
First of all, we would like to thank S. Mylevaganam (in the following abbreviated as SM) for the 
time he took to write this comment. However, before continuing, we would like to express our 
complete incomprehension for being accused of providing any “favours to related research 
groups” by citing their papers (see comment 13). The author of the comment does not provide a 
single piece of evidence to support such a statement. It is strongly offensive, and we would 
strongly advise the author to step back from such behaviour in the future. 
 
We add the ​comments from SM in blue​ and add our replies in black. 
 

1) After decades of entangled and forbidden understanding in the field of hydrology, more 
systematic research and effort to better understand the underlying processes and  the 
components that form a rainfall-runoff model has made to lease a transition from 
regression based models to more process oriented rainfall-runoff models (see P-1 
LN-1:20). In other words, the quest for more process oriented models prevails to better 
understand a hydrological system of interest. Otherwise, the efforts to better understand 
the underlying processes and the components that form a rainfall-runoff model over the 
past few decades become futile if more regression based models are used instead of 
process oriented models. What was the reason to spend many decades to understand 
the components that form a hydrological system? What was the reason to spend many 
decades to seek a transition to a process based model? Therefore, the reasons for 
reversing the gear that leads to old school of using regressed equation in lieu of 
processed oriented models are left unfound. 

 
Reply:​ In this comment it is argued that hydrology should be only (and exclusively) 
performed to better understand a given system; and that pursuing different goals would 
"invalidate" (sic) this branch of research. We can only partially consent with this 
statement. Contrary to the statement, we believe the hydrological endeavor is not guided 
by only a single goal (see e.g. Blöschl (2017), Sivapalan et al. (2003) and Montanari 
(2013)). As such we believe that progressing into one direction, does not invalidate the 
research in the others. Following the logic of the statement one would need to conclude 
that the decades of progression in process based models would invalidate the research 
of data driven models (say regression based models). This is not the case. Neither 
theoretically (as lined out above) nor empirically (as we shall demonstrate in the 
following). In the contribution we show that Artificial Neural Networks have been used in 
hydrology since the early 90s. They have been experimented with since. To us it seems 
clear that this branch of research has not made the "quest for more process oriented 
models" obsolete. And, neither have process oriented models slowed down or 
invalidated the research regarding data driven models. As part of our research we 
actually try to bridge the gap between both worlds (see Conclusions P20 L18ff and Fig. 
14), so that in the future both approaches can benefit from each other. 

 
2) As per the authors, the computational requirements and high computational costs are 

some of the striking factors that force to use conceptual models for operational purposes 



in lieu of physically based models which have been formulated after many decades of 
scientific efforts and findings to wade off the lack of understanding of the underlying 
processes of a hydrological system (see P-1 LN-21; P-2 LN-3). What are those 
computational requirements and computational costs? It would be more appropriate to 
list all the computational requirements and computational costs to solve the intended 
tasks. It would be more appropriate to plot the graph of computational speed with years 
and technology development to show the current status of technological development to 
support the hydrological system. As per the authors, the technology development is not 
at an appreciable level to meet the computational requirement and the computational 
cost to solve a simple hydrological problem that is explained in the current version of the 
manuscript. 

 
Reply:​ We do not see anything that is wrong or contradictory in the lines SM is referring 
to. Running fully coupled 3D-land surface schemes to describe the water cycle for large 
river basins/catchments does come at the price of high computational costs. Of course it 
is in principle possible to apply such a model for each of the CAMELS catchments, but 
because of the computational requirements (and also data requirements, e.g. 3D soil 
hydraulic properties, …) this is still impossible for many operational purposes where fast 
response times are required, when multi-ensemble runs within sensitivity studies or 
uncertainty estimation frameworks are performed.  
Our argument is not that it is not possible to solve the hydrological problem (that we are 
addressing) with any other method. The point that we want to make is, that often fast 
model runs are needed (e.g. to describe a hydrological system under investigation or to 
conduct a comprehensive uncertainty analysis) and that recent developments in AI are 
worth to be explored.  
We will be happy to make that point clearer in a revised version of the manuscript.  

