
1 
 

How good are hydrological models for gap-filling 1 

streamflow data? 2 

Yongqiang Zhang1*, David Post1  3 

1 CSIRO Land and Water, GPO Box 1700, ACTON 2601, Canberra, Australia 4 

 5 

Submission to: Hydrology and Earth System Sciences 6 

Submission date: May 2018 7 

*Corresponding author: Yongqiang Zhang  8 

Email: yongqiang.zhang@csiro.au; yongqiang.zhang2014@gmail.com 9 

Address: CSIRO Land and Water, Clunies Ross Street, Canberra 2601, Australia 10 

Tel.: +61 2 6246 5761 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

mailto:yongqiang.zhang@csiro.au


2 
 

Key Points: 19 

• Gap-filling of streamflow data performs well when the missing rate is less than 10%   20 

• Small number of catchments showing large trend bias when the missing rate is up to 21 

20%   22 

• Poor gap-filling occurring in some wet catchments even with reasonable model 23 

calibration  24 

 25 

  26 

Abstract. Gap-filling streamflow data is a critical step for most hydrological studies, such 27 

as streamflow trend, flood and drought analysis and hydrological response variable estimates 28 

and predictions. However, there is lack of quantitative evaluation of the gap-filled data 29 

accuracy in most hydrological studies. Here we show that when the missing rate is less than 30 

10%, the gap-filled streamflow data obtained using calibrated hydrological models perform 31 

almost as same as the benchmark data (less than 1% missing) for estimating annual trends for 32 

217 unregulated catchments widely spread in Australia. Furthermore, the relative streamflow 33 

trend bias caused by the gap-filling is not very large in very dry catchments where the 34 

hydrological model calibration is normally poor. Our results clearly demonstrate that the gap-35 

filling using hydrological modelling has little impact on the estimation of annual streamflow 36 

and its trends.  37 

Keywords: streamflow, data, gap-filled, hydrological model, trend 38 

 39 

 40 
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1 Introduction 41 

Streamflow is channel runoff, i.e. the flow of water in streams and rivers and accumulated 42 

from surface runoff from land surface and groundwater recharge. It is one of the major water 43 

balance components in a catchment where precipitation is partially stored in surface water, 44 

soil and groundwater stores, and the rest is partitioned into two fluxes: evapotranspiration and 45 

streamflow. It is almost impossible to measure evapotranspiration dynamics at a catchment 46 

scale. In contrast, streamflow time series can be easily measured at a catchment outlet. 47 

Therefore, streamflow data becomes a fundamental dataset underpinning hydrological 48 

studies. Without such a dataset, it is hard to understand catchment hydrological processes 49 

under climate change and non-stationarity (Dai et al., 2009; Gedney et al., 2006a; Ukkola et 50 

al., 2015; Zhang et al., 2016b). 51 

Unfortunately, streamflow data are not always continuously available and most gauges suffer 52 

from streamflow data missing issues (Dai et al., 2009). Often, the missing rate is important 53 

when selecting streamflow gauges, especially when the data is used for annual trend analysis. 54 

To choose qualified catchments, researchers often set up a threshold for the missing ratio, for 55 

instance 1% (Petrone et al., 2010), 5% (Ukkola et al., 2015), 10% (Déry et al., 2009), 15% 56 

(Liu and Zhang, 2017), and 20% (Lopes et al., 2016). Only those gauges with missing rate 57 

less than a particular threshold are selected, and the rest are excluded for further analysis 58 

because of high missing rates.  59 

There are many methods used for gap-filling the missing data, including interpolation from 60 

nearby gauges (Hannaford and Buy, 2012; Lavers et al, 2010; Lopes et al., 2016), statistical 61 

methods (Gedney et al., 2006b), hydrological modelling (Dai et al., 2009; Sanderson et al., 62 

