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Abstract. Seasonal to annual forecasts of precipitation patterns are very important for water infrastructure 9 
management. In particular, such forecasts can be used to inform decisions about the operation of multipurpose 10 
reservoir systems in the face of changing climate conditions. Success in making useful forecasts often is achieved by 11 
considering climate teleconnections such as the El-Nino-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) as 12 
related to sea surface temperature variations. We present a statistical analysis to explore the utility of using rainfall 13 
relationships in Sri Lanka with ENSO and IOD to predict rainfall to Mahaweli and Kelani, river basins of the country.   14 
Forecasting of rainfall as classes; flood, drought and normal are helpful for the water resource management decision 15 
making. Results of these models give better accuracy than a prediction of absolute values. Quadratic discrimination 16 
analysis (QDA) and classification tree models are used to identify the patterns of rainfall classes with respect to ENSO 17 
and IOD indices. Ensemble modeling tool Random Forest is also used to predict the rainfall classes as drought and 18 
not drought with higher skill. These models can be used to forecast the areal rainfall using predicted climate indices. 19 
Results from these models are not very accurate; however, the patterns recognized provide useful input to water 20 
resources managers as they plan for adaptation of agriculture and energy sectors in response to climate variability. 21 

1 Introduction 22 

The spatial and temporal uncertainty of water availability is one of the major challenges in water resource 23 
management. Understanding patterns and identifying trends in seasonal to annual precipitation are very important for 24 
water infrastructure management. In particular, forecasts that incorporate such information can be used to inform 25 
decisions about the operation of multipurpose reservoir systems in the face of changing climate conditions.  26 
Success in making useful forecasts often is achieved by considering climate teleconnections such as the El-Nino-27 
Southern Oscillation (ENSO) as related to sea surface temperature variations and air pressure over the globe using 28 
empirical data (Amarasekera et.al., 1997; Denise et.al., 2017; Korecha and Sorteberg, 2013; Seibert et.al., 2017). Also, 29 
modes of variability of other tropical oceans can be related to regional precipitation (Dettinger and Diaz, 2000; Eden 30 
et al., 2015; Maity and Kumar, 2006; Malmgren et al., 2005; Ranatunge et al., 2003; Suppiah, 1996; Roplewski and 31 
Halpert, 1996). For example, the effect of the Indian Ocean Dipole (IOD) is identified as independent of the ENSO 32 
effect (Eden et al., 2015). Pacific decadal oscillation (PDO), Atlantic multi-decadal mode oscillation (AMO), ENSO, 33 
and IOD teleconnections to precipitation have been found by many studies over the globe. Variations of precipitation 34 
in the  United States are explained by ENSO, PDO and AMO  (Eden et al., 2015; National Oceanic and Atmospheric 35 
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Administration, 2017; Ward et.al., 2014), in African countries by ENSO, AMO and IOD (Reason et.al., 2006), and in 36 
South east Asian countries by ENSO: Indonesia (Lee, 2015; Nur’utami and Hidayat, 2016), Thailand (Singhrattna 37 
et.al., 2005), China (Cao et al., 2017; Ouyang et al., 2014; Qiu et.al., 2014). Australia (Bureau of Meteorology, 2012; 38 
Verdon and Franks, 2005), and central and south Asia (Gerlitz et al., 2016). 39 
The impact of ENSO and IOD on the position of the intertropical convergence zone (ITCZ) has been identified as a 40 
primary factor driving south Asian tropical climate variations. South Asian countries get precipitation from two 41 
monsoons from the movements of ITCZ in boreal summer (20 N) and boreal winter (80 S). The South western monsoon 42 
(summer monsoon) is during June-August months and the North eastern monsoon (winter monsoon) is during 43 
December – February months (Schneider et.al, 2014).  Climate teleconnections have been studied for summer 44 
monsoons (Singhrattna et. al., 2005; Surendran et.al., 2015) and winter monsoons (Zubair and Ropelewski, 2006), A 45 
negative correlation of ENSO with Indian summer monsoon has been identified (Jha et al., 2016; Surendran et al., 46 
2015).  47 
The objective of this study is to explore the climate teleconnection to dual monsoons and inter monsoons. Water 48 
resource management decisions typically are based on precipitation throughout the year and it is extremely important 49 
to explore the possibility that rainfall might be related to teleconnection indices for which seasonal forecasts are 50 
available. Sri Lanka is a South Asian country that gets rainfall from two monsoons and two inter-monsoons. We 51 
explore ENSO and IOD climate teleconnection to Sri Lanka precipitation throughout the year. Past studies have 52 
identified climate teleconnection linking precipitation to climate indices for several months and monsoon seasons, and 53 
shown the importance of these for forecasting rainfall in river basins (Chandimala and Zubair, 2007; Chandrasekara 54 
et al., 2003). We extend these analyses across monsoon and inter-monsoon seasons. 55 
Although rainfall anomalies may be correlated strongly with teleconnection indices, the scatter in the data can be 56 
large, making predictions from regression models have high uncertainty. However, water managers may act on 57 
information about whether rainfall is expected to be abnormally low or high. Seasonal precipitation is generally 58 
forecasted in broad categories. For example, the US National Weather Service forecasts seasonal precipitation as 59 
above normal, below normal, and normal (National Oceanic and Atmospheric Administration, 2018). The 60 
International Research Institute for Climate and Society also forecasts seasonal precipitation as above, below and near 61 
normal (International Research Institute for Climate Society, 2018). We chose to follow a similar approach and 62 
investigate river basin rainfall teleconnections to climate indices with classification models. If reasonably accurate 63 
relationships can be developed, they will be useful for water resources management. For example, in Sri Lanka 64 
decisions about allocations of water for irrigation and hydropower could be improved with estimates of when low 65 
rainfall seasons are likely. 66 

2 Hydrometeorology and climatology of the study area  67 

Sri Lanka is an island in the Indian Ocean (latitude 5o 55′ N - 9o 50′ N, longitudes 79o 40′ E – 81o 53′ E).  Mean annual 68 
rainfall varies from 880 mm to 5500 mm across the island. The rainfall distribution is determined by the monsoon 69 
system of the Indian Ocean interacting with the elevated land mass in the interior of the country. The country is divided 70 
into three climatic zones according to the rainfall distribution: humid zone (wet zone) (annual rainfall > 2500 mm), 71 
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intermediate zone (2500 mm < rainfall < 1750 mm) and arid zone (dry zone) (rainfall < 1750 mm) (Department of 72 
Agriculture Sri Lanka, 2017). 73 

Sri Lanka, a water-rich country, has 103 river basins varying from 9 km2 to 10448 km2. A large fraction of the water 74 
resources management infrastructure of the country is associated with the Mahaweli and Kelani river basins. The 75 
catchment areas of the Mahaweli and Kelani are 10448 km2 and 2292 km2 respectively. The two rivers start from the 76 
central highlands. Mahaweli, the longest river, travels to the ocean 331 km in the eastern direction and the Kelani 145 77 
km in the western direction. Average annual discharge volume for the Mahaweli and Kelani basins are 26368 106 m3 78 
and 8660 106 m3 respectively (Manchanayake and Madduma Bandara, 1999). The Kelani river basin is totally inside 79 
the humid zone whereas the Mahaweli river basin migrates through all three climate zones (Fig.1). 80 

The temporal pattern of rainfall in Sri Lanka can be divided into four seasons as follows. 81 
(1) Generally low precipitation across the country from the Northeast monsoon (NEM), which gets most precipitation 82 

during January to February. The arid zone of the country gets significant precipitation from the NEM, while 83 
humid zone gets very little rainfall during this period.  84 

(2) The whole country gets precipitation from the first inter-monsoon (FIM) during March to April months. However, 85 
rainfall during this period is not very high across the country. 86 

(3) The highest precipitation for the country is from the South western monsoon (SWM) during May to September. 87 
However, only the humid zone gets high precipitation during this season. 88 

(4) The whole country gets precipitation from the second inter-monsoon (SIM) during October to December. 89 
Generally, precipitation from SIM is higher than FIM.  90 

The time period of NEM and SIM are generally considered as December to February and October to November 91 
respectively (Department of Meteorology Sri Lanka, 2017; Malmgren et.al, 2003; Ranatunge et al., 2003). However, 92 
considering the bulk amount of water received from the monsoon, we consider January and February as the period of 93 
NEM and October to December as the period of SIM.  94 

Reflecting the rainfall seasons, the country has two agriculture seasons “Yala” (April - September) and “Maha” 95 
(October - March). Because the arid zone gets minimal precipitation during the SWM, the agricultural systems 96 
(165,000 ha) developed under the Mahaweli multipurpose project depend on irrigation water during the Yala season. 97 
The country depends on stored water to drive hydropower year round. The Mahaweli and Kelani hydropower plants 98 
of 810 MW and 335 MW capacity serve as peaking and contingency reserve power to the power system (Ceylon 99 
Electricity Board, 2015). Management of reservoir systems is done to cater both to irrigation and hydropower 100 
requirements.  101 
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 102 