 
3) As per the authors,  more conceptual based models are used in operational purposes 

(see P-2 LN-4). From the reader’s point of view, the statement of this nature needs more 
understanding on the purposes that these conceptual models are used. A conceptual 
model may perfectly suffice an operational need if the need is well governed by the 
conceptual model. In other words, the selection of models should be based on the need 
and the problem to be solved. For example, if the need is about the peal flow, a 
conceptual model may (depending on the consequences of incorrect estimation of flow 
magnitude) suit the operational need. On the other hand, if the operational need is about 
the timing of the peak flow, a conceptual model may not meet the operational purpose. 
Therefore, is it wise to conclude that conceptual models are applied to meet the 
operational needs? The manuscripts that are cited need to be thoroughly scrutinized to 
understand the purposes for which those conceptual models are used in lieu of process 
based mode 
 
Reply:​ See the answer to comment (1). While we agree with the general argument of 
the statement, we do not see how it would improve the understanding of the reader 



(regarding the subject at hand). We believe that readers will, at this point of the 
manuscript, not appreciate an extensive discussion about the relative weight of the 
specific use cases for hydrological models. We therefore disagree with the conclusions 
that are drawn from the statement (for example, the claim that conceptual models do not 
suffice for modelling). That said, conceptual models do usually have system states (e.g. 
soil moisture index, snow water equivalent) or fluxes (e.g. infiltration, groundwater 
recharge), which can be of interest to the hydrologist. Physical models also simulate 
these fluxes and states, but in the context of operational and engineering purposes the 
balance between the effort of setting up the physically based model and the 
computational expenses vs. potential improved model results often leads to a preference 
for simplifications. In our manuscript we state the following: “Thus, simplified physically 
based or conceptual models are still routinely applied for operational purposes” (P2 L4). 
This is not a conclusion, it is rather an observation from long term experience in water 
resource management. The references we cite are just examples of different 
applications in the operational context to underline our statement. 

 
4) As per the authors, the CAMELS dataset (i.e., freely available dataset of 671 catchments 

with minimal human disturbances across the contiguous United States) contains time 
series of simulated discharge from the calibrated Snow-17 models coupled with the 
Sacramento Soil Moisture Accounting Model (see P-9 LN-20). Were the developers of 
the dataset constrained by high computational requirements and computational costs? 
How did they develop the time series of simulated discharge for this dataset that 
represents the contiguous “United States”? What is accomplished by the authors in the 
manuscript using the proposed LSTM is pending further clarification. 

 
Reply:​ The method for deriving the time series data of the meteorological forcings is well 
described in the original publication of the data set (Newman et al. 2015) in Section 2.2. 
Further, we have no information if the authors of the data set were limited by 
computational costs and we are unsure about the relevance of this question regarding 
our manuscript. The same is valid for the second question (the development of the 
simulated discharge time series) that is well described in Section 3 in Newman et al. 
(2015). We use their model outputs without modification and therefore see no need for 
describing their modelling approach in more detail. We explain in P9 L21 - P10 L3 which 
period of the time series are used by Newman et al. (2015) to calibrate their models and 
state that we use the exact same period to be able to compare the resulting model 
outputs. Regarding the last sentence (“What is accomplished by the authors in the 
manuscript using the proposed LSTM is pending further clarification”): The statement is 
unclear to us in the context of the remaining comment 4. We tested a new data-driven 
modelling approach (using the LSTM network) for rainfall-runoff modelling and tested our 
approach with data from the CAMELS data set. We used the CAMELS data set 
especially because a) it is publicly available b) contains a large number of different 
basins c) contains calibrated model outputs (from SAC-SMA + Snow 17) that can be 
used for comparison. As stated in Newman et al. (2015) the “benchmark application is 



intended for the community to use as a test bed to facilitate the evaluation of hydrologic 
modeling and prediction questions” and further “focus on providing a benchmark 
performance assessment for a widely used calibrated, conceptual hydrologic modeling 
system. This type of data set can be used for many applications including evaluation of 
new modeling systems against a well known benchmark system over wide ranging 
conditions.” To us, this clearly justifies the use of the SAC-SMA+Snow-17 as benchmark 
for our study. 

 
5) As per the authors, process based models are more data intensive (see P-1 LN-18; P-1 

LN-21).  Therefore, the temptation to adopt data driven models rooted based on ANN 
and its branches is fast becoming common. However, as per the authors, the data driven 
models also heavily rely on extensive data for proper training and validation (see P-10 
L-17; P-10 L-20). Without proper training with adequate good quality data, data driven 
models (e.g., ANN) that reveal no physical meaning of the underlying processes of a 
hydrological system are also not feasible. Therefore, the authors’ statements need more 
clarification. 