2012), and multiple infilling methods (Harvey et al., 2012). Among them, the hydrological 63 

modelling method is widely used since it fully considers the spatial heterogeneity and 64 
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temporal variability of climate forcing data, and can achieve sufficient simulations when it is 65 

calibrated against a small number of observations (Peña-Arancibia et al. 2014; Rojas-Serna et 66 

al., 2016; Seibert and Beven, 2009; Liu and Zhang, 2017). This is particularly important in 67 

Australia where hydrological modelling is a major tool for simulating continuous streamflow 68 

at a catchment scale. More recently, the Australian Bureau of Meteorology used a 69 

hydrological model –GR4J– to infill missing daily streamflow data for 222 Hydrologic 70 

Reference Stations (http://www.bom.gov.au/water/hrs/about.shtml). The gap-filled 71 

streamflow data are then used for trend analysis and providing hydrological information to all 72 

users. 73 

One major concern for the hydrology community is to understand how reliable the gap-filled 74 

data is. Unfortunately there are no studies in the literature to comprehensively evaluate the 75 

reliability and accuracy of the gap-filled data that are influenced by different thresholds and 76 

by data missing patterns. Our study aims to provide a framework to evaluate the annual 77 

trends and annual variables obtained from gap-filled streamflow data using two hydrological 78 

models (GR4J and SIMHYD) together with a large streamflow dataset available across the 79 

Australian Continent (Zhang et al., 2013). This can guide researchers to more sensibly define 80 

a threshold for catchment selection and hydrological analysis.  81 

2 Data and Methods  82 

2.1 Data  83 

We obtained daily streamflow data set from 780 unregulated catchments widely spread across 84 

Australia (Zhang et al., 2013). The dataset has undergone strict quality assurance and quality 85 

control, including quality codes check and spike (i.e. outlier points) control, and covered the 86 

period from 1975 to 2012. This dataset has been used by modellers for various hydrological 87 

modelling and extreme-event studies (Li and Zhang, 2017; Liu and Zhang, 2017; Ukkola et 88 

http://www.bom.gov.au/water/hrs/about.shtml
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al., 2016; Yang et al., 2017). The missing rate for the pre-1980 and post-2010 periods were 89 

high. To meet our study requirement, we selected 217 catchments with a data missing rate 90 

less than 1% for the period 1981-2010 and the streamflow data for the 217 catchments are 91 

regarded as ‘benchmark’ data (Figure 1). Out of the 780 catchments there are 146, 91, and 61 92 

with the missing rate of 1-5%, 5-10%, and 10-20% during 1981-2010, respectively (Figure 93 

1), and these catchments account for 38% of total available catchments. Table 1 summarises 94 

major catchment attributes for the 217 selected catchments. The data gaps for Australian 95 

streamflow gauges mainly include: i) non-sensible record; ii) sensor broken; iii) no recorded 96 

data (instrumentation removed); iv) no data existed; and v) no record or record lost. 97 

 98 

Fig. 1. The 780 unregulated catchments grouped by different streamflow data gaps for the 99 

period of 1981-2010.  100 

 101 

Table 1. Major catchment attributes for the 217 catchments  102 
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Attribute Definition Unit Min 2.5th  25th  Median 75th  97.5th  Max 
Area Catchment area km2 53 70 180 392 844 4562 72902 

Elevation 
Catchment 
average elevation 
above sea level 

m 
46 100 278 449 753 1194 1351 

Slope Catchment mean 
slope Degrees 0.3 0.6 2.0 3.9 7.7 12.0 13.6 

P Mean annual 
precipitation mm/year 256 371 703 853 1107 1966 2473 

ETp 
Mean annual 
potential 
evapotranspiration 

mm/year 
906 968 1149 1235 1408 1791 1892 

AI Aridity index - 0.38 0.55 1.11 1.44 1.89 4.75 6.47 

Forest 
ratio 

Ratio of forest to 
all land cover 
types 

- 
0.02 0.06 0.39 0.55 0.67 0.83 0.90 

 103 

Out of the 217 catchments, about half of the catchments showed a significant decreasing 104 

trend, 37% showing non-significant decreasing trend, and 13% showing non-significant 105 

increasing trend (Figure 2), detected using Mann-Kendall trend analysis (see 2.3). This is 106 

because Australia experienced the Millennium drought over the period 2001-2009, which 107 

caused a dramatic streamflow reduction in this period (van Dijk et al., 2013). Trend analysis 108 

for the 217 catchments is explained in Section 2.3 and trend results are summarised in 109 

