °C) warming 
level, while its contribution to precipitation uncertainty remains less than 10%.") 
makes no sense because some RCP scenarios will not reach 3 degrees. Please also 
remove the dashed lines indicating when the ensemble reaches a warming level from 
Fig. 8. 

Response to R2C2: Thanks for your advice. We have removed the words referring to 
warming levels in this paragraph, the dashed lines in Figure 8, as well as Table 4. 

 

Minor comments: 

l. 342: "Model accounts..." . Please be more specific here and write "GCM and land 
surface hydrological model ..." 

Response to R2C3: Thanks for the comment and we have revised it as suggested.
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Abstract 14 

Assessment of changes in hydrological droughts at specific warming levels is 15 

important for an adaptive water resources management with consideration of the 2015 16 

Paris Agreement. However, most studies focused on the response of drought 17 

frequency to the warming and neglected other drought characteristics including 18 

severity. By using a semiarid watershed in northern China (i.e., Wudinghe) as an 19 

example, here we show less frequent but more severe hydrological drought events 20 

emerge at 1.5, 2 and 3 ℃ warming levels. We used meteorological forcings from eight 21 

Coupled Model Intercomparison Project Phase 5 climate models under four 22 

representative concentration pathways, to drive a newly developed land surface 23 

hydrological model to simulate streamflow, and analyzed historical and future 24 

hydrological drought characteristics based on the Standardized Streamflow Index. The 25 

Wudinghe watershed will reach the 1.5/2/3 ℃ warming level around 26 

2015-2034/2032-2051/2060-2079, with an increase of precipitation by 8%/9%/18% 27 

and runoff by 27%/19%/44%, and a drop of hydrological drought frequency by 28 

11%/26%/23% as compared to the baseline period (1986-2005). However, the drought 29 

severity will rise dramatically by 184%/116%/184%, which is mainly caused by the 30 

increased variability of precipitation and evapotranspiration. The climate models and 31 

the land surface hydrological model contribute to more than 80% of total uncertainties 32 

in the future projection of precipitation and hydrological droughts. This study 33 

suggests that different aspects of hydrological droughts should be carefully 34 

investigated when assessing the impact of 1.5, 2 and 3 ℃ global warming. 35 
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1. Introduction 40 

Global warming has affected both natural and artificial systems across continents, 41 

bringing a lot of eco-hydrological crises to many countries (Gitay et al., 2002; Tirado 42 

et al., 2010; Thornton et al., 2014). The Intergovernmental Panel on Climate Change 43 

(IPCC) Fifth Assessment Report (AR5) concluded that global average surface air 44 

temperature increased by 0.61°C in 1986-2005 compared to pre-industrial periods 45 

(IPCC, 2014a). In order to mitigate global warming, the Conference of the Parties of 46 

the United Nations Framework Convention on Climate Change (UNFCCC) 47 

emphasized in the Paris Agreement that the increase in global average temperature 48 

should be controlled within 2 ℃ above preindustrial levels, and further efforts should 49 

be made to limit it below 1.5 ℃. However, whether the temperature controlling goal 50 

can be reached is still unknown, with much difficulty under current emission 51 

conditions (Peters et al., 2012). In addition, specific warming level such as 2 ℃ 52 

increase would be too high for many regions and countries (James et al., 2017; Rogelj 53 

et al., 2015). Therefore, it is necessary to assess changes in regional hydrological 54 

cycle and extremes under 1.5, 2 and even 3 ℃ global warming. 55 

Global warming is mainly caused by greenhouse gases emissions and has a profound 56 

influence on hydrosphere and ecosphere (Barnett et al., 2005; Vorosmarty et al., 2000). 57 

It alters hydrological cycle both directly (e.g., influences precipitation and 58 

evapotranspiration) and indirectly (e.g., influences plant growth and related 59 

hydrological processes) at global (Zhu et al., 2016; McVicar et al., 2012) and local 60 

scales (Tang et al., 2013; Zheng et al., 2009; Zhang et al., 2008). Besides affecting the 61 
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mean states of the hydrological conditions, global warming also intensifies 62 

hydrological extremes significantly, such as droughts which were regarded as 63 

naturally occurring events when water (precipitation, or streamflow, etc.) is 64 

significantly below normal over a period of time (Van Loon et al., 2016; Dai, 2011). 65 

Among different types of droughts, hydrological droughts focus on the decrease in the 66 

availability of water resources, e.g., surface and/or ground water (Lorenzo-Lacruz et 67 

al., 2013). Many researchers paid attention to the historical changes, future evolutions 68 

and uncertainties, and causing factors for hydrological droughts (Chang et al., 2016; 69 

Kormos et al., 2016; Orlowsky and Seneviratne, 2013; Parajka et al., 2016; Perez et 70 

al., 2011; Prudhomme et al., 2014; Van Loon and Laaha, 2015; Wanders and Wada, 71 

2015; Yuan et al., 2017). Most drought projection studies focused on the future 72 

changes over a fixed time period (e.g., late 21st century), but recent studies pointed out 73 

the importance on hydrological drought evolution at certain warming levels (Roudier 74 

et al., 2016; Marx et al., 2018) given the aim of the Paris Agreement. Moreover, the 75 

changes in characteristics (e.g., frequency, duration, severity) of hydrological drought 76 

events at specific warming levels received less attention. The projection of these 77 

drought characteristics could provide more relevant guidelines for policymakers on 78 

implementing adaptation strategies. 79 

In the past five decades, a significant decrease in channel discharge was observed in 80 

the middle reaches of the Yellow River basin over northern China (Yuan et al., 2018; 81 

Zhao et al., 2014), leading to an intensified water resources scarcity in this populated 82 

area. In this study, we take a semiarid watershed, the Wudinghe in the middle reaches 83 
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of the Yellow River basin as a testbed, aiming at solving the following questions: (1) 84 