Figure 1 Mahaweli and Kelani river basins of Sri Lanka 103 

2.1 Sub-basin rainfall (Areal rainfall) 104 

Monthly rainfall data for years 1950 - 2013 are used for the study (Ceylon Electricity Board, 2017). River basin rainfall 105 
was calculated using the Thiessen polygon method (Viessman, 2002). The Mahaweli river basin is divided into 16 106 
Thiessen polygons and the Kelani river basin is divided into 11 Thiessen polygons (Fig. 1). Since this study does not 107 
aim to explore rainfall across sub-basins, we do not use digital elevation maps to define the sub-basins. Considering 108 
the importance of sub-basins for the reservoir catchment and for water use, eight sub-basins are selected for analysis. 109 
Morape, Randenigala, Peradeniya, Manampitiya and Bowatenna represent the Mahaweli major reservoir catchments 110 
and irrigation tanks, and Norton Bridge, Norwood and Laxapana represent the Kelani basin reservoir catchments. The 111 
catchment of the major Mahaweli river reservoir cascade (Kotmale, Victoria, Randenigala, Rantambe, Bowatenna) is 112 
represented by Morape and Peradeniya located in the humid zone and by Randenigala and Bowatenna located in the 113 
intermediate zone. The arid zone major irrigation catchments of the Mahaweli are represented by Manampitiya. The 114 
catchment of the Kelaniya reservoir cascade (Norton Bridge and Moussakele) in the humid zone is represented by 115 
Laxapana, Norton Bridge and Norwood.  116 
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We calculate the rainfall for the four seasons, NEM, FIM, SWM and SIM for 64 years of historical data. Rainfall 117 
anomalies are calculated by reducing the seasonal mean rainfall (Eq.(1)) and standardized anomalies are calculated 118 
by dividing the rainfall anomalies by the standard deviation (SD) (Eq.(2)).  119 

 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑋𝑋 −  𝑋𝑋�𝑡𝑡) (1) 

 𝑋𝑋𝑆𝑆_𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑋𝑋 −  𝑋𝑋�𝑡𝑡)/𝑆𝑆𝑆𝑆𝑡𝑡 (2) 

Where,  𝑋𝑋�𝑡𝑡 is the average of seasonal rainfall, 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 is the rainfall anomaly and  𝑋𝑋𝑆𝑆_𝐴𝐴𝐴𝐴𝐴𝐴 is the standardized rainfall 120 

anomaly.  121 
Standardized rainfall anomalies are divided into three classes as dry, average and wet (Table 1). A normality test for 122 
the rainfall data classes is done using the Shapiro-Wilk test. If the rainfall data are not normally distributed, log (e), 123 

square root or square functions are used to transform the data into normally distributed data sets (Fig. A 1). Extreme 124 

seasonal precipitation has been defined statistically in different ways using statistical thresholds (Easterling et al., 125 
2000; Jentsch et.al., 2015; Smith, 2011). We use 0.5 as a threshold to define three classes, which results in fairly 126 
evenly distributed data across the three classes (Fig. A 2). 127 
Table 1 Rainfall anomaly classification 128 

Class Range 

dry  𝑋𝑋𝑆𝑆_𝐴𝐴𝐴𝐴𝐴𝐴< – 0.5 

average -0.5 <= 𝑋𝑋𝑆𝑆_𝐴𝐴𝐴𝐴𝐴𝐴<0.5 

wet 0.5 <= 𝑋𝑋𝑆𝑆_𝐴𝐴𝐴𝐴𝐴𝐴 

2.2 ENSO & IOD indices 129 
The ENSO phenomenon is represented by MEI, NINO34, NINO3, NINO4 indices, and the Indian Ocean dipole 130 
phenomenon is represented by DMI index. NINO34, NINO3, NINO4 indices are based on tropical sea surface 131 
temperature anomalies (National Center for Atmospheric Research, 2018) and the Multivariate ENSO Index (MEI) is 132 
based on sea-level pressure, zonal and meridional components of the surface wind, sea surface temperature, surface 133 
air temperature, and total cloudiness fraction of the sky (National Oceanic and Atmospheric Administration, 2017). 134 
The Indian Ocean Dipole (IOD) is an oscillation of sea surface temperature in the equatorial Indian ocean between 135 
Arabian sea and south of Indonesia (Bureau of Meteorology Australia, 2017). IOD is identified as relevant to the 136 
climate of Australia (Power et.al., 1999) and countries surrounded by the Indian ocean in southern Asia (Chaudhari et 137 
al., 2013; Maity and Nagesh Kumar, 2006; Qiu et al., 2014; Surendran et al., 2015). The Dipole Mode Index (DMI) 138 
is used to represent the IOD capturing the west and eastern equatorial sea surface temperature gradient.  139 
Data used for the analyses are NINO34, NINO3, NINO4, MEI monthly data from years 1950 – 2013, (National 140 
Oceanic and Atmospheric Administration, 2017; National Center for Atmospheric Research, 2018), and the DMI 141 
monthly data from years 1950-2013 ( HadISST dataset, Japan Agency for Marine-Earth Science and Technology 142 
2017). Because we analyzed the data in rainfall seasons, values of the climate indices over the season are averaged. 143 
For example for the NEM season, the MEI value is the average of January and February monthly values and for the 144 
SWM season, DMI is the average of May, June, July and September values. 145 
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3 Methods  146 
Seasonal values of MEI and DMI were used as the predictors to classify seasons into the three rainfall classes. The 147 
total data set is divided into 75 % for training the model and 25 % for testing model performance. Quadratic 148 
discriminant analysis (QDA) and classification trees were selected for the analyses. A random forest model also was 149 
applied to investigate the reliability of a cross-validated statistical forecast tool based on an advance estimate of MEI 150 
and DMI. We used the R programming language to carry out the statistical analyses. R packages: caret, tree, 151 
randomForest, fitdistriplus, devtools and quantreg are used for the studies.  152 

3.1 Quadratic Discriminant Analysis (QDA) 153 
The mathematical formulation of QDA can be derived from Bayes theorem assuming that observations from each 154 
class are drawn from a Gaussian distribution (James et.al., 2013; Löwe et.al., 2016).  155 
The prior probability 𝜋𝜋𝑘𝑘 represents the randomly chosen observation coming from kth class with density 156 

function𝑓𝑓𝑘𝑘(𝑥𝑥). Bayes theorem states that  157 

 𝑃𝑃𝑃𝑃(𝑌𝑌 = 𝑘𝑘|𝑋𝑋 = 𝑥𝑥) = −
𝜋𝜋𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥)

∑ 𝜋𝜋𝑙𝑙𝑓𝑓𝑙𝑙(𝑥𝑥)𝐾𝐾
𝑙𝑙=1

 (3) 

In Eq.(3), the posterior probability 𝑃𝑃𝑃𝑃(𝑌𝑌 = 𝑘𝑘|𝑋𝑋 = 𝑥𝑥) indicates that observation 𝑋𝑋 = 𝑥𝑥 belongs to the kth class. For p 158 
predictors, the multivariate Gaussian distribution density function is defined for every class k (Eq.(4)). 159 

 𝑓𝑓𝑘𝑘(𝑥𝑥) = −
1

(2𝜋𝜋)𝑝𝑝/2|∑𝑘𝑘|1/2  𝑒𝑒𝑒𝑒𝑒𝑒 �−
1
2

(𝑥𝑥 − 𝜇𝜇𝑘𝑘)𝑇𝑇∑𝑘𝑘
−1(𝑥𝑥 − 𝜇𝜇𝑘𝑘 )� (4) 

In Eq.(2), ∑𝑘𝑘 is the covariance matrix and   𝜇𝜇𝑥𝑥 is the mean vector. The covariance matrix (∑𝑘𝑘) and mean (𝜇𝜇𝑥𝑥) for each 160 
class are estimated from the training data set (Eq.(5), Eq.(6)).  161 

 µ𝑘𝑘 = −
1
𝑁𝑁𝑘𝑘

  � 𝑥𝑥𝑖𝑖
𝑖𝑖:𝑦𝑦𝑖𝑖=𝑘𝑘

         (5) 

 ∑𝑘𝑘 = −
1

(𝑁𝑁𝑘𝑘 − 1)
 � (𝑥𝑥𝑖𝑖 − µ𝑘𝑘)𝑇𝑇(𝑥𝑥𝑖𝑖 − µ𝑘𝑘)
𝑖𝑖:𝑦𝑦𝑖𝑖=𝑘𝑘

 (6) 

Substituting a Gaussian density function for the kth class (Eq.(4)) into Bayes theorem and taking the log values, the 162 

quadratic discriminant function is derived (Eq.(7)). Prior probabilities for class k (𝜋𝜋𝑘𝑘) is calculated by the frequency 163 

of data points of class k in the training data (Eq.(8)). For a total number of 𝑁𝑁 points in the training observations, 𝑁𝑁𝑘𝑘 is 164 
the number of observations belong to kth class.  165 

 𝛿𝛿𝑘𝑘(𝑥𝑥) = −
1
2

 (𝑥𝑥 − 𝜇𝜇𝑥𝑥)𝑇𝑇∑𝑘𝑘
−1(𝑥𝑥 − 𝜇𝜇𝑥𝑥 )  + 𝑙𝑙𝑙𝑙𝑙𝑙 𝜋𝜋𝑘𝑘            (7) 