Section 3.  110 

Out of the 217 catchments, about 46% of catchments have no missing data in 1981-2010, 111 

12% with the missing rate <0.1%, 22% with the missing rate 0.1-0.5% and 20% with the 112 

missing rate of 0.5-1% (Figure 2).  113 
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 114 

Fig. 2. Trends and streamflow data summary for the 217 catchments used in this study. Trend 115 

in annual streamflow is with a unit of mm/year/year. Left pie indicates the catchment 116 

percentage with different missing rates (dark blue with missing rate of 0%, navy blue with 117 

missing rate of 0-0.1%, green with missing rate of 0.1-0.5%, yellow with missing rate of 0.5-118 

1.0%); right pie indicates the catchment percentage with different trends (dark blue with 119 

significant (p ≤ 0.05) decreasing trend, navy blue with non-significant (p > 0.05) decreasing 120 

trend, green with non-significant (p > 0.05) increasing trend, and yellow with significant (p ≤ 121 

0.05) increasing trend). 122 

To drive the two hydrological models, we obtained daily meteorological time series 123 

(including minimum temperature, maximum temperature, incoming solar radiation, actual 124 

vapour pressure and precipitation) from 1975 to 2012 at 0.05° (~5 km) grid resolution from 125 

the SILO Data Drill of the Queensland Department of Natural Resources and Water 126 

(www.nrw.gov.au/silo). The data quality is reasonably good, indicated by the mean absolute 127 
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error for maximum daily air temperature, minimum daily air temperature, vapour pressure, 128 

and precipitation at 1.0°C, 1.4°C, 0.15 kPa and 0.40 mm/day (Jeffrey et al., 2001). 129 

2.2 Gap-filling experiments 130 

For thoroughly investigating the potential impacts of infilled streamflow data on annual trend 131 

accuracy, we conducted three groups of experiments to test how the missing rates at 5%, 10% 132 

and 20% impact on streamflow trends. We followed three steps for each missing rate of 133 

experiments:  134 

1. Missing patterns were obtained using actual streamflow data. We selected consecutive 135 

missing day pattern from actual data from the 780 catchments. For 5% group of missing rate 136 

experiments, we selected 44 catchments with missing rates in 4-6%; for 10% group of 137 

missing rate experiments, we selected 39 catchment with missing rate in 8-12%; for 20% 138 

group of missing rate experiments, we selected 22 catchments with missing rate in 18-22%.  139 

Figure 3 shows the probability distribution of consecutive missing days from each group of 140 

catchments, which is skewed toward the low end. We therefore used the two-parameter 141 

Gamma distribution to simulate probability distribution of consecutive missing days (Figure 142 

3). The Gamma distribution is expressed as 143 

( ), ( , )X k Gamma kθ θΓ = ,                                               (1) 144 

where X is the consecutive missing days number, k  is shape parameter, and 𝜃𝜃 is scale 145 

parameter. The corresponding probability density function in the shape-scale 146 

parameterization is 147 

( ) ( )
11; ,

x
k

kf x k x e
k

θθ
θ

−−=
Γ

,                                        (2) 148 

where ( )kΓ is the gamma function. 149 
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 150 

Fig. 3. Missing patterns for three groups of catchments with missing rates 4-6%, 8-12%, 18-151 