How do hydrological drought characteristics change at different warming levels over 85 

the Wudinghe watershed? (2) What are the causes for the hydrological drought change? 86 

(3) What are the contributions of uncertainties from different sources (e.g., climate 87 

and land surface hydrological models, representative concentration pathways (RCPs) 88 

scenarios, and internal variability)?  89 

2. Study area and dataset 90 

In this study, the Wudinghe watershed was chosen for hydrological drought analysis. 91 

As one of the largest sub-basins of the Yellow River basin, the Wudinghe watershed is 92 

located in the Loess Plateau, and has a drainage area of 30261 km2 with Baijiachuan 93 

hydrological station as the watershed outlet (Figure 1). It has a semiarid climate with 94 

long-term (1956-2010) annual mean precipitation of 356 mm and runoff of 39 mm, 95 

resulting in a runoff coefficient of 0.11 (Jiao et al., 2017). Most of the rainfall events 96 

are concentrated in summer (June to September) with a large possibility of heavy 97 

rains (Mo et al., 2009). Located in the transition zone between cropland/grassland and 98 

desert/shrub, the northwest part of the Wudinghe watershed is dominated by sandy 99 

soil, while the major soil type for the southeast part is loess soil. During recent 100 

decades, the Wudinghe watershed has experienced a significant streamflow decrease 101 

(Yuan et al., 2018; Zhao et al., 2014) and suffered from serious water resource 102 

scarcity because of climate change, vegetation degradation and human water 103 

consumption (Xiao, 2014; Xu, 2011). 104 

<Figure 1 here> 105 
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The Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation 106 

model (GCM) simulations for historical experiments and future projections formed 107 

the science basis for the IPCC AR5 reports (IPCC, 2014b; Taylor et al., 2012). In this 108 

study, we chose eight CMIP5 GCMs for historical (1961-2005) and future (2006-2099) 109 

drought analysis, as they provided daily simulations under all four RCP scenarios (i.e. 110 

RCP2.6/4.5/6.0/8.5). Table 1 listed the details of GCMs used in this paper. Because of 111 

the deficiency in GCM precipitation and runoff simulations, we used the corrected 112 

meteorological forcing data from CMIP5 climate models, to drive a high resolution 113 

land surface hydrological model to simulate runoff and streamflow (see Section 3.1 114 

for details).  115 

<Table 1 here> 116 

All CMIP5 simulations were bias corrected before being used as land surface model 117 

input. After interpolating CMIP5 simulations and China Meteorological 118 

Administration (CMA) station observations to the same resolution (0.01 degree in this 119 

study), a modified correction method (Li et al., 2010) based on widely-used quantile 120 

mapping (Wood et al., 2002; Yuan et al., 2015) was applied to adjust CMIP5/ALL 121 

historical simulations and CMIP5/RCPs future simulations for each model at each 122 

grid cell separately. The bias-corrected daily precipitation and temperature were then 123 

further temporally disaggregated to a 6-hours interval based on the diurnal cycle 124 

information from CRUNCEP 6-hourly dataset 125 

(https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/atm/datm7/). Other 6-hourly 126 

meteorological forcings, i.e., incident solar radiation, air pressure, specific humidity 127 
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and wind speed, were directly taken from CRUNCEP dataset. Please see Appendix 128 

Section for details. 129 

3. Land Surface Hydrological Model and Methods 130 

3.1. Introduction of the CLM-GBHM model 131 

In this study, we chose a newly developed land surface hydrological model, 132 

CLM-GBHM, to simulate historical and future streamflow. This model was first 133 

developed and applied in the Wudinghe watershed at 0.01 degree (Jiao et al., 2017) 134 

and then the Yellow River basin at 0.05 degree resolution (Sheng et al., 2017). By 135 

improving surface runoff generation, subsurface runoff scheme, river network-based 136 

representation and 1-D kinematic wave river routing processes, CLM-GBHM showed 137 

good performances in simulating streamflow, soil moisture content and water table 138 

depth (Sheng et al., 2017). Figure 2 demonstrated the structure and main 139 

eco-hydrological processes of CLM-GBHM. Model resolution, surface datasets, 140 

initial conditions and model parameters were kept consistent with Jiao et al. (2017), 141 

except that monthly LAI in 1982 was used for all simulations because of an unknown 142 

vegetation condition in the future. 143 

<Figure 2 here> 144 

3.2. Determination of years reaching specific warming levels 145 

IPCC AR5 (IPCC, 2014a) reported that global average surface air temperature change 146 

between pre-industrial period (1850-1900) and reference period (1986-2005) is 0.61 147 

(0.55 to 0.67) °C. Therefore, we took 1986-2005 as the baseline period. Monthly 148 

standardized streamflow index (SSI) simulations from CLM-GBHM were compared 149 
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with the observed records during the baseline period, and the model performed well 150 

with a correlative coefficient of 0.53 (p<0.01). Here, “1.5 ℃ warming level” referred 151 

to a global temperature increase of 0.89 (=1.5-0.61) ℃, “2 ℃ warming level” referred 152 

to an increase of 1.39 (=2-0.61) ℃, and “3 ℃ warming level” referred to an increase 153 

of 2.39 (=3-0.61) ℃ compared with the baseline, respectively. As large differences 154 

existed in temperature simulations among CMIP5 models and RCP scenarios, we 155 

applied a widely used time sampling method (James et al., 2017; Mohammed et al., 156 

2017; Marx et al., 2018) to each GCM under each RCP scenario (referred to as 157 

GCM/RCP combination hereafter). A 20-years moving window, which has the same 158 

length of the baseline period, was used to determine the first period reaching a 159 

specific warming level for each combination, with the period median year referred to 160 

as the “crossing year”.  161 

3.3. Identification of hydrological drought characteristics 162 

We used a two-step method similar to previous studies (Lorenzo-Lacruz et al., 2013; 163 

