
Comments/Text of ​Anonymous Referee 1 (AR1)​ posted in ​blue​, our text in black with old 
passages in ​red​ and the new passage in ​green​. 
 
Summary: This paper utilizes a data-driven approach, based on recurrent neural networks, to 
model rainfall-runoff relationships. A novel method is applied to model runoff in catchments in 
the continental U.S where gage data and meteorological forcings are available, and results are 
compared with existing process-based model results which are used as a benchmark. The 
LSTM method presented is tested through various experiments where the network is either 
trained for individual catchments, large aggregated regional catchments, or a combination 
approach where models are initialized based on large catchments and then “fine-tuned” to 
smaller catchments.  This study is presented to introduce LSTM as an efficient hydrological 
modelling approach that is shown to provide similar quality predictions as an existing 
process-based model.  
 
Novelty: The novelty of this paper is in the LSTM network approach, which is an improvement 
over other types of data driven approaches in its capacity to retain longer time dependencies. 
The  results indicate that this type of model, when adequately trained, provides similar results as 
a benchmark model and may be useful to estimate runoff in ungauged catchments. The 
experiments are generally well-described and organized. Overall this is an interesting study that 
is appropriate for the journal, but I have several comments and suggestions detailed below. 
They involve the description and advantages of the methodology, linking with existing 
knowledge of the basins in the study, and suggestions for re-organization. 
 
We thank Anonymous Referee 1 (AR1) for the general evaluation and feedback. The 
constructive comments and remarks have made us rethink and reflect our results and findings in 
more detail and we sincerely believe that this has significantly improved the revised manuscript. 
We will respond to specific questions and comments in some detail and will indicate how we are 
going to make changes to the manuscript in the following.  
 
Comments: 

1. In Section 2.1, it is mentioned that the LSTM overcomes the weakness of traditional 
RNNs to learn long-term dependencies. This seems to be addressed in the additional 
cell state that stores or “forgets” long-term dependencies. However, it is not clear what 
the difference would be, for example in a hydrological application, between the two 
methods. It would be helpful to include a “traditional” or more simple RNN model to the 
LSTM model on the study dataset to show how this capacity for long-term storage 
comes into play. 

 
In general, I recommend to expand the description of the methods, particularly the 
significance of the forget, input, output gates, and hidden states. As it is, readers will 
have to dig back through 2 cited papers or further on the LSTM method, and I think that 
a few sentences within this section could go a long way to help interpret what is going 
on. 



 
 

Regarding the remark, concerning a comparison of LSTM and RNN: We did not include 
any comparison in the first submission, because it is a proven and known fact that the 
traditional RNN can not learn dependencies of more than approx. 10 time steps (the 
phenomenon is referred to as “vanishing-” or “exploding gradients”, see Bengio et al. 
1994 and Hochreiter and Schmidhuber 1997). However, we agree that it is interesting to 
see, what this means for hydrological applications, since they were already applied in 
some studies in the field of hydrology (Carriere et al., 1996; Hsu et al., 1997; Kumar et 
al., 2004): We know from hydrological science that there are many catchment processes, 
which can have dependencies of far more than 10 days (which corresponds to 10 time 
steps here), e.g. snow accumulation and snow melt. Modelling these processes correctly 
is inevitable for the correct prediction of the river discharge, at least for traditional 
hydrological modelling. However, in principle it is not said that this must be similar for a 
data driven approach. 
We therefore added a comparison of RNN vs LSTM at the beginning of the results and 
discussion section, showing the effect of (not) learning long-term dependencies with an 
explicit example. We believe that adding the following new section and additionally a 
pseudo-code to the manuscript (see answer to comment 5, AR2) also highlights the 
significance of the forget, input, output gates, and hidden states as mentioned by the 
reviewer. 
 
New Section: 
3.1 The effect of (not) learning long-term dependencies 
As stated in Sect. 2.1, the traditional RNN can only learn dependencies of 10 or less 
time steps. The reason for this is the so-called “vanishing or exploding gradients” 
phenomenon (see Bengio et al. (1994) and Hochreiter and Schmithuber (1997)), which 
manifests itself in an error signal during the backward pass of the network training that 
either diminishes towards zero or grows against infinity, preventing the effective learning 
of long-term dependencies. However, from the perspective of hydrological modelling a 
catchment contains various processes with dependencies well above 10 days (which 
corresponds to 10 time steps in the case of daily streamflow modelling), e.g. snow 
accumulation during winter and snow melt during spring and summer. Traditional 
hydrological models need to reproduce these processes correctly in order to be able to 
make accurate streamflow predictions. This is in principle not the case for data-driven 
approaches.  
To empirically test the effect of (not) being able to learn long-term dependencies, we 
compared the modelling of a snow influenced catchment (basin 13340600 of the Pacific 
Northwest region) with a LSTM and a traditional RNN. For this purpose we adapted the 
number of hidden units of the RNN to be 41 for both layers (so that the number of 
learnable parameters of the LSTM and RNN is approximately the same). All other 



modelling boundary conditions , e.g. input data, the number of layers, dropout rate, 
number of training epochs, are kept identical. 
Figure 6a shows two years of the validation period of observed discharge as well as the 
simulation by LSTM and RNN. We would like to highlight three points: (i) The hydrograph 
simulated by the RNN has a lot more variance compared to the smooth line of the LSTM. 
(ii) The RNN underestimates the discharge during the melting season and early summer, 
which is strongly driven snow melt and by the precipitation that has fallen through the 
winter months. (iii) In the winter period, the RNN systematically overestimates observed 
discharge, since snow accumulation is not accounted for. These simulation deficits can 
be explained by the lack of the RNN to learn and store long-term dependencies, while 
especially the last two points are interesting and connected. Recall that the RNN is 
trained to minimize the average RMSE between observation and simulation. The RNN is 
not able to store the amount of water which has fallen as snow during the winter and is, 
in consequence, also not able to generate sufficient discharge during the time of snow 
melt. The RNN, trained to minimize the average RMSE, therefore overestimates the 
discharge most time of the year by a constant bias and underestimates the peak flows, 
thus being closer to predicting the mean flow. Only for a short period at the end of the 
summer, it is close at predicting the low flow correctly.  
In contrast, the LSTM seems to have (i) no or less problems with predicting the correct 
amount of discharge during the snowmelt season and (ii) the predicted hydrograph is 
much smoother and fits the general trends of the hydrograph much better. Note that both 
networks are trained with the exact same data and have the same data available for 
predicting a single day of discharge. 
Here we have only shown a single example for a snow influenced basin. We also 
compared the modelling behavior in one of the arid catchments of the 
Arkansas-White-Red region (HUC 11), and found that  the trends and conclusion where 
similar. 
To conclude, although only based on an illustrative example, it shows very well the 
problem RNNs have with learning long-term dependencies and why they shouldn’t be 
used if (e.g. daily) discharge is predicted only from meteorological observations. 
 