 𝜋𝜋𝑘𝑘 = −
𝑁𝑁𝑘𝑘
𝑁𝑁

       (8) 

Covariance, mean and prior probability values are inserted into the discriminant function (𝛿𝛿𝑘𝑘(𝑥𝑥)) together with the 166 
state variables (Eq.(5)). The corresponding class is selected according to the largest value of the function. The number 167 

of parameters to be estimated for the QDA model for k classes and p predictors is 𝑘𝑘. 𝑝𝑝. (𝑝𝑝 + 1) ⁄ 2. For this study, the 168 
QDA model output is the probability that an observation of a climate category will fall into each of the rainfall classes. 169 
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3.2 Classification Tree model 170 
For the classification tree model the predictor space is divided into non-overlapping regions (𝑅𝑅1. .𝑅𝑅𝑗𝑗). A classification 171 

tree predicts each observation as belonging to the most commonly occurring class of the training data regions (James 172 
et.al., 2013). Recursive binary splitting is used to grow the classification tree.  173 
Classification error rate, Gini index and cross-entropy are typically used to evaluate the quality of particular split 174 
(James et.al., 2013), and in our study we used the first two indices. Classification error rate (𝐸𝐸) gives fraction of 175 
observation that do not belong to the most commonly occurring class of the training data regions (Eq.(9)). However, 176 

for the tree-growing, the Gini index (𝐺𝐺) is considered as the criterion for splitting into regions (Eq.(10)) 177 
 𝐸𝐸 = 1 −𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘(𝑝̂𝑝𝑚𝑚𝑚𝑚) (9) 

 
𝐺𝐺 = �𝑝̂𝑝𝑚𝑚𝑚𝑚

𝐾𝐾

𝑘𝑘=1

(1 − 𝑝̂𝑝𝑚𝑚𝑚𝑚) (10) 

In Eq.(9) and Eq.(10), 𝑝̂𝑝𝑚𝑚𝑚𝑚  represents the fraction of observations in the mth class that belong to the kth class. The Gini 178 
index is considered as a measure of node purity of the tree model, since small values of the index indicate that node 179 
has a higher number of observations from a single class.  180 
The complexity of the trees are adjusted using a pruning process to produce more interpretable results. Complex trees 181 
reduces training error by overfitting the training data. Simple trees can be interpreted well, however, selecting a model 182 
which can find the pattern of data is important. In order to achieve the low classification error (training error + testing 183 
error), pruning technique is used. First, grow the very large tree, and sub tree is obtained by removing the weak links 184 
of the tree. Using tuning parameter to examine the trade-off between complexity of tree and the training error, and 185 
defining minimum samples for a node, maximum depth of the tree, and maximum number of terminal nodes are some 186 
of the pruning methods (Analytical Vidhya Team, 2016). For this study, we defined the maximum number of nodes 187 
to obtain the simple tree (pruned tree).   188 
Tree models give the probability that an observation falls into each of the three rainfall classes. The predicted class is 189 
assigned based on the highest probability. Tree models handle ties of probability values by randomly assigning the 190 
class.   191 

3.3 Random Forest 192 
A random forest is an ensemble learning method used for classification and regression problems. The method is based 193 
on a multitude of decision trees based on training data with the final model as the mean of the ensemble (Breiman, 194 
2001). Individual trees are built on a random sample of the training data with several predictors from the total number 195 
of predictors. Individual trees are built from the bootstrapped training data set.  196 
There are some features, which can be tuned to make the better performed random forest model. Maximum number 197 
of predictors from the total predictors for individual trees, maximum number of trees, maximum node size of the trees 198 
and minimum sample leaf size are some of these features (Analytical Vidhya Team, 2015). In our study, we use the 199 
maximum number of trees as the main tuning parameters.  200 
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In a random forest model the importance of the variable is measured as the decrease in node impurity from the splits 201 
over the variable. This value is calculated by averaging the Gini index over the multitude of trees with a larger value 202 
indicating high importance of the predictor (James et.al., 2013). 203 
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 204 

Figure 2 Sub basin Rainfall for (a) Morape, (b) Peradeniya,(c) Randenigala, (d) Bowatenna, (e) Laxapana (f) 205 
Norwood, (g) Norton Bridge, and (h) Manampitiya. Rainfall seasons are North East Monsoon (NEM), First Inter-206 
Monsoon (FIM), South West Monsoon (SWM), and Second Inter-Monsoon (SIM) 207 
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4 Results 208 
Monthly rainfall boxplots of eight sub basins over the year for 1950 - 2013 illustrate the seasonal and the spatial 209 
variation of rainfall patterns (Fig. 2). The largest fraction of total rainfall in the arid zone occurs at the end of the SIM 210 
(December) and during the NEM (January - February) with correspondingly high variability whereas there is little 211 
rainfall in the arid zone during the SWM (May - September) with correspondingly little variability (Fig. 2 (h)). The 212 
intermediate zone receives approximately 60% of total rainfall from the SIM and NEM. Although the variability of 213 
the rainfall is low in the intermediate zone, high rainfall can occur in all seasons (Fig. 2 (c) and (d)). In the humid 214 
zone, a large portion of rainfall occurs in SWM and early months of SIM (October-November). High variability of 215 
humid zone rainfall is observed at the end of FIM (April), in the SWM (May-September), and at the start of SIM 216 
(October) (Fig. 2 (a), (b), (e), (f) and (g)).  217 
Similar to other investigators, we observe several strong correlations between rainfall anomalies and the climate 218 
indices (Table A. 1, Table A. 2, and Appendix). Higher correlation values between MEI and rainfall anomalies can 219 
be seen compared to the correlation with other ENSO indices (Table A. 1).  In addition, rainfall in the SWM is very 220 
important for stations in the humid zone of the country which is the source of a large amount of water stored in 221 
reservoirs (Table A. 2). Correlation coefficients between SWM rainfall at Norton Bridge are negative and strong, -222 
0.31 for MEI (p = 0.01) and -0.37 for DMI (p < 0.01). The strength of the correlation notwithstanding, the residuals 223 
from a regression model indicate that high uncertainty would attach to any forecast (Fig. 3). Thus, we are led to 224 
explore the efficacy of classification methods (Appendix). 225 

 226 

Figure 3 Linear regression of rainfall anomaly on MEI and DMI. High values of MEI and DMI are associated with 227 
low values of rainfall. 228 

We present classification results for two sub-basins, one that has the highest rainfall during the NEM, Manampitiya, 229 
and one that has the highest rainfall for the SWM, Norton Bridge (Fig. 4). Norton Bridge represents the areal rainfall 230 
of reservoir catchments in the wet zone and Manampitiya represents the rainfall that contributes to irrigation tanks in 231 
the dry zone. Results of other sub-basins are presented in the supplementary materials (Fig. A 4, Fig. A 5, Fig. A 6, 232 
Fig. A 7, Appendix). Because MEI has higher correlation with rainfall anomalies than other ENSO indices, 233 
classification was done with only MEI and DMI. 234 
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The SWM is a season when the humid zone receives the bulk of rainfall. At Norton Bridge, the occurrences of the dry 235 
rainfall anomaly class in the SWM is seen to “clump” in the region of relatively high MEI and DMI. Both the 236 
classification tree and the QDA successfully identify the pattern (Fig. 4 (a) and (c)) with an overall accuracy of 73 %, 237 
19 and 16 correct out of 22 occurrences (Table 2). In the arid zone the NEM season is one of the most important for 238 
rainfall. At Manampitiya, the MEI provides the primary variable in the classification, with the dry anomaly class being 239 
correctly selected in 52 % by tree model and 95 % with the QDA model. The results suggest that it may be possible 240 
to identify seasons when it is expected to be anomalously dry. The correct classification of “average” conditions likely 241 
has less importance for water managers. We explored classification using two classes, “Dry” and “Not Dry.” In this 242 
case, the classification model again correctly classifies 86 % of the anonymously dry cases and gets more than 69 % 243 
of the “Not Dry” cases correct (Fig. 5).   244 

 245 
Figure 4 Norton Bridge and Manampitiya rainfall classes (dry, average, wet) identified by ENSO and IOD 246 
phenomena. (a) Norton Bridge SWM rainfall classification tree model (b) Manampitiya NEM rainfall classification 247 
tree model (c) Norton Bridge SWM rainfall QDA (d) Manampitiya NEM rainfall classification by QDA 248 
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 249 

Figure 5 Classification tree for Norton Bridge SWM rainfall using two categories (dry and not dry) 250 

Table 2 Classification model results. Highlighted cells indicate where there may be information content with respect 251 
to forecasting either dry or wet anomaly classes as judged by a classification success rate of at least 2/3.  252 

Season 
Manampitiya Norton Bridge 
QDA Model QDA Model 

Dry Normal Wet Dry Normal Wet 
NEM 22/23 11/25 1/16 5/20 25/29 2/15 
FIM 9/21 20/24 5/19 3/20 14/23 14/20 

