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Abstract 11 

The Yarlung Tsangpo-Brahmaputra River (YBR) originating from the Tibetan Plateau (TP), is 12 

an important water source for many domestic and agricultural practices in countries including 13 

China, India, Bhutan and Bangladesh. To date, only a few studies have investigated the impacts 14 

of climate change on water resources in this river basin with dispersed results. In this study, we 15 

provide a comprehensive and updated assessment of the impacts of climate change on YBR 16 

streamflow by integrating a physically based hydrological model, regional climate integrations 17 

from CORDEX (Coordinated Regional Climate Downscaling Experiment), different bias 18 

correction methods, and Bayesian model averaging method. We find that (i) bias correction is 19 

able to reduce systematic biases in regional climate integrations and thus benefits hydrological 20 

simulations over YBR Basin; (ii) Bayesian model averaging, which optimally combines 21 

individual hydrological simulations obtained from different bias correction methods, tends to 22 

provide hydrological time series superior over individual ones. We show that by the year 2035, 23 

the annual mean streamflow is projected to change respectively by 6.8%, -0.4%, and -4.1% 24 

under RCP4.5 relative to the historical period (1980-2001) at the Bahadurabad in Bangladesh, 25 

the upper Brahmaputra outlet, and Nuxia in China. Under RCP8.5, these percentage changes will 26 

substantially increase to 12.9%, 13.1%, and 19.9%. Therefore, the change rate of streamflow 27 

shows strong spatial variability along the YBR from downstream to upstream. The increasing 28 

rate of streamflow shows an augmented trend from downstream to upstream under RCP8.5 29 

compared to an attenuated pattern under RCP4.5.  30 

Keywords: Climate Change Impacts, Yarlung Tsangpo-Brahmaputra River, Streamflow, 31 

Regional Climate Integrations, Bias Correction, Bayesian Model Averaging 32 
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1. Introduction 33 

Water is a standout necessity amongst the most basic factors in human sustenance (Barnett et al., 34 

2005). Global climate change has been found to intensify the global hydrological cycle, likely 35 

creating predominant impacts on regional water resources (Arnell, 1999; Gain et al., 2011). 36 

Evaluation of the potential impacts of anthropogenic climate change on regional and local water 37 

resources relies largely on climate model projections (Li et al., 2014). The spatial resolution of 38 

typical global climate models (GCMs) (100–300 km) is insufficient to simulate regional events 39 

that are needed to capture different climate and weather phenomena at regional to local scales 40 

(e.g., the watershed scale) (Olsson et al., 2015). Climate simulations from GCMs can be 41 

dynamically downscaled with regional climate models (RCMs) to scales of 25–50 km. Despite 42 

that dynamical downscaling is computationally very demanding and that its accuracy depends to 43 

a large extend on that of its parent GCM, dynamical downscaling can provide more detailed 44 

information on finer temporal and spatial scales than GCMs (Hewitson and Crane, 1996). Such 45 

information is valuable for impact projections at regional to local scales that are more relevant to 46 

water resources management. 47 

On the other hand, although the increased horizontal resolution can improve the simulation of 48 

regional and local climate features, RCMs still produce biases in the time series of climatic 49 

variables (Christensen et al., 2008; Rauscher et al., 2010). Bias correction is typically applied to 50 

the output of climate models. Most bias correction methods correct variables separately, with 51 

interactions among variables typically not considered (Christensen et al., 2008; Hessami et al., 52 

2008; Ines and Hansen, 2006; Johnson and Sharma, 2012; Li et al., 2010; Piani et al., 2009; Piani 53 

et al., 2010). Separate-variable bias correction methods, for example, may result in physically 54 
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unrealistic corrections (Thrasher et al., 2012) and do not correct errors in multivariate 55 

relationships (Dosio and Paruolo, 2011). Correspondingly, Li et al. (2014) introduced a joint bias 56 

correction (JBC) method and applied it to precipitation (P) and temperature (T) fields from the 57 

fifth phase of the Climate Model Intercomparison Project (CMIP5) model ensemble.  58 

The Yarlung Tsangpo-Brahmaputra River (YBR) is an important river system originating from 59 

the Tibetan Plateau (TP), characterized by a dynamic fluvial regime with exceptional 60 

physiographic setting spread along the eastern Himalayan region (Goswami, 1985). Critical 61 

hydrological processes like snow and glacial melt are more important in this area compared to 62 

others. Hydrological processes of the YBR Basin are highly sensitive to changes in temperature 63 

and precipitation, which subsequently affect the melting characteristics of snowy and glaciered 64 

areas and thus affect streamflow. The YBR Basin is also one of the most under-investigated and 65 

underdeveloped basins around the world, with only few studies examined the impacts of climate 66 

change on the hydrology and water resources of this basin (Immerzeel et al., 2010; Lutz et al., 67 

2014; Masood et al., 2015). Immerzeel et al. (2010) developed a snowmelt-runoff model in the 68 

upper YBR Basin using native output (without bias correction) from 5 GCMs under the A1B 69 

scenarios for 2046-2065 and found that its streamflow would decrease by 19.6% relative to 70 

2000-2007. Subsequently, Lutz et al. (2014) implemented the SPHY (Spatial Processes in 71 