 
Figure caption:  

a) Two years of observed as well as the simulated discharge of the LSTM and RNN 
from the validation period of basin 13340600. The precipitation is plotted from top 
to bottom and days with minimum temperature below zero are marked as snow 
(black bars). b) The corresponding daily maximum and minimum temperature. 

 
 
 
 
 
 
 



2. Page 6, Line 25: This is not specific and should be more detailed, “.... were varied and 
found to work well in a number of preceding tests” – what values or ranges worked well, 
and how is “worked well” defined? I think this “initial screening” is also referred to in the 
conclusion and should be more clearly addressed as to how it was done. 

 
The entire study arose from a free-time project some of us spent working on over the last 
1.5 years. We did some experiments with data from (seasonally influenced) Austrian 
catchments. These were investigated in previous studies at our institute  and calibrated 
hydrological models exist as reference (e.g. Herrnegger et al., 2018). We did some 
manual hyperparameter tuning, in which we mainly tried out one- and two-layer LSTMs 
with various size of hidden units. The architecture we used in the experiment of this 
manuscript is at the upper end of what we tested, in terms of number of learnable 
parameters. The capability of being able to model the rainfall-runoff process is given for 
all hyperparameter combinations we tried. The one used in this paper was one of the 
best we found at that time for the Austrian catchments. “Worked well” at this time was 
defined as “the LSTM achieved similar model performance as the hydrological models”. 
We agree that some more of this information can be added into the manuscript and 
therefore adapt it in the following way. 
 
Old passage (P6 L24ff): 
The specific design of the network architecture, i.e. the number of layers, cell/hidden 
state lengths, dropout rate and input sequence length were varied and found to work 
well in a number of preceding tests. 
 
New passage (Placed now under “Experimental design”): 
The specific design of the network architecture, i.e. the number of layers, cell/hidden 
state length, dropout rate and input sequence length were found through a number of 
experiments in several Austrian, seasonal influenced, catchments. In these experiments, 
different architectures (e.g. one or two LSTM layer or 5, 10, 15, 20 cell/hidden units) 
were varied manually. The architecture used in this study, proved to work well for these 
catchments (in comparison to a calibrated hydrological model we had available from 
previous studies; Herrnegger et al., 2018) and was therefore chosen to be applied here 
without further tuning. A systematic sensitivity analysis of the effects of different 
hyper-parameters was however not done and is something to do in the future. 

 
 

3. Section 2.1.1: The hydrological interpretation was not very useful until I got to the very 
end of the paper (Figure 14) where the evolution of a cell state is compared to 
temperature variables. Since Figure 14 and its associated discussion seem to be an 
afterthought in the conclusion section, I would recommend folding this example into 
section 2.1.1 instead, as they both relate to a “hydrological interpretation” of the 
data-driven network. Also in Figure 14, some vertical lines through the figure would be 



useful to better link to the narrative about the thresholds between temperature and cell 
state. 

 
We agree that vertical lines will enhance this figure and its interpretability and will adapt 
the figure in the revised manuscript.  
Regarding the hydrological interpretation and Fig. 14 (also mentioned by AR #2 minor 
comment #6): We agree with AR2 that section 2.1.1 should be moved out of the method 
section, since it is more of a discussion or hypothesis. We also agree with AR1 that it is 
beneficial to link Fig. 14 directly into this section. In the revised paper we will update this 
paragraph accordingly.  
 

 
4. Section 2.2: The definition of epoch is not quite clear to me – for example, is it the same 

as the “next iteration” loop in Figure 3, or something different? If the same, the idea of 
the epoch could be illustrated in Figure 3. It makes sense that a higher number of 
“epochs” in this sense would lead to improvement of the simulation as shown in Figure 4. 

 
We see that this explanation/definition can be misleading, since an epoch is not the 
same as the “next iteration” in Figure 3. We will therefore adapt the passage in the 
revised manuscript so that it contains an example as illustration for the difference 
between epoch and iteration step in the context of neural networks: 
 
Old passage (P7 L29ff): 
The corresponding term for neural networks is called epoch. One epoch is defined as the 
period, in which each training sample is used once for updating/training the model 
parameters. This means, each time step of the discharge time series in the training data 
is simulated exactly once (which is similar to one iteration in classical hydrological model 
calibration). 
 
New passage: 
The corresponding term for neural networks is called epoch. One epoch is defined as the 
period, in which each training sample is used once for updating the model parameters. 
For example, if the data set consists of 1000 training samples and the batch size is 10, 
one epoch would consist of 100 iteration steps (number of training samples divided by 
the number of samples per batch). In each iteration step, 10 of the 1000 samples are 
taken without replacement, until all 1000 samples are used once. In our case this 
means, each time step of the discharge time series in the training data is simulated 
exactly once. This is somewhat similar to one iteration in the calibration of a classical 
hydrological model, however with the significant difference that every sample is 
generated independently from each other. 
 
 
 



 
5. Section 2.3: In Figure 5 and discussion throughout the experiments and results sections, 

it would be useful to refer to the HUC basins (01,03,11,17) by the names of the 
watersheds or the regions (e.g. Pacific Northwest, Northeast, etc). This may make the 
results more interpretable for many readers, especially those familiar with climatology in 
the U.S. 

 
We agree to the comment of AR1 and will adapt the namings throughout the manuscript 
accordingly. We also adapted Fig. 5, 6, 9 and 12 (all plots showing the contiguous united 
states in the background) to not show the US state borders, but rather the borders of the 
hydrological units (as suggested by the author of the short comment). 
 
 

6. Section 2.4.2: In Line 19, the statement “in our case, the network has to learn the entire 
hydrological model purely from available data” – should specify that this is true of any 
data-driven approach, not specific to this case.  Also in this section, comment on why 
fewer epochs were needed for Experiment 2 compared to 1? 

 
AR1 is right, this is true for any data-driven approach and we will adapt the passage in 
the revised manuscript accordingly:  
 
Old passage (P10 L19f): 
In our case, the network has to learn the entire “hydrological model” purely from the 
available data (see Fig. 4). 
 
New passage: 
As for all data-driven approaches, the network has to learn the entire “hydrological 
model” purely from the available data (see Fig. 4). 
 