SWM 2/21 30/27 2/16 16/22 9/22 9/20 
SIM 17/25 13/20 7/19 7/22 15/22 11/20 

Season Tree Model Tree Model 
Dry Normal Wet Dry Normal Wet 

NEM 12/23 9/25 11/16 11/20 18/29 8/15 
FIM 9/21 19/24 8/19 13/21 6/23 15/20 

SWM 6/21 25/27 7/16 19/22 8/22 9/20 
SIM 20/25 0/20 17/19 19/22 5/22 14/20 

 253 

Classification trees are known to be unstable. That is, small changes in the observations can lead to large changes in 254 
the decision tree. The random forest approach overcomes the issue by building a “bag” of trees from bootstrap samples. 255 
The robustness of the model can then be checked by considering the “out-of-bag” error. The results of the random 256 
forest indicate that predictions of three rainfall anomaly classes using MEI and DMI is not feasible (Table 3). The out-257 
of-bag error rate is close to two thirds, which for three categories is equivalent to a random selection. 258 
Table 3 Results of random forest ensemble classification results 259 

Season 
Norton Bridge Manampitiya 

Dry Normal Wet 
OOB 

Er Dry Normal Wet 
OOB 

Er 
NEM 11/20 12/29 6/15 55% 14/23 10/25 5/16 55% 

FIM 7/21 8/23 8/20 64% 10/21 11/24 6/19 58% 

  Dry 
Not dry 

  Dry Not dry 

Not dry 
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SWM 9/22 6/22 8/20 64% 6/21 17/27 5/16 56% 

SIM 13/22 9/22 9/20 52% 15/25 8/20 7/19 53% 

 260 

However, the results of the random forest for a classification as either “Dry” or “Not Dry” suggests that there may 261 
be skill in such a prediction. The out-of-bag error rates for this case range from 22 % to 38 % for Norton Bridge and 262 
Manampitiya (Table 3) and from 20 % to 39 % across all stations (Table A. 7).    263 

Table 4 Results of random forest ensemble classification results for two rainfall anomaly classes 264 

Season 
Norton Bridge Manampitiya 

Dry Not dry OOB 
Error Dry Not dry OOB 

Error 
NEM 9/20 36/44 30 % 13/23 33/41 28 % 
FIM 5/21 35/43 38 % 8/21 35/43 33 % 

SWM 9/22 32/42 36 % 5/16 34/43 39 % 
SIM 10/22 36/42 28 % 16/25 34/39 22 % 

 265 

The QDA method produces results that are promising with respect to identification of extreme dry events as 266 
indicated by seasonal rainfall (Table 5). 267 

Table 5 Classification results for extreme dry (very low rainfall) and wet (very high rainfall) seasons. 268 

Class Range Norton Bridge SWM Manampitiya NEM 

tree QDA tree QDA 

Very dry  𝑋𝑋𝑆𝑆_𝐴𝐴𝐴𝐴𝐴𝐴< – 1.0 10/11 10/11 6/11 11/11 

dry -1.0 <= 𝑋𝑋𝑆𝑆_𝐴𝐴𝐴𝐴𝐴𝐴< – 0.5 9/11 6/11 5/11 9/10 

average -0.5 <= 𝑋𝑋𝑆𝑆_𝐴𝐴𝐴𝐴𝐴𝐴<0.5 8/22 9/22 9/25 11/25 

wet 0.5 <= 𝑋𝑋𝑆𝑆_𝐴𝐴𝐴𝐴𝐴𝐴<= 1.0 5/11 5/11 1/5 0/5 

Very wet 1.0 <= 𝑋𝑋𝑆𝑆_𝐴𝐴𝐴𝐴𝐴𝐴 6/11 6/11 7/11 1/11 

5 Discussion 269 

Understanding seasonal rainfall variability across the spatially diverse Mahaweli and Kelani river basins is important 270 
for irrigation and hydropower water planning. SWM and SIM are the key rainfall seasons for sub basins in the humid 271 
zone (Norton Bridge, Morape, Peradeniya and Laxapana), delivering 80 % of annual rainfall (Fig. 2 (a), (b), (e), (f)). 272 
For the arid zone (Manampitiya) and intermediate zone (Randenigala, Bowatenna) sub basins, the major season is 273 
SIM, which delivers more than 40 % of annual rainfall (Fig. 2 (c),(d),(h)). The arid zone also gets rainfall during the 274 
NEM (24 % of annual rainfall at Manampitiya) and the intermediate zone gets rainfall during the SWM (25 % - 30 % 275 
of annual rainfall at Randenigala and Bowatenna).  276 
Climate teleconnection indices are related to rainfall anomalies observed during the two main growing seasons, Yala 277 
and Maha. The Maha agriculture season (October-March) depends on rain from SIM and NEM. During El Nino events 278 
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rainfall increases for the first three months of the Maha season (SIM: October-December) (Fig. A 4, Fig. A 5, Fig. A 279 
6, Fig. A 8) (Ropelewski and Halpert, 1995) and decreases during the last three months (NEM: January-March)(Fig. 280 
4 (b)). In Yala season (April-September), La-Nina events enhance the rainfall during SWM (Fig. 4 (a), (c), Fig. A 4, 281 
Fig. A 5, Fig. A 6, Fig. A 8)(Whitaker et.al, 2001). During El Nino events the SWM rainfall is reduced (Fig. 4 (a), (c), 282 
Fig. A 8, Fig. A 9) (Chandrasekara et.al, 2017; Chandimala and Zubair, 2007; Zubair, 2003). The El Nino impact 283 
during the SWM is not as significant as it is during the NEM season (International Research Institute, 2017a). We 284 
find, however, that there is an interaction between two teleconnection indices, MEI and IOD for SWM rainfall. During 285 
the Yala season there is a high probability of having a drought when both the IOD and MEI are positive (Fig. 5). Also 286 
not having drought is probable when both the IOD and MEI are negative (Fig. 5, Fig. A 8, Fig. A 9).  287 
Classification of wet, average, and dry rainfall anomalies using the MEI and DMI indices is successful. For example, 288 
a dry SWM season for Norton Bridge (Table 2) and other humid-zone stations (Table A. 4) is classified correctly with 289 
greater than 70 % accuracy with QDA and tree models. However, a random forest approach demonstrates that there 290 
is little skill in identifying a full wet-average-dry classification. However, a random forest model using only two 291 
rainfall categories shows more than 60 % accuracy in identifying “dry” and “not dry” classes of key rainfall seasons 292 
of the humid zone (Table 4, Table A. 7). Similarly, for arid zone locations such as Manampitiya, the dry rainfall class 293 
identification for NEM and SIM seasons is about 60 % (Table 4, Table A. 7).     294 
Our statistical classification models can be combined with MEI and DMI forecasts to indicate the season-ahead 295 
expectation for rainfall. ENSO forecasts are available from the International Research Institute for Climate and Society 296 
(International Research Institute, 2017b) and IOD forecasts are available in the Bureau of Meteorology (BOM), 297 
Australian Government (Bureau of Meteorology, 2017). ENSO and IOD predictions are also associated with the 298 
uncertainty. Therefore, final forecast accuracy is a combination of the MEI, DMI forecast uncertainties and model’s 299 
accuracy rate in each class. Although overall prediction accuracy is not extremely high, a forecast of an anomalously 300 
low rainfall season can have value for risk-averse farmers (Cabrera et.al., 2007) and can guide plans for hydropower 301 
management (Block and Goddard, 2012).  302 
The electricity and agriculture sectors of Sri Lanka heavily rely on Mahaweli and Kelani river water resources so 303 
season ahead forecasts of abnormally low rainfall should be useful for decisions on adaptation measures. For example, 304 
water availability of the first three months of a growing season is important for crop selection and the extent of land 305 
to be cultivated. Hydropower planning and scheduling of maintenance of the power plants also can benefit from 306 
season-ahead forecasts. The damage that can occur due to incorrect rainfall forecasts in the agriculture and energy 307 
sectors can be minimized with emergency planning during the season, which is the usual practice.  308 
Although the accuracy of predicting low or not low seasonal rainfall is not very high, decisions based on forecasts that 309 
are improvements over climate averages should be an improvement over current practices. The accuracy of statistical 310 
models can be improved with longer records, which are important to train the classification models.  Also, models can 311 
be fine-tuned for important shorter periods such as crop planting months and harvesting months for irrigation water 312 
planning.  313 
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6 Conclusion 314 
ENSO and IOD phenomena teleconnections with river basin rainfall provide potentially useful information for water 315 
resource management. Relationships identified between teleconnection indices and river basin rainfall agree with other 316 
research findings. Prediction of seasonal rainfall classes from ENSO and IOD indices can inform water resources 317 
managers in reservoir operation planning for both hydropower and irrigation releases.   318 

Code availability  319 

Codes use for the analysis and generate the graphs can be found at: 320 
https://github.com/thusharadesilva/Rainfall_Season_Classification.git  321 

Data availability 322 

Areal rainfall data can be found from Ceylon Electricity Board or Mahaweli Authority of Sri Lanka. It is required to 323 
get the data from either of these organization and it is not possible to make the data publically available. We added 324 
data of one station with the codes to test the codes, however, name is not mentioned to protect the privacy. Climate 325 
indices data are publically available and references are given.   326 
DMI data: Japan Agency for Marine Earth Science and Technology.: SST/DMI data set and  327 
MEI data: National Oceanic and Atmospheric Administration.: El Nino Southern oscilation 328 
NINO3, NINO3.4, NINO4 data: National Center for Atmospheric Research.: NINO SST Indices (NINO 1+2, 3, 3.4, 329 
4; ONI and TNI)  330 