Hydrology) hydrological model in the upper YBR Basin using native simulations from 4 GCMs 72 

under RCP4.5 and RCP8.5 emissions scenarios for 2041-2050 and showed that the streamflow 73 

would increase by 4.5% and 5.2% relative to 1998-2007 under the examined two emissions 74 

scenarios. Masood et al. (2015) applied the H08 Hydrological model to the YBR Basin using 75 

bias corrected projections of 5 GCMs for near future (2015-2039) and far future (2075-2099) 76 
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periods and found that relative to the period 1980-2001, the streamflow would increase by 6.7% 77 

and 16.2% for near and far future under RCP8.5, respectively. 78 

Several factors could contribute to the discrepancy between these projections, such as the lack of 79 

high quality streamflow observations for hydrological model calibration, the choice of bias 80 

correction methods, simulations from global climate models, and future emissions scenarios, and 81 

a combination thereof. On the other hand, all the existing studies in the YBR basin rely on 82 

GCMs, which, as was discussed, cannot capture fine-scale climate and weather details that are 83 

required for a reliable regional impacts assessment. In the present study, we attempt to fill this 84 

gap by taking advantage of the recently compiled multi-model and multi-member high-resolution 85 

regional climate integrations from CORDEX (Coordinated Regional Climate Downscaling 86 

Experiment). We use different bias correction methods to alleviate the inherent biases in these 87 

regional climate integrations, and use a Bayesian model averaging technique to best combine 88 

different streamflow simulations obtained with different bias-corrected meteorological forcing 89 

data (e.g., precipitation and temperature). We synthesize our results and those in the existing 90 

studies with a hope to obtain a more comprehensive picture of changes in water resources in the 91 

YBR Basin in response to global climate warming. 92 

We structured the paper into the following sections. Section 1 formulates the objectives of this 93 

study. Section 2 briefly introduces the YBR Basin, followed by the used materials and methods. 94 

Our results and those in existing studies are compared in Section 3. Main conclusions along with 95 

a brief discussion of the future scope of this study are presented in Section 4. 96 

2. Materials and methodology 97 

2.1 The Yarlung Tsangpo-Brahmaputra River Basin 98 
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Tibetan Plateau (TP) is often referred as Asia’s water tower, bordered by India and Pakistan in 99 

the west side and Bhutan and Nepal on the southern side, with a mean elevation of about 4000 m 100 

above sea level (Tong et al., 2014). The YBR is one of the largest rivers originating from the TP 101 

in Southwest China at an elevation of about 3100 m above sea level (Goswami, 1985; Xu et al., 102 

2017). The total length of the river is about 2900 km (Masood et al., 2015), with a drainage area 103 

of the basin estimated to be around 530,000 km2. The YBR travels through China, Bhutan, and 104 

India before emptying into the Bay of Bengal in Bangladesh (Figure 1). The mean annual 105 

discharge is approximately 20,000m3/s (Immerzeel, 2008). The climate of the basin is 106 

monsoon-driven with an obvious wet season from June to September, which accounts for 60–70% 107 

of the annual rainfall. 108 

2.2 Data 109 

2.2.1 Forcing data sets 110 

Due to the lack of adequate in-situ meteorological observations, the WATCH forcing data (WFD) 111 

(Weedon et al., 2014) were used as a reference for bias correction and hydrological model 112 

calibration (Table 1). This dataset provided a good representation of real meteorological events 113 

and climate trends (Weedon et al., 2011). In this study, we used daily rainfall, temperature and 114 

potential evapotranspiration (PET) data from 1980 to 2001.  115 

The sources of other required non-meteorological variables for implementing the hydrological 116 

model are as follows. The 90-m resolution digital elevation model data were acquired from the 117 

Shuttle Radar Topography Mission (SRTM) (http://srtm.csi.cgiar.org/). The Leaf Area Index 118 

(LAI) and snow cover data from 2000 to 2016 were downloaded from the National Aeronautics 119 

and Space Administration (NASA) (https://reverb.echo.nasa.gov/reverb/). For the periods during 120 

which LAI and snow data did not cover, average values of LAI and snow were used as model 121 
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input. The biweekly normalized difference vegetation index (NDVI) data from 1982 to 2000 122 

with a spatial resolution of 8 km were obtained from the Global Inventory Modeling and 123 

Mapping Studies-Advanced Very High Resolution Radiometer (GIMMS-AVHRR) 124 

(http://www.glcf.umd.edu/data/gimms/). The soil hydraulic parameters were derived from the 125 

soil classification data which were extracted from the global digital soil map with a spatial 126 

resolution of 10 km (http://www.fao.org/geonetwork/).  127 

2.2.2 Hydrological data 128 

The streamflow observations during 1980-2001 for hydrological model calibration were obtained 129 

at two hydrological stations, i.e., the Nuxia station located in upstream China (Gao et al. (2008)) 130 

and the Bahadurabad station located in downstream Bangladesh; see Figure 1 for their 131 

geographical locations. 132 

2.2.3 RCM data 133 

The simulations of daily precipitation and temperature during the historical period of 1980-2001 134 

and the projections under two examined emissions scenarios (RCP4.5 and RCP8.5) during the 135 

future period of 2020-2035 from the CORDEX experiment for the East Asia domain (which 136 

covers the whole YBR Basin) were downloaded from http://www.cordex.org/. The CORDEX 137 

program, which was coordinated by the World Climate Research Program, provides a unique 138 

opportunity for generating high-resolution regional climate projections and for assessing the 139 

impacts of future climate change at regional scales (Piani et al., 2009). As shown in Table 1, 140 

climate data from 5 CORDEX models were chosen. These models include HadGEM3-RA 141 

(denoted by RCM1), RegCM4 (RCM2), SNU-MM5 (RCM3), SNU-WRF (RCM4) and 142 

YSU-RSM (RCM5). To keep consistent with the WATCH forcing data, climate model 143 

integrations were interpolated to the grid of the WFD using the bilinear interpolation method. 144 
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The adopted hydrological model, as will be introduced later, also requires PET as a forcing 145 

variable. We used the method proposed by Leander and Buishand (2007) and S. C. van Pelt 146 