 
Reply:​ We agree that the two passages (P1 L24ff and P10 L17f) in our manuscript might 
be misleading. Therefore a clarification: The “data-need” for physically-based and/or 
processed-based models and data-driven modelling approaches is of a different nature: 

a) Physically based models are data intensive, because they need “a-priori” data for 
the setup; e.g. 3d information about the soil and sub-surface characteristics (P1 
L24 ff.) at a high spatial resolution - an information often not available. 

b) Neural networks (in our case LSTM) need many training samples (they get better 
and better the more training samples are available). By no definition, do these 
samples need to contain any information about e.g. the sub-surface 
characteristics at a high resolution. As we show in our study, 15 years of daily 
data is enough to achieve comparable results with our (rather small) LSTM 
model. Regarding the data quality: We would state that data quality is less 
important for Neural Networks as for physically based models (see e.g. Raleigh 
et al. (2015) for a sensitivity analysis of model forcings of a physically based 
model). For example Banko and Brill (2001) and Krause et al. (2016) have shown 
that the size of the training corpus is more important than the quality of the 
training data. Here one has to differentiate between data quality and quantity.  

We will elaborate this difference more clearly in the revised manuscript. 
 

6) As per the authors, the output (discharge) for a specific time step is predicted from the 
input x = [x-n, ..., x0] consisting of the last n consecutive time steps of independent 
variables (daily precipitation, min/max temperature, solar radiation and vapor pressure) 
and is processed sequentially(see P-4 LN-6). In other words, as per the authors, the 
rainfall-runoff modeling is represented by the selected independent variables (i.e., daily 
precipitation, min/max temperature, solar radiation and vapor pressure). Among the 
selected independent variables, what is the variable that best explains the “infiltration”? 



 
Reply:​ The major part of the statement succinctly summarizes some of the operational 
functionality of the implemented LSTM approach. We have nothing to add to this 
description. The last sentence, however, asks, which of the input variables explains the 
infiltration process. This question might be interesting, but could as well be interesting for 
any other type of model used (and in any hydrological context). Similarly, it was not part 
of our research agenda.  
 

7) In the current version of the manuscript, the distinction between “basins” and 
“catchments” is not well understood. For example, as per the authors, the CAMELS 
dataset is freely available and includes meteorological forcing data and observed 
discharge for “671 catchments” across the contiguous United States (see P-3 LN-15). 
However, in the subsequent statement(see P-3 LN-16), the authors state that for each 
basin, the CAMELS data set also includes time series of simulated discharge from the 
Sacramento Soil Moisture Accounting Model coupled with the Snow-17 snow model. 
What are basins? What are catchments? 

 
Reply:​ We use those terms interchangeably, following the convention laid out by the 
UNESCO International Glossary of Hydrology (see n. 133 p. 31 in WMO and UNESCO 
(2012)). We can see that this might be confusing for some readers and are willing to 
adapt the manuscript and reduce to only one of the two words, if the reviewers or editor 
wish so. 

 
8) As per the authors, the first 14 years of the 15-year calibration period is the training data 

and the last, fifteenth, year is the independent validation period (see P-10 LN-10). The 
selection of training period and the validation period needs more explanation. What is 
the impact of selecting the last year of the 15-year calibration period for validating the 
trained model (i.e., LSTM)? Any scientific evidence to show that this type of data 
selection for training and validating a LSTM model to solve a hydrology related problem 
works well. 

 
Reply:​ Here the preliminary study (to determine the number of training epochs) and the 
actual experiment (where one model is trained and later evaluated to derive the scores 
presented in the results section) should not be mixed: 

a) Regarding the preliminary study: Because we wanted to be comparable with the 
model outputs of Newman et al. (2015) we were limited to the 15-year period 
available for e.g. the hyperparameter search (the number of training epochs). 
Thus we split this 15 year period into a new calibration period (the first 14 years) 
and a new validation period (the last year) and used these two subsets for 
deriving the number of epochs. 

b) Regarding the actual experiment: With the number determined in (a) we then 
trained a LSTM on the entire 15 year period (the same period used in Newman et 
al. (2015) for calibration of their models). All numbers presented in the results 



section are derived using the so trained model on the original validation period 
(all data following the first 15 years of the time series, as in Newman et al. 
(2015)). 

Because, to our knowledge, we are the first to publish rainfall-runoff modelling using the 
LSTM, we can’t provide references to other publications with the same approach. 
Further, since we want to test the forecast/simulation ability of the network, it seemed 
natural to us to not randomly split the calibration data for this preliminary experiment, but 
to use the first continuous part (14 / 15) for training and the following part (1 / 5) for 
validation. 

 
9) In the current version of the manuscript, the length of the input sequence, which 

corresponds to the number of days of meteorological input data provided to the network 
for the prediction of the next discharge value is set to 365 days in order to capture at 
least the dynamics of a full annual cycle(see P-6 LN-22). Would this lead to a highly 
memorized network? What would be the status of the trained network if the length of the 
input sequence is set to 90 days instead of 365 days? How did you validate your trained 
network with one year of data (see comment-8) when the length of the input sequence is 
set to 365 days? 