 331 
Appendix: Identifying ENSO Influences on Rainfall with Classification 332 
Models: Implications for Water Resource Management of Sri Lanka 333 

Normality Testing: 334 

The Shapiro-Wilk’s method is used to identify the normality of rainfall anomaly distribution. The Manampitiya NEM 335 
normality test results are given below as an example.  336 
Data 1: original data 337 
W =  0.96675, p-value = 0.08185 338 
Data 2: data transformed by square root 339 
W =  0.98772, p-value = 0.7772 340 
Data 3: data transformed by log 341 
W =  0.91577, p-value = 0.0003325 342 
Further, from data plots (Fig. A 1) and the S-W statistic, we conclude that the square root transformed data is closer 343 
to being normally distributed than the other forms. 344 
 345 
 346 
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 347 

Figure A 1 Manampitiya NEM standardized data (a) original form qqplot (b) square root form qqplot (c) original 348 
form density plot (d) square root form density plot 349 

Classification of data 350 
Using 0.5 as a threshold for a normal distribution defines portions of the data that are fairly evenly distributed into 351 
three categories – about 31 %, 38 %, and 31 % for a normal distribution (Fig. A 2). We deemed this a reasonable 352 
choice for our analysis. 353 
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 354 

Figure A 2 (a) Norton Bridge SWM rainfall anomaly distribution (b) Manampitiya NEM rainfall anomaly distribution 355 

Correlation analysis with multiple climate indices 356 

We examined the correlation between rainfall anomalies and multiple climate indices to choose the two climate indices 357 
MEI and DMI (Fig. A 3, Table A. 1). The ENSO phenomenon is represented by MEI, NINO34, NINO3, NINO4 358 
indices.  Correlation analysis indicates that MEI, which is estimated using several climate factors such as sea-level 359 
pressure, zonal and meridional components of the surface wind, sea surface temperature, surface air temperature, and 360 
total cloudiness fraction of the sky (National Oceanic and Atmospheric Administration, 2017), demonstrates higher 361 
correlation with rainfall anomalies in sub-basins for all rainfall seasons compared to the NINO34, NINO3 and NINO4. 362 
The Indian Ocean dipole phenomenon is represented by the DMI index, which represents the gradient of the sea 363 
surface temperature. Based on the correlation analysis and the content of the indices, we selected MEI as the indicator 364 
for ENSO and DMI as the indicator for IOD. 365 

 366 
Figure A 3 Correlation between Norwood rainfall anomalies with multiple climate indices 367 
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Table A. 1 Correlation analysis of rainfall anomalies and climate indices 368 

Rainfall Morape   Peradeniya 

Month MEI NINO34 NINO3 NINO4 DMI   MEI NINO34 NINO3 NINO4 DMI 
NEM -0.35 -0.35 -0.34 -0.38 -0.09   -0.38 -0.40 -0.39 -0.42 -0.11 
FIM -0.28 -0.19 -0.28 -0.07 -0.11  -0.27 -0.18 -0.30 -0.06 -0.06 
SWM -0.35 -0.24 -0.23 -0.26 -0.29   -0.35 -0.26 -0.25 -0.27 -0.31 
SIM 0.21 0.23 0.27 0.19 0.12   0.17 0.19 0.21 0.15 0.09 

Rainfall Laxapana   Norwood 
Month MEI NINO34 NINO3 NINO4 DMI   MEI NINO34 NINO3 NINO4 DMI 
NEM -0.27 -0.26 -0.28 -0.27 -0.01   -0.28 -0.26 -0.29 -0.27 -0.04 
FIM -0.28 -0.16 -0.27 -0.03 -0.07  -0.27 -0.18 -0.26 -0.03 -0.13 
SWM -0.3 -0.23 -0.21 -0.25 -0.31   -0.21 -0.12 -0.15 -0.16 -0.24 
SIM 0.1 0.10 0.14 0.06 0.08   0.29 0.31 0.32 0.27 0.28 

Rainfall Randenigala   Bowatenna 
Month MEI NINO34 NINO3 NINO4 DMI   MEI NINO34 NINO3 NINO4 DMI 
NEM -0.30 -0.31 -0.29 -0.34 -0.11   -0.35 -0.36 -0.35 -0.38 -0.2 
FIM -0.29 -0.23 -0.33 -0.10 -0.04  -0.23 -0.17 -0.25 -0.09 -0.02 
SWM -0.17 -0.12 -0.09 -0.18 -0.24   -0.18 -0.09 -0.05 -0.11 -0.12 
SIM 0.37 0.38 0.41 0.36 0.35   0.35 0.41 0.40 0.40 0.36 

Rainfall Norton Bridge   Manampitiya 

Month MEI NINO34 NINO3 NINO4 DMI   MEI NINO34 NINO3 NINO4 DMI 
NEM -0.32 -0.30 -0.33 -0.33 -0.01   -0.26 -0.28 -0.26 -0.28 -0.16 
FIM -0.18 -0.12 -0.21 -0.01 -0.08  -0.2 -0.17 -0.31 -0.06 -0.14 
SWM -0.31 -0.22 -0.21 -0.22 -0.37   -0.07 0.08 0.08 -0.01 -0.03 
SIM 0.02 -0.02 0.03 -0.04 -0.15   0.45 0.46 0.44 0.46 0.51 

 369 

Correlation analysis with MEI and DMI climate indices 370 
Correlation coefficients between rainfall anomalies and MEI and DMI are negative for the NEM, FIM and SWM 371 
seasons and positive for the SIM season. Rainfall anomalies correlations to the DMI are not stronger as the correlations 372 
to the MEI. However, there are strong correlations for the anomalies of major monsoons to the sub basins and DMI 373 
values. For example, wet sub basins (Morape, Peradeniya, Laxapana, Norwood, Norton Bridge) have high correlation 374 
coefficient between SWM rainfall anomalies and DMI, while dry zone (Manampitiya) and intermediate zone 375 
(Randenigala, Bowatenna) sub basins have high correlation coefficient between NEM and SIM rainfall anomalies.   376 

Table A. 2 Correlation between rainfall anomalies and MEI, DMI indices. High correlation coefficients are 377 
highlighted. 378 

Rainfall Morape Peradeniya Randenigala Bowatenna 

Month MEI DMI MEI DMI MEI DMI MEI DMI 

NEM -0.35 -0.09 -0.38 -0.11 -0.30 -0.11 -0.35 -0.20 
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FIM -0.28 -0.11 -0.27 -0.06 -0.29 -0.04 -0.23 -0.02 

SWM -0.35 -0.29 -0.35 -0.31 -0.17 -0.24 -0.18 -0.12 

SIM 0.21 0.12 0.17 0.09 0.37 0.35 0.35 0.36 

Rainfall Laxapana Norwood Norton Bridge Manampitiya 

Month MEI DMI MEI DMI MEI DMI MEI DMI 

NEM -0.27 -0.01 -0.28 -0.04 -0.32 -0.01 -0.26 -0.16 

FIM -0.28 -0.07 -0.27 -0.13 -0.18 -0.08 -0.20 -0.14 

SWM -0.30 -0.31 -0.21 -0.24 -0.31 -0.37 -0.07 -0.03 

SIM 0.10 0.08 0.29 0.28 0.02 -0.15 0.45 0.51 

 379 

Classification methods classification tree models, random forest and quadratic discriminant analysis identify the 380 
relationship between standardized rainfall anomaly classes (dry, average, wet) and MEI and DMI values (Fig. A 4, 381 
Fig. A 5, Fig. A 6, Fig. A 7). Positive values of MEI and DMI values resulted dry or average rainfall class for the 382 
NEM, FIM and SWM seasons. However, for SIM rainfall has wet or average class for the positive values of MEI and 383 
DMI. Accuracy of model result are high for the dominant monsoon rainfall seasons of each sub basin (Table A. 3, 384 
Table A. 4, Table A. 5). Ensemble model approach with random forest has given comparatively lower out-of-bag error 385 
rate for the dominant monsoons’ rainfall anomaly classification (Table A. 5).  For example, wet zone sub basins such 386 
as Norton Bridge, Norwood, Laxapana, Peradeniya and Morape random forest error rate is lower for the SWM and 387 
SIM seasons. Same as, dry and intermediate sub basins Manampitiya, Randenigala and Bowatenna NEM and SIM 388 
rainfall classes accuracy rate is high than other rainfall seasons. Also all three models have higher accuracy rate in 389 
identifying dry events and error rate of identifying wet and dry class also less 15 % (Table A. 3, Table A. 4, Table A. 390 
5).  Further analysis of two rainfall classes dry and not dry rainfall classes are identified relevant to the MEI and DMI 391 
values with classification tree and random forest methods (Fig. A 8, Fig. A 9). Classification tree models for two 392 
classes have higher accuracy rate as 65 % - 84 % for eight sub basins (Table A. 6). Random forest out-of-bag error 393 
for two classes models are vary between 20 % - 39 % and shows higher skill in identifying rainfall classes for major 394 
monsoons of the sub basins (Table A. 7). MEI shows higher variable importance of identifying the rainfall classes 395 
compare to the DMI values. Specially, for NEM and SIM which are important to the dry zone sub basins importance 396 
of MEI is high in the classification. However, some of the wet zone sub basins shows equal importance of DMI 397 
variable in identifying two rainfall classes in FIM and SWM (Fig. A 10).  398 