(2009) to calculate PET with daily temperature T as follows: 147 

PET = [1 + α0 (T - T0)] PET0   (1) 

where T0  is the observed mean temperature (◦C) and PET0  is the observed mean PET0 148 

(mm/day) during the historical period. Daily PET0 data were acquired directly from the WFD 149 

dataset and were used to compute PET0. The proportionality constant α0 was determined for 150 

each calendar month by regressing the observed PET at each grid cell onto the observed daily 151 

temperature. 152 

2.3 Methodology 153 

2.3.1 Hydrological model: THREW 154 

We adopted the Tsinghua Representative Elementary Watershed (THREW) model (Tian, 2006; 155 

Tian et al., 2006) to simulate streamflow of the YBR Basin. The model consists of a set of 156 

balance equations for mass, momentum, energy and entropy, including associated constitutive 157 

relationships for various exchange fluxes, at the scale of a well-defined spatial domain. Details of 158 

the model can be found in Tian et al. (2006). The THREW model has been successfully applied 159 

to quite a few watersheds across China and United States (Li et al., 2012; Mou et al., 2008; Sun 160 

et al., 2014; Tian et al., 2006; Tian et al., 2012; Xu et al., 2015; Yang et al., 2014). For the 161 

simulation of snow and glacier melting processes which is important for the YBR Basin, we 162 

modify the original THREW model by incorporating the temperature-index method introduced 163 

in Hock (2003). The index-temperature method has been shown to exhibit an overall good 164 

performance in mountain areas in China (He et al., 2015). 165 
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2.3.2 Bias correction methods 166 

Quantile mapping (QM) with reference observations has been routinely applied to correct biases 167 

in RCM simulations (Maraun, 2013). Using WFD as reference observations and following the 168 

principle of QM, first we estimated cumulative distribution functions (CDFs) for the observed 169 

and native RCM-simulated time series of daily precipitation or temperature during the 170 

historical/calibration period (which is 1980-2001 in this study); then for a given RCM-simulated 171 

data value from an application period (which may be historical 1980-2001 period or future 172 

2020-2035 period), we evaluated the CDF of the native RCM simulations at the given data value, 173 

followed by evaluation of the inverse of the CDF of the observations at the thus obtained CDF 174 

value; the resulting value is the bias-corrected simulation (see Figure 2 for an schematic 175 

illustration of this procedure). 176 

Independent bias correction for multiple meteorological variables can produce non-physical 177 

corrections. To alleviate the deficits of independent bias correction, Li et al. (2014) introduced a 178 

joint bias correction (JBC) method, which takes the interactions between precipitation and 179 

temperature into account. This approach is based on a general bivariate distribution of P-T and 180 

essentially can be seen as a bivariate extension of the commonly used univariate QM method. 181 

Depending on the sequence of correction, there are two versions of JBC including JBCp, which 182 

corrects precipitation first and then temperature, and JBCt, which corrects temperature first and 183 

then precipitation. For more details of the QM and JBC methods, readers can refer to Wlicke et 184 

al. (2013) and Li et al. (2014), respectively. 185 

2.3.3 Bayesian model averaging method 186 

Bayesian model averaging (BMA) is a statistical technique designed to infer a prediction by 187 

weighted averaging predictions from different models/simulations. We refer readers to Dong et 188 
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al. (2013), which have presented a nice description of the basic principle of this method and the 189 

Expectation-Maximization (EM) algorithm for optimally searching the BMA weights. Several 190 

studies have applied BMA to RCMs or GCMs simulations to assess climate change impacts on 191 

hydrology with meaningful results (Bhat et al., 2011; Duan et al., 2007; Wang and Robertson, 192 

2011; Yang et al., 2011). 193 

3. Results and discussion 194 

3.1 Bias correction of meteorological variables during the historical period 195 

We applied the three bias correction methods (i.e., QM, JBCp and JBCt) to the CORDEX 196 

simulations of daily precipitation and temperature. We found that without bias correction, the 197 

native RCM1 and RCM2 simulations (see Table 1 for the full names of different RCMs) 198 

overestimate precipitation for all months during the 1980-2001 baseline period (Figure 3a-3b), 199 

while native simulations by the other models tend to overestimate precipitation of the dry-season 200 

(November to May of next year) and underestimate precipitation of other months. After bias 201 

correction, the above mentioned overestimation and underestimation reduces considerably. For 202 

temperature, we found that all the examined climate models consistently exhibit cold biases 203 

across all the months, and that such biases are largely eliminated after applying bias correction 204 

(Figure 4). In general, the three bias correction methods exhibit similar skills in reducing 205 

temperature biases (Table 2), with JBCt and QM showing somewhat better performance than 206 

JBCp. As expected, PET calculated from bias-corrected temperature simulations was quite close 207 

to WFD observations. 208 

In summary, we found that almost all the bias correction methods can substantially reduce biases 209 

for all the three variables across the months, though with sizeable variations between bias 210 
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correction methods and across variables and seasons, consistent with existing studies on the 211 

comparison of different bias correction methods (Maraun, 2013; Prasanna, 2016).  212 

3.2 Hydrological model setup and simulation 213 

To setup the THREW model, the whole basin was discretized into 237 representative elementary 214 

watersheds (REWs). There are in total 16 parameters involved in THREW, as listed in Table 3. 215 

The first 6 parameters were determined for each REW a prior from the data described in the 216 

section ‘Materials and methodology’. The remaining parameters were subjected to calibration 217 

and assumed to be uniform across the 237 REWs. Automatic calibration was implemented by the 218 