 
Reply:​ If we understand SM correctly, the question is: Can a LSTM model, trained 
exclusively to predict the discharge based on 365 days of meteorological input be used 
for inference with shorter time series of input and if yes, how does this affect the model 
output. Then our answer is: Yes, it is indeed possible to evaluate the trained network 
with shorter time series as input, as the network was originally trained on. Here one has 
to remember that the parameters of the network are adapted during training based solely 
on the prediction error (and the subsequent loss function) of the prediction made at the 
last (365th) day. Figure 1 exemplarily shows the effect of the length of the input 
sequence on the simulated discharge value of  one time step for an arbitrary basin. The 
blue line shows the observed discharge value at a given time step, the orange points 
show the network prediction as a function of the number of days provided as input data . 
The data comes from the validation period, thus the network has not seen the data 
during training. As we can see for this case and time step, the prediction stabilizes after 
150-200 days. This suggests, that for this basin and time step shorter input sequences 
may suffice for a good prediction. In further studies, systematic investigations should 
analyse the effects of the length of the input sequence on the simulated discharge, as is 
stated in the manuscript. If the question is rather, why we have chosen 365 days and not 
e.g. 90 then our answer regarding comment 9 is: As we state in the conclusions (P20 
L13 ff.) and in the Section 2.1 (P6 L22 ff.) the length of the input sequence is one of the 
hyperparameters and should be investigated more closely in future studies. It was out of 
scope of this study to have a closer look at each of the hyperparameters, thus we have 
chosen 365 days to cover a full annual cycle. Regarding the last question of this 
comment 9: The split is made based on discharge values. Thus the “artificial” validation 
set we used in the preliminary studies to determine the number of epochs for training are 



the discharge values of the last, 15-th year (of the original calibration period) with their 
corresponding 365 previous days of meteorological input. 

 

 
 

10) What is the definition of “HUC”? As per the USGS website 
(https://water.usgs.gov/GIS/huc.html), the HUCs contain either the drainage area of a 
major river, such as the Missouri region, or the combined drainage areas of a series  of 
rivers, such as the Texas-Gulf region, which includes a number of rivers draining into the 
Gulf of Mexico. With this definition of HUC, is the development of a more generalized 
model (see P-10 LN-30) for each of the selected HUCs misleading? Moreover, are the 
catchments/basins in each HUC ungaged (see P-10 LN-27)? I think, the current version 
of the manuscript is distant from providing all these details. 

 
Reply:​ Regarding the first question, if our statement is misleading: We do not agree. The 
author of the present comment has cited the definition of one HUC correctly. But the 
basins within one HUC can be quite different, as for example discussed in Section 3.2 
(and partly shown in Fig. 11) and also in the conclusions.  
Regarding the second question: No, each of the basins is gauged. But as we state in the 
conclusions (P20 L2ff.) the CAMELS data set could be used to investigate the potential 
of LSTMs for predicting the discharge in ungauged basins by leaving out  some basins in 
the calibration and then evaluating the model performance on these basins, i.e. 
cross-validation.  

 
11) The section 2.1 needs an example to illustrate the use of the authors’ mathematical 

formulations of LSTM. For example, on Wednesday, May 16, 2018, if the precipitation, 
max temperature, min temperature, and vapor pressure are p unit, l unit, h unit, and v 
unit, respectively, how the reader of this manuscript uses the developed LSTM model to 



determine the intended output (i.e., discharges/runoff?) is needed. Otherwise, the 
equations that are formed and welded would lead to rely on mathematicians to decode 
and understand. 

 
Reply:​ We do not agree that Section 2.1 needs an explicit example on how to calculate 
the discharge for e.g. “Wednesday, May 16, 2018” given “precipitation, max temperature, 
min temperature, and vapor pressure are p unit, l unit, h unit, and v unit, respectively”. 
We think that the provided equations with Fig. 1 in  the manuscript and the entire 
description in Section 2.1. is sufficient for understanding how the discharge of one day is 
calculated. This is equally done in publications of hydrological models (e.g. Perrin et al. 
(2003), Samaniego (2010), Aghakouchak and Habib (2010)). Furthermore, the 6 
equations of the LSTM involve only rather simple operations of linear algebra 
(summation, element-wise multiplication and matrix-vector-multiplication). We do not 
believe that only mathematicians (but not a hydrologist) could “decode” (sic!) these 
equations. 