 399 
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Figure A 4 Identifying relationships between three rainfall classes (dry, average, wet)  and MEI and DMI values 
using classification tree models.(a)Morape (b)Peradeniya (c)Randenigala (d)Bowatenna 
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Figure A 5 Identifying relationships between three rainfall classes (dry, average, wet)  and MEI and DMI values 
using classification tree models. (e)Laxapana (f)Norwood (g)Norton Bridge (h)Manampitiya 
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Table A. 3 Classification tree model results. Highlighted cells indicate where there may be information content with 410 
respect to forecasting either dry or wet anomaly classes 411 

Season Morape Peradeniya 
Dry Normal Wet Dry Normal Wet 

NEM 21/21 13/29 0/14 10/20 24/31 0/13 
FIM 5/19 19/25 12/20 5/20 28/28 6/16 

SWM 12/24 13/21 12/19 9/23 11/19 18/22 
SIM 8/19 18/28 9/17 12/25 16/19 5/20 

Season Randenigala Bowatenna 
Dry Normal Wet Dry Normal Wet 

NEM 11/24 11/25 12/15 24/24 12/19 0/21 
FIM 8/20 24/25 3/19 17/21 17/25 0/18 

SWM 8/21 23/24 8/19 18/25 6/21 12/18 
SIM 14/24 11/21 15/19 17/21 9/26 13/17 

Season Laxapana Norwood 
Dry Normal Wet Dry Normal Wet 

NEM 0/19 24/24 6/21 4/19 22/28 10/17 
FIM 2/20 14/26 18/18 7/19 19/21 12/24 

SWM 19/23 14/20 8/21 10/20 14/27 11/17 
SIM 8/21 22/26 9/17 16/20 15/25 11/19 

Season Norton Bridge Manampitiya 
Dry Normal Wet Dry Normal Wet 

NEM 11/20 18/29 8/15 12/23 9/25 11/16 
FIM 13/21 6/23 15/20 9/21 19/24 8/19 

SWM 19/22 8/22 9/20 6/21 25/27 7/16 
SIM 19/22 5/22 14/20 20/25 0/20 17/19 

 412 

 413 

 414 

 415 
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Figure A 6 Identifying relationships between three rainfall classes (dry, average, wet)  and MEI and DMI values 
using QDA models.(a) Morape (b) Peradeniya (c) Randenigala (d) Bowatenna 
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 418 

Figure A 7 Identifying relationships between three rainfall classes (dry, average, wet) and MEI and DMI values 419 
using classification tree models. (e) Laxapana (f) Norwood (g) Norton Bridge (h) Manampitiya 420 
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Table A. 4 Classification QDA model results. Highlighted cells indicate where there may be information content 429 
with respect to forecasting either dry or wet anomaly classes 430 

Season Morape Peradeniya 
Dry Normal Wet Dry Normal Wet 

NEM 6/21 28/29 0/14 10/20 28/31 0/13 
FIM 7/19 22/25 9/20 5/20 28/28 2/16 

SWM 19/24 6/21 13/19 20/23 6/19 13/22 
SIM 5/19 26/28 2/17 13/25 16/19 4/20 

Season Randenigala Bowatenna 
Dry Normal Wet Dry Normal Wet 

NEM 17/24 8/25 4/15 24/24 9/19 3/21 
FIM 8/20 13/25 12/19 9/21 23/25 1/18 

SWM 4/21 13/24 8/19 19/25 7/21 8/18 
SIM 19/24 16/21 6/19 13/21 15/26 10/17 

Season Laxapana Norwood 
Dry Normal Wet Dry Normal Wet 

NEM 4/19 15/24 14/21 8/19 23/28 6/17 
FIM 4/20 22/26 8/18 6/19 16/21 13/24 

SWM 20/23 13/20 10/21 6/20 19/27 8/17 
SIM 9/21 22/26 3/17 11/20 13/25 8/19 

Season Norton Bridge Manampitiya 
Dry Normal Wet Dry Normal Wet 

NEM 5/20 25/29 2/15 22/23 11/25 1/16 
FIM 3/20 14/23 14/20 9/21 20/24 5/19 

SWM 16/22 9/22 9/20 2/21 26/27 6/16 
SIM 7/22 15/22 11/20 17/25 13/20 7/19 

 431 
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Table A. 5 Random forest model results. Highlighted cells indicate where there may be information content with 441 
respect to forecasting either dry or wet anomaly classes 442 

Season Morape Peradeniya 
Dry Normal Wet Dry Normal Wet 

NEM 12/21 12/29 5/14 9/20 17/31 5/13 
FIM 8/19 14/25 10/20 7/20 17/28 6/16 

SWM 11/24 6/21 11/19 11/23 1/19 13/22 
SIM 8/19 16/28 2/17 5/25 9/19 6/20 

Season Randenigala Bowatenna 
Dry Normal Wet Dry Normal Wet 

NEM 10/24 8/25 4/15 16/24 6/19 11/21 
FIM 9/20 8/25 8/19 16/21 14/25 4/18 

SWM 9/21 14/24 6/19 14/25 7/21 5/18 
SIM 15/24 6/21 7/19 3/21 14/26 11/17 

Season Laxapana Norwood 
Dry Normal Wet Dry Normal Wet 

NEM 3/19 11/24 9/21 9/19 16/28 8/17 
FIM 1/20 18/26 1/18 8/19 10/21 12/24 

SWM 19/23 9/20 4/21 6/20 15/27 4/17 
SIM 10/21 12/26 3/17 8/20 14/25 8/19 

Season Norton Bridge Manampitiya 
Dry Normal Wet Dry Normal Wet 

NEM 11/20 12/29 6/15 14/23 10/25 5/16 
FIM 7/21 8/23 8/20 10/21 11/24 6/19 

SWM 9/22 6/22 8/20 6/21 17/27 5/16 
SIM 13/22 9/22 9/20 15/25 8/20 7/19 

 443 

 444 

 445 

 446 
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Figure A 8 Identifying relationships between two rainfall classes (dry, not dry)  and MEI and DMI values using 
classification tree models for wet zone sub basins for SWM and SIM seasons. (a) Morape (b) Peradeniya (c) 
Laxapana (d) Norwood (e) Norton Bridge   
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 448 

Figure A 9 Identifying relationships between two rainfall classes (dry, not dry) and MEI and DMI values using 449 
classification tree models for dry and intermediate zone sub basins for NEM and SIM seasons. (f) Randenigala (g) 450 
Bowatenna (h) Manampitiya 451 

 452 

Table A. 6 Classification tree model results for major rainfall season to the sub basins.  453 

Season 
Morape Peradeniya Laxapana Norwood Norton Bridge 

Dry Not dry Dry Not dry Dry Not dry Dry Not dry Dry Not dry 
SWM 21/24 22/40 18/23 26/41 19/23 27/41 12/20 34/44 19/22 29/42 
SIM 10/19 39/45 12/19 30/45 8/21 36/43 11/20 38/44 13/22 36/42 

Season 
Randenigala Bowatenna Manampitiya     

Dry Not dry Dry Not dry Dry Not dry     
NEM 11/24 31/40 14/24 34/40 13/23 34/41     
SIM 23/24 22/40 15/21 32/43 22/25 26/39     

 454 
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Table A. 7 Random forest model results.  455 

Season 
Morape Peradeniya 

Dry Not dry OOB 
Error Dry Not dry OOB 

Error 
NEM 10/21 33/43 33% 8/20 34/44 34% 
FIM 5/19 36/45 36% 6/20 37/44 33% 

SWM 11/24 29/40 38% 11/23 28/41 39% 
SIM 5/19 39/45 33% 5/19 37/45 34% 

Season 
Randenigala Bowatenna 

Dry Not dry OOB 
Error Dry Not dry OOB 

Error 
NEM 8/24 31/40 39% 15/24 33/40 25% 
FIM 6/20 39/44 30% 13/21 38/43 20% 

SWM 7/21 38/43 30% 11/25 29/39 38% 
SIM 13/24 31/40 31% 6/21 35/43 36% 

Season 
Laxapana Norwood 

Dry Not dry OOB 
Error Dry Not dry OOB 

Error 
NEM 8/20 37/45 30% 10/19 39/45 23% 
FIM 7/20 37/44 31% 8/19 39/45 26% 

SWM 12/23 27/41 39% 7/20 37/44 31% 
SIM 9/21 34/43 33% 7/20 37/44 31% 

Season 
Norton Bridge Manampitiya 

Dry Not dry OOB 
Error Dry Not dry OOB 

Error 
NEM 9/20 36/44 30% 13/23 33/41 28% 
FIM 5/21 35/43 38% 8/21 35/43 33% 

SWM 9/22 32/42 36% 5/16 34/43 39% 
SIM 10/22 36/42 28% 16/25 34/39 22% 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