Regarding the number of epochs: In our view this question/statement might be related to 
comment 4. Please read our answer here, together with the one provided therein. It is 
true that the number of epochs is lower compared to the models in experiment 1. The 
reason is that the total number of parameter updates is much higher since the training 
set of experiment 2 has a much higher number of samples (remember that all basins 
within a HUC contribute to the calibration). And, because the batch size is the same for 
the models in experiment 1 and experiment 2, the number of iteration steps per epoch 
has increased (see also answer to comment 4). For example: The HUC 01 has 27 
basins, which means the number of available training samples per epoch are 27 times 
higher than for the models in experiment 1. Because the batch size is the same, this 
implies that one epoch of the HUC 01 model of experiment 2 has 27 times more iteration 
steps ( = parameter updates) per epoch, compared to a single basin model of 
experiment 1.  



From this observation it follows that the models in experiment 2 have seen a specific 
data point of a specific basin within the region less often during training, compared to a 
single basin model in experiment 1. This is because each data point is used once and 
only once during one epoch and maybe highlights also the cross-basin learning of the 
models in experiment 2. 
To reduce the confusion, we will adapt the section in the revised manuscript as follows: 
 
Old passage (P11 L 4ff): 
Across all catchments, the highest mean NSE was achieved after 20 epochs in this 
case. Thus, for the final training, we train one LSTM for each of the four used HUCs for 
20 epochs with the full 15-year long calibration period of all catchments within the 
specific HUC. 
 
New passage: 
Across all catchments, the highest mean NSE was achieved after 20 epochs in this 
case. Although the number of epochs is smaller compared to experiment 1, the number 
of weight updates is much larger. This is because the number of available training 
samples has increased and the same batch size as in experiment 1 is used (see Sect. 
2.2 for an explanation of the connection of number of iterations, number of training 
samples and number of epochs). Thus, for the final training, we train one LSTM for each 
of the four used HUCs for 20 epochs with the entire 15-year long calibration period. 
 
 

7. Section 2.6: This section breaks the flow of the paper between the description of the 
experiments and their results. I suggest placing this information earlier in the paper 
before the experiment descriptions or as an appendix. 

 
We see the point of AR1 comments and agree that Section 2.6 (Open source software) 
may be a break in the flow of the story. However, we see the software we used as an 
essential tool/method for our work and we would therefore prefer to keep this section in 
the methods section. We propose to place this section before the description of the 
experiments in the revised version of the manuscript. 
 
 

8. Page 12, Line 24:  From Figure 6b, this claim is not very apparent to me, that LSTM 
outperforms the benchmark for more dry catchments (in HUC 11, it seems like it 
outperforms in the western part but not the eastern part,  but the NSE is higher in the 
eastern part).  

 
We agree that this statement seems unclear and not very apparent in the first version of 
the manuscript. We missed to state, that the arid basins are located in the western part 
of HUC 11 (see image below) which matches the location of basins, for which the LSTM 



performs better (see Fig 6b of the original submission). We therefore adapted the 
passage in the revised manuscript as follows. 
 
 
Old passage (P12 L24): 
The performance deteriorates in the more arid catchments in the center of the CONUS, 
where no discharge is observed for longer periods of the year. 
 
New passage: 
The performance deteriorates in the more arid catchments, which are located in the 
western part of the Arkansas-White-Red region, where no discharge is observed for 
longer periods of the year (see Fig. 5b). 
 
Furthermore, we added a second map to Fig. 5 (in the original manuscript it only showed 
the mean annual precipitation of each catchment). This additional map (see (b) in the 
figure below) shows the aridity index of all basins, and will hopefully be an aid for 
readers to understand the given statement with more ease. 



 
 

Figure caption: 
Overview of the location of the four hydrological units from the CAMELS data set used in 
this study including all their basins. (a) Shows the mean annual precipitation of each 
basin, whereas the type of marker symbolizes the snow influence of the basin. (b) shows 
the aridity index of each basin, calculate as PET/P (see Addor et al. 2017a) 
 
 

9. Page 12, Line 27: Why is this result surprising, since the LSTM is posed as a method to 
retain longer-term dependencies? This is a place where it would be advantageous to 
show how a traditional RNN would not capture these dependencies to prove its 
capabilities in this area. 

 



To us it was surprising because it practically demonstrated the theoretical capacity for 
learning long-term relationships of the LSTM. At least for us it seemed not clear that it 
would work as good as it did for complex processes such as snow accumulation/melt. 
Regarding the comparison of LSTMs and RNNs see our answer to comment #1 of this 
review. 

 
 

10. Figure 11 and associated discussion in Section 3.2: This may be expected since gages 
in the Northeast are more closely spaced and homogeneous compared to the Central 
Plains region, where there is a large wet-to-dry gradient between Missouri and Colorado. 
Some discussion on the characteristics of the regions of interest would be beneficial 
here (linking back to annual precipitation, other climate characteristics). Also, I don’t 
think the Basin numbers in Figure 11 are ever defined so there is no way to interpret 
Figure 11 spatially (e.g.  there is no way to look at a certain correlation for a pair of 
basins and understand why they are very different from each other). Possibly a better 
way to create this figure would be to order basins by longitude? 
 
We agree that a discussion on the characteristics of each regions would be beneficial for 
the reader. Therefore we will add a table with some key attributes (see image below), as 
well as a textual description in the revised manuscript.  
 
Old passage: 
In our study, we used 241 catchments from the HUCs 01, 03, 11, 17 (see Fig. 5) in order 
to cover a wide range of different hydrological conditions on one hand and to limit the 
computational costs on the other hand. The selected catchments contain snow-driven 
catchments as well as catchments without any influence of snow. In addition, the four 
units cover a wide range of climates, containing rather dry catchments with less than 400 
mm/year of mean precipitation, as well as catchments with mean precipitation up to 3260 
mm/year. 
 
 
New passage: 
In our study, we used 4 out of the 18 hydrological units with their 241 catchments (see 
Fig. 5 and Table 1) in order to cover a wide range of different hydrological conditions on 
one hand and to limit the computational costs on the other hand. The New England 
region in the North-East contains 27 more or less homogeneous basins (e.g. in terms of 
snow-influence, aridity). The Arkansas-White-Red region in the center of CONUS has a 
comparable number of basins, namely 32, but is completely different elsewise.  Within 
this region, attributes e.g. aridity and mean annual precipitation have a high variance 
and strong gradient from East to West (see Fig. 5). Also comparable in size but with very 
different hydro-climatic conditions are the South Atlantic-Gulf region (92 basins) and the 
Pacific Northwest region (91 basins). The latter spans from the Pacific coast till the 
Rocky Mountains and also exhibits a high variance of attributes across the basins, 



comparable to the Arkansas-White-Red region. For example, there are very humid 
catchments with more than 3000 mm/yr precipitation close to the Pacific coast and very 
arid (aridity index 2.17, mean annual precipitation 500 mm/yr) basins in the South-East 
of this region. The relatively flat South Atlantic-Gulf region contains more homogeneous 
basins (similar to the New England region), but is in contrast not influenced by snow. 
 