-NSGAII optimization algorithm developed by Reed et al. (2003). We chose the commonly 219 

used Nash Sutcliffe efficiency coefficient (NSE) (Nash and Sutcliffe, 1970) as the single 220 

objective function for model calibration.  221 

We divided the whole period 1980-2001 into two sub-periods, which were used respectively for 222 

model calibration (1980-1990) and validation (1991-2001). Simulated daily streamflow time 223 

series at Bahadurabad were compared against the corresponding observations to compute the 224 

NSE objective function. To warm up the model, we dropped the first year of the calibration 225 

period (i.e., 1980). Observed and simulated daily streamflow of remaining years were used to 226 

compute NSE as follows: 227 

NSE = 1 - 
∑ (Q

o

n-Q
s

n)
2N

n=1

∑ (Q
o

n
-Q

o
̅̅̅̅ )

2N
n=1

 
(2) 

where N denotes the total number of days in the calibration period (which is 1981-1990 as one 228 

year is dropped for model warming up); Q
o

n and Q
s

n represent respectively the observed and 229 

simulated streamflow of day n; and Q
o

̅̅̅̅  is the average of observed streamflow during that period. 230 

NSE is automatically optimized by the -NSGAII optimization algorithm. With the calibrated 231 
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model, NSE for the 1991-2001 validation period can be likewise computed so as to assess the 232 

calibrated model performance in simulating streamflow that is not seen in the calibration period. 233 

Figure 5 shows the observed (black line) and simulated (red line) discharges at Bahadurabad at 234 

(a) daily, (b) monthly, and (c-d) seasonal time scales for both the calibration and validation 235 

periods. It can be seen that the THREW model performs well in the YBR Basin at all time scales. 236 

During the calibration period the daily and monthly NSE values are 0.84 and 0.92, respectively, 237 

and during the validation period the daily and monthly NSE values are 0.78 and 0.84, 238 

respectively. We also compared the observed and simulated monthly discharges at the Nuxia 239 

station, which is not involved in model calibration. The monthly NSE values of calibration and 240 

validation periods were 0.66 and 0.73, respectively. In summary, these results suggest that the 241 

THREW model does a good job in simulating the hydrological processes in the YBR Basin 242 

during this historical period. We assume that the calibrated THREW model is applicable to the 243 

future period. This assumption is necessary in this study and has been widely adopted in previous 244 

climate impacts studies.  245 

Figure 6 compares the seasonal streamflow simulated by the THREW model with observed 246 

streamflow data at Bahadurabad. It is observed that the streamflow generated by native RCM 247 

simulations tends to either over- or underestimate the observations, and that all the adopted bias 248 

correction methods can alleviate, to varying degrees, these biases. We found that in general bias 249 

correction is more effective in improving the simulation of dry season streamflow (from 250 

November to April in the next year) than that of wet season (May to October). Table 4 shows the 251 

annual mean observed streamflow at Bahadurabad as well as the simulated streamflow with the 252 

WFD data and with the native and bias-corrected RCM integrations. We can see that at annual 253 

scale, streamflow simulated with native RCMs is on average higher (e.g., RCM1, RCM2) or 254 
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lower (e.g., RCM3, RCM4 and RCM5) than the observations; while streamflow simulated with 255 

bias-corrected RCMs is much more consistent with the observations.  256 

Table 5 presents the NSE values for the daily and monthly streamflow over the calibration and 257 

validation periods simulated by the THREW model with the WFD data and with native and 258 

bias-corrected RCM simulations at Bahadurabad. We found that QM and JBCp can improve 259 

NSE for almost all the RCMs except RCM5, while JBCt can improve NSE for three of the five 260 

climate models (RCM1, RCM3, and RCM4). We also found that none of the 3 bias correction 261 

methods is compelling better than others, suggesting the necessity of combining different 262 

streamflow simulations generated with different bias-corrected climate simulations. Moreover, it 263 

is seen that most of the NSEs values are higher than 0.55 with a few exceptions, indicating 264 

reasonably well simulations of daily and monthly streamflow for both calibration and validation 265 

periods on average across the entire basin, and thus enhancing our confidence in applying the 266 

calibrated THREW model and the bias-corrected CORDEX simulations to projecting future 267 

hydrological conditions in the YBR Basin. 268 

Given the fact that none of the bias correction methods and none of the RCM models are 269 

compellingly superior over others, as we have found, we therefore integrate streamflow 270 

simulations generated by different bias-corrected climate simulations from different climate 271 

models with different bias correction methods in terms of BMA. Our attempt is to take 272 

advantages of individual streamflow simulations. Daily streamflow simulations and observations 273 

during the THREW model calibration period (1981-1990) were used to calibrate the BMA 274 

weights, and those during the validation period are used to evaluate the calibrated BMA weights. 275 

In addition to NSE, two other indices were used to measure the closeness between observations 276 
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and simulations. These indices are relative error (RE) and root mean squared error (RMSE), both 277 

evaluated at daily scale, as defined in the following: 278 

RE = 1 - 
∑ Q

s

nN
n=1

∑ Q
o

nN
n=1

 
(3) 

RMSE = √
∑ (𝑄𝑜

𝑛 − 𝑄𝑠
𝑛)2𝑁

𝑛=1

𝑁
 

(4) 

where N denotes the total number of days during the considered period; 𝑄𝑜
𝑛 and 𝑄𝑠