 464 
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 465 

Figure A 10 Random forest importance of variable to identify the dry and not dry classes of rainfall anomalies 466 

 467 

Author contributions 468 

TDM and GMH conceptualized the study and TDM carried out the data analysis. TDM prepared the paper with 469 
contribution from GMH. 470 

Competing interests 471 

The authors declare that they have no conflict of interest. 472 

Acknowledgement 473 

This research is part of a multidisciplinary research initiative called Agricultural Decision-Making and Adaptation to 474 
Precipitation Trends in Sri Lanka (ADAPT-SL) at Vanderbilt Institute for Energy and Environment (VIEE). The work 475 
is supported by WSC Program Grant No. NSF-EAR 1204685. 476 

References 477 

Morape Randenigala Peradeniya 

MEI DMI MEI DMI MEI DMI MEI DMI MEI DMI MEI DMI MEI DMI MEI DMI MEI DMI MEI DMI MEI DMI MEI MEI DMI MEI DMI MEI DMI MEI DMI DMI 

MEI DMI MEI DMI MEI DMI MEI DMI MEI DMI 
Manampitiya 

Bowatenna 

Norwood Norton Bridge 

M
ea

n 
D

ec
re

as
e 

G
in

i  

Climate Indices 
MEI DMI 

Climate Indices Climate Indices Climate Indices 

Laxapana 
DMI MEI DMI MEI DMI MEI DMI MEI DMI MEI DMI MEI DMI MEI DMI MEI DMI MEI DMI MEI DMI 

NEM      FIM       SWM     SIM 

MEI 

M
ea

n 
D

ec
re

as
e 

G
in

i  
NEM      FIM       SWM     SIM NEM      FIM       SWM     SIM 

NEM      FIM       SWM     SIM NEM      FIM       SWM     SIM NEM      FIM       SWM     SIM 

NEM      FIM        SWM      SIM 

NEM      FIM        SWM      SIM 



31 
 

Amarasekera, K. N., Lee, R. F., Williams, E. R., & Eltahir, E. A. B.: ENSO and the natural variability in the flow 478 
tropical rivers. Journal of Hydrology, 200(1–4), 24–39, https://doi.org/10.1016/S0022-1694(96)03340-9, 1997 479 

Analytical Vidhya Team. (2015). Tunning the parameters of your Random Forest model., available at: 480 
https://www.analyticsvidhya.com/blog/2015/06/tuning-random-forest-model/, last access: 12 March 12 2018 481 

Analytical Vidhya Team. (2016). A Complete Tutorial on Tree Based Modeling from Scratch., available at: 482 
https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-modeling-scratch-in-python/, last 483 
access: 12 March 2018 484 

Block, P., & Goddard, L.: Statistical and Dynamical Climate Predictions to Guide Water Resources in Ethiopia, 485 
138(June), 287–298. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000181, 2012. 486 

Breiman, L.: Randomforest2001. Machine Learning, 45(1), 5–32. https://doi.org/10.1017/CBO9781107415324.004, 487 
2001. 488 

Bureau of Meteorology.: Record-breaking La Niña events. Bureau of Meteorology, 26. Retrieved from 489 
http://www.bom.gov.au/climate/enso/history/La-Nina-2010-12.pdf, 2012. 490 

Bureau of Meteorology.: Indian Ocean, POAMA monthly mean IOD forecast., available at: 491 
http://www.bom.gov.au/climate/enso/#tabs=Indian-Ocean, 2017, last access: 30 March 2017 492 

Cabrera, V. E., Letson, D., & Podesta, G.: The value of climate information when farm programs matter, 93, 25–42. 493 
https://doi.org/10.1016/j.agsy.2006.04.005, 2007. 494 

Cao, Q., Hao, Z., Yuan, F., Su, Z., Berndtsson, R., Hao, J., & Nyima, T.: Impact of ENSO regimes on developing- 495 
and decaying-phase precipitation during rainy season in China. Hydrology and Earth System Sciences, 21(11), 496 
5415–5426, 2017. 497 

Ceylon Electricity Board.: Long Term Generation Expansion Plan 2015-2034. available at: 498 
http://pucsl.gov.lk/english/wp-content/uploads/2015/09/Long-Term-Generation-Plan-2015-2034-PUCSL.pdf, 2015, 499 
last access: 1 September 2017. 500 

Ceylon Electricity Board.: River Basin Hydrology Data, System control branch Transmission Division. Sri Lanka, 501 
2017. 502 

Chandimala, J., & Zubair, L.: Predictability of stream flow and rainfall based on ENSO for water resources 503 
management in Sri Lanka. Journal of Hydrology, 335(3–4), 303–312, https://doi.org/10.1016/j.jhydrol.2006.11.024, 504 
2007. 505 

Chandrasekara, S., Prasanna, V., & Kwon, H. H.: Monitoring Water Resources over the Kotmale Reservoir in Sri 506 
Lanka Using ENSO Phases. Advances in Meteorology, https://doi.org/10.1155/2017/4025964, 2017. 507 

Chaudhari, H. S., Pokhrel, S., Mohanty, S., & Saha, S. K.: Seasonal prediction of Indian summer monsoon in NCEP 508 
coupled and uncoupled model. Theoretical and Applied Climatology, 114(3–4), 459–477, 509 
https://doi.org/10.1007/s00704-013-0854-8, 2013. 510 

Denise, C., Rogers, W., & Beringer, J.: Describing rainfall in northern Australia using multiple climate indices, 597–511 
615. https://doi.org/10.5194/bg-14-597-2017, 2017. 512 

Department of Agriculture Sri Lanka.: Climate zones of Sri Lanka., available at: 513 
https://www.doa.gov.lk/images/weather_climate/Climatezone.jpg, last access: 7 November 2017 514 

Department of Meteorology Sri Lanka.: Climate of Sri Lanka., available at: 515 
http://www.meteo.gov.lk/index.php?option=com_content&view=article&id=94&Itemid=310&lang=en, last access: 516 



32 
 

7 November 2017 517 

Dettinger, M. D., & Diaz, H. F.: Global Characteristics of Stream Flow Seasonality and Variability, Journal of 518 
Hydrometeorology, 1(4), 289–310. https://doi.org/10.1175/1525-7541(2000)001<0289:GCOSFS>2.0.CO;2, 2000. 519 

Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., & Mearns, L. O.: Climate extremes: 520 
Observations, modeling, and impacts. Science, 289(5487), 2068–2074. 521 
https://doi.org/10.1126/science.289.5487.2068, 2000. 522 

Eden, J. M., Van Oldenborgh, G. J., Hawkins, E., & Suckling, E. B.: A global empirical system for probabilistic 523 
seasonal climate prediction. Geoscientific Model Development, 8(12), 3947–3973. https://doi.org/10.5194/gmd-8-524 
3947-2015, 2015. 525 

Gerlitz, L., Vorogushyn, S., Apel, H., Gafurov, A., Unger-Shayesteh, K., & Merz, B. A.:  Statistically based 526 
seasonal precipitation forecast model with automatic predictor selection and its application to central and south Asia. 527 
Hydrology and Earth System Sciences, 20(11), 4605–4623. https://doi.org/10.5194/hess-20-4605-2016, 2016. 528 

International research institute.: ENSO resources, El-Nino teleconnections & La-Nina teleconnections., available at: 529 
http://iri.columbia.edu/our-expertise/climate/enso/, 2017a, last access: 1 January 2017. 530 

International research institute.: IRI ENSO forecast. available at: http://iri.columbia.edu/our-531 
expertise/climate/forecasts/enso/current, 2017b, last access: 1 January 2017. 532 

International Research Institute for Climate Society.: IRI Seasonal Precipitation Forecast., available at: 533 
http://iridl.ldeo.columbia.edu/maproom/Global/Forecasts/NMME_Seasonal_Forecasts/Precipitation_ELR.html, 534 
2018, last access: 12 February 2018.  535 

James, G., Witten, D., Hastie, T., & Tibshirani, R.: Springer Texts in Statistics An Introduction to Statistical 536 
Learning - with Applications in R. https://doi.org/10.1007/978-1-4614-7138-7, 2013. 537 

Japan Agency for Marine Earth Science and Technology.: SST/DMI data set. available at: 538 
http://www.jamstec.go.jp/aplinfo/sintexf/DATA/dmi.monthly.txt, 2019. 539 

Jentsch, A., Kreyling, J., & Beierkuhnlein, C.: A new generation of events , not trends experiments. Frontiers in 540 
Ecology and the Environment, 5(7), 365–374. https://doi.org/10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2, 541 
2007. 542 

Jha, S., Sehgal, V. K., Raghava, R., & Sinha, M.: Teleconnections of ENSO and IOD to summer monsoon and rice 543 
production potential of India. Dynamics of Atmospheres and Oceans, 76, 93–104. 544 
https://doi.org/10.1016/j.dynatmoce.2016.10.001, 2016. 545 