Ma et al., 2015; Yuan et al., 2017) to extract hydrological drought characteristics in 164 

this paper. At the first step, a hydrological drought index named as Standardized 165 

Streamflow Index (SSI) was calculated by fitting monthly streamflow using a 166 

probabilistic distribution function (Vicente-Serrano et al., 2012; Yuan et al., 2017). 167 

Specifically, for each calendar month, streamflow values in that month during 168 

baseline period were collected, arranged, and fitted by using a gamma distribution 169 

function. Using the same parameters of the fitted gamma distribution, both baseline 170 

(1986-2005) and future (2006-2099) streamflow values in that calendar month were 171 
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standardized to get SSI values. The procedure was repeated for twelve calendar 172 

months, four RCP scenarios and eight GCMs separately. The second step was 173 

identification and characterization of hydrological drought events by an SSI threshold 174 

method (Yuan and Wood, 2013; Lorenzo-Lacruz et al., 2013; Van Loon and Laaha, 175 

2015). Here, a threshold of -0.8 was selected, which is equivalent to a dry condition 176 

with a probability of 20%. Months with SSI below -0.8 were treated as dry months, 177 

and 3 or more continuous dry months were considered as the emergence of a 178 

hydrological drought event. To characterize the hydrological drought event, drought 179 

duration (months) and severity (sum of the difference between -0.8 and SSI) for a 180 

certain drought event were calculated. As future SSI values were all calculated based 181 

on historical values, it is important to mention that drought analysis here represented 182 

those without adaptation (Samaniego et al., 2018). 183 

3.4. Uncertainty separation 184 

Given large spreads among future projections (including combinations of eight GCMs 185 

and four RCP scenarios, as shown in shaded areas in Figure 3), a separation method 186 

(Hawkins and Sutton, 2009; Orlowsky and Seneviratne, 2013) was applied to explore 187 

uncertainty from three individual sources, i.e., internal variability, climate models and 188 

RCPs scenarios. In order to separate internal variability from other two factors with 189 

long-term trends, a 4th order polynomial was selected to fit specific time series: the 190 

fitting was first carried out during baseline period (1986-2005) to obtain an average im 191 

as a reference value, and then during future period (2006-2099) to obtain a smooth fit 192 

xm,s,t. Future projections (Xm,s,t) were then separated into three parts: reference value 193 
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(im), smooth fit (xm,s,t) and residual (em,s,t), and the uncertainties from three sources 194 

were then calculated as follows: 195 

 , , ,var ( ) /s t m s t m
m

V e N  (1) 

 , ,var ( ) /t m m s t s
s

M x N  (2) 

 , ,var ( / )t s m s t m
m

S x N   (3) 

where V, Mt and St represent uncertainties from internal variability (which is 196 

time-invariant), climate models and RCPs scenarios, Nm and Ns are numbers of 197 

climate models and RCPs scenarios, vars,t denotes the variance across scenarios and 198 

time, varm and vars are variances across models and scenarios respectively. Finally, 199 

uncertainty contributions from each component were calculated as proportions to the 200 

sum. In this study, we applied this method to the 20-years moving averaged ensemble 201 

time series. 202 

4. Results 203 

4.1. Changes in hydrometeorology in the past and future 204 

We first calculated the trends during both the historical and future periods for 205 

basin-averaged annual mean hydrological variables (Table 2 and Figure 3). During 206 

1961-2005, there was a significant increasing trend (p<0.01) in observed temperature 207 

and a decreasing trend (p<0.1) in observed precipitation, resulted in a decreasing 208 

naturalized streamflow (p<0.01) and an increasing hydrological drought frequency 209 

(p<0.01). Here, the naturalized streamflow was obtained by adding human water use 210 

back to the observed streamflow (Yuan et al., 2017). These historical changes could 211 

be captured by hydro-climate model simulations to some extent, although both the 212 
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warming and drying trends were underestimated (Table 2). Ensemble monthly SSI 213 

series from GCM driven model simulations were also compared with offline results 214 

(CRUNCEP driven) during historical period, resulted in a correlative coefficient of 215 

0.47 (p<0.01). During 2006-2099, four variables show consistent changing trends 216 

across RCPs scenarios, but with different magnitudes (Table 2). Future temperature 217 

and precipitation will increase, resulting in an increasing streamflow and decreasing 218 

hydrological drought frequency. Unlike temperature trends that increase from RCP2.6 219 

to RCP8.5 (which indicates different radiative forcings), precipitation trend under 220 

RCP6.0 is smaller than that under RCP4.5, suggesting a nonlinear response of 221 

regional water cycle to the increase in radiative forcings. As a result, RCP6.0 shows 222 

the smallest increasing rate in streamflow and decreasing rate in drought frequency. 223 

<Table 2 here> 224 

More details could be found in Figure 3 when focusing on dynamic changes in the 225 

history and future. Figure 3a shows that the differences in temperature among RCPs 226 

are negligible until 2030s when RCP8.5 starts to outclass other scenarios, and the 227 

others begin to diverge in the far future (2060s-2080s). In contrast, differences in 228 

future precipitation are small throughout the 21st century, except that RCP8.5 scenario 229 

becomes larger after 2080s (Figure 3b). As comprehensive outcomes of climate and 230 

eco-hydrological factors, a clear decrease-increase pattern in streamflow and an 231 

increase-decrease trend in hydrological drought frequency are found (Figure 3c and 232 

3d). However, differences among RCPs are not discernible. Figures 3b-3d also show 233 

that the differences in water-related variables among climate models are very large. 234 
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<Figure 3 here> 235 