22% that represent 5%, 10% and 20% missing rates, respectively. 152 

As seen from Figure 3, the two parameters are stable under the three groups of catchments. 153 

The k  parameter varies from 0.63 to 0.87 and the θ parameter changes from 62 to 81. It is 154 

noted that we removed all times when the number of consecutive missing days was > 365. 155 

We did that for a number of reasons. Firstly, gap-filling an entire year of missing data would 156 

likely impact annual trends. Secondly, the focus of this paper is on gap-filling short periods 157 

of missing data to be able to include more catchments in streamflow analyses. Thirdly, 158 

removing all periods of greater than 365 days allowed us to better fit a gamma distribution to 159 

the number of missing days. 160 

We also checked the seasonality of missing data to see if one season were more likely to have 161 

missing data than another. As seen from Figure 4, the missing data are more or less evenly 162 

distributed through different seasons across all the 39 catchments (with missing rate of 8% to 163 

12%) within the 10% missing data group. This indicates that the data gaps were not skewed 164 

toward a particular season and it occurred randomly through the year. 165 
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 166 

Fig. 4. Distribution of number of missing days across different seasons, summarised from 39 167 

catchments with a missing rate ranging from 8% to 12% (i.e. 10% missing data group). 168 

2. Generating random consecutive missing day numbers using random number generator 169 

(sampling without replacement) based on the Gamma distribution. The random number 170 

generator was repeated 100 times to ensure the selected samples cover a wide range of 171 

streamflow time series.  172 

3. Gap-filling streamflow data. The selected days were treated as ‘missing’ data and the 173 

unselected data were used for hydrological model calibration. The ‘missing’ data were then 174 

gap-filled using the simulated streamflow from the calibrated GR4J and SIMHYD models, 175 

respectively.  176 

For consistent interpretation thereafter, the benchmark streamflow data is regarded as 177 

‘observed’ and the experiment ones as ‘filled’ ones.  For each of the three experiments, there 178 



11 
 

are 100 x 217 (21,700) ‘missing’ time series, with 100 representing sample times using the 179 

random number generator and 217 representing the number of catchments. 180 

2.3 Trend analysis 181 

We used the Mann–Kendall Tau-b non-parametric test including Sen’s slope method (Burn 182 

and Elnur, 2002) for annual streamflow trend analysis and significance testing for all the 183 

three groups of experiments and benchmark data. 184 

We used the following equation to quantify the trend bias: 185 

t filled obsB T T= − ,                                                                 (3) 186 

where Bt is the bias in annual streamflow trend (mm/year/year), Tfilled is annual trend for gap-187 

filled streamflow (mm/year/year), Tobs is annual trend in observed streamflow 188 

(mm/year/year). It measures the trend error between the infilled and observed runoff trends 189 

with Bt ≈ 0, which indicates that the trend in observed annual runoff is almost the same as 190 

that in the infilled annual runoff. 191 

We also defined relative trend bias (PBt) as 192 

100
t

filled obs
B

obs

T T
P

T
−

= ×  ,                                                                (4) 193 

 194 

2.4 Hydrological models 195 

Two widely used hydrological models SIMHYD and GR4J (Chiew et al., 2002; Chiew et al., 196 

2010; Li et al., 2014; Oudin et al., 2008; Perrin et al., 2003; Zhang and Chiew, 2009; Zhang 197 

et al., 2016a) were used to infill daily ‘missing’ streamflow. Both models require daily 198 

precipitation and daily potential evaporation (Priestley and Taylor, 1972) as model inputs, 199 

and model outputs are daily streamflow at each gauge. The daily inputs of the maximum and 200 
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minimum temperatures, incoming solar radiation, and vapour pressure data were used to 201 

calculate the Priestley–Taylor daily potential evaporation.  202 

The two models were calibrated using a global optimiser: genetic algorithm (The 203 