Knapp, A. K., Hoover, D. L., Wilcox, K. R., Avolio, M. L., Koerner, S. E., La Pierre, K. J., Smith, M. D.: 546 
Characterizing differences in precipitation regimes of extreme wet and dry years: Implications for climate change 547 
experiments. Global Change Biology, 21(7), 2624–2633. https://doi.org/10.1111/gcb.12888, 2015. 548 

Korecha, D., & Sorteberg, A. Validation of operational seasonal rainfall forecast in Ethiopia. Water Resources 549 
Research, 49(11), 7681–7697. https://doi.org/10.1002/2013WR013760, 2013. 550 

Lee, H.: General Rainfall Patterns in Indonesia and the Potential Impacts of Local Seas on Rainfall Intensity. Water, 551 
7(4), 1751–1769. https://doi.org/10.3390/w7041751, 2015. 552 

Löwe, R., Madsen, H., & McSharry, P.: Objective classification of rainfall in northern Europe for online operation 553 
of urban water systems based on clustering techniques. Water (Switzerland), 8(3). 554 
https://doi.org/10.3390/w8030087, 2016. 555 



33 
 

Maity, R., & Nagesh Kumar, D.: Bayesian dynamic modeling for monthly Indian summer monsoon rainfall using El 556 
Niño-Southern Oscillation (ENSO) and Equatorial Indian Ocean Oscillation (EQUINOO). Journal of Geophysical 557 
Research Atmospheres, 111(7), 1–12. https://doi.org/10.1029/2005JD006539, 2006. 558 

Malmgren, B. A., Hullugalla, R., Lindeberg, G., Inoue, Y., Hayashi, Y., & Mikami, T.: Oscillatory behavior of 559 
monsoon rainfall over Sri Lanka during the late 19th and 20th centuries and its relationships to SSTs in the Indian 560 
Ocean and ENSO. Theoretical and Applied Climatology, 89(1–2), 115–125. https://doi.org/10.1007/s00704-006-561 
0225-9, 2007. 562 

Malmgren, B. A., Hulugalla, R., Hayashi, Y., & Mikami, T.: Precipitatioon trends in Sri Lanka since the 1870s and 563 
relationships to El Niño-southern oscillation. International Journal of Climatology, 23(10), 1235–1252. 564 
https://doi.org/10.1002/joc.921, 2003. 565 

Manchanayake, P., & Madduma Bandara, C.: Water Resources of Sri Lanka. Sri Lanka: National Science 566 
Foundation, Sri Lanka. Retrieved from http://thakshana.nsf.ac.lk/slstic/NA-202/NA_202.pdf, 1999. 567 

National Center for Atmospheric Research.: NINO SST Indices (NINO 1+2, 3, 3.4, 4; ONI and TNI). Retrieved 568 
from https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni, 2018. 569 

National Oceanic and Atmospheric Administration.: El Nino Southern oscilation., available at: 570 
http://www.esrl.noaa.gov/psd/enso/past_events.html, 2017. 571 

National Oceanic and Atmospheric Administration.: Three Months Outlook, Official Forecast, Climate Prediction 572 
Center, National Weather Services., available at: 573 
http://www.cpc.ncep.noaa.gov/products/predictions/long_range/seasonal.php?lead=6, last access: 12 February 2018, 574 

Nur’utami, M. N., & Hidayat, R.: Influences of IOD and ENSO to Indonesian Rainfall Variability: Role of 575 
Atmosphere-ocean Interaction in the Indo-pacific Sector. Procedia Environmental Sciences, 33, 196–203. 576 
https://doi.org/10.1016/j.proenv.2016.03.070, 2016. 577 

Ouyang, R., Liu, W., Fu, G., Liu, C., Hu, L., & Wang, H.: Linkages between ENSO/PDO signals and precipitation, 578 
streamflow in China during the last 100 years. Hydrology and Earth System Sciences, 18(9), 3651–3661. 579 
https://doi.org/10.5194/hess-18-3651-2014, 2014. 580 

Power, S., Casey, T., Folland, C., Colman, A., & Mehta, V.: Inter-decadal modulation of the impact of ENSO on 581 
Australia. Climate Dynamics, 15(5), 319–324. https://doi.org/10.1007/s003820050284, 1999. 582 

Qiu, Y., Cai, W., Guo, X., & Ng, B.: The asymmetric influence of the positive and negative IOD events on China’s 583 
rainfall. Scientific Reports, 4, 4943. https://doi.org/10.1038/srep04943, 2014. 584 

Ranatunge, E., Malmgren, B. A., Hayashi, Y., Mikami, T., Morishima, W., Yokozawa, M., & Nishimori, M.: 585 
Changes in the Southwest Monsoon mean daily rainfall intensity in Sri Lanka: Relationship to the El Niño-Southern 586 
Oscillation. Palaeogeography, Palaeoclimatology, Palaeoecology, 197(1–2), 1–14. https://doi.org/10.1016/S0031-587 
0182(03)00383-3, 2003. 588 

Reason, C. J. C., Landman, W., & Tennant, W.: Seasonal to decadal prediction of southern African climate and its 589 
links with variability of the Atlantic ocean. Bulletin of the American Meteorological Society, 87(7), 941–955. 590 
https://doi.org/10.1175/BAMS-87-7-941, 2006. 591 

Ropelewski C.F. and Halpert M.S.: Quantifying Southern Oscillation-Precipitation Relantionships. Journal of 592 
Climate., 1995. 593 

Schneider, T., Bischoff, T., & Haug, G. H.: Migrations and dynamics of the intertropical convergence zone. Nature, 594 
513(7516), 45–53. https://doi.org/10.1038/nature13636, 2014. 595 



34 
 

Seibert, M., Merz, B., & Apel, H.: Seasonal forecasting of hydrological drought in the Limpopo Basin: A 596 
comparison of statistical methods. Hydrology and Earth System Sciences, 21(3), 1611–1629. 597 
https://doi.org/10.5194/hess-21-1611-2017, 2017. 598 

Singhrattna, N., Rajagopalan, B., Clark, M., & Kumar, K. K.: Seasonal forecasting of Thailand summer monsoon 599 
rainfall. International Journal of Climatology, 25(5), 649–664. https://doi.org/10.1002/joc.1144, 2005. 600 

Singhrattna, N., Rajagopalan, B., Krishna Kumar, K., & Clark, M.: Interannual and interdecadal variability of 601 
Thailand summer monsoon season. Journal of Climate, 18(11), 1697–1708. https://doi.org/10.1175/JCLI3364.1, 602 
2005. 603 

Smith, M. D.: The ecological role of climate extremes: Current understanding and future prospects. Journal of 604 
Ecology, 99(3), 651–655. https://doi.org/10.1111/j.1365-2745.2011.01833.x, 2011. 605 

Suppiah, R.: Spatial and temporal variations in the relationships between the southern oscillation phenomenon and 606 
the rainfall of Sri Lanka, International Journal of Climatology, 16(12), 1391–1407. 607 
https://doi.org/10.1002/(SICI)1097-0088(199612)16:12<1391::AID-JOC94>3.0.CO;2-X, 1996. 608 

Surendran, S., Gadgil, S., Francis, P. A., & Rajeevan, M.: Prediction of Indian rainfall during the summer monsoon 609 
season on the basis of links with equatorial Pacific and Indian Ocean climate indices. Environmental Research 610 
Letters, 10(9), 094004. https://doi.org/10.1088/1748-9326/10/9/094004, 2015. 611 

Verdon, D. C., & Franks, S. W.: Indian Ocean sea surface temperature variability and winter rainfall: Eastern 612 
Australia. Water Resources Research, 41(9), 1–10. https://doi.org/10.1029/2004WR003845, 2005. 613 

Ward, P. J., Eisner, S., Flo Rke, M., Dettinger, M. D., & Kummu, M. Annual flood sensitivities to el nintild;O-614 
Southern Oscillation at the global scale. Hydrology and Earth System Sciences, 18(1), 47–66. 615 
https://doi.org/10.5194/hess-18-47-2014, 2014. 616 

Whitaker, D. W., Wasimi, S. A., & Islam, S.: The El Niño - Southern Oscillation and Long-Range the Forecastong 617 
of Flows in the Ganges, International Journal of Climatology , 21(1), 77–87, 2001. 618 

Zubair, L.: El Niño-southern oscillation influences on the Mahaweli streamflow in Sri Lanka. International Journal 619 
of Climatology, 23(1), 91–102. https://doi.org/10.1002/joc.865, 2003. 620 

Zubair, L., & Ropelewski, C. F.: The strengthening relationship between ENSO and northeast monsoon rainfall over 621 
Sri Lanka and southern India. Journal of Climate, 19(8), 1567–1575. https://doi.org/10.1175/JCLI3670.1, 2006. 622 
 623 

 624 


	1 Introduction
	2 Hydrometeorology and climatology of the study area
	2.1 Sub-basin rainfall (Areal rainfall)
	2.2 ENSO & IOD indices

	3 Methods
	3.1 Quadratic Discriminant Analysis (QDA)
	3.2 Classification Tree model
	3.3 Random Forest

	4 Results
	5 Discussion
	6 Conclusion
	Code availability
	Data availability
	Author contributions
	Competing interests
	Acknowledgement