Using the time-sampling method mentioned in Section 3.2, first 20-year periods with 236 

mean temperature increasing across 1.5, 2 and 3 ℃ warming levels for each 237 

GCM/RCP combination were identified and listed in Table 3. To demonstrate the 238 

overall situation for a specific warming level, we chose median year among GCMs as 239 

model ensemble for each RCP scenario, and median year among all GCMs and RCPs 240 

as total ensemble. GCM/RCP combinations not reaching specific warming level were 241 

marked as “NR” in Table 3 and were not considered when calculating ensemble year. 242 

<Table 3 here>  243 

As listed in Table 3, crossing years for most GCM/RCP combinations reaching 1.5 ℃ 244 

warming level are before 2032 except for GFDL-ESM2M and MRI-CGCM3. Model 245 

ensemble years for different RCP scenarios have small differences, and total ensemble 246 

year for all GCMs and RCPs is 2025, indicating that 1.5 ℃ warming level would be 247 

reached within 2015-2034. As for 2 and 3 ℃ warming level, the total ensemble year is 248 

2042 and 2070, respectively. There are large differences in crossing years among 249 

different GCMs, ranging from 2016 to 2075 for 1.5 ℃, 2030 to 2076 for 2 ℃, and 250 

2051 to 2086 for 3 ℃. Generally, three global warming thresholds would be reached 251 

first under RCP8.5 and last under RCP6.0 scenario. All GCMs will not reach 3 ℃ 252 

warming level under RCP2.6, while under other RCP scenarios this temperature 253 

increase would probably be reached around 2073 or even as early as 2050s.  254 

4.2. Hydrological changes at 1.5, 2 and 3 ℃ warming levels 255 

After identifying the time periods reaching specific warming levels, we collected 256 
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precipitation and runoff data within these periods (different among GCM/RCP 257 

combinations), and calculated their relative changes compared to the baseline period 258 

(1986-2005). Figure 4 shows the spatial pattern of relative changes in model ensemble 259 

mean precipitation of these time periods, except for the period under RCP2.6 at 3 ℃ 260 

warming level during which no sample exists. Results indicate that precipitation will 261 

increase at all warming levels and all RCP scenarios, while differences exist in spatial 262 

patterns. The ensemble mean precipitation increases by 8.0%, 9.1% and 18.0% at 1.5, 263 

2 and 3 ℃ warming levels for all RCP scenarios respectively, indicating larger 264 

increase in precipitation when warming level increases. For each warming level, 265 

precipitation changes among all RCP scenarios are quite close except for RCP6.0 at 266 

3 ℃ warming level. Larger precipitation increases generally occur in the south and 267 

southwest parts which are upstream regions of the Wudinghe watershed. 268 

<Figure 4 here> 269 

The watershed-mean runoff increases by 26.7%, 18.7% and 44.5% at each warming 270 

level respectively, which are larger than those of precipitation because of nonlinear 271 

hydrological response (Figure 5). For all warming levels, RCP8.5 shows greatest 272 

runoff increase and RCP2.6/6.0 the lowest. Small or negative changes in runoff 273 

emerge in the north and southeast regions under RCP2.6/4.5/6.0 scenarios (Figure 5), 274 

where precipitation increases the least (Figure 4). Besides, runoff changes are also 275 

closely linked to watershed river networks, with large increase in the south and 276 

middle parts (upper and middle reaches) and small increase or even decrease in the 277 

southeast and northeast parts (lower reaches), showing the redistribution effect of 278 
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surface topography and soil property. 279 

<Figure 5 here> 280 

Figure 6 shows the characteristics of hydrological droughts during baseline period and 281 

the periods reaching all warming levels. The number of hydrological drought events 282 

averaged among all RCP scenarios and climate models is 7 in the baseline period, and 283 

it drops to 6.2 (-11% relative to baseline, the same below) at 1.5 ℃, 5.2 (-26%) at 284 

2 ℃ and 5.4 (-23%) at 3 ℃ warming levels (Figure 6a). However, hydrological 285 

drought duration increases from 5 months at baseline to 6.5 (+30%), 5.9 (+18%) and 6 286 

months (+20%) at 1.5, 2 and 3 ℃ warming levels, respectively. Drought severity 287 

increases dramatically from 1.9 at baseline to 5.4 (+184%) at 1.5 ℃ warming level, 288 

and then drops to 4.1 (+116%) at 2 ℃ warming level and rebounds to 5.4 (+184%) at 289 

3 ℃ warming level (Figure 6a). These results indicate that although precipitation and 290 

runoff increase, the Wudinghe watershed would suffer from more severe hydrological 291 

events in the near future at 1.5 ℃ warming level. The severity could be alleviated in 292 

time periods reaching 2 ℃ warming level, with more precipitation occurring over the 293 

watershed. 294 

<Figure 6 here> 295 

The analysis on individual scenarios suggests a similar conclusion (Figures 6b-6e). 296 

Drought amount and severity increase generally when radiative forcing increases. The 297 

least changes in drought severity are found under RCP4.5 scenario while the largest 298 

changes are under RCP6.0 scenario. Higher warming levels could lead to more 299 

moderate drought events under low emission scenarios (RCP2.6/4.5) because of more 300 
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precipitation in the near future, while high emissions (RCP6.0/8.5) would increase the 301 

risk of hydrological drought significantly. 302 

5. Discussion 303 

To explore the reason for less frequent but more severe hydrological droughts, we 304 

compared the differences in monthly precipitation, evapotranspiration, 305 

total/surface/sub-surface runoff and streamflow between the baseline period and 306 

periods reaching 1.5, 2 and 3 ℃ warming levels. Standardized indices for these 307 

hydrological variables were used to remove seasonality from monthly time series, and 308 

mean values and variabilities of these indices were chosen as indicators. 309 

<Figure 7 here> 310 

Figure 7 shows that mean values increase as temperature increases for all standardized 311 