MathWorks, 2006) at each catchment, with the first six years (i.e., 1975–1980) for spin up 204 

and remainder (1981 to 2010) for modelling experiments. Since this study mainly evaluates 205 

the trends obtained using the gap-filled streamflow from hydrological modelling, it is crucial 206 

to predict high flow and mean flow as accurate as possible. To this end, the model calibration 207 

was to minimize the following objective function (F) (Viney et al., 2009; Zhang et al., 208 

2016b): 209 

2.5(1 ) 5 ln(1 )F NSE B= − + + ,                                               (5) 210 

, ,
1 1

,
1

N N

sim i obs i
i i

N

obs i
i

Q Q
B

Q

= =

=

−
=
∑ ∑

∑
,                                                         (6) 211 

                   212 

where NSE is the Nash-Sutcliffe-Efficiency of daily streamflow, B is the model bias, Qsim and 213 

Qobs are the simulated and observed daily runoff, i is the ith day, N is the total number of days 214 

sampled. The NSE gives higher streamflow more weight, and varies between−∞  to 1 with 215 

NSE > 0.6 indicating a good agreement (Zhang and Chiew, 2009). The B measures water 216 

balance error between the observed and modelled daily streamflow, with B = 0 indicating that 217 

the average of modelled daily streamflow is the same as the average of observed daily 218 

streamflow. 219 

For each catchment, GR4J and SIMHYD were calibrated using benchmark data and 100 time 220 

series of streamflow data with ‘missing’ data (see Section 2.2), respectively. For benchmark 221 

data without any missing data (46% catchments) there are no gap-filling required; for the 222 

benchmark data with missing rate less than 1%, the calibrated continuous streamflow data 223 

were used to fill the gaps. For the ‘missing’ experiments, the calibrated continuous 224 
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streamflow data for each ‘missing’ replicate were used to infill the artificially-made ‘missing’ 225 

data. Table 2 summarises the model calibrations carried out for benchmark and each 226 

experiment. Finally, there were 130,634 model calibrations and 130,200 times of gap-filling 227 

carried out. Finally, the trends estimated from benchmark were used to evaluate those 228 

obtained from the ‘missing’ experiments. 229 

Table 2. Summary of model calibration number carried out for benchmark and data ‘missing’ 230 

experiments 231 

Model Benchmark 5% missing 10% missing 20% missing Sum  

GR4J 217 21,700 21,700 21,700 65,317 

SIMHYD 217 21,700 21,700 21,700 65,317 

Sum 434 43,400 43,400 43,400 130,634 

 232 

3 Results 233 

The gap-filled data from the two hydrological models were evaluated against the benchmark 234 

data. Overall, the two models perform well and neither significantly outperforms the other 235 

(Figure 5). For the three groups of gap-filling experiments, these two models perform 236 

similarly (i.e. the difference of NSE of daily runoff between two is less than 0.02) in 18-19% 237 

catchments; SIMHYD model outperforms GR4J model (NSE difference between two is 238 

larger than 0.02) in 30-31% catchments; GR4J model outperforms SIMHYD model in 50-239 

51% catchments. 240 

Figures 6 and 7 summarise the performance of the gap-filled data for estimating annual trend, 241 

annual streamflow, monthly streamflow and daily streamflow, respectively. The three 242 

missing rate experiments (5%, 10%, and 20%) perform almost the same as the benchmark 243 

(Figures 6 and 7). The coefficient of determination (r2) between the gap-filled trends and 244 

observed trends is more than 0.98 for the three experiments and two hydrological models.  245 
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 246 

Fig. 5. Comparisons between calibrated GR4J and calibrated SIMHYD for 44 catchments of 247 

the 5% missing experiment, 39 catchments of the 10% missing experiment, and 22 248 

catchments of the 20% missing experiment. In each catchment, there were100 replicates 249 

carried out. 250 

Since errors in gap-filled trends likely to be different and different time steps when daily 251 

infilled streamflow data is used, we further investigate how gap-filled errors are propagated 252 

from daily to monthly and to annual scales under the three gap-filling cases (5%, 10%, and 253 