𝑛 represent 279 

respectively the observed and simulated streamflow of time n. As seen from Table 6, based on 280 

the above indices, after applying BMA we obtain considerably better results than almost all those 281 

generated by different bias-corrected climate simulations from different climate models with 282 

different bias correction methods. Figure 7 shows the mean prediction (red line) and 90% 283 

uncertainty interval of BMA during the historical period at Bahadurabad. The uncertainty 284 

interval of BMA can cover almost all observations, which further indicated the sound 285 

performance of BMA. 286 

3.3 Projections of future meteorological variables 287 

Figures 8-9 show changes in seasonal precipitation and temperature during the near future period 288 

2020-2035 relative to the historical 1980-2001 period based on bias-corrected RCM simulations 289 

under RCP4.5 and RCP8.5 emissions scenarios. It is found that precipitation in wet seasons will 290 

increase under both emissions scenarios and in all bias-corrected RCM simulations with one 291 

exception of RCM3 under RCP4.5. In contrast, precipitation in dry seasons is projected to 292 

consistently decrease in all the studied RCM models. Therefore, the general pattern of “wet 293 

getting wetter, dry getting drier” (Chou et al., 2013) associate with climate change exists in YBR 294 

as well. Also, as expected, precipitation under RCP8.5 is on average higher than that under 295 
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RCP4.5, especially for RCM3 and RCM4 in the wet season. We also found obvious variations in 296 

the projected changes among climate models and bias correction methods. This suggests the 297 

importance of exploring multi-models and multi-methods to obtain a more comprehensive 298 

picture about the uncertainty of the impacts of climate change on local hydrology. Using BMA 299 

weight coefficient calculated in Section 3.2, weighted precipitation in historical period, RCP4.5 300 

and RCP8.5 is 1425.3, 1529.8 and 1608.0 mm per year, respectively.  301 

We found that temperature is projected to increase by all RCM simulations in both dry seasons 302 

and wet seasons (Figure 9). It is surprising to see that there is no significant difference in 303 

temperature between RCP8.5 and RCP4.5 scenarios except for RCM3 and RCM4. In fact, this is 304 

not inconsistent with the IPCC AR5 (2013), which shows that the projected future global mean 305 

temperature does not significantly diverge under different RCP scenarios until 2030 (our future 306 

period is 2020-2035). Similar to precipitation, there are obvious variations in the projected 307 

changes among different climate models and different bias correction methods. Using BMA 308 

weight coefficient calculated in Section 3.2, weighted temperature in historical period, RCP4.5 309 

and RCP8.5 is 8.7, 9.8 and 10.0℃, respectively. 310 

3.4 Projections of future streamflow and comparison with previous studies 311 

Figure 10 shows the mean prediction and 90% uncertainty interval of streamflow simulated by 312 

BMA method during (a) RCP4.5, (b) RCP8.5 scenarios at Bahadurabad. Uncertainty interval of 313 

RCP4.5 is similar with that of RCP8.5. All the following discussions in this subsection is based 314 

on BMA weighted streamflow.  315 

For the sake of comparison between Immerzeel et al. (2010), Lutz et al. (2014), Masood et al. 316 

(2015) and our results, we also examined an upstream outlet location (the red dot in Figure 1), 317 
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which was studied in the referred studies. To be noted, the observed streamflow data at this 318 

upstream outlet are unavailable. 319 

Table 7 shows a summary of the referred existing studies about climate impact on future 320 

streamflow in the YBR Basin. Immerzeel et al. (2010) developed Snowmelt Streamflow Model 321 

for the upper YBR Basin using five GCMs in the A1B scenarios defined in IPCC AR4 during 322 

2046-2065 without applying any bias correction methods or BMA method and the streamflow 323 

will decrease by 19.6% when compared to the observed period (2000-2007). The SPHY model 324 

developed by Lutz et al. (2014) for the upper YBR Basin using four GCMs in the RCP4.5 and 325 

RCP8.5 scenarios during 2041-2050 and without applying any bias correction methods or BMA 326 

method. The streamflow will increase by 4.5% and 5.2% in the RCP4.5 and RCP8.5 scenarios, 327 

respectively when compared with the observed period (1998-2007). Masood et al. (2015) applied 328 

H08 Hydrological model the YBR Basin using five GCMs during the near future (2015-2039) 329 

and far future (2075-2099) and also applied bias correction method. The streamflow increased by 330 

6.7% and 16.2% in the near future and far future, respectively, when compared with the observed 331 

data (1980-2001).  332 

The comparisons among the streamflow projection of YBR during different periods in different 333 

studies are shown in Figure 11. In our study, the projected streamflow is 1466 mm/a during 334 

2020-2035 under RCP8.5 at Bahadurabad, which is substantially higher than the findings of 335 

Masood et al. (2015) at the same location, which is 1244 mm per year during 2015-2039 under 336 

RCP8.5. The projected streamflow is 692 mm per year during 2020-2035 under RCP8.5 at the 337 

upper YBR outlet. This result is quite close to the findings of Lutz et al. (2014), which is 727 338 

mm per year during 2041-2050 under RCP8.5. To be noted, our study adopted RCMs 339 

integrations, BMA method by incorporating different bias correction methods, and a physically 340 
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based hydrological model accounting for snow and glacier melting processes, which could 341 

explain the differences from the existing studies. 342 

Table 8 shows the relative changes of projected runoff and its driving factors under different 343 

emission scenarios compared to the historical period at different locations of the YBR. At the 344 

basin-wide scale represented by Bahadurabad station, future streamflow shows an evidently 345 

increasing trend under both RCP4.5 and RCP8.5 scenarios. The increasing rate under RCP8.5 346 

(12.9%) is not-surprisingly higher than RCP4.5 (6.8%). Also, the trends of streamflow exhibit 347 

strong spatial variability along the YBR. Under RCP4.5, upstream locations are more likely to 348 

experience an increasing trend at a much less rate. For example, the change rate of streamflow is 349 

projected to decrease at 0.4% and 4.1% at the YBR outlet and Nuxia, respectively. Under 350 