hydrological indices, showing a wetter hydroclimate in the future with more 312 

precipitation, evapotranspiration, runoff and streamflow (Figure 7a). However, 313 

variabilities for the standardized indices in the future are much higher than those 314 

during baseline period, indicating larger fluctuations and higher chance for extreme 315 

droughts/floods at all warming levels (Figure 7b). For extreme drought events (with 316 

an SSI < -1.3, representing a dry condition with a probability of 10%), the ensemble 317 

mean amount of drought events are 4.3, 3.1 and 3.7 at 1.5, 2 and 3 ℃ warming levels, 318 

which are much larger than the baseline period with 0.9 (not shown). Focusing on the 319 

gaps between baseline and future periods, it is clear that the differences in both 320 

evapotranspiration and runoff are larger than those of precipitation for mean values 321 

and standard deviations, suggesting the water redistribution through complicated 322 
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hydrological processes. The increase in mean value of runoff and consequently 323 

streamflow mainly comes from the increase in subsurface runoff. As hydrological 324 

drought defined in this paper is based on monthly SSI series, increases in both mean 325 

value and variability in precipitation and evapotranspiration indicate a period with 326 

less frequent but more severe hydrological drought events.  327 

Another issue is the reliability of results considering large differences among CMIP5 328 

models. Figure 8 shows the uncertainty fractions contributed from internal variability, 329 

climate models and RCPs scenarios based on multi-model and multi-scenario 330 

ensemble projections of temperature, precipitation, streamflow and drought frequency. 331 

Uncertainty in temperature projection is mainly contributed by climate models before 332 

2052, and it is then taken over by RCPs scenarios. Internal variability contributes to 333 

less than 1.5% of the uncertainty for the temperature projection (Figure 8a). For 334 

precipitation projection, climate models account for a large proportion of uncertainty 335 

throughout the century. The internal variability contributes to larger uncertainty than 336 

RCPs scenarios until the second half of the 21st century (Figure 8b). Similar to 337 

precipitation, major source of uncertainty for the projections of streamflow and 338 

hydrological drought frequency comes from climate and land surface hydrological 339 

models, while the impacts of both internal variability and RCP scenarios are further 340 

weakened (Figures 8c-8d). 341 

<Figure 8 here> 342 

Generally for all variables except temperature, Model GCMs and land surface 343 

hydrological model accounts for over 80% of total uncertainties, while internal 344 
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variability contributes to a comparable or larger proportion than RCPs scenarios, for 345 

all variables except temperature (see Table 4). RCPs scenario uncertainty accounts for 346 

14.3% of temperature uncertainty at 1.5 ℃ warming level with this proportion 347 

increasing to 33% (63.7%) at 2 ℃ (3 ℃) warming level, while its contribution to 348 

precipitation uncertainty remains less than 10%. RCPs scenario only contributes to 349 

around 5% of the uncertainties in the projections of streamflow and hydrological 350 

drought frequency. These results indicate that the improvement in GCM simulated 351 

precipitation would largely narrow the uncertainties for future projections of 352 

hydrological droughts. Besides, previous studies (Marx et al., 2018; Samaniego et al., 353 

2018) have shown that uncertainties contributed from land surface hydrological 354 

models can be comparable to that from GCMs, indicating the importance of 355 

introducing multiple land surface hydrological models into the analysis of uncertainty, 356 

and the significance of exploring more suitable methods in further studies. 357 

<Table 4 here> 358 

There are also some issues for further investigations. As shown in Figure 3, GCM 359 

historical simulations underestimates the increasing trend in temperature and 360 

decreasing trend in precipitation, and results in underestimations of hydrological 361 

drying trends. Although the quantile mapping method used in this study is able to 362 

remove the biases in GCM simulations (e.g., mean value, variance), the 363 

underestimation of trends could not be corrected. An alternative method is to use 364 

regional climate models for dynamical downscaling, which would be useful if 365 

regional forcings (e.g., topography, land use change, aerosol emission) are strong. 366 
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Another issue is about the spatially varied warming rates. IPCC AR5 reported (IPCC, 367 

2014c) that global warming for the last 20 years compared to pre-industrial are 368 

0.3-1.7 ℃ (RCP2.6), 1.1-2.6 ℃ (RCP4.5), 1.4-3.1 ℃ (RCP6.0), 2.6-4.8 ℃ (RCP8.5). 369 

However, temperature increases vary a lot for different regions. For instance, 370 

temperature rises faster in high-altitude (Kraaijenbrink et al., 2017) and polar regions 371 

(Bromwich et al., 2013), where the rate of regional warming could be three times of 372 

global warming. Actually, reaching periods for regional warming thresholds in the 373 

Wudinghe watershed are earlier than the global ones (not shown here), which suggest 374 

that the regional warming would be more severe at specific global warming levels. 375 

6. Conclusions 376 

In this paper, we bias-corrected future projections of meteorological forcings from 377 

eight CMIP5 GCM simulations under four RCP scenarios to drive a newly developed 378 

land surface hydrological model, CLM-GBHM, to project changes in streamflow and 379 

hydrological drought characteristics over the Wudinghe watershed. After determining 380 

the time periods reaching 1.5, 2 and 3 ℃ global warming levels for each GCM/RCP 381 

combination, we focused on the changes in regional hydrological drought 382 

characteristics at all warming levels. Moreover, projection uncertainties from different 383 

sources were separated and analyzed. Main conclusions are listed as follows: 384 

(1) With CMIP5 GCM simulations as forcing data, the model ensemble mean hindcast 385 

can reproduce the significant decreasing trend of streamflow and increasing trend of 386 

hydrological drought frequency in historical period (1961-2005), but the drying trend 387 

is underestimated because of GCM uncertainties. Streamflow increases and 388 
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hydrological drought frequency decreases in the future under all RCP scenarios. 389 