20%) (Figures 6 and 7). It is expected that daily gap-filled streamflow has a larger standard 254 

deviation from the benchmark than monthly and annual streamflow since the streamflow was 255 

gap-filled at daily scale. This indicates that the temporal aggregation smooths the gap-filled 256 

error strongly, and it generates very reasonable monthly and annual streamflow estimates 257 

with less standard deviation. It is interesting to note that both models tend to underestimate 258 

very high flows though they are calibrated against the NSE of daily streamflow which puts a 259 

larger weight on correctly representing higher flows. 260 
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 261 

Fig. 6. Comparisons between the observed streamflow (x-axis) and gap-filled ones (y-axis) for 262 

streamflow trend (mm/year/year, left panels), annual streamflow (mm/year, second left panels), 263 

monthly streamflow (mm/month, second right panels) and daily streamflow (mm/day, right 264 

panels). The gaps were filled using GR4J. Error bar represents standard deviation of the 100 265 

replicates for each group of ‘missing’ experiments. 266 
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 267 

 Fig. 7. Same as Fig. 6 but using SIMHYD. 268 

Figure 8 further summarises the catchments with trend direction mismatch between the 269 

benchmark and gap-filled data (i.e. change from negative to positive or change from positive 270 

to negative). For the experiments with 5% and 10% missing rates and for GR4J, there are less 271 

than 8 out of the 217 catchments showing a trend mismatch and almost all of them show non-272 

significant trends (p > 0.05). For the experiments with a 20% missing rate for GR4J, there are 273 

less than 10 out of the 217 catchments showing trend mismatch and all of them show non-274 

significant trends. SIMHYD results are almost the same as GR4J results. All these indicate that 275 

there is very marginal influence on annual streamflow trend directions when the missing rate 276 

is less than 20%. 277 
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  278 

Fig. 8. Trend mismatch analysis between the gap-filled and benchmark. Total means all 279 

mismatch catchments; ‘N’ means not significant trends (p > 0.05); ‘S’ means significant 280 

trends (p ≤ 0.05). The bottom, middle and top of each box are the 25th, 50th and 75th 281 

percentiles, and the bottom and top whiskers are the 5th and 95th percentiles. 282 

Though the three groups of experiments show small trend direction changes (Figure 8), it is 283 

not clear how the trend bias (Eq. 3) looks. To this end, Figure 9 further compares the trend 284 

bias between the experiments. It is clear that the trend biases between 5% and 10% missing 285 

experiments are similar. For GR4J, both have the trend bias varying from -1 to 1 286 

mm/year/year; For SIMHYD, the trend bias between the two is similar when it varies from -287 

0.5 to 1 mm/year/year, and the trend bias for 5% missing experiment is even larger than that 288 

for 10% missing experiment. The trend bias for 20% missing experiment is noticeably larger 289 
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than that for 10% and 5% missing experiments for both models, and the underperformance is 290 

more noticeable from SIMHYD gap-filled than that from GR4J gap-filled.  This result 291 

suggests that the trend bias is reasonable when the missing rate is less than 10%, and can be 292 

large for small number of catchments when the missing rate is to 20%.  293 

  294 

Fig. 9. Trend biases comparison between the three groups of gap-filling experiments (5%, 295 

10% and 20%). Top three are for GR4J and bottom three are for SIMHYD.  296 

4 Discussion and conclusions 297 

Researchers are keen to have a comprehensive understanding of rules for excluding 298 

catchments with gaps in the streamflow record. Our results indicate that when the streamflow 299 

data gaps are up to 10%, the gap-filled data obtained using hydrological modelling are very 300 

reasonable for annual trend analysis and annual streamflow estimates. Choosing the threshold 301 

of 10% missing rate will allow the use of many more catchments in modelling and data 302 
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analysis studies. For example, of the 780 unregulated Australian catchments available for 303 

modelling studies (Zhang et al., 2013), there are 237 catchments with the missing rate of 1-304 