(Screenshot of the new table) 

 
 
The intention of Figure 11 was not to link specific basins within the confusion matrix to 
basins in the map. Our goal was to show the overall picture of the correlation between 
basins within one HUC, which is reflected by the overall color appearance. However, we 
agree that ordering the basins by longitude does enhance this figures, because the 
overall image is still the same, while at the same time the correlation plot is spatially 
interpretable. Thus, we change this plot as suggested by AR1 in the revised manuscript. 
 
 
 

11. Section 4: In the conclusion, it would help to come back to the broad topic the 
introduction of hydrological modeling in general, and a discussion of process based 
models and other types of data-driven models in the context of the results, instead of 
re-iterating the results. As mentioned previously, Page 20 Lines 18 onward seem to be 
tacked-on to the end, and would be better placed earlier in the paper and referred back 
to here. 

 
Regarding P20 Line 18ff: As stated in our answer to comment #3, we will move this 
section together with the hydrological interpretation and Fig. 14 to a new section under 
results and discussions. 
 



We rewrote and restructured the entire conclusion and reduced the amount of 
summarization of our experiments. Furthermore, we added some additional discussion 
about limitations and advantages of our approach and possible future studies. 
 
The new version of our conclusion is added to our answer to comment 3 of AR2. 

 
 

12. Finally, a general comment regarding the results: It was found that the regional model 
performed better for regions with correlated discharge (e.g.  the Northeast).  However, 
the basis for the regional model was that more scenarios are present in the dataset (i.e. 
stated that long dry periods or extreme events may be observed in one catchment in the 
training, which may help to simulate similar types of events in another catchment). This 
makes it seem like the regional model should actually benefit for places where discharge 
is not correlated between stations (i.e. in the Central Plains rather than the Northeast) 
and spans a wider range of behaviors, whereas the opposite results are found in the 
study. I think this is linked to the catchment processes, in that in the Central Plains, 
rainfall-runoff processes occur differently between basins, so that a set of inputs and 
outputs for one basin cannot translate to model outputs in another. Meanwhile in the 
Northeast, climate is very similar between catchments, so while the regional model may 
not include so many disparate events (input samples are relatively similar), it still serves 
to improve the overall model of a given catchment. This may be somewhat addressed in 
the results and discussion, but could be expanded upon and help to discuss the model in 
a “hydrological process” context. 

 
We agree with AR1 on a conceptual level. Although, for the case at hand the low 
MSE-values of the dry regions are the dominating factor for the distortion. What is 
happening here is that ​the LSTM learns to predict all basins well in average and thus 
arid basins (with very few error signals due to low MSE in dry periods) do not force the 
neural network to specifically adapt to these cases. Instead, the LSTM will adapt the 
parameters to fit the basins with large errors signals. However, if there would be a 
sufficiently larger number of arid basins (compared to semi-arid/humid basins), the 
LSTM would most likely learn to adapt to arid basins as well as to non-arid basins. For 
further studies or applications one could try to introduce weights to the objective function 
to compensate for the low MSE-values of arid basins.  

 
 
Minor line by line comments and typos: 
 

1. Page 7, Line 6: “as well as”: ​Thank you, this will be changed in the revised manuscript. 
 

2. Page 7, Line 19: “iteration”:​ Thank you, this will be changed in the revised manuscript. 
 



3. Page 10, Line 12: typo in “each the model”:​Thank you, this will be changed in the 
revised manuscript. 
 

4. Page 10, Line 17: would expand acronym to “deep learning”: ​Thank you, this will be 
changed in the revised manuscript. 
 

5. Page 10, Line 20: “would help to obtain”?: ​Thank you, this will be changed in the revised 
manuscript. 
 

6. Page 10, Line 21: remove “e.g.”: ​Thank you, this will be changed in the revised 
manuscript. 
 

7.  Page 10, Line 30: remove comma after “analyze”: ​Thank you, this will be changed in the 
revised manuscript. 

 
8. Page 12, Line 21: This makes sense that many zero-values would lead to worse 

predictions, since there are effectively “fewer” data points (in that many samples 
correspond to zero-flow values) in those training data sets. Could comment here on 
whether more epochs (greater than 50) would have benefited the model or not for this 
region? 

 
This is indeed an interesting observation. Without further tests, we think that more 
epochs would not be beneficial but harmful. A central dichotomy of data-driven methods 
is the balance between generalisation and overfitting. The reason why more epochs 
might be harmful is that they would increase the probability of overfitting (an already 
serious problem for the models in experiment 1). Having “fewer” data points available, as 
AR1 correctly mentions, leads to an increase of the effect of overfitting. Thus training for 
more epochs would result in a model that is even more overfitted on the training data 
and generalizes even worse on the validation data. The opposite might be true that in 
arid catchments fewer epochs could be beneficial. 

 
9. The acronyms FHV, FMS, FLV should be re-defined in this figure caption.: ​Thank you, 

this will be changed in the revised manuscript. 
 

10. Figure 9 (and Figure 12): tiny text in the insets, should be able to read axis values: 
Thank you, this will be changed in the revised manuscript. 
 

11. Page 13, Line 6: “more strongly”: ​Thank you, this will be changed in the revised 
manuscript 
Page 13, Line 8: can barely see this from Figure 7a:  
There is a mistake in the very next sentence, which might have made it more confusing. 
We reported the lowest NSE not for the calibration period but for the validation period. 
This will be changed in the revised manuscript.  



We agree that even then it is difficult to see this statement in the empirical CDF. This is 
why we added the next sentence with the number of the lowest values to the original 
manuscript in the first place.  
 
Old passage (P13 L7ff): 
Regarding the performance in terms of the NSE, the LSTM shows fewer negative 
outliers and thus seems to be more robust. The poorest model performance in the 
calibration period is an NSE of -0.42 compared to -20.68 of the SAC-SMA + Snow-17. 
 
New passage: 
Regarding the performance in terms of the NSE, the LSTM shows fewer negative 
outliers and thus seems to be more robust. The poorest model performance in the 
validation period is an NSE of -0.42 compared to -20.68 of the SAC-SMA + Snow-17.  
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Comments/Text of ​Anonymous Referee 2 (AR2)​ posted in ​blue​, our text in black with old 
passages in ​red​ and the new passage in ​green​. 
 