(2) The time periods reaching 1.5, 2 and 3 ℃ warming levels over the Wudinghe 390 

watershed are 2015-2034, 2032-2051 and 2060-2079, respectively. There are large 391 

differences in results among different GCMs, while different RCP scenarios show 392 

consistence in reaching periods with RCP8.5 the earliest and RCP6.0 the latest. 393 

(3) Precipitation increases under all RCP scenarios at all warming levels (8%, 9% and 394 

18%), while differences exist in spatial patterns. Runoff has larger relative change 395 

rates (27%, 19% and 44%), with larger increases of runoff occurred in the upper and 396 

middle reaches and less increases or even decreases emerged in the lower reaches, 397 

indicating a complex spatial distribution in hydrological droughts. 398 

(4) As a result of increasing mean values and variability for precipitation, 399 

evapotranspiration and runoff, hydrological drought frequency drops by 11%-26% at 400 

all warming levels compared to the baseline period, while hydrological drought 401 

severity rises dramatically by 116%-184%. This indicates that the Wudinghe 402 

watershed would suffer more severe hydrological drought events in the future, 403 

especially under RCP6.0 and RCP8.5 scenarios. 404 

(5) The main uncertainty sources vary among hydrological variables. Most 405 

uncertainties are from climate and land surface models, especially for precipitation. At 406 

all warming levels, models contribute to over 80% of total uncertainties, while 407 

internal variability contributes to a comparable proportion of uncertainties to RCPs 408 

scenarios for precipitation, streamflow and hydrological drought frequency. 409 

 410 
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 422 

Appendix: Details of Processing Climate Forcings 423 

The land surface hydrological model CLM-GBHM requires a list of input climate 424 

forcings, i.e. precipitation, near surface air temperature, incident solar radiation, air 425 

pressure, specific humidity and wind speed. These variables were generated from 426 

three datasets in this study: CMIP5 daily simulations during both historical 427 

(1961-2005) and future (2006-2099) periods, CRUNCEP 6-hourly dataset during 428 

1959-2005, and China Meteorological Administration (CMA) daily station 429 

observations during 1961-2005. All datasets were firstly regridded to the same 430 

resolution (0.01 degree) by using bilinear interpolation method for further processing. 431 

After spatial interpolation, daily precipitation and temperature from CMIP5 432 
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simulations were adjusted to remove their monthly biases compared to CMA 433 

observations, by applying a correction method to each model at each grid cell 434 

separately. This method modified the widely used quantile-mapping method (CDFm) 435 

and processed historical and future timeseries in different ways. For historical period, 436 

bias-corrected monthly variable x (i.e., precipitation or temperature) was calculated 437 

based on CDFm: 438 

 
1

, , , , , ,( ( ))sim his corrected obs his sim his sim his biasedx F F x  (A1) 

where F is cumulative distribution function of variable x, subscripts sim, obs, his, 439 

biased, corrected represent simulated value, observed value, historical period, value 440 

with bias and value after bias correction at monthly scale, respectively. The basic 441 

assumption of CDFm is that the climate distribution does not change much over time, 442 

however, this is invalid considering intense global warming in the future. Therefore, 443 

an equidistant CDF matching method (EDCDFm; Li et al., 2010) was applied for 444 

future projections, which assumes that the difference between simulated and observed 445 

values remains the same over time: 446 

 
, ,

1 1
, , , , , , , , , ,( ( )) ( ( ))

sim fut corrected

sim fut biased obs his sim fut sim fut biased sim his sim fut sim fut biased

x

x F F x F F x 



 
 (A2) 

where subscript fut represents future period. After bias correction at monthly scale, 447 

new daily precipitation (temperature) series were generated based on the ratio 448 

(difference) between the new and old CMIP5 simulated monthly means: 449 

 , , , ,( / )d corrected m corrected m biased d biasedP P P P   (A3) 

 , , , ,( )d corrected m corrected m biased d biasedT T T T    (A4) 
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where P and T represent precipitation and temperature, subscripts d and m represent 450 

daily value and corresponding monthly mean, respectively.  451 

In order to temporally disaggregate daily temperature and precipitation to a 6-hours 452 

interval during both historical and future periods, the diurnal cycle information from 453 

CRUNCEP dataset was introduced. By looping the CRUNCEP data during 1959-2005 454 

(47 years) twice, we could also generate “future data” (2006-2099, 94 years). By 455 

using the same disaggregation method that downscales variables from monthly to 456 

daily, temporal downscaling from daily to 6-hourly scales was achieved: 457 

 6 , , , 6 ,( / )h corrected d corrected d CRUNCEP h CRUNCEPP P P P   (A5) 

 6 , , , 6 ,( )h corrected d corrected d CRUNCEP h CRUNCEPT T T T    (A6) 

where subscript 6h represents 6-hourly values. It should be mentioned that only 458 

precipitation and temperature have been used from CMIP5 models, with other climate 459 

forcing variables (i.e., incident solar radiation, air pressure, specific humidity and 460 

wind speed series) directly taken from CRUNCEP dataset. Whether physical 461 

consistency among all climate forcing variables was maintained or not by simply 462 

introducing CRUNCEP dataset was not considered in this study, and it is unclear how 463 

the climate change signals by GCMs might be affected by using CRUNCEP data for a 464 

majority of forcing variables. Although resampling methods (e.g., Schaake Shuffle) 465 

that are widely used in temporal downscaling for seasonal forecasting might result in 466 

more consistent forcing variables, whether such consistency (e.g., 467 

temperature-humidity relationship) holds for future projection given the changing 468 

climate is unknown. More sophisticated downscaling techniques (either statistical or 469 
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dynamical) are needed for further studies. 470 