10% during 1981-2010, accounting for 38% of total available catchments (Figure 1). Of these 305 

237, 67 (~28%) also have gaps lasting more than one year (which we did not consider in this 306 

analysis), and therefore these may not be suitable for use. With an increased number of 307 

catchments, more reliable large-scale hydrological modelling studies can be carried out 308 

(Beck et al., 2016; Parajka et al., 2013; Zhang et al., 2016a).   309 

The ‘missing’ rate experiments designed in this study are based on the actual data missing 310 

patterns obtained from the 780 catchments. In most cases, the consecutive missing days are 311 

less than 10, as indicated by Figure 3, indicating brief periods of gauge malfunctions. It is 312 

however interesting to note that there are streamflow gaps lasting much longer than this in 313 

many catchments, with gaps of many months in some cases, noting that we excluded gaps 314 

lasting one year or more. It is highly likely that filling a gap of one year or more will result in 315 

biases larger than those presented here.  316 

Furthermore, we also tested the quality of random gap-filled daily streamflow. In that case, 317 

the missing patterns were randomly selected using a random number generator. The results 318 

obtained from the random gap-filling (not shown) are similar to the results presented here. 319 

Thus, it is likely that the length of the gaps (as long as it is less than one year) is unlikely to 320 

impact the results of the gap-filling experiment. We would conclude from this that the use of  321 

hydrologic modelling for filling the substantially gapped data (up to 10% missing rate) 322 

described here for Australia will not impact annual trends of streamflow. Impacts on other 323 

streamflow characteristics also need to be examined, as well as seeing if the results obtained 324 

in Australia are comparable with those in other parts of the world, where the length of 325 

observational gaps may be quite different to those shown in Figure 3.  326 
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It is possible that data gaps may only exist during high flow or low flow conditions, although 327 

that is not what we observed here with the majority of missing data being more or less evenly 328 

distributed throughout the year (Figure 4). We did however test the impact of filling 329 

streamflow data in high flow or low flow conditions (results not shown here). In those cases, 330 

the missing patterns were selected using only high flow (>95th percentile) or low flow (less 331 

than 50th percentile) data. The results obtained from the low flow gap-filling indicates that 332 

there is only a negligible influence on annual streamflow trend estimates when the missing 333 

rate is less than 50%. In contrast, the high flow gap-filled data shows a noticeable change in 334 

annual streamflow trend when the missing rate is 5% This is understandable since high flow 335 

is usually several orders of magnitude higher than low flow, and errors in filling high flow 336 

could have large impacts on annual flow and its trends (Slater and Villarini, 2017). 337 

To understand if the quality of gap-filled streamflow is related to catchment attributes and 338 

calibration accuracy, we conducted further analysis among the trend bias, model calibration 339 

efficiency (i.e. NSE) and catchment aridity index (mean annual potential evaporation divided 340 

by mean annual precipitation) (Figure 10). The model calibration results at dry catchments 341 

are normally poorer than those at wet catchments. However, the trend bias (mm/year/year) 342 

obtained from dry catchments is usually smaller. The large biases are observed from the 343 

catchments with aridity index less than 2 and with the calibrated NSE being larger than 0.60. 344 

In part, this is to be expected since the streamflow is also lower in more arid catchments, 345 

meaning that the trend bias is also likely to be lower. 346 

Figure 11 shows the relationship between relative trend bias (%, Eq. 4) and aridity index. It 347 

shows that not only is the actual trend bias lower in drier catchments, but so too is the relative 348 

(%) trend. This result suggests that the large bias in annual trends as a result of gap-filling is 349 

observed in relatively wet catchments where model calibrations are reasonably good. This 350 
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result seems counter-intuitive and requires further exploration, which is beyond the scope of 351 

the current paper. 352 

 353 

Fig. 10. Relationships among trend bias (mm/year/year), model calibration Nash-Sutcliffe 354 