Artificial neural networks (ANN) enjoyed great popularity in the late 1990s and – as other data 
driven modeling techniques – are now part of the standard toolbox in rainfall-runoff modeling. 
Thus, it is surprising enough, that a limited number of studies can be found in the hydrologic 
literature which are applying the latest developments of the artificial intelligence research, such 
as e.g. deep learning.  
 



This paper provides a first step into this direction and introduces Long-Short-Term-Memory 
(LSTM) networks for the task of rainfall-runoff modeling.  In a comprehensive comparative study 
the proposed method is applied to the CAMELS data set and is compared with the conceptional 
SAC-SMA model which was complemented by the Snow-17 routine. The study comprises 3 
numerical experiments starting with the application to single catchments and ending with the 
test of potential applications for ungauged catchments using a regionalisation approach. 
 
The paper is reasonably well written and a novel contribution for assessing the predictive 
performance of LSTM networks in rainfall-runoff modeling. This makes the study very interesting 
for scientists who did not use a LSTM networks before. Since it is a first application, the paper 
should describe more systematically the training procedure and characteristics of the LSTM 
network which in the present version turned out to be more art than science. In addition and 
although I am enthusiastic about the work, I think a balanced discussion of the new approach 
should also include limitations, especially in the “Summary and conclusion” chapter. I encourage 
the authors to make following major modifications as they prepare their manuscript for revision: 
 
We thank the Anonymous Referee 2 (AR2) for his comments and suggestions. In the revised 
manuscript, we will systematically address the issue of training a LSTM in more detail. We will 
also discuss some of the limitations of our approach in the the “Summary and Conclusion” 
section. Generally, we are grateful for the detailed comments and suggestions raised by AR2 
and believe that the input has significantly helped to improve the manuscript. 
 
Comments: 

 
1. Please check carefully the recent literature for applications of deep learning in water 

resources and discuss those, there are more than cited, e.g. (). 
 
We agree that a careful examination of the recent literature (for applications of deep 
learning and LSTM) will improve the quality of the publication. Currently there exist many 
applications of classical neural networks, so that a general review would be difficult 
(therefore we cited the two review paper in the original manuscript (Abrahart et al. 
(2012); ASCE Task Committee on Application of Artificial Neural Networks (2000)). 
Thus, we believe that the focus should lie especially on LSTM applications in hydrology 
only, to prevent an escalation of the review-size. To provide some context: A quick 
search in the Journal of Hydrology reveals 3 publication with LSTM as keyword (we 
found 1 in WRR and ours in HESS). Similarly 171 matches exist for the keyword “deep 
learning” (1 in WRR, and 233 in HESS). The numbers of the latter are however strongly 
inflated because of the fuzzy search which also includes matches for the keyword 
learning into the query. This is of course not a comprehensive review, but gives an 
indication about the sparsity of publication that fit the just outlined narrow domain we are 
interested in.  
 



Nevertheless, as proposed by AR2 we conducted an additional literature research and 
added the following references to the review part: Assem et al. (2017), ​Shen (2017), 
Zhang et al. (2018 a), Zhang (2018 b). For a short summary, see the new passage 
below. 
 
We did not include the following contributions, but would like to mention them here for 
the sake of transparency:  

- Bai et al. (2016). The authors developed a multi-scale wavelet-based ANN 
approach for forecast daily reservoir inflow. This would fit to the general topic, but 
the developed approach seemed too different from a methodological point of 
view 

- Wu et al. (2015). The authors conceptualize how deep learning in general and 
deep belief network in special, can be used as forecasting tasks within of smart 
water network. To us the contribution seemed to be quite theoretical from a 
method standpoint and topic-wise only marginally relevant.  

 
This addition lead to the following adoptions for the manuscript: 

 
Old passage (P2, L22ff): 
In recent years, neural networks have gained a lot of attention under the name of Deep 
Learning (DL). As in hydrological modelling, the success of DL approaches is largely 
facilitated by the improvements in computer technology (especially through graphic 
processing units or GPUs (Schmidhuber, 2015) and the availability of huge datasets 
(Halevy et al., 2009; Schmidhuber, 2015). While most well-known applications of DL are 
in the field of computer vision (Farabet et al., 2013; Krizhevsky et al., 2012; Tompson et 
al., 2014), speech recognition (Hinton et al., 2012) or natural language processing 
(Sutskever et al., 2014) few attempts have been made to apply recent advances in DL to 
hydrological problems. Shi et al. (2015) investigated a deep learning approach for 
precipitation nowcasting. Tao et al. (2016) used a deep neural network for bias 
correction of satellite precipitation products. Recently, Fang et al. (2017) investigated the 
use of deep learning models to predict soil moisture in the context of NASA’s Soil 
Moisture Active Passive (SMAP) satellite mission. In general, the potential use and 
benefits of DL approaches in the field of hydrology and water sciences has only recently 
come into the focus of discussion (Marçais and de Dreuzy, 2017; Shen et al., 2018). 
 
 
 
 
New passage: 
In recent years, neural networks have gained a lot of attention under the name of Deep 
Learning (DL). As in hydrological modelling, the success of DL approaches is largely 
facilitated by the improvements in computer technology (especially through graphic 
processing units or GPUs (Schmidhuber, 2015) and the availability of huge datasets 



(Halevy et al., 2009; Schmidhuber, 2015). While most well-known applications of DL are 
in the field of computer vision (Farabet et al., 2013; Krizhevsky et al., 2012; Tompson et 
al., 2014), speech recognition (Hinton et al., 2012) or natural language processing 
(Sutskever et al., 2014) few attempts have been made to apply recent advances in DL to 
hydrological problems.  
 
Shi et al. (2015) investigated a deep learning approach for precipitation nowcasting. Tao 
et al. (2016) used a deep neural network for bias correction of satellite precipitation 
products. Fang et al. (2017) investigated the use of deep learning models to predict soil 
moisture in the context of NASA’s Soil Moisture Active Passive (SMAP) satellite mission. 
Assem et al. (2017) compared the performance of a deep learning approach for water 
flow level and flow predictions for the Shannon river in Ireland with multiple baseline 
models. They reported that the deep learning approach outperforms all baseline models 
consistently. More recently, Zhang et al. (2018a) compared the performance of different 
neural network architectures for simulating and predicting the water levels of a combined 
sewer structure in Drammen (Norway), based on online data from rain gauges and water 
level sensors. They confirmed that LSTM (as well as another recurrent neural network 
architecture with cell memory) are better suited for for multi-step-ahead predictions than 
traditional architectures without explicit cell memory. Zhang et al. (2018b) used an LSTM 
for predicting water tables in agricultural areas. Among other things, the authors 
compared the resulting simulation from the LSTM based approach with that of a 
traditional neural network and found that the former outperforms the latter. In general, 
the potential use and benefits of DL approaches in the field of hydrology and water 
sciences has only recently come into the focus of discussion (Marçais and de Dreuzy, 
2017; Shen 2017; Shen et al., 2018). In this context we would like to mention​ ​Shen 
(2017) more explicitly, since he provides an ambitious argument for the potential of DL in 
earth sciences/hydrology. In doing so he also provides an overview of various 
applications of DL in earth sciences. Of special interest for the present case is his point 
that DL might also provide an avenue for discovering emergent behaviours of 
hydrological phenomena.  
 