 471 

472 
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Figure Captions 653 

Figure 1. Location, elevation and river networks for the Wudinghe watershed. 654 

Figure 2. Structure and main eco-hydrological processes for the land surface 655 

hydrological model CLM-GBHM. (modified from Jiao et al., 2017) 656 

Figure 3. Historical (ALL) and future (RCP2.6/4.5/6.0/8.5) time series of 657 

standardized annual mean (a) temperature, (b) precipitation and (c) streamflow, and (d) 658 

the time series of hydrological drought frequency (drought months for each year) over 659 

the Wudinghe watershed. Shaded areas indicate the ranges between maximum and 660 

minimum values among CMIP5/CLM-GBHM model simulations. ALL represents 661 

historical simulations with both anthropogenic and natural forcings, 662 

RCP2.6/4.5/6.0/8.5 represent four representative concentration pathways from lower 663 

to higher emission scenarios. 664 

Figure 4. Spatial pattern of relative changes in multi-model ensemble mean 665 

precipitation at 1.5, 2 and 3 ℃ warming levels compared to the baseline period 666 

(1986-2005). The percentages in the upper-right corners of each panel are the 667 

watershed-mean changes for different RCP scenarios, and the percentages in the top 668 

brackets are the mean values from four RCP scenarios. 669 

Figure 5. The same as Figure 4, but for the spatial patterns of runoff changes. 670 

Figure 6. Comparison of the characteristics (amount (number of drought events per 671 

20 years), duration (months) and severity) averaged among climate models and RCP 672 

scenarios for hydrological drought events during the baseline period (1986-2005) and 673 

the periods reaching 1.5, 2 and 3 ℃ warming levels. Black lines indicate 5%-95% 674 



36 
 
 

confidence intervals. 675 

Figure 7. Comparison of (a) mean values and (b) standard deviations for hydrological 676 

indices averaged among climate models and RCP scenarios during the baseline period 677 

(1986-2005) and the periods reaching 1.5, 2 and 3 ℃ warming levels. SPI, SEI, SRI, 678 

SSRI, SBI, SSI represent standardized indices of precipitation, evapotranspiration, 679 

runoff, surface runoff, baseflow (subsurface runoff) and streamflow, respectively. 680 

Figure 8. Fractions of uncertainties from internal variability (orange), RCP scenarios 681 

(green) and climate and land surface hydrological models (blue) for the projections of 682 

20-years moving averaged (a) temperature, (b) precipitation (c) streamflow and (d) 683 

hydrological drought frequency. Two dashed lines indicate the multi-model ensemble 684 

median years reaching 1.5 ℃ (year 2025), 2 ℃ (year 2042) and 3 ℃ (year 2070) 685 

warming levels, respectively. 686 

 687 

Table Captions 688 

Table 1. CMIP5 model simulations used in this study. ALL represents historical 689 

simulations with both anthropogenic and natural forcings (r1i1p1 realization), 690 

RCP2.6/4.5/6.0/8.5 represent four representative concentration pathways from lower 691 

to higher emission scenarios. 692 

Table 2. Trends in hydrometeorological variables and hydrological drought frequency 693 

over the Wudinghe watershed. Historical observed trends for streamflow and drought 694 

frequency were calculated by using naturalized streamflow data (Yuan et al., 2017). 695 

Here, “*” and “**” indicate 90% and 99% confidence levels, respectively, while those 696 
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without any “*” show no significant changes (p>0.1). 697 

Table 3. Determination of crossing year for the periods reaching 1.5, 2 and 3 ℃ 698 

warming levels for different GCMs and RCPs combinations. Here, “NR” means that 699 

the corresponding GCM/RCP combination will not reach the specified warming level 700 

throughout the 21st century. 701 

Table 4. Uncertainty contributions (%) from internal variability, climate models and 702 

RCPs scenarios for the future projections considering 1.5, 2 and 3 ℃ warming levels. 703 
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 704 

Figure 1. Location, elevation and river networks for the Wudinghe watershed. 705 
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 706 

Figure 2. Structure and main eco-hydrological processes for the land surface 707 

hydrological model CLM-GBHM. (modified from Jiao et al., 2017) 708 

709 
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 710 

Figure 3. Historical (ALL) and future (RCP2.6/4.5/6.0/8.5) time series of 711 

standardized annual mean (a) temperature, (b) precipitation and (c) streamflow, and (d) 712 

the time series of hydrological drought frequency (drought months for each year) over 713 

the Wudinghe watershed. Shaded areas indicate the ranges between maximum and 714 

minimum values among CMIP5/CLM-GBHM model simulations. ALL represents 715 

historical simulations with both anthropogenic and natural forcings, 716 

RCP2.6/4.5/6.0/8.5 represent four representative concentration pathways from lower 717 

to higher emission scenarios. 718 
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 719 

Figure 4. Spatial pattern of relative changes in multi-model ensemble mean 720 

precipitation at 1.5, 2 and 3 ℃ warming levels compared to the baseline period 721 

(1986-2005). The percentages in the upper-right corners of each panel are the 722 

watershed-mean changes for different RCP scenarios, and the percentages in the top 723 

brackets are the mean values from four RCP scenarios. 724 
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 725 

Figure 5. The same as Figure 4Figure 4Figure 4, but for the spatial patterns of 726 

runoff changes. 727 
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 728 

Figure 6. Comparison of the characteristics (amount (number of drought events per 729 

20 years), duration (months) and severity) averaged among climate models and RCP 730 

scenarios for hydrological drought events during the baseline period (1986-2005) and 731 

the periods reaching 1.5, 2 and 3 ℃ warming levels. Black lines indicate 5%-95% 732 

confidence intervals. 733 
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 734 

Figure 7. Comparison of (a) mean values and (b) standard deviations for hydrological 735 

indices averaged among climate models and RCP scenarios during the baseline period 736 