Efficiency and aridity index for each catchment and for the experiment of 10% missing rate. 355 
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 356 

Fig. 11. Relationships between relative trend bias (mm/year/year) and aridity index for each 357 

catchment and for the experiment of 10% missing rate. 358 

This study focuses on evaluating annual streamflow and its trends. Therefore, we used the 359 

Nash-Sutcliffe Efficiency plus model bias (Eqs. 5 and 6) to calibrate the two hydrological 360 

models. If other hydrological response variables such as low flow metrics are required, other 361 

model calibration schemes should be used since the NSE model calibration scheme gives 362 

more weight to reproducing high flows at the expense of low-flows (Zhang et al., 2014). Low 363 

flow metrics have important ecological implications (Mackay et al., 2014; Smakhtin, 2001). 364 

In general however, it is challenging to use hydrological modelling for low flow simulations 365 

and predictions (Pushpalatha et al., 2012; Staudinger et al., 2011). To have credible low flow 366 

gap-filling, model calibrations should use an objective function that puts more weights on 367 

low flows, such as NSE of daily inverse streamflow and the direct low flow metrics. Another 368 

possible method is to combine hydrological modelling with other methods for gap-filling, 369 

such as using nearby gauges (Lopes et al., 2016) and statistical methods (Gedney et al., 370 

2006b).  371 
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It is noted that the infilled data purely refers to the ‘missing’ data. All streamflow gauges are 372 

only rated to a certain flow. Once the flow exceeds that level during flooding, the results are 373 

interpolated using stage-discharge relationships (Peña-Arancibia et al., 2015). These 374 

interpolations could be a major source of observation error. However, investigating high flow 375 

interpolation and data quality is beyond the scope of this study. 376 

The modelling experiments and findings from this study could have important implications 377 

for other parts of the world as well as Australia. First, to develop appropriate gap-filling 378 

modelling experiments, it is necessary to evaluate the distribution of consecutive missing data 379 

pattern. The probability distribution of consecutive missing data is skewed toward the low 380 

end, which can be nicely simulated using the Gamma distribution (Eq.1). This distribution 381 

should be very useful for similar missing patterns in other regions. Second, hydrological 382 

modelling is a very good tool for filling gaps since it can fully take the advantage of climate 383 

forcing and non-gap streamflow data, and obtain the best possible daily simulations. Third, 384 

the threshold of 10% identified in this study should be applicable to regions/catchments with 385 

similar missing patterns. However, if the data gaps continue for seasons or years, the 386 

threshold may not hold. 387 

It would also be interesting to compare hydrological modelling to other approaches for filling 388 

streamflow data gaps. Hydrological modelling is a most useful method used in Australia for 389 

predicting daily streamflow in ungauged catchments (Chiew et al., 2009; Li and Zhang, 2017; 390 

Zhang and Chiew, 2009; Viney et al., 2009). It has been used operationally by the Australian 391 

Bureau of Meteorology for filling daily streamflow data gap for many years. In the future, 392 

this operational method could further be comprehensively evaluated against other 393 

approaches, such as interpolation or correlations with nearby gauging sites. 394 

In summary, our results clearly demonstrate that the gap-filled data is most accurate when 395 

examining trends at the annual scale, followed by monthly scale, and with least satisfaction at 396 
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the daily scale. This gives researchers confidence for annual trend analysis, a hot topic in 397 

hydrological and climate sciences. Our results also clearly indicate that the gap-filling of 398 

Australian streamflow data using hydrological model is very reasonable when the missing 399 

rate is less than 10%, with only a small number of catchments showing a large trend bias 400 

when the missing rate is to 20%. The results also indicate that gap-filling drier catchments 401 

appears to be more successful than gap-filling wetter catchments.  402 
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