 
 
 
 
 
 
 

2. I have concerns about the reproducibility of the performance of the LSTM network since 
the training is done by trial and error and it is not very systematically evaluated. But it is 
an important issue, because the number of free parameters of the LSTM network is huge 
and as I understand a gradient-based error backpropagation method is used for training. 
As a reference for the state of the art evaluation of data driven models I recommend () 



where a stochastic procedure, involving random sampling for training, cross-validation, 
and testing, is proposed. 
 
We have to admit that we do not fully understand this statement. It is true that the LSTM 
is trained by a form of gradient-based error back propagation (called backpropagation 
through time, a standard method for training recurrent neural networks). To us it is not 
apparent how this is related to “trial and error” (or to systematic evaluation as such).  
We agree that the form of evaluation is not typical for data-driven modelling approaches. 
It was chosen so that the model performance of the LSTM can be compared to the 
baseline model of the CAMELS data set, i.e. SAC-SMA + Snow-17. If the intent of AR2 
was to point out that this is an unusual evaluation/diagnostic for a data-driven model, 
then we fully agree with him. However, a more specifically geared performance 
evaluation (say, a three way splitting of the data and training-, validation- and test-data 
and 10 to 20 repeated executions of the training with different random seeds) would 
make it more difficult or even impossible to compare the two different modelling 
approaches.  
In this context it is also worth noting that even more (than an“extended” evaluation) can 
be undertaken to search for the best possible realization of the LSTM. E.g., one could 
also tune the hyperparameters to each catchment, train more models (with different 
random seeds) for each one and choose the best performing LSTM per catchment. If, 
AR2 wanted to indicate that, then we agree that this could be an interesting study by 
itself. 
Maybe we did not communicate this clear enough, but the goal of our study was to 
investigate the (general) potential of LSTMs for rainfall-runoff modelling and not to 
search for the best possible performing (data-driven) model for each catchment. We 
defined the simulation setup in such a way that the results can be used as a comparison 
in the context of the modelling capabilities of a well established hydrological model. 
Since major parts of the manuscript are devoted to this comparison (between SAC-SMA 
and the LSTM), we prefer to keep the model calibration/evaluations as comparable as 
possible. In this context, it is probably also worth mentioning that we believe that the size 
of the used data-set (241 catchment) is large enough to infer the representative 
properties of the LSTM model. 
 
We therefore added a discussion to the revised conclusions-section (see answer to C3 
AR#2) and added the following passage to the new section 2.5 (former 2.4 Experimental 
design) so that it is clear that we chose our calibration scheme for a specific purpose 
(and that one needs to adapt it if the aim is best model performance): 
 
New passage: 
We want to mention here that our calibration scheme (see description in the three 
experiments below) is not the standard way for calibrating and selecting data-driven 
models, especially neural networks. As of today, a widespread calibration strategy for DL 
models is to subdivide the data into three parts, referred to as training-, validation- and 



test-data (see Goodfellow et al. 2016). The first two splits are used to derive the 
parametrization of the networks and the remainder of the data to diagnose the actual 
performance. We decided to not implement this splitting strategy,  because we are 
limited to the periods Newman et al. (2015) used so that our models are comparable with 
their results. Theoretically, it would be possible to split the 15 year calibration period of 
Newman et al. (2015) further into a training and validation set. However, this would lead 
to (a) a much shorter period of data that is used for the actual weight updates or (b) high 
risk of overfitting to the short validation period, depending one how this 15 year period is 
divided. In addition to that, LSTMs with a low number of hidden units are quite sensitive 
to the initialization of their weights. It is thus common practice to repeat the calibration 
task several times with different random seeds to select the best performing realisation 
of the model (Bengio, 2012). For the present purpose we decided not to implement 
these strategies, since it would make it more difficult or even impossible to compare the 
LSTM approach to the SAC-SMA + Snow-17 reference model. The goal of this study is 
therefore not to find the best per-catchment model but rather to investigate the general 
potential of LSTMs for the task of rainfall-runoff modelling. However, we think that the 
sample size of 241 catchment is large enough to infer some of the (average) properties 
of the LSTM based approach. 

 
 

3. Finally, more information and discussion about limitations of the new approach would be 
helpful, e.g. the computational effort, extrapolation behavior, performance for extreme 
events (floods) etc. 

 
Because of this comment, as well as minor comment 11, AR2 and comment 11, AR1 we 
decided to rewrite the entire conclusion and to add a more extended discussion about 
limitation and advantages of our approach. 
 
To address some of the specific points mentioned in this comment: 

- Computational effort: LSTMs of this size do not have any special computational 
requirements and can be trained and used on any modern computer on the CPU. 
However, most modern deep learning libraries allow to train on graphic cards 
(CUDA accelerated NVIDIA cards). Using graphic cards increases the 
performance and can be especially useful for large hyperparameter searches. All 
experiments of this study however have been made purely on a common 
computers CPU. 

- Extreme events (floods): This is discussed to some point in the “Results & 
Discussion” sections of the experiments (especially Experiment 1 & 2). We 
believe that these comments sufficiently cover the topic (considering that 241 
catchments where analyzed). However, if LSTMs are trained using MSE as loss 
functions they generally  underestimate peak flows because the MSE 
encourages models with low variance (which is the same reason as for 
hydrological models, for a principled discussion see Gupta et al. (2009)).  



- Extrapolation performance: As for any data driven approach, doing extrapolations 
with LSTMs is difficult. As a side note: This might also be a reason, why 
pre-training one network for a large amount of data (Experiment 2 & 3) can be 
useful, since it increases the amount of data “seen” by the network. With this, we 
are not sure what more to add.  

 
While rewriting the conclusion we kept the points made in this comment in mind. We 
therefore included additional sections about the network-limitations (data need, 
black-box-ness, transferability) into the new version of the discussion. Additionally, a 
different point was added to the new passage regarding the calibration scheme (i.e. 
sensitivity of weights initialization, see comment 2 of this review). 
 