RCP8.5, however, upstream locations would more likely witness an augmented increasing rate of 351 

streamflow change, e.g., 13.1% and 19.9% at the YBR outlet and Nuxia, respectively.  352 

4. Conclusions 353 

In this study, we conducted a comprehensive evaluation of future streamflow in the YBR Basin. 354 

We adopted RCMs integrations, BMA method by incorporating different bias correction 355 

methods, and a physically based hydrological model accounting for snow and glacier melting 356 

processes to implement the evaluation. The major findings are summarized as follows. 357 

(1) The three bias correction methods implemented in this study can all substantially reduce 358 

biases in the three variables (precipitation, temperature and potential evapotranspiration). 359 

Specifically for precipitation, when native RCMs show overestimations, all bias correction 360 

methods perform reasonably well. While, none of them can provide satisfying corrections 361 

when native RCMs exhibit strong underestimations. This finding is consistent with existing 362 
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studies (Maraun, 2013; Prasanna, 2016) and requires further in-deep studies. For 363 

temperature and potential evapotranspiration, all of the three bias correction methods 364 

performed well, especially QM and JBCt. 365 

(2) The basin-wide discharge is projected to increase substantially during the future period 366 

(2020-2035) under the two examined emissions scenarios of RCP4.5 and RCP8.5. The 367 

projected annual mean streamflow at Bahadurabad is 1386.7 mm per year under RCP4.5 368 

with an increasing rate of 6.9%, and the number becomes higher as 1466.4 mm per year 369 

under RCP8.5 with an increasing rate of 12.9%. Increasing mean annual streamflow 370 

indicates more flood events that would occur in this already vulnerable region, which calls 371 

for more close collaborations among upstream and downstream riparian countries. 372 

(3) Projected streamflow exhibits different spatial patterns under different scenarios in the YBR 373 

basin. Under RCP4.5, the annual mean streamflow is projected to change by 6.8%, -0.4%, 374 

and -4.1% in the future period (2020-2035) compared to the historical period (1980-2001) at 375 

three locations from downstream to upstream along the YBR, i.e., Bahadurabad, the upper 376 

YBR outlet, and Nuxia. Therefore, the increasing rate of streamflow exhibits an attenuated 377 

trend from downstream to upstream. Under RCP8.5, however, the increasing rate of 378 

streamflow (12.9%, 13.1%, and 19.9% at the three locations) exhibits an augmented trend 379 

from downstream to upstream. The different trends are likely associated with varying spatial 380 

patterns of projected future precipitation, but more detailed investigations are needed. 381 
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Table 1. Description of the WATCH forcing data and 5 RCM datasets. 531 

Type Dataset Spatial 

resolution 

Temporal 

resolution 

Period Description 

Observation 

data 

WATCH 

Forcing Data 

(WFD) 

0.5° Daily 1980-2001 Rainfall, air 

temperature, 

potential 

evapotranspiration 

RCM data HadGEM3-RA 

(RCM1) 
0.44° Daily 1980-2001 

2020-2035

(RCP4.5, 

RCP8.5) 

Rainfall, air 

temperature, 

surface pressure, 

specific humidity RegCM 

(RCM2) 

SNU-MM5 

(RCM3) 

SNU-WRF 

(RCM4) 

YSU-RSM 

(RCM5) 

 532 

  533 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-251
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 14 May 2018
c© Author(s) 2018. CC BY 4.0 License.



26 

Table 2. Annual mean values of basin-wide precipitation (ppt), temperature (tmp) and potential 534 

evapotranspiration (pet) calculated from WFD and native/corrected RCMs datasets. 535 

 native JBCp JBCt QM 

ppt 

mm

/yr 

WFD 1310    

RCM1 2025 1296 1283 1296 

RCM2 1834 1312 1299 1312 

RCM3 1101 1584 1726 1584 

RCM4 1242 1523 1617 1523 

RCM5 1381 1325 1338 1325 

tmp 

℃ 

WFD 8.77    

RCM1 5.80 8.85 8.77 8.77 

RCM2 4.48 8.69 8.77 8.77 

RCM3 4.99 8.23 8.77 8.77 

RCM4 3.77 8.57 8.77 8.77 

RCM5 0.36 8.38 8.77 8.77 

pet 

mm

/yr 

WFD 532    

RCM1 448 525 542 542 

RCM2 430 528 542 542 

RCM3 474 526 553 553 

RCM4 479 540 543 543 

RCM5 478 513 532 532 
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Table 3. Principal parameters of THREW model.  538 

Symbol Unit Physical meaning Range Calibrated 

value 

Ks
u m/s Saturated hydraulic conductivity for u-zone which is 

different for each REW. The value showing here is the 

averaged value over the whole catchment 

- 6.25e-6 

Ks
s m/s Similar to Ks

u, saturated hydraulic conductivity for 

s-zone 

- 6.25e-6 

εu - Soil porosity value of u-zone which is different for 

each REW. The value showing here is averaged over 

the whole catchment 

- 0.47 

εs - Similar toεu, soil porosity of s-zone - 0.28 

ψα m Air entry value which is different for each REW. The 

value showing here is averaged over the whole 

catchment 

- 0.25 

μ - Soil pore size distribution index in 
2( )

(1 )

u u d u
s aEFL

e u u

SK
f

s y

 