(1986-2005) and the periods reaching 1.5, 2 and 3 ℃ warming levels. SPI, SEI, SRI, 737 

SSRI, SBI, SSI represent standardized indices of precipitation, evapotranspiration, 738 

runoff, surface runoff, baseflow (subsurface runoff) and streamflow, respectively. 739 
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740 

 741 

Figure 8. Fractions of uncertainties from internal variability (orange), RCP scenarios 742 
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(green) and climate and land surface hydrological models (blue) for the projections of 743 

20-years moving averaged (a) temperature, (b) precipitation (c) streamflow and (d) 744 

hydrological drought frequency. Two dashed lines indicate the multi-model ensemble 745 

median years reaching 1.5 ℃ (year 2025), 2 ℃ (year 2042) and 3 ℃ (year 2070) 746 

warming levels, respectively.  747 
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Table 1. CMIP5 model simulations used in this study. ALL represents historical simulations with both anthropogenic and natural forcings 748 

(r1i1p1 realization), RCP2.6/4.5/6.0/8.5 represent four representative concentration pathways from lower to higher emission scenarios. 749 

GCMs Institute Resolution Historical simulations RCP scenarios 

GFDL-CM3 NOAA GFDL 144×90 ALL RCP2.6/4.5/6.0/8.5 

GFDL-ESM2M NOAA GFDL 144×90 ALL RCP2.6/4.5/6.0/8.5 

HadGEM2-ES MOHC 192×145 ALL RCP2.6/4.5/6.0/8.5 

IPSL-CM5A-LR IPSL 96×96 ALL RCP2.6/4.5/6.0/8.5 

IPSL-CM5A-MR IPSL 144×143 ALL RCP2.6/4.5/6.0/8.5 

MIROC-ESM-CHEM MIROC 128×64 ALL RCP2.6/4.5/6.0/8.5 

MIROC-ESM MIROC 128×64 ALL RCP2.6/4.5/6.0/8.5 

MRI-CGCM3 MRI 320×160 ALL RCP2.6/4.5/6.0/8.5 
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Table 2. Trends in hydrometeorological variables and hydrological drought frequency over the Wudinghe watershed. Historical observed trends 750 

for streamflow and drought frequency were calculated by using naturalized streamflow data (Yuan et al., 2017). Here, “*” and “**” indicate 90% 751 

and 99% confidence levels, respectively, while those without any “*” show no significant changes (p>0.1). 752 

Historical (1961-2005) and future 
(2006-2099) scenarios 

Changing trend of standardized timeseries (yr-1) 

Temperature Precipitation Streamflow Drought frequency 

(historical) observations 0.0494** -0.0216* -0.0503** 0.0448** 

(historical) all forcings simulations 0.0272** -0.0009 -0.0213** 0.0346** 

(future) RCP2.6 simulations 0.0138** 0.0025* 0.0046** -0.0069** 

(future) RCP4.5 simulations 0.0291** 0.0056** 0.0105** -0.0096** 

(future) RCP6.0 simulations 0.0312** 0.0039** 0.0038** -0.0044** 

(future) RCP8.5 simulations 0.0345** 0.0108** 0.0133** -0.0107** 
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Table 3. Determination of crossing year for the periods reaching 1.5, 2 and 3 ℃ warming levels for different GCMs and RCPs combinations. 753 

Here, “NR” means that the corresponding GCM/RCP combination will not reach the specified warming level throughout the 21st century. 754 

GCMs 

1.5 ℃ warming level 2 ℃ warming level 3 ℃ warming level 

RCP2.
6 

RCP4.
5 

RCP6.
0 

RCP8.
5 

RCP2.6 RCP4.5 RCP6.0 RCP8.5 
RCP2.

6 
RCP4.

5 
RCP6.

0 
RCP8.

5 

GFDL-CM3 2016 2018 2019 2018 2039 2032 2039 2030 NR 2066 2070 2052 

GFDL-ESM2M NR 2051 2059 2038 NR NR 2076 2054 NR NR NR 2084 

HadGEM2-ES 2020 2023 2023 2018 2042 2039 2042 2032 NR 2071 2070 2052 

IPSL-CM5A-LR 2030 2029 2031 2025 NR 2045 2049 2037 NR NR 2086 2057 

IPSL-CM5A-MR 2032 2025 2031 2024 NR 2045 2050 2037 NR NR 2081 2055 

MIROC-ESM-CHEM 2019 2024 2026 2020 2037 2038 2042 2032 NR 2075 2070 2051 

MIROC-ESM 2026 2025 2032 2024 2048 2039 2046 2033 NR 2080 2076 2056 

MRI-CGCM3 2075 2043 2053 2036 NR 2074 2070 2049 NR NR NR 2072 

Model ensemble 2026 2025 2031 2024 2041 2039 2048 2035 NR 2073 2073 2056 

Total ensemble 2025 (2016~2075) 2042 (2030~2076) 2070 (2051~2086) 

 755 
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Table 4. Uncertainty contributions (%) from internal variability, climate models and RCPs scenarios for the future projections considering 1.5, 2 756 

and 3 ℃ warming levels. 757 

Variables 

1.5 ℃ warming level 2 ℃ warming level 3 ℃ warming level 

Internal 

variability 

Climate 

Models 

RCPs  

scenarios 

Internal 

variability 

Climate 

Models 

RCPs  

scenarios 

Internal 

variability 

Climate 

Models 

RCPs  

scenarios 

Temperature 1.4 84.4 14.3 0.7 66.3 33.0 0.2 36.1 63.7 

Precipitation 9.7 87.8 2.5 10.1 80.4 9.5 4.1 86.3 9.6 

Streamflow 5.6 92.8 1.6 6.0 91.2 2.8 3.5 91.3 5.1 

Drought frequency 3.6 93.8 2.5 4.4 92.8 2.8 3.1 92.8 4.0 
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