New conclusion: 
This contribution investigated the potential of using long short-term memory networks 
(LSTMs) for simulating runoff from meteorological observations. LSTMs are a special 
type of recurrent neural networks with an internal memory that has the ability to learn 
and store long-term dependencies of the input-output relationship. Within three 
experiments, we explored possible applications of LSTMs and demonstrated that they 
are able to simulate the runoff with competitive performance compared to a baseline 
hydrological model (here the SAC-SMA + Snow-17 model). In the first experiment we 
looked at classical single basin modelling, in a second experiment we trained one model 
for all basins in each of the regions we investigated, and in a third experiment we 
showed that using a pre-trained model helps to increase the model performance in 
single basins. Additionally, we showed an illustrative example, why traditional RNNs 
should be avoided in favor of LSTMs, if the task is to predict runoff from meteorological 
observations. 
It bears repeating that the goal was to explore the potential of the method and not to 
obtain the best possible realisation of the LSTM model per catchment (see Sect. 2.5). It 
is therefore very likely that better performing LSTMs can be found by an exhaustive 
(catchment-wise) hyperparameter search. However, with our simple calibration 
approach, we were already able to obtain comparable (or even slightly higher) model 
performances compared to the well established SAC-SMA + Snow-17 model.  
 
In summary, the major findings of the present study are:  

(a) LSTMs are able to predict runoff from meteorological observations with 
accuracies comparable to the well established SAC-SMA + Snow-17 model. 

(b) The 15 years of daily data used for calibration seem to constitute a lower bound 
as of data-requirements. 

(c) Pretrained knowledge can be transferred into different catchments, which might 
be a possible approach for reducing the data-demand and/or regionalization 
applications, as well as for prediction in ungauged basins or basins with few 
observations. 

 



The data intensive nature of the LSTMs (as for any deep learning model) is a potential 
barrier for applying them in data scarce problems (e.g. for the usage within a single 
basin with limited data). We do believe that the use of “pre-trained LSTMs” (as explored 
in Experiment 3) is a promising way to reduce the large data-demand for an individual 
basin. However, further research is needed to verify this hypothesis. Ultimately however, 
LSTMs will always strongly rely on the available data for calibration. Thus, even if less 
data is needed, it can be seen as a disadvantage in comparison to physically based 
models, which - at least in theory - are not reliant on calibration and can thus be applied 
with ease to new situations or catchments. However, more and more large-sample data 
sets are emerging which will catalyze future applications of LSTMs. In this context, it is 
also imaginable, that adding physical catchment properties as an additional input layer 
into the LSTM may enhance the predictive power and ability of LSTMs to work as 
regional models and to make predictions in ungauged basins. 
An entirely justifiable barrier of using LSTMs (or any other data-driven model) in real 
world applications is their black-box nature. Like every common data-driven tool in 
hydrology, LSTMs have no explicit internal representation of the water balance. 
However, for the LSTM at least, it might be possible to analyze the behaviour of the 
cell-states and link them to basic hydrological patterns (such as the snow accumulation 
melt processes) as we showed briefly in Sect. 3.4. We hypothesize that a systematic 
interpretation or the interpretability in general of the network internals would increase the 
trust in data-driven approaches, especially those of LSTMs, leading to their use in more 
(novel) applications in environmental sciences in the near future.  
 
 

Minor Comments: 
 

1. page 4,Eq. 1 U​f  ​is not correct. 
 
The error will be corrected  in the revised manuscript. 
 
 

2. page 4 Give an equation for the calculations of the dense layer. 
 
Thank you for this comment, we also think that it is helpful to include the calculation for 
the dense layer. We therefore added the following new passage to the revised 
manuscript:  
 
Old passage (P6 L18-19): 
The output from the last LSTM layer at the last time step is connected through a 
traditional dense layer to a single output neuron, which computes the final discharge 
prediction (see Fig. 1 for a schematic image of the network). 
 
 



New passage: 
The output  from the last LSTM layer at the last time step (here t = n) is connectedht  
through a traditional dense layer to a single output neuron, which computes the final 
discharge prediction (as shown schematically in Fig. 1). The calculation of the dense 
layer is given by the following equation: 
 

, y = W  hd n + bd  
 
Where  is the final discharge, is the output of the last LSTM layer at the last timey hn  
step derived from Eq. (7), is the weight matrix of the dense layer and  the biasW d bd  
term. 
 
 

3. page 5, Fig. 2 Add bias b. Why c is capital letter? 
 
Regarding the addition of the bias b to the figure: We did not include any model 
parameter to the figure (e.g. W​c​, W​f​, W​i​). The reason for this is that the intention of the 
figure is to show the information flow through the RNN and LSTM cell. Thus, we believe 
that the bias term should not be added neither.  
Regarding the capitalized c: This is correct, it should be lowercase c, since it is a vector. 
This will be changed in the revised manuscript.  
 
 

4. page 5 Please give the reference on which the theory is based when starting with the 
description of the LSTM network – around Eq. 2. 
 
In the revised manuscript we added the original publication of the LSTM (Hochreiter and 
Schmidhuber, 1997) at the beginning of page 3 (where we start with the formal 
description of the LSTM). Albeit the key-citation was already given earlier in the text, we 
agree that it is helpful to refer to it throughout the document. We therefore added the 
following citations to the revised manuscript: 

 
Old passage (P3 L28): 
In this section, we introduce the LSTM architecture in more detail. 
 
New passage: 
In this section, we introduce the LSTM architecture in more detail, using the notation of 
Graves et al. (2013). 
 
Old passage (P2 L6-7): 
In comparison, the LSTM has (i) an additional cell state or cell memory ct in which 
information can be stored, and (ii) three gates that control the information flow within the 



LSTM cell (three encircled letters in Fig. 2b). The first gate is the forget gate, introduced 
by Gers et al. (2000) 
 
New passage: 
In comparison, the LSTM has (i) an additional cell state or cell memory ​c​t ​in which 
information can be stored, and (ii) gates (three encircled letters in Fig. 2b) that control 
the information flow within the LSTM cell (Hochreiter and Schmidhuber, 1997). The first 
gate, the forget gate, was later introduced by Gers et al. (2000). 

  
 

5. page 6 l. 17 “For this study, we used a 2-layer LSTM network, with each layer having a 
cell/hidden state length of 20.” First, I would split the theory and the setup of the LSTM 
for the numerical experiment. So move all the specific details to section 2.4. In addition, I 
would expect a table with all the specifications of the used LSTM including number of the 
parameters in W​c​, W​f​, W​i​, W​o​, U​c​, U​f​, U​i​, U​o​, b​c​, b​f​, b​i​, b​o ​and hyperparameters. Second, I 
do not understand that the LSTM has a number of 365 inputs and the “hidden state 
length of 20”. Please explain this! 
 
Thank you for this recommendation. We agree that it is better to split the theory of the 
LSTM functionality  and our specific setup into different sections. Therefore, we moved 
the part dealing with our specific network architecture to section of the experimental 
design, as suggested by AR2.  
We are also thankful for the suggestion of listing the parameters and their sizes in a 
table, and believe that this will indeed help to better understand the calculations in Eq. 
(2-8). Consequently, we added a table with the specifications of all parameters to the 
revised manuscript. 
Regarding the last part of the comment: It could be that we did not explain the terms 
input length, number of inputs and the nature of the hidden state well enough, as the 
question indicates a potential confusion. There are 5 inputs to the LSTM. These are the 
5 meteorological variables, which are are presented sequentially to the network. This 
means that we show the network the 5 meteorological variables of e.g. the first day of 
the sequence and compute equations 2-7, before the next day of meteorological 
variables are presented (For the next day equations 2-7 are then computed again, and 
so on...see Figure 1 and 2 of the original manuscript). Since our sequence is 365 days 
long, this computation is repeated for 365 days before the final output is calculated. The 
hidden state length of 20 is a hyperparameter and defines how much capacity we give 
the network to learn from the data (similarly, the number of LSTM layers - i.e. 2 - is an 
other hyperparameter which influences the capacity). The hidden state length can be 
compared to the number of hidden neurons in a single layer within traditional feed 
forward networks). 
 
To avoid confusions for future readers we added, the algorithm of the LSTM as 
pseudocode to section 2.1, beside the table with the parameters and their respective 



shapes (in section 2.4); and added further descriptions to the end of section 2.1. We 
hope that this helps further with understanding the LSTM. 
 
(Screenshot of parameter table, which will be inserted into Section 2.4, where the 
network architecture is presented in the revised manuscript.): 
 

 
(Screenshot of LSTM pseudocode): 

 
New passage (will be added together with the pseudo code at the end of section 2.1 
after the insertion of minor comment #2): 
To conclude, Algorithm 1 shows the pseudocode of the entire LSTM layer. As indicated 
above and shown in Fig. 1, the inputs for the complete sequence of meteorological 
observations ​, where  is a vector containing the meteorological inputs [x , ..., x ]x =  1   365 xt  
of time step ​t​,​ ​is processed time step by time step and in each time step Eq. (2-7) are 
repeated. In the case of multiple stacked LSTM layers, the next layer takes the output 

 of the previous layer as input. The final output, the discharge, is thenh , ..., h ]h = [ 1   365  
calculated by Eq. (8), where  is the last output of the second LSTM layer.h365  
 



 
6. I would skip section 2.1.1 or move this to the discussion since this is hypothetical and no 

mathematical equivalence is shown. 
 
See answer to comment #3 of AR1. 
 
 

7. page 7 l. 10 Is the LSTM limited to MSE when backpropagation is used? 
 
The LSTM is not limited to MSE, when backpropagation is used. It is able to use any 
loss function that can be utilized  for any other neural network. That is, any loss function 
that can be differentiated. A common way to derive the loss function is to use the 
principle of maximum likelihood in conjunction with the output layer. For the case at hand 
this is a dense layer, yielding the MSE as loss function, which is also the most common 
loss for regression tasks such as this one (see Goodfellow et al. 2016). If the task of 
interest is e.g. a classification problem, different output layers and loss functions would 
be used (such as the binary cross entropy or the negative log likelihood). 
 
 

8. page 7 l. 19 spelling->”iteration” 
 
Thank you very much for this finding. Word will be corrected in the revised manuscript. 
 
 

9. page 11 Please give more information about the calibration of the SAC-SMA model and 
the computational effort. 
 
Sadly, we do not have any information on the computational effort it took the CAMELS 
authors to calibrate the SAC-SMA + Snow-17 models for all basins (and no information 
is given in their publication). Regarding the calibration process, we added the following 
sentences to section 2.3, because we see that this summary also helps explaining why 
we trained the models the way we did (see comment #2, AR2). 
 
Old passage: 
Additionally, the CAMELS data set contains time series of simulated discharge from the 
calibrated Snow-17 models coupled with the Sacramento Soil Moisture Accounting 
Model (see Newman et al. (2015) for further details). The models were calibrated with 
the first 15 hydrological years for which streamflow data is available (in most cases 1 
October 1980 until 30 September 1995). We use the exact same period for the training 
of the LSTM, while the remaining data (in most cases 1 October 1995 until the end of 
2014) is used for model validation. 
 
 



 
New passage: 
Additionally, the CAMELS data set contains time series of simulated discharge from the 
calibrated Snow-17 models coupled with the Sacramento Soil Moisture Accounting 
Model.  Roughly 35 years of meteorological observations and streamflow records are 
available for most basins. The first 15 hydrological years with streamflow data (in most 
cases 1 October 1980 until 30 September 1995) are used for calibrating the model, while 
the remaining data is used for validation. For each basin 10 models were calibrated 
using the shuffled complex evolution algorithm by Duan et al. (1993), starting with 
different random seeds. The objective Newman et al. (2015) used, was minimizing the 
root mean squared error (RMSE). As final model (and as the model we used for 
comparison), the model with the lowest RMSE in the calibration period is chosen. For 
further details see Newman et al. (2015). 
 
 

10. page 13 Explain, why the LSTM network is better for the mean, but not for the median 
NSE (see Fig.6b). From my point of view, it is not surprising that the LSTM network 
performance better for mean flows. So discuss in detail also the behavior for high flows. 

 
We are not completely sure whether we understood the comment correctly. In our view, 
the performance difference between mean and median NSE is not associated with the 
“better performance for mean flows”. From Figure 7a and the sentences below one can 
see that the NSE values of the SAC-SMA have large negative deviations (see also our 
answer to minor comment #11 to AR#1), while the ones for the LSTM network do not. 
The mean is influenced by these outliers, while the median is not. The lack of robustness 
of the mean is in this case an advantage, as it does not hide bad model performances.  
 
 

11. page 15 “However, we want to highlight again that achieving the best model 
performance possible was not the aim of this study, rather testing the general ability of 
the LSTM in reproducing runoff processes.”<-Since we already know that data driven 
techniques are able to reproduce runoff processes, the authors of the paper should be 
more ambitious and give some more details and discussion about advantages and 
disadvantages of the LSTM network. 

  
In the revised manuscript, we rewrote the entire conclusion (see also our answer to 
comment 3 of AR2). The new conclusion contains a broader discussion about limitations 
and advantages of LSTMs.  
 
 
 
 
 



12. page 21 I would skip Fig. 21 or would present a more detailed analysis of internal states 
and combine this with the hypothesis described in section 2.1.1. 
 
See answer to comment #3 of AR1 
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