
1 
 

Improving soil moisture and runoff simulations over Europe using a 
high-resolution data-assimilation modeling framