
Reply to Charles Luce 
 

We thank Charles Luce for the constructive comments. We copied the comments for a better 

readability and marked them using italic fonts. 

The authors have done a nice job revising the paper. The introduction is much more succinct and 

focused on the problem needing to be solved, and the novel contribution is outlined and given in the 

conclusions. 

 

There is a little bit of new writing that left some concern for me. P4 lines 20-25 presents what seems 

to be not entirely a fair, nor necessarily accurate, criticism of using empirical modeling of initial SWE 

variability. While the Dornes citation is given for inconsistency between years (but also discusses 

correlations with melt, which steps outside of the initial SWE variability issue), others, Luce and 

Tarboton (2004) as one example, show the opposite, relatively consistent SCD curves across years (at 

least when presented dimensionlessly, which is not how everyone describes SCD curves). The Dornes 

work certainly gives pause with respect to generality, but this paragraph gives the impression of 

concluding that one should not use initial SWE variability based on empirical information period. At 

the same time, the current manuscript eventually concludes that initial SWE variability is the most 

important factor in the current study, but does not actually assess interannual variability in the initial 

distribution. The concluding sentence states that it is not possible to evaluate the impacts of 

correlations without first knowing the contribution from initial variability. Again, the critiqued 

methods do just that (at least one of them does). It seems strange to criticize these methods for this 

issue in this manuscript, when this manuscript mostly notes that scale mismatches may be a key 

reason for not finding spatial correlations between melt and initial SWE distributions. If this 

paragraph fits into this paper, a more balanced discussion is necessary. It seems reasonable to see the 

issue presented as a question, or even a point of difference among sites that could be measured with 

replication, but the current way it is presented makes the issue look settled. 

 

We agree with Charles Luce that this citation which is showing inconsistencies between years, is not 

a good way to move over to the topic of our study, which is showing only observational data for one 

year in detail. Thus, we extended a previous citation of Dornes work some lines earlier in a more 

balanced way and added a model approach using high-resolution LiDAR data to generate SWE 

variability (Brauchli et al., 2017). 

 

 

 

  



Reply to the anonymous reviewer 
 

We thank the reviewer for the constructive comments. We copied the comments for a better 

readability and marked them using italic fonts. 

 

The authors have addressed all of my comments and improved the readability of the manuscript. I 

have just a few minor comments that they might want to consider before resubmission. All comments 

refer to the most recent version (without track changes). 

 

P1L16: I would suggest to introduce “HS” as abbreviation for “snow depth” here and to use it 

throughout the abstract.  

The used abbreviation dHS stands for ‘difference in snow depth’. We also use the abbreviation HS for 

‘snow depth’. 

 

P1L28: “Analysing the reasons for a missing correlation in this study area provided some prerequisites 

for large spatial correlations and for when these need to be taken into account by SCD curves.” What 

do you mean by “some prerequisites for large spatial correlations”? 

We reformulated this sentence. 

 

P2L1-2: “models […] must account for correlations between SWE and melt […]”, this seems to 

contradict your earlier statement that there is “… only a weak spatial correlation developed between 

initial snow depth and dHS”.  

This is indeed misunderstanding, since we meant that incorporating a wrong spatial correlation in a 

model is a large modelling mistake. Wrong can be large in the model and small in the real world, or 

the other way round. We reformulated this sentence. 

 

P2L32: Missing “that” in “There are studies have found…” 

Done as suggested. 

 

P2L10: Remove “by” in “LiDAR by…” 

Done as suggested. 

 

P3L18-22: “On the other side, spatially varying melt rates […] can alter this pre-melt SWE distribution 

and, when correlated to SWE, result in a spatial variability to SCD […]” This statement is confusing. Do 

you mean that pre-melt SWE is correlated to SWE which is measured during melt? What is spatially 

variable to SCD? Is this a grammar error?  

We reformulated this sentence. 

 

P7L2-3: “As such HS and dHS are analysed and interpreted as proxies for SWE and melt in the text.” I 



would have thought that dHS is a proxy for ablation (mainly melt and redistribution) rather than melt 

alone.  

Redistribution of snow is not relevant in this late ablation season anymore. We included this aspect 

in the sentence. 

 

 

P13L1-2: “The lack of correlation in the Fig. 5c point cloud was contributed to by compensation 

between the positive correlation driven by melt energy and the negative correlation from a cold 

content.” I do not understand from the previous discussion of Figure 5c (P12L17-31) how you can 

reach this conclusion. Melt energy and cold content were not explicitly analyzed, so your statement 

seems to be rather hypothetical. Although you discuss melt energy and cold content much later on 

P17, it might be useful to add a reference to this discussion to the earlier statement on P12. 

We made the hypothetical character of this statement more clear.  

 

P13L14-15: “Remote sensing techniques such as remote sensing can determine where deep drifts 

occur on north-facing slopes […]” 

 

Changed. 

 

P14L6-14: How was this correlation analysis done? Did you compare spatial or temporal patterns of 

ablation (dHS)?  

 

This is a temporal correlation of spatial patterns. Spatial patterns were analyzed pixel-by-pixel. We 

added this information. 

 

P17L11-12: “The large scatter between HS0 and dHS results from the observation that most of the 

variance of HS0 occurs at much smaller scales (Fig. 7a).” Doesn’t this statement refer to Figure 8c? 

Figure 7a refers to dHS, not HS0.  

Changed. Many thanks for finding this error. 

 

Figures 2-6: Sub-plot references (a, b, c and d) are missing in all figures.  

Sub-plot references will be inserted in each image files, which will be finally submitted. 

 

Figure 5: What are the red, blue and yellow data points in Figure 5c? Please indicate in the caption 

that you show data of P1 only.  

Done as suggested. 

 

Figure 8: The caption seems incomplete, e.g., what are “dHS.irradiance” and “dHS.HS0”? 

Changed. 
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Abstract 9 

The spatial distribution of snow water equivalent (SWE) and melt are important to 10 

estimating areal melt rates and snowcover depletion dynamics but are rarely measured in 11 

detail during the late ablation period. This study contributes results from high resolution 12 

observations made using large numbers of sequential aerial photographs taken from an 13 

Unmanned Aerial Vehicle on an alpine ridge in the Fortress Mountain Snow Laboratory in the 14 

Canadian Rocky Mountains from May to July. With Structure-from-Motion and thresholding 15 

techniques, spatial maps of snow depth, snowcover and differences in snow depth (dHS) 16 

during ablation were generated in very high resolution as proxies for spatial SWE, spatial 17 

ablation rates, and snowcover depletion (SCD). The results indicate that the initial distribution 18 

of snow depth was highly variable due to overwinter snow redistribution and the subsequent 19 

distribution of dHS was also variable due to albedo, slope/aspect and other unaccountable 20 

differences. However, the initial distribution of snow depth was five times more variable than 21 

that of subsequent dHS values which varied by a factor of two between north and south 22 

aspects. dHS patterns were somewhat spatially persistent over time but had an insubstantial 23 

impact on SCD curves, which were overwhelmingly governed by the initial distribution of 24 

snow depth. The reasons for this are that only a weak spatial correlation developed between 25 

initial snow depth and dHS.  Previous research has shown that spatial correlations between 26 

SWE and ablation rates can strongly influence SCD curves.  RAnalysing the reasons for a 27 

missing correlation in this study area were analysed and  provided some a generalisation to 28 

other regions were discussed: What is needed forprerequisites for a large spatial correlation 29 
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between initial snow depth and dHS s and for when should they these need to be taken into 1 

account by to correctly modelling SCD curves. These findings suggest that hydrological and 2 

atmospheric models need to incorporate realistic distributions of SWE, melt energy and cold 3 

content and so must account  for realistic correlations (i.e. not too large or too small) between 4 

SWE and melt in order to accurately model snowcover depletion.   5 

 6 

1 Introduction 7 

The spatial variability of snow water equivalent (SWE) exerts an important control on 8 

catchment or grid-averaged snowmelt (Pomeroy et al., 1998; Liston, 1999). When focussing 9 

on complex terrain with only minor vegetation effects on SWE distribution, differences in 10 

precipitation, snow redistribution, melt energy and freezing levels lead to a spatially variable 11 

distribution of SWE (e.g. Clark et al., 2011). For modellers of snow-hydrological applications 12 

the question arises as to which of those processes need to be considered. It is well known that 13 

south-facing slopes receive more melt energy than do north-facing slopes due to differences 14 

in solar radiation. At 50°N on April 1, the differences are already 40% for a slightly inclined 15 

slope of 10°, however, these differences decrease as summer solstice approaches (Figure 1, 16 

Gray and Male, 1981). It is also well known that SWE distribution at peak accumulation is 17 

highly variable in alpine terrain. Liston et al. (2004) presented maps with regional differences 18 

of coefficients of variation (CV) of snow depth. For alpine regions a CV of 0.85 is suggested. 19 

Both, the variability in melt energy and SWE influence snow cover depletion. This can be 20 

visualized in snow-cover depletion curves, which are a function of snow-covered area (SCA) 21 

over time or grid-averaged SWE (e.g. Essery and Pomeroy, 2004; Clark et al., 2011). Both 22 

studies illustrate with theoretical simulations how increasing melt rate and peak SWE 23 

variability change the rate of areal snow-cover depletion. From their theoretical illustrations 24 

(Fig. 3 and 4 in Clark et al., 2011), it is clear that in alpine regions with a large variability in 25 

melt rate and peak SWE, ignoring SWE rather than melt rate variability would be the greater 26 

modelling mistake. However, as Pomeroy et al. (2004) pointed out, the importance of melt 27 

variability on SCD increases if a spatial correlation between melt and SWE exists. This 28 

suggests that in alpine terrain the question of relative contribution of spatially variable melt 29 

rates or snow redistribution on SCD can be reduced to the question of whether such a 30 

correlation between melt and SWE exists and how large it is. 31 
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Besides theoretical considerations, there are a number of existing field and modelling 1 

studies on the relative importance of spatially variable melt or snow redistribution on SCD. 2 

There are studies that have found the temporal progression of snow-cover depletion (SCD) to 3 

be governed primarily by the variability caused by snow redistribution rather than the 4 

variability caused by melt rate differences (Shook and Gray, 1994; Luce et al., 1998; 5 

Anderton, 2004; Egli et al., 2012). These studies show with spatial observations that snow 6 

cover depletion (SCD) can be modelled with statistics derived during peak accumulation. 7 

Luce et al. (1998) modelled snow cover depletion with a spatially distributed energy balance 8 

model which integrated drifting snow redistribution based on an empirically derived drift 9 

factor. Ignoring this drift factor deteriorated model results, which suggests the relative 10 

importance of snow redistribution over melt variability. Grünewald et al. (2010) made indirect 11 

measurements of spatial melt rate and SWE via snow depth (HS) and the change in HS (dHS) 12 

by terrestrial LiDAR by and applying a few measured bulk densities to estimate SWE and 13 

ablation rates. They found that SWE and melt rate were spatially uncorrelated over most of 14 

their ablation season, except for a correlation coefficient of r = -0.4 for one sub period. They 15 

noted that the variability of SWE was much larger than the variability of melt rates. In the 16 

same study area over an additional winter season Egli et al. (2012) calculated SCD curves that 17 

assumed correlations between HS and the change in HS (dHS), however these curves deviated 18 

substantially from observations, suggesting that such correlations did not exist.  Neither study 19 

examined why such correlations were absent. 20 

On the other side, spatially varying melt rates – caused by differences in insolation due 21 

to aspect (Marks and Dozier, 1992), net solar irradiance due to albedo differences (Skiles et 22 

al., 2015), internal energy storage due to deep, cold snow (DeBeer and Pomeroy, 2010) and 23 

advected energy due to bare ground (Mott et al., 2011; 2013) can alter this pre-melt SWE 24 

distribution and, when correlated to SWE, result in substantial changes to SCD curves a 25 

spatial variability to SCD (Pomeroy et al., 2004; Essery and Pomeroy, 2004; DeBeer and 26 

Pomeroy, 2010).  Pomeroy et al. (2003) took measurements of energy fluxes to snowpacks 27 

using eddy correlation and slope based radiometers and snow ablation using spatially 28 

distributed snow surveys in a Yukon mountain valley in April and found that whilst ablation 29 

was proceeding rapidly on south facing slopes where snow was initially shallow, snow 30 

accumulation was still occurring on north facing slopes where a large drift had formed. In 31 

Yukon and the Canadian Rockies, subsequent studies found melt variations to be important in 32 

controlling snow ablation and SCD (Pomeroy et al., 2003; 2004; Dornes et al., 2008a, b; 33 
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DeBeer and Pomeroy, 2009; 2010).  Pomeroy et al. (2004) reported that different spatial 1 

scales and landscape classes influence melt rates to be positively or negatively correlated to 2 

pre-melt SWE throughout melt in a wide variety of cold regions mountain environments.  3 

DeBeer and Pomeroy (2010) found in a windswept alpine catchment subject to substantial 4 

snow redistribution, that melt rate variations were important in the Canadian Rockies during 5 

early melt.  Winstral and Marks (2014) found modelled SWE and melt rates were correlated 6 

with r = -0.66 in the mountains of southern Idaho. Such a large correlation between modelled 7 

melt and SWE would indicate that spatial melt differences are relevant to model SCD 8 

correctly in some regions. Dornes et al. (2008a, b) found that hydrological models and land 9 

surface schemes that did not consider slope and aspect impacts on melt as well as initial SWE 10 

could not be calibrated to produce realistic SCD curves or streamflow discharge hydrographs. 11 

However, Dornes et al. (2008a, b)Furthermore, they  showed substantial interannual 12 

variability of SWE distributions and correlations to melt rate. Interannual differences on the 13 

interplay of SWE and melt variability will enhance the problem of correctly modelling SCD.   14 

which invalidated empirical assumptions in some years and caused predictive failure of land 15 

surface hydrology models. Without explicit information on the effects of redistribution on the 16 

distribution of SWE, it is not possible to estimate the impact of correlations between SWE 17 

and melt rate on SCD curves.  18 

Most interestingly, DeBeer and Pomeroy (2010) found in a windswept alpine 19 

catchment subject to substantial snow redistribution, that melt rate variations were important 20 

in the Canadian Rockies during early melt.  Winstral and Marks (2014) found modelled SWE 21 

and melt rates were correlated with r = -0.66 in the mountains of southern Idaho. Such a large 22 

correlation between modelled melt and SWE would indicate that spatial melt differences are 23 

relevant to model SCD correctly in some regions.  24 

Regional differences, e.g. the complexity of the terrain and wind redistribution, will 25 

alter the dominance of SWE variability on SCD and may thus explain part of the different 26 

findings of various studies. Not all cited studies fall in the highest CV category suggested by 27 

Liston et al. (2004). Furthermore, in study regions with a large elevation gradients, altitudinal 28 

melt energy differences as well as precipitation phase differences will play an important role 29 

in governing SCD (Blöschl and Kirnbauer, 1992; Elder et al., 1998). 30 

 From a practical modelling perspective, it is simpler to explicitly calculate melt energy 31 

differences in a model (Marks and Dozier, 1992) than to calculate snow redistribution 32 
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mechanistically over complex terrain (Liston and Sturm, 1998; Mott et al., 2010; Fang et al., 1 

2013; Musselman et al., 2015). Empirical modelling of SWE variability (Luce et al., 1999; 2 

Winstral and Marks, 2002; Liston et al., 2004, Essery and Pomeroy, 2004; Helbig et al., 2015) 3 

has therefore been a preferred choice. As Essery and Pomeroy (2004) pointed out it is relevant 4 

to consider also the spatial correlation between melt and SWE to correctly model SCD. One 5 

attempt in this direction is shown in DeBeer and Pomeroy (2010) who modelled this 6 

correlation based on the cold content of snow. High-resolution gridded model approaches 7 

with energy balance models include this effect as well, but only with a realistic SWE 8 

distribution one can assume also a realistic correlation to spatially modelled melt rates. 9 

Brauchli et al. (2017) extended the method of Luce et al. (1998) to higher spatial resolution, 10 

i.e. scaling measured solid precipitation to observations using LiDAR data. Without 11 

discussing the effect of an improved correlation between modelled melt and SWE compared 12 

to standard methods of distributing precipitation, Brauchli et al. (2017) were able to improve 13 

modelled runoff for certain periods. 14 

However, Dornes et al. (2008a, b) showed substantial interannual variability of SWE 15 

distributions and correlations to melt rate which invalidated empirical assumptions in some 16 

years and caused predictive failure of land surface hydrology models. Without explicit 17 

information on the effects of redistribution on the distribution of SWE, it is not possible to 18 

estimate the impact of correlations between SWE and melt rate on SCD curves.  19 

 This study wants to assess the aims to show the influence of peak SWE variability,  20 

and melt rate variability and especially their spatial correlations on SCD in alpine terrain 21 

using high-resolution distributed measurements rather than sparse manual sampling or relying 22 

on model results. The use of high resolution measurements is potentially important because 23 

peak alpine snow depth, and thus also peak SWE, is known to vary most substantially below 24 

the scale of tens of metres in alpine environments. The coarse-resolution manual probing of 25 

previous studies may have missed important spatial structures which may determine the 26 

results (Clark et al., 2011). Most studies on this topic have relied on modelled melt rates, even 27 

though there are substantial uncertainties in melt modelling over complex terrain.  For 28 

instance, Mott et al. (2011) were only partly successful in high resolution modelling of alpine 29 

melt rate variations.  Those studies which have used high-resolution distributed snow depths, 30 

such as Egli et al. (2012) did not attempt to diagnose the variation of and correlation between 31 

SWE and melt rates. 32 
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 1 

2 Data and methods 2 

2.1 Site description 3 

A study region was chosen which showed substantial differences in aspect and slope 4 

to ensure spatial melt differences. In a nearby study site DeBeer and Pomeroy (2010) found 5 

spatial melt rates to be important for snowcover depletion, at least during early melt. Large 6 

drifts commonly form on south facing slopes in this area (MacDonald et al., 2010; Musselman 7 

et al., 2015) suggesting a correlation between melt energy and SWE. The study area is located 8 

in the Canadian Rocky Mountains in southern Alberta, Canada. Figure 2a shows a 9 

topographic map of the study area, an alpine ridge in a NE – SW orientation. Gullies and 10 

small scale aspect variations can be found in the slopes on both sides of the ridge. Extreme 11 

south and north aspects are underrepresented in the terrain snowcovered at the beginning of 12 

the study period (Fig. 2b). The snowcovered area is reasonably steep with two peaks in the 13 

slope distribution at 10
o
 and 25

o
 (Fig. 2c). On both sides of the ridge the slope steepens to up 14 

to 40
o
. Vegetation played a role in snow deposition patterns, mainly in the lee of shrubs and 15 

clusters of small trees in krummholz with heights up to 2 m. Areas within these vegetation 16 

clusters were excluded from the study as vegetation degraded the digital surface models 17 

(DSMs) derived from UAV SfM photogrammetry (see section 2.4). The included area only 18 

covered bare or sparsely vegetated ground so that vegetation effects can be excluded. 19 

Two weather stations are located at the ridge, one on top of the ridge (Fortress Ridge - 20 

FRG) and one in a south facing slope (Fortress Ridge South - FRS, Fig. 2a). The local 21 

Fortress Mountain Snow Laboratory within the regional Canadian Rockies Hydrological 22 

Observatory provided five more weather stations within less than 2 km distance of the ridge, 23 

which were used to interpret weather situations and for quality control. 24 

2.2 Unmanned aerial vehicle (UAV) Data acquisition 25 

A “Sensefly Ebee RTK” fixed wing UAV was used with a modified consumer-grade 26 

Canon Elph compact RGB camera. As a base station a Leica GS15 differential GPS system 27 

communicated with the UAV to tag captured images with corrected geolocations. 28 

Additionally, ground control points were measured with this differential GPS system, which 29 

improved the quality of the Digital Surface Models (DSMs) generated. For a more detailed 30 
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description of the UAV and the usage please refer to Harder et al. (2016).  An area of 0.31 1 

km
2
 (666 x 470 m) was separated into two subareas because of battery restrictions on flight 2 

coverage (Fig. 2a, red polygons). Each flight lasted approximately 20 min. The flight altitude 3 

was 100 m over the ridgetop, which resulted in an approximate resolution (ground sampling 4 

distance) of less than 4 cm.  A lateral overlap of the images of 85% and a longitudinal overlap 5 

of 75% was chosen as suggested by the manufacturer for difficult terrain. Ideally, four flights 6 

in total were made each sampling day, two for each subarea with perpendicular flight plans, 7 

which is suggested by the manufacturer for complex terrain. Weather conditions and technical 8 

problems often allowed only a part of this program. Wind speeds over 14 m/s or occurrence 9 

of precipitation restricted flying, while camera malfunctions or connection issues with the 10 

Leica GPS base station were the most typical technical limitations. In total, the UAV was 11 

flown over snow from 15 May to 24 June 2015 at eight different days with substantial depth 12 

differences and four flights over bare ground on 24 July 2015. However, as stated section 3.2, 13 

we had to restrict analysis to two melt periods. 14 

2.3 Accuracy evaluation and manual measurements 15 

The accuracy assessment of this rather new method to determine snow depth was 16 

given a high priority and is described in detail by Harder et al. (2016) for this environment 17 

and others. In short, 100 differential GPS measurements on bare ground were taken. 18 

Approximately 60% of the area was bare at the beginning of the study period which allowed 19 

distribution of GPS ground measurements over a large part of the study area (Fig. 3a) and 20 

thus widespread detection of any general misalignment of DSMs or local tilts. These points 21 

could be used for all available flights. Differential GPS measurements were also taken at the 22 

snow surface on the day of the specific flights, but technical problems often allowed only 23 

limited additional time for these surveys. For most of the days up to 20 differential GPS 24 

measurements on snow could be taken. At these GPS measurement points, snow depth was 25 

also manually measured and snow density was measured at approximately each third of these 26 

points. Density measurements were not sufficient to confidently estimate SWE from snow 27 

depth into SWE and ablation rates from differences in snow depth. As such HS and dHS are 28 

analysed and interpreted as proxies for SWE and melt in the text. Since redistribution and 29 

compaction of snow were not a relevant process for this time period late in the ablation 30 

season, dHS can serve as a reasonable proxy for melt. 31 
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Harder et al. (2016) described errors and accuracies of the UAV measurements in 1 

detail.  In short, from 100 measurements on bare ground, the root mean square errors of bare 2 

ground surface elevation ranged between 4 and 15 cm with a mean of less than 9 cm. Over 3 

snow with fewer measurements an increase in these error measures could not be detected. A 4 

signal-to-noise ratio (SNR) was used to ensure that the signal of the UAV was sufficiently 5 

larger than the error, defined as mean of the signal divided by the standard deviation of the 6 

error. The potential impact of this error on the results presented is discussed in section 3.2. 7 

2.4 Spatial data generation 8 

Digital Surface Models (DSMs) and orthomosaics were created by application of SfM 9 

techniques (Westoby et al., 2012) using the software Postflight Terra 3D, which was provided 10 

with the UAV. Default settings likely resulted in overexposed pixels, which created erroneous 11 

points in the point cloud over snow that appeared several metres above the real snow surface. 12 

This issue could partly be solved with a semi-global-matching option within the software, 13 

which reduced the number of affected areas. Remaining areas with errors were manually 14 

excluded (Harder et al., 2016). DSMs and orthomosaics were resampled to a common grid 15 

and resolution of 10 cm, which increased the speed of subsequent data analysis substantially. 16 

Subtracting DSMs provided both snow depth (HS) and differences in snow depth 17 

(dHS). dHS was scaled by the time interval between observations for comparison of varying 18 

observation periods. Snow-covered area (SCA) was defined using individual thresholds in 19 

RGB values for different flights using the orthomosaics. Manual adjustment was needed to 20 

ensure that very dark snow was classified correctly (see for example Fig. 3b). HS was masked 21 

by the SCA of the date of the flight, whilst dHS was masked by the SCA on the dates of the 22 

first and subsequent flight. Figure 3c and 3d show examples of HS and dHS maps of a part of 23 

the study area. Several areas such as ski lifts and snow cat tracks and erroneous points as 24 

mentioned above were excluded from the analysis. Furthermore, large errors were detected in 25 

areas close to vegetation, which were manually excluded. The marked green area in Fig. 3d 26 

indicates the excluded area for this part of the study area.  27 

To explain the observed differences in snow depth, several topographical variables 28 

were created using the DSMs. Deviation from North and Slope were calculated on a 1 m 29 

resolution to exclude small-scale noise of the DSMs. Solar Irradiance was calculated for a 1 30 

m resolution for each flight day with the Area Solar Radiation function in ArcGIS. To account 31 
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for albedo differences the Brightness of the orthomosiac pixels was abstracted on a 10 cm 1 

resolution. The blue value was chosen since it was least affected by unwanted illumination 2 

differences due aspect variations. Brightness and Solar Irradiance are temporal averages 3 

based on the first and the last flight and, if available, flights within the periods. 4 

2.5 Data analysis 5 

To diagnose reasons for spatial differences in snow depth change (dHS), Pearson 6 

correlation coefficients were calculated with several potential explaining variables as Slope, 7 

Deviation from North, Solar Irradiance, Brightness, current snow depth (HS) and snow depth 8 

at the beginning of the study period (HS0). Scatter plots also were visually inspected to detect 9 

reasons for strong or weak correlations or non-linear dependencies. The scatter plots were too 10 

dense to interpret visually because of the high resolution and so instead of plotting point pairs, 11 

the density of point pairs in a limited area of the plot was visualized (e.g. in Fig. 5a).  12 

Spatial dependencies of the spatial structure of dHS and its correlation with explaining 13 

variables were analysed with variograms and correlograms. Variograms were calculated with 14 
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for point pairs xi and xj in a lag distance class N(h) (e.g. Webster and Oliver, 2007). 16 

Correlations between two variables x and y in a certain lag distance h were calculated with the 17 

cross-variogram as an estimator of the covariance (Webster and Oliver, 2007). 18 
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to obtain a correlation measure (Webster and Oliver, 2007). Variograms and 23 

correlograms were calculated only with a random subset of 10% of available data points to 24 

save computational resources. Smallest number observations were N > 5x10
4
, which was 25 
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large enough to obtain consistent variograms and correlograms with different randomly 1 

chosen subsets.  2 

 3 

3 Results and discussion 4 

3.1 Overview and meteorology 5 

Fortress Ridge is well exposed to the wind, with peak hourly wind speeds over 20 m/s 6 

and a mean of 4.6 m/s over the winter 2014/15 at the FRG station. Two dominant wind 7 

directions can be identified, WSW and ESE, the latter is approximately perpendicular to the 8 

ridge. The wind direction parallel to the ridge is associated with the highest wind speeds. 9 

During precipitation and high wind events both directions were frequent. During late melt in 10 

2015, wind speeds were substantially lower with a higher frequency of very calm days, 11 

providing more frequent flying conditions for the UAV.  12 

Due to high wind speeds, large parts of the ridge were snow-free during most of the 13 

exceptionally warm and dry winter season. After a large late November 2014 snow storm, the 14 

FRG station rarely documented snow on the ground and shallow snowpacks that did form 15 

were regularly eroded by wind within a few days. The snow covered area (SCA) reached the 16 

seasonal maximum in late November after this substantial snowfall (80 mm) with light winds 17 

and dropped dramatically due to subsequent wind redistribution from blowing snow storms.  18 

When aerial measurements began on 19 May 2015, SCA was slightly below its typical winter 19 

value as spring ablation was under way. Without excluding any areas (see section 2.4) SCA 20 

was approximately 0.45 in both subareas (Fig. 3a).  21 

Dust-on-snow was an obvious feature in late winter and the beginning of the melt 22 

season (Fig. 3b).  It had not been observed to such extent in over a decade of observations in 23 

the region. This dust was locally eroded from the fine frost-shattered and saltation-pulverized 24 

shale particles at the ridge-top and was transported by wind to adjacent lee slopes and into 25 

gullies, similarly to wind-transported snow.  Hence dust was deposited preferentially to snow 26 

drifts. Subsequent snow accumulation and melt processes led to a dust-on-snow pattern of 27 

high small-scale variability. The lower albedo from dust deposition may have influenced 28 

snowmelt energetics, but its high variability is different from the large scale, areally uniform 29 

dust deposition reported by Painter et al. (2010) where the dust source is in upwind arid zones 30 

and very fine aerosols are evenly deposited on snow.  31 
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Blowing snow transport and redistribution during the high wind speeds also caused a 1 

highly variable snow depth (Fig. 3c) as is expected in the region (Fang et al., 2013; Pomeroy 2 

et al., 2016). Snow was redistributed to the SE facing slopes of the ridge and also in gullies on 3 

the NW facing slopes, which are perpendicular to the ridge. Areas of bare ground and very 4 

deep snow (> 4 m) were only separated by a few metres distance. This high variability of 5 

snow depth at scales of from a few to tens of metres is a typical feature for wind-swept alpine 6 

snow covers (e.g. Pomeroy and Gray, 1995, p.22-27; Deems et al., 2006; Trujillo et al., 2007; 7 

Schirmer et al., 2011; Schirmer and Lehning, 2011).  There is no avalanching redistribution of 8 

snow in the study domain. 9 

An example of reductions in snow depth (dHS) due to ablation over a period of 13 10 

days is shown in Fig. 3d. At the first glance differences between aspects are obvious, as well 11 

as smaller scale impact of albedo variations (cf. Fig. 3b). The driving forces to differences in 12 

ablation inferred from the observed differences in depth change will be examined in 13 

section 3.3. 14 

The study covered the late melt period, when the highest ablation rates occurred. Peak 15 

SWE of 500 mm was measured with a weighing snow lysimeter (Sommer “Snow Scale”) in a 16 

nearby forest clearing on 20 April 2015. By the start of the study period on 19 May, SWE had 17 

gradually decreased to 300 mm, often interrupted by snowfall. During the study period after 18 

19 May no significant (>3 cm) snowfall was observed. The much higher ablation rates 19 

compared to the previous weeks caused the snow to disappear at this station on 30 May. A 20 

very similar development could be observed at two other stations using snow depth sensors 21 

within the Fortress Mountain Snow Observatory, including the FRS station (c.f. Fig. 2a). On 22 

30 May a SCA of 0.2 was measured from the UAV over the whole flight domain. Considering 23 

a typical pre-melt SCA of approximately 0.45, the presence of a significant SCA illustrates 24 

the value of spatially distributed measurements of snow ablation and cover, when all seven 25 

meteorological stations in the ~3 km
2
 region were snow-free. 26 

A meteorological overview during the study period is given in Fig. 4 at the FRG 27 

station (cf. Fig. 2a). Measurements of incoming shortwave radiation and air temperatures are 28 

shown on the left, and resulting modelled results with CRHM using Snobal as the melt 29 

module (cf. Fang et al., 2013) for a flat field simulation on the right. Although the FRG 30 

station was snow-free, CRHM was initialized with a hypothetical SWE amount of 800 mm in 31 

order to represent deeper nearby snow patches. Energy fluxes were summed and scaled for 32 
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comparison over the indicated dates with UAV flights. The energy balance was dominated by 1 

inputs of net shortwave radiation. Modelled melt accelerated around 8 June when high 2 

incoming shortwave radiation was accompanied by smaller longwave radiation losses and 3 

larger sensible heat fluxes driven by air temperatures often in excess of 10
o
 C.  4 

3.2 Selection of melt periods 5 

Melt periods were chosen to include sufficient ablation such that the dHS signal 6 

exceeded the measurement error from the UAV and data processing. A signal-to-noise ratio 7 

(SNR) was used, which relates the mean dHS with the typical standard deviation error (SD) 8 

found by Harder et al. (2016) for surfaces measured with the UAV to be 6.2 cm. Since two 9 

surface measurements are needed to achieve a dHS map, this SD value was doubled. For SNR 10 

≥ 4, the signal is assumed to be sufficiently large to avoid mistaking it for a fluctuation in 11 

noise (Rose, 1973). Applying this criterion, mean dHS had to be larger than ~0.5 m. Given the 12 

availability of suitable flights in both subregions, this permitted two time periods for analysis; 13 

P1 from 19 May to 01 June 2015, and P2 from 01 June to 24 June 2015.  14 

3.3 Factors influencing spatial differences in dHS 15 

Table 1 shows the Pearson’s correlation coefficient for above mentioned melt periods 16 

and different subareas. This univariate analysis shows clearly two driving factors for the 17 

earlier melt period, P1, albedo and solar radiation differences, expressed respectively with 18 

Brightness and either Deviation from North or with Solar Irradiance. The sign of the 19 

correlations is mainly as expected: More southerly and darker pixels showed larger dHS 20 

values. Exceptions (e.g. during P2 in the southern subarea) may be explained with observable 21 

differences between a few remaining snow patches with different albedo values, slope, snow 22 

depths and sky view factors. Energy contributions from longwave radiation (DeBeer and 23 

Pomeroy, 2009) or altered turbulent heat fluxes because of cold air pooling (Mott et al., 2011; 24 

2016) may override an obvious relationship with solar radiation. Also, faster settling rather 25 

than melt of deeper snow is possible, although the snowpack was quite ripe. 26 

In the first period, P1, Brightness had a large effect in the northern subarea (r = -0.66). 27 

Figure 5a visualizes this relationship between dark snow and dHS. The high scatter especially 28 

for brighter snow pixels can partly be explained with radiation differences. For the same 29 

period and area Solar Irradiance and Deviation from North had a correlation of r = 0.57. 30 
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Figure 5b illustrates the dependency with Solar Irradiance but for white pixels only 1 

(approximately 50% of the observations). A clear dependency is visible with a correlation 2 

coefficient of r = 0.66. Radiation effects were more substantial during P2 in this northern 3 

subarea with r = 0.84 for both Solar Irradiance and Deviation from North. This may be 4 

explained due to less scatter produced by albedo differences in this period (r = 0.03). Darker 5 

parts of the snowcover melted out by the end of this period.  6 

The correlations of dHS with Brightness, Deviation from North and Solar Irradiance 7 

were often strong. dHS increased from 5 to 7 cm/d (nearly 60% increase) as aspect shifted 8 

about 115 deg from north to south or snow from clean to dusty (c.f. Fig. 5b). This shows the 9 

importance of spatial variation in net solar irradiance to melt energetics – as exemplified by 10 

the modelled energy budget shown in Fig. 4b. The impact of dust on albedo and slope on 11 

solar irradiance is well established in the snow literature and so this is expected.   12 

What is a more interesting finding here is that dHS was not correlated with initial HS0, 13 

Fig. 5c, Table 1), as was observed in other cold regions mountain studies in Canada such as 14 

DeBeer and Pomeroy (2009, 2010), Pomeroy et al. (2003, 2004), and Dornes et al. (2008 a, 15 

b). A lack of covariance between HS0 and dHS in late melt has important implications for 16 

SCD curves (Pomeroy et al., 2001), which will be highlighted in section 3.5. Figure 5c shows 17 

the areal mean values for HS0 and dHS for flat areas (slope < 5
o
) and areas on both sides of 18 

the ridge (threshold aspect is 235
o
, slope ≥ 5

o
). The hypothesis for this study period was that 19 

large drifts on south-facing parts of the ridge cause a correlation between melt energy and 20 

SWE. Indeed, the southeast part showed larger HS0 and dHS compared to the flat and 21 

northwest part of the study area. This suggests a correlation between HS0 and dHS, which 22 

was not apparent when analysing all pixels. In each subarea the range of snow depth was 23 

large, which diminished the observed correlation. More importantly, on the south-eastern face 24 

a mild negative correlation of r = -0.35 developed (Fig. 5d), which may be explained by a 25 

remaining cold content in deep drifts. This negative correlation is not apparent for smaller 26 

dHS values, in the northwest part of the ridge (Fig. 5e). The lack of correlation in the Fig. 5c 27 

point cloud was contributedcan be interpreted as a to by compensation between the positive 28 

correlation driven by melt energy and the negative correlation from a cold content.  29 

To aid in analysing the reasons for the lack of correlations between Hs and dHS in this 30 

study area one can formulate some prerequisites for large spatial correlations in general. For 31 

instance, cold content has the potential to establish a negative correlation since deeper 32 
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snowpacks take longer to warm up to 0 
o
C and so shallower snowpacks start melting earlier. 1 

This results in greater melt for shallower snowpacks. The spatial distribution of SWE and 2 

melt energy on slopes may result in a negative or positive correlations, which depend on 3 

whether deep drifts are found on north-facing or south-facing slopes. For a large correlation 4 

between Hs and dHS, either snow redistribution to slopes or deep snow cold content 5 

processes needs to be present and need to not counteract each other. In such a case the sign of 6 

the correlation driven by spatial distribution of SWE melt energy must be negative (drifts on 7 

north-facing slopes) and hence similar to the negative correlation driven by greater cold 8 

content in deeper snow. Remote sensing techniques such as remote sensing can determine 9 

where deep drifts occur on north-facing slopes (Wayand et al., 2018; Painter et al., 2016) and 10 

these are quite prevalent in many regions. DeBeer and Pomeroy (2010) showed that spatial 11 

variation in cold content was large only in early melt and was unimportant to SCD later in the 12 

melt season when isothermal snowpacks predominate.  13 

Given these scenarios some guidelines for modelling areal SCD can be provided. 14 

Models must be able to represent realistic correlations between SWE and melt in order to 15 

model the effect of this correlation on SCD (Essery and Pomeroy, 2004). Potential pitfalls are 16 

incomplete modelling representations that might neglect a governing process. To capture the 17 

spatial correlations, models need to include snow redistribution, internal snowpack energetics 18 

and melt rate variability on slopes at fairly fine scales (<100 m) in complex terrain. Semi-19 

distributed models with homogenous snow distribution over large areas or distributed models 20 

that neglect blowing snow redistribution may misrepresent spatial correlations of SWE and 21 

melt.  22 

Another reason for models misrepresenting spatial correlations between HS0 and dHS 23 

is discussed in section 3.6, in which the mismatch of scales of dHS and HS0 patterns is 24 

discussed. 25 

3.4 Variability of dHS in relation to HS0 and temporal persistence 26 

Table 2 shows mean, standard deviation and CV values of HS and dHS in different 27 

periods and subareas. Throughout the melt season CV values of dHS were about five times 28 

smaller than those of HS. At the start of the study period, the variability of dHS was smaller 29 

than that of HS by a factor 3.7 to 6.7.   30 
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For the whole area only a weak temporal correlation (r = 0.36) was found in a pixel-1 

by-pixel analysis between ablation patterns over the two long periods P1 and P2. Larger 2 

correlations were found for the northern subarea (r = 0.60). Ablation patterns in certain sub-3 

periods with similar weather conditions were correlated to each other.  For instance, ablation 4 

patterns in the cool and cloudy period between 05 May and 01 June were correlated with two 5 

other rather cloudy sub-periods at the end of the study period with r = 0.49 and r = 0.64, and 6 

to the later combined period P2 (r = 0.70). Further investigation on how these correlations 7 

responded to weather was not possible given the reduced signal-to-noise ratio for shorter time 8 

periods and the inclusion of several weather types over longer periods. 9 

3.5 Depletion curves 10 

Maximum differences in dHS of up to 100% were measured (section 3.3) and were 11 

spatially persistent especially in the northern subarea. Similarly to Pomeroy et al. (2001) and 12 

Egli et al. (2012) the impact of spatial dHS on snow-cover depletion were analysed in several 13 

scenarios:  14 

1. Variable HS0/uniform dHS: This scenario started with the measured distribution of 15 

HS at the start of the study period (HS0) and a spatially uniform dHS value was 16 

applied for each pixel. This value was determined with observed mean ablation 17 

values shown in Table 3. Each pixel was reduced by this mean value and any 18 

negative values in HS were set to 0. SCA was defined as the ratio of the number of 19 

grid points with HS > 0 to all pixels. 20 

2. Uniform HS0/variable dHS: In this scenario, the mean initial snow depth as shown 21 

in Table 3 was uniformly distributed in the whole snow-covered area. Spatially 22 

variable dHS values as measured with the UAV were applied to each pixel. To 23 

obtain the exact melt-out time this scenario was calculated daily using a temporally 24 

constant dHS value between flights. No exact dHS amounts were available for 25 

pixels which melted out between flights. For those pixels the mean areal dHS 26 

value was applied. The general shape of SCD curves obtained when this scenario 27 

was also calculated on the time resolution of the UAV flights. 28 

3. Uniform HS0/uniform dHS: Similar to scenario 2, but a spatially uniform dHS 29 

value was applied to each pixel, each of which had a uniform HS0. This scenario 30 

was also calculated on a daily resolution.  31 
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In all scenarios, SCA was set to 1 for the area which was snow-covered at the start of 1 

the study period. Figure 6 shows mean HS ablation and SCD curves for the whole area and 2 

the northern subarea (top), for which more flights are available. Differences between 3 

measured development and the first scenario of uniform dHS and variable HS0 were not 4 

large.  However, a large difference between measurements and the second and third scenarios 5 

with uniform HS0 and either variable or uniform dHS is obvious. Areal dHS in those 6 

scenarios was overestimated before modelled melt-out because of the overestimation of SCA. 7 

Later, areal dHS was underestimated (or zero) since most or all snow disappeared too early. 8 

This is particularly important when the aim is to model late rain-on-snow events in 9 

hydrological models (Pomeroy et al., 2016). These results indicate that it is possible to not 10 

represent the spatial melt variability in late melt and still simulate a realistic SCD curve, while 11 

this is not possible if the spatial variability of HS0 is not represented. This main feature is 12 

consistent with Egli et al. (2012).  13 

The main reason why the observed dHS differences, which were substantial and partly 14 

persistent, did not influence SCD curves can be found in the small to negligible spatial 15 

correlation between dHS and HS0 (cf. section 3.3 and Table 1). Large correlations 16 

substantially influence SCD: Negative correlation accelerates SCD at the beginning of melt 17 

and delays it in late melt lengthening the snowmelt season and vice versa with positive 18 

correlations (Essery and Pomeroy, 2004).  19 

Where correlation is insignificant, spatial melt differences can be quite large without 20 

affecting SCD curves.  In this case, spatially variable melt can be viewed as a nearly random 21 

process – it introduces noise into the log-normal frequency distribution of HS, but does not 22 

affect the emergent behaviour of the SCD curve. Here, with a much larger variability of HS0 23 

compared to dHS (see section 3.4) and only small spatial correlations between them (see 24 

Table 1), HS0 controls the SCD.  25 

3.6 Scale dependencies of dHS 26 

Figure 7 and 8 show how the variance of dHS, the variance of explaining variables and 27 

correlations thereof, develop with larger lag distance between point pairs (variograms and 28 

correlograms, Eqs. 1 to 3). This gives further insights into the driving factors of ablation and 29 

why a correlation between dHS and initial HS0 was weak in this study area during late melt. 30 
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Figure 7a, the variogram of dHS, shows that the variance increased over two distinct 1 

length scales, one less than 50 m and one greater than 200 m. This implies that the driving 2 

processes which generate variance for dHS need to be investigated at these two scales. In 3 

section 3.3 a strong correlation was found between dHS and Brightness and Solar Irradiance, 4 

but only small correlations between these and HS0. These variables were therefore analysed 5 

with variograms and correlograms.  6 

The variogram of Brightness shown in Fig. 7b indicates a variance increase only at the 7 

small lag distances less than 50 m. This is consistent with the visual impression of a small-8 

scale variability of albedo shown in Fig. 3b. The correlogram shown in Fig. 7c reveals a 9 

strong correlation of Brightness with dHS at these small scales (ρxy ≈ -0.6 at 50 m lag 10 

distance). This demonstrates that albedo was largely responsible for the small-scale dHS 11 

variability observed in Fig. 7a. 12 

Figure 8a shows the variogram of Solar Irradiance. A small increase for length scales 13 

less than 100 m suggests radiation and aspect differences at those scales (within-slope 14 

variations), but the largest increase can be observed at lag distances longer than 200 m. This 15 

scale represents slopes on both sides of the ridge and coincides with the larger scale of dHS 16 

variance. Indeed, the correlogram (Fig. 8b) confirms that the largest correlation with dHS to 17 

ρxy = 0.4 was achieved at those larger distances.  18 

The same analysis for initial snow depth (HS0) can be seen in Fig. 8c and d. Most of 19 

the variance for snow depth is at length scales less than 100 m. The periodic behaviour shown 20 

beyond that scale may be due to the patchy snow cover which has long snow-free patches. No 21 

substantive correlation with dHS is observable on all scales (Fig. 8d).  22 

This analysis offers further explanation why dHS and HS0 were not spatially 23 

correlated in these observations. dHS variance was related to large scale aspect changes on 24 

both slopes and medium scale albedo change, whilst snow depth was variable mainly at much 25 

smaller scales. This scale mismatch leads to a larger scatter between dHS and HS0 values and 26 

thus prevented a substantive spatial correlation. 27 

Two processes were previously discussed and described in Fig. 5c which could drive 28 

compensating correlations between HS0 and dHS; cold content and melt energy. Cold content 29 

likely acts on a similar scale as HS0, since it depends mainly on snow depth. As shown in Fig. 30 

5d and 5e a negative correlation driven by cold content is not uniformly present. Melt energy 31 

differences, i.e. differences in net shortwave radiation, turbulent fluxes, and net longwave 32 
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radiation, are not directly dependent on snow depth, but need to spatially coincide by chance 1 

(e.g. by direction of redistribution). Acknowledging that Solar Irradiance is a simple proxy of 2 

melt energy, spatial coincidences between accumulation and melt energy are only present 3 

over larger distances (Fig 8b). The large scatter between HS0 and dHS results from the 4 

observation that most of the variance of HS0 occurs at much smaller scales (Fig. 87ca). 5 

Figure 8d illustrates variability in the compensating correlations. At small scales below 50 m, 6 

the differences in Solar Irradiance are small and the cold content is responsible for slight 7 

negative correlation between HS0 and dHS. This is counteracted by Solar Irradiance until the 8 

distance of 250 m (cp. Fig 8a).  9 

There needs to be a match in scaling behaviour between SWE and melt rate for these 10 

variables to develop spatial correlations. Assuming melt is primarily driven by aspect and 11 

slope differences as in the proxy Solar Irradiance, SWE must vary on similar scales for a 12 

correlation to develop. This may be achieved if SWE varies primarily over larger scales, e.g. 13 

in a simple topography of a ridge without gullies and with one predominant wind direction 14 

during blowing snow, in which one slope face has much larger SWE values than the other. 15 

This may also be achieved if Solar Irradiance acts on a smaller scale similar to HS0. This 16 

might be possible in highly complex terrain in which most slope/aspects differences can be 17 

found on scales below 100 m but this does not correspond to the “ridge” in our study site.  18 

4 Conclusions and outlook 19 

The aim of this study was to determine factors which influence areal snow ablation 20 

patterns in alpine terrain using spatially intensive observation. The dependency of snow 21 

accumulation and topographic variables with spatial melt rates were analysed for an alpine 22 

ridge in the Fortress Mountain Snow Laboratory located in the Canadian Rocky Mountains. 23 

Detailed maps of snow depth, snow depth change and snow-covered area were generated 24 

during late season ablation with UAV-based orthophotos, photogrammetry and Structure-25 

from-Motion techniques. Snow depth and its change served as proxies for snow accumulation 26 

and melt rates. Snow depth change values were found to be spatially variable and mainly 27 

dependent on variation in solar irradiance and albedo, and likely on the cold content of the 28 

snowpack which is a function of snow depth. Local and small-scale dust variations, which had 29 

not previously been observed in the area, increased the variability of ablation.  30 

Snowcover depletion curves were mostly dominated by the variability of initial snow 31 

depth at the start of this study rather than the variability in snow depth change. Initial snow 32 
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depth variability was approximately five times larger than the variability in snow depth 1 

change in this windswept environment. The scales of variability of snow depth and snow 2 

depth change were mismatched, with snow depth variability occurring at small scales (<10 m) 3 

and snow depth change associated with the medium scale (50 m) of albedo variation or the 4 

slope scale (100s of m) of solar irradiance variation.  As a result, the initial snow depth and 5 

changes in snow depth were not strongly correlated over space, and so only initial snow depth 6 

influenced snowcover depletion.    7 

The observations collected here show the prerequisites for strong correlations that can 8 

impact snowcover depletion curves.  Correlation between melt and snow accumulation may 9 

be driven by cold content and melt energy distributions. Whilst cold content can create a 10 

negative correlation between melt and snow accumulation, melt energy variations can create 11 

either positive or negative correlations. In order to not compensate for each other, one process 12 

needs to be dominant, or the both processes need to create a similar negative correlations.  It 13 

is also important that these variations occur at the same spatial scales. 14 

To further investigate these arguments, longer time series of spatially detailed 15 

snowpack and snowcover observations need to be made in order to further test and examine 16 

the temporal evolution of the spatial covariance and variance of ablation and accumulation in 17 

various global alpine environments.  The results of such a study could suggest how to 18 

parameterise snow-cover depletion and runoff models for snowmelt dominated alpine 19 

catchments, without relying on model calibration. This will help to transfer snow-20 

hydrological models to ungauged catchments and to model future climate scenarios where 21 

snow redistribution patterns might be vastly different. 22 

 23 

5 Data availability 24 

The data is available, upon request from the database manager (Amber Peterson, in the 25 

Global Water Futures dataserver.  (www.ccrnetwork.ca/outputs/data/index.php). Please refer 26 

to this website for contact details. The data involves all UAV derived grids for HS, dHS and 27 

SCA, as well as grids of explaining variables (Brightness, Deviation from North and Slope) in 28 

1 m resolution (cp. section 2.4). Metadata is provided which explains the file naming 29 

convention of the grids (dates and variables). 30 
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Figures 1 

Figure 1.  Extraterrestrial solar irradiance at 50o N for north, south and east/west facing 30 % slopes.  2 

Note the small differences as summer solstice is approached  (after Gray and Male, 1981). : 3 

 4 

 5 

Figure 2. Topography of the study site, (a) Overview of the two areas of investigation (red rectangles) 6 
with the location of the two weather stations (black crosses) on the alpine Fortress Ridge, Alberta, 7 
Canada, and (b) aspect distribution of the snow covered area at 27 May 2015 (spatial resolution of 10 8 
cm, N > 3 x 106: 9 

  10 
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 1 

 2 
Figure 3. UAV photogrammetric data for the study site: (a) orthomosaic from images captured on 22 3 
May 2015, showing the two N and S areas of investigation (red polygons: Points indicate locations of 4 
manual snow depth and differential GPS measurements over snow (red) and bare ground (green: (B) 5 
enlargement of part of the study area showing evidence of dust on snow, (c) snow depth (HS) on 19 6 
May 2015 and d) differences in snow depth (dHS) between that date and 1 June. The green colour in 7 
(d) indicates areas excluded from analysis because of human impacts on snow or substantive 8 
vegetation. 9 
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 1 
Figure 4: Measured (a) and modelled (b) values at the FRG station, energy fluxes per day for periods 2 
between UAV flights as modelled by CRHM. EB is the total energy flux, SWnet and LWnet are net 3 
shortwave and longwave radiation, H and L are sensible and latent heat fluxes. Heat advected by rain 4 
and ground heat flux, with only small contributions are not shown. 5 

 6 

  

 

   

 7 

Figure 5. Scatter plots of (a) snow brightness and b) solar irradiance versus differences in snow depth 8 
(dHS) for the northern subarea during P1. Darker tones indicate a higher density of points. For (b) only 9 
bright snow pixels are used (brightness > 230:  Scatter plots (c-d) show the dependence of dHS and 10 
HS0 for the whole area with mean values (coloured points) of either side of the ridge and additionally 11 
flat pixels (c), and only on the northwestern (d) and southeastern part of the ridge (e).:12 



 

29 

 

1 
Figure 6. SCD and mean HS ablation for subarea N (a, b) and the total area (c,d: Blue are measured 2 
values, red are modelled values with initialized with measured HS distribution on May 19 and uniform 3 
melt, green are modelled values initialized with uniform snow depth distribution and uniform melt. 4 
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1 
Figure 7. Variograms and correlogram  for dHS and Brightness. 2 
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1 
Figure 8. Correlograms with of dHS with modelled Irradiance and initial snow depth (HS0), 2 

respectively. Vvariograms for initial HS0 and modelled Irradiance.  3 
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Tables 1 

Table 1. Pearson’s correlations coefficient r between dHS and explaining variables. P1 is from 19 May 2 
to 01 June and P2 from 01 June to 24 June. N is number of observations. 3 

Period Area Brightness 
Degrees from 

North 
Solar 

Irradiance HS0 N 

P1 all -0.47 0.56 0.39 -0.12 3245837 

P2 all -0.59 0.30 0.01 0.33 706344 

P1 N -0.66 0.57 0.57 -0.24 1410768 

P2 N 0.03 0.84 0.84 0.03 183822 

P1 S -0.43 0.39 0.33 0.01 1835069 

P2 S -0.68 -0.21 -0.61 0.30 522522 

 4 

Table 2. Mean, standard deviation (SD), Coefficient of Variation (CV) for snow depth (HS) and snow 5 
depth change (dHS) for different periods and areas. P1 was from 19 May 2015 to 01 June 2015 and P2 6 
from 01 June 2015 to 24 June 2015. Values are given for only snow-covered areas. Values for HS are 7 
given for the start date of the period. Values for dHS are given for the area which was snow covered 8 
at the end of the melt period. 9 

Period area   HS [m]     dHS [cm/d]   

    Mean SD CV Mean SD CV 

P1 all 1.26 1.16 0.92 6.22 1.22 0.20 

P2 all 1.33 1.13 0.85 7.57 1.19 0.16 

P1 N 1.28 0.93 0.73 6.86 1.22 0.18 

P2 N 0.98 0.73 0.74 6.76 1.35 0.20 

P1 S 1.25 1.27 1.01 5.72 0.97 0.17 

P2 S 1.54 1.27 0.83 7.86 0.98 0.12 

 10 
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