 
12) What is meant by SAC-SMA+Snow-17(see P-1 LN-11)? Is it meant to convey that the 

outputs of SAC-SMA and Snow-17 are added to determine the final output? What is the 
output of SAC-SMA? What is the output of Snow-17? 

 
Reply:​ As stated in P1 L6, the results of this study are compared to the CAMELS 
benchmark model, which consists of a calibrated, coupled Snow-17 snow model and the 
Sacramento Soil Moisture Accounting Model. The term “SAC-SMA+Snow-17” underlines 
this coupling. The results of the single model components are not reported but only the 
overall runoff prediction generated by the coupled modelling framework.  
In Section 3.1 in [4] the interested reader can find a more detailed description of the 
Snow-17 snow model and the SAC-SMA hydrological model, as well as the references 
to the original publications of these two models. 

 
13) In the current version of the manuscript, some of the cited manuscripts are questionable. 

For example, citing Shen et al., 2018 to state that the “potential use and benefits” of DL 
approaches in the field of “hydrology and water sciences” has “only recently come into 
the focus of discussion”(see P-2 LN-32). Are the authors citing Shen et al., 2018 based 
on their relationship with Shen et al., 2018? When that manuscript (i.e., Shen et al., 
2018) is under severe criticism from the esteemed referees, does it make sense to give 
credits for that manuscript? Moreover, the cited manuscripts to support the following 
statements also lead to confusion. Would it be possible for the authors to state the 
reason for citing these manuscripts to support the statements? 
 
Reply:​ We reject the reproach that we cite Shen et al. (in review) due to a relationship 
with the authors of this publication.This is definitely not the case! Shen et al. (in review) - 
which is still under discussion at the moment of this reply - is cited next to Marçais and 
de Dreuzy (2017) as these manuscripts focus on the use of DL approaches in the field of 



hydrology and discuss possible future applications. Both publications are cited in the 
same sentence: “In general, the potential use and benefits of DL approaches in the field 
of hydrology and water sciences has only recently come into the focus of discussion.” 
The two references are a technical commentary and a HESS Opinion manuscript and 
thus in our opinion are well suited to underline the recent advent of the discussion on DL 
approaches in hydrology. In addition, the two comments by the referees of Shen et al. (in 
review) were not online at the time of the submission of the present manuscript. 
However, we do not see the “severe criticism” of the manuscript in the comments of the 
two referees. The major concerns are related to the format of the manuscript (HESS 
Opinion paper) and the similarity to Marçais and de Dreuzy (2017). Content-wise “severe 
criticism” seems to be raised only by SM himself. 

 
a) The transferability of model parameters (regionalization?)  from catchments 

where meteorological and runoff data are available to ungauged or data scares 
basins is one of the ongoing challenges in hydrology (Buytaert and Beven, 2009; 
He et al., 2011; Samaniego et al., 2010). 

 
Reply: ​We cite the following three publications in this context because they all 
deal with the problem of regionalization in hydrology. Buytaert and Beven (2009) 
analyse the uncertainty involved in regionalizing hydrological model structures. 
He et al. (2011) review regionalization methods for continuous streamflow 
estimation for ungauged catchments. Samaniego et al. (2010) propose a 
regionalization method which accounts for sub-grid variability, which accounts for 
many of the difficulties of modern methods. 
 

b) The second motivation is the prediction of runoff in ungauged basins, one of the 
main challenges in the field of hydrology (Blöschl, 2013; Sivapalan, 2003). A 
regional model that performs reasonably well across all catchments within a 
region could potentially be a step towards the prediction of runoff for such basins. 
Reply: ​In our opinion the references concerning prediction in ungauged basins 
are well justified; both references explicitly deal with the problem of runoff 
prediction in ungauged basins. Blöschl (2013) is the result of the IAHS initiative 
“Predictions in Ungauged Basins (PUB)”. 

 
 
 
 
 
Regarding the unnumbered minor comments​: 

A. In Figure 5, would not it be appropriate to show the HUC boundaries instead of the state 
boundaries. 

 



Reply: ​We tried to match our visualizations as closely as possible to the figures in 
Newman et al. (2015), as it facilitates a comparison for the reader.  
 

B. In Figure 5, the precipitation values are given in mm/yr. However, on P-9(see LN-19), the 
precipitation values are given in mm/year. 

 
Reply: ​It should be mm/yr everywhere and we are thankful for this correction. We will 
update this mistake in the next version. 
 

C. Should it be “dataset” or “data set”? 
 

Reply: ​We will revise the manuscript and change all instances of this word to “data set”. 
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