, where 
ef  is the 

exfiltration capacity from u-zone, us  is the saturation 

degree of u-zone, uy  is the soil depth of u-zone, d  is 

the diffusion index ( 1 1/ )d   . The value showing 

here is the averaged value over the whole catchment 

- 0.20 

nt - Manning roughness coefficient for hillslope 0.005-1 0.03 

nr - Similar to nr , Manning roughness coefficient for 

channel 

0.005-1 0.006 

B - Shape coefficient to calculate the saturation excess 

streamflow area 

0.1-1 0.5 

KKA - Coefficient to calculate subsurface flow in 

( )
S

S KKA

g S

y
R KKD S K

Z
    , When S is the topographic 

slope, ys is the depth of s-zone, Z is the total soil depth 

1-30 5.0 

KKD - See describe for KKA 0.1-1 0.5 

αIFL - Spatial heterogeneous coefficient for infiltration 

capacity 

0.1-5 1.5 

αEFL - Spatial heterogeneous coefficient for exfiltration 

capacity 

0.1-20 0.7 

αETL - Spatial heterogeneous coefficient for 

evapotranspiration capacity 

0.1-5 0.7 

DDFg mm℃day-1 Degree day factor glacier 0-15 6.0 

DDFs mm℃day-1 Degree day factor snow 0-15 4.8 
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Table 4. Annual mean observed discharge and simulated discharge forced by WFD and native/corrected 541 

RCMs datasets at the Bahadurabad station. 542 

Discharge 

104m3/s 

Calibration period Validation period 

native QM JBCp JBCt native QM JBCp JBCt 

obs 2.23    2.29    

WFD 2.08    2.09    

RCM1 3.12 2.01 2.07 1.97 3.23 2.11 2.16 2.07 

RCM2 2.73 2.03 2.05 2.00 2.85 2.12 2.15 2.09 

RCM3 1.80 2.34 2.31 2.55 1.84 2.37 2.33 2.61 

RCM4 1.88 2.24 2.25 2.41 1.92 2.27 2.28 2.45 

RCM5 2.02 1.87 1.89 1.90 2.24 2.08 2.10 2.13 
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Table 5. Nash-Sutcliffe efficiency coefficient (NSE) of streamflow simulation forced by WFD and native/corrected RCMs datasets at daily and 546 

monthly time scales (denoted as day and mon in the table). 547 

NSE RCM1 RCM2 RCM3 RCM4 RCM5 

calibration validation calibration validation calibration validation calibration validation calibration validation 

day mon day mon day mon day mon day mon day mon day mon day mon day mon day mon 

WFD 0.84 0.92 0.78 0.84                 

RCM -0.1 0.10 -0.0 0.17 0.46 0.61 0.39 0.51 0.52 0.64 0.40 0.53 0.56 0.70 0.56 0.67 0.56 0.69 0.54 0.70 

RCM_QM 0.53 0.66 0.56 0.66 0.51 0.63 0.47 0.57 0.57 0.69 0.44 0.58 0.56 0.72 0.58 0.70 0.41 0.51 0.51 0.63 

RCM_JBCp 0.56 0.69 0.58 0.69 0.53 0.66 0.49 0.60 0.58 0.71 0.46 0.60 0.57 0.72 0.59 0.70 0.42 0.52 0.51 0.63 

RCM_JBCt 0.44 0.56 0.50 0.60 0.39 0.50 0.35 0.43 0.59 0.72 0.51 0.65 0.60 0.76 0.64 0.75 0.49 0.59 0.56 0.69 
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Table 6. Evaluation merits of streamflow simulations for individual RCM and BMA scenarios. 549 

Scenarios Calibration Validation 

NSE RE 

(%) 

RMSE 

(m3/s) 

NSE RE 

(%) 

RMSE 

(m3/s) 

QM RCM1 0.53 9.9 12070.7 0.56 7.8 12519.3 

RCM2 0.51 9.0 12312.7 0.47 7.1 13701.0 

RCM3 0.57 -4.9 11573.7 0.44 -3.8 14158.6 

RCM4 0.56 -0.5 11633.8 0.58 0.5 12174.1 

RCM5 0.41 16.3 13487.3 0.51 8.9 13269.3 

JBCp RCM1 0.56 7.2 11703.5 0.58 5.4 12244.0 

RCM2 0.53 8.1 12061.4 0.49 6.0 13424.4 

RCM3 0.58 -3.4 11369.7 0.46 -1.9 13898.5 

RCM4 0.57 -0.9 11568.2 0.59 0.3 12134.9 

RCM5 0.42 15.4 13427.7 0.50 8.1 13264.3 

JBCt RCM1 0.44 11.9 13111.4 0.50 9.4 13374.6 

RCM2 0.39 10.5 13732.9 0.35 8.5 15243.1 

RCM3 0.59 -15.0 11204.6 0.51 -14.1 13165.9 

RCM4 0.60 -7.9 11161.9 0.64 -7.4 11347.8 

RCM5 0.49 15.0 12613.0 0.62 6.9 12564.8 

BMA 0.64 6.9 10524.2 0.61 4.8 11745.9 
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Table 7. Summary of existing studies on projected streamflow under climate change in the YBR Basin. 550 

Hydrological 

model 

Study Area,  

Calibration 

Hydrological 

Station 

GCMs/RCMs Scenarios Bias 

Correction 

Bayesian 

Model 

Averaging 

Streamflow 

Change Results 

Reference 

Snowmelt 

Runoff Model 

upper YBR 

Basin, no 

calibration 

station 

GCMs (CCMA-CGCM3, 

GFDL-CM2,MPIM-ECHAM5,NIES-MIROC3, 

UKMO-HADGEM1) 

Obs 

(2000-2007) 

A1B 

(2046-2065) 

No No -19.6% 

Immerzeel 

et al. 

(2010) 

Spatial 

Processes in 

Hydrology 

(SPHY) 

model 

upper YBR 

Basin, no 

calibration 

station 

GCMs (RCP4.5:GISS-E2-R, IPSL-CM5A-LR, 

CCSM4, CanESM2; RCP8.5: GFDL-ESM2G, 

IPSL-CM5A-LR, CSIRO-Mk3-6-0, CanESM2) 

Obs 

(1998-2007) 

RCP4.5 

(2041-2050) 

RCP8.5 

(2041-2050) 

No No 
4.5%(RCP4.5) 

5.2%(RCP8.5) 

Lutz et al. 

(2014) 

H08 

Hydrological 

model 

YBR Basin, 

Bahadurabad 

GCMs (MRI-AGCM3.2S, MIROC5, 

MIROC-ESM, MRI-CGCM3, HadGEM2-ES) 

Obs 

(1980-2001) 

Near-future 

(2015-2039) 

Far-future 

(2075-2099) 

Yes No 

6.7%(near-future) 

16.2%(far-future) 

RCP8.5 

Masood et 

al. (2015) 

Tsinghua 

Representative 

Elementary 

Watershed 

(THREW) 

model 

YBR Basin, 

Bahadurabad 

RCMs(HadGEM3-RA, RegCM, SNU-MM5, 

SNU-WRF, YSU-RSM) 

Obs 

(1980-2001) 

RCP4.5 

(2006-2035) 

RCP8.5 

(2006-2035) 

Yes Yes 
6.8%(RCP4.5) 

12.9%(RCP8.5) 
This study 
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Table 8. Means of precipitation / temperature / runoff in the future period (2020-2035) and their relative changes compared to the historical period 553 

(1980-2001) under different scenarios in the YRB. 554 

 P 

(mm/a) 

RP 

(%) 

T 

(℃) 

RT 

(℃) 

R 

(mm/a) 

RR 

(%) 

rR rG rS 

His-B 1425.3 - 8.7 - 1298.4 - 87.0% 3.2% 97% 

fs4.5-B 1529.8 7.3% 9.8 1.1 1386.7 6.8% 86.5% 3.3% 10.2% 

fs8.5-B 1608.0 12.8% 10.0 1.3 1466.4 12.9% 86.9% 3.2% 10.0% 

His-O 668.9 - 1.0 - 611.6 - 68.9% 9.0% 22.1% 

fs4.5-O 639.9 -4.4% 2.2 1.3 609.3 -0.4% 64.4% 9.9% 25.7% 

fs8.5-O 748.3 11.9% 2.6 1.6 691.9 13.1% 67.4% 9.0% 23.6% 

His-N 631.6 - -0.1 - 485.8 - 74.4% 5.3% 20.3% 

fs4.5-N 595.8 -5.7% 1.2 1.3 465.8 -4.1% 69.3% 6.1% 24.6% 

fs8.5-N 712.0 12.7% 1.6 1.7 582.5 19.9% 74.8% 5.0% 20.3% 

Note: P denotes precipitation, T denotes temperature, R denotes runoff; RP, RT, RR denote relative changes of P, T and R compared to 555 

the historical period, respectively; rR, rG, rS denotes the ratio of rainfall, glacier melting, and snow melting induced runoff in the total 556 

runoff, respectively; -B denotes Bahadurabad, -O denotes he upper YBR basin outlet, and -N denotes Nuxia. 557 
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 589 

Figure 1. Study area, river network and location of hydrological stations (Nuxia in the upstream basin, 590 

Bahadurabad in the downstream basin).591 
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 592 

Figure 2. Schematic illustration of quantile mapping bias correction method applied in the paper (Wlicke 593 

et al., 2013). 594 
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 596 

Figure 3. Seasonal cycles of precipitation from WFD and native/corrected RCMs during the historical 597 

period (1980-2001). (a) for RCM1, (b) for RCM2, (c) for RCM3, (d) for RCM4, (e) for RCM5. 598 
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 600 

Figure 4. Seasonal cycles of temperature from WFD and native/corrected RCMs during the historical 601 

period (1980-2001). (a) for RCM1, (b) for RCM2, (c) for RCM3, (d) for RCM4, (e) for RCM5. 602 
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 604 

Figure 5. The simulated (red line) and observed (black line) discharge at Bahadurabad at the (a) daily 605 

scale, (b) monthly scale. 606 

  607 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-251
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 14 May 2018
c© Author(s) 2018. CC BY 4.0 License.



39 

 608 
Figure 6. Seasonal cycles of observed streamflow and simulated streamflow forced by WFD and 609 

native/corrected RCMs during the calibration period (left column) and validation period (right column) at 610 

Bahadurabad.  611 
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 612 

Figure 7. The mean values and 90% uncertainty interval of streamflow simulated by the BMA method 613 

during the historical period. 614 
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 616 

Figure 8. Change of basin-wide precipitation in the future period projected by corrected RCMs under 617 

RCP4.5 (left column) and RCP8.5 (right column) scenarios compared to the historical period. 618 
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 620 

Figure 9. Change of basin-wide temperature in the future period projected by corrected RCMs under 621 

RCP4.5 (left column) and RCP8.5 (right column) scenarios compared to the historical period. 622 
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 624 

Figure 10. The mean values and 90% uncertainty interval of streamflow simulated by the BMA method 625 

during the future period under (a) RCP4.5, (b) RCP8.5 scenarios at Bahadurabad. 626 
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 628 
Figure 11. Streamflow projections from the existing studies during different periods at different locations (B denotes Bahadurabad in the 629 

downstream, O denotes the upper YBR basin outlet, see Figure 1 for the location). 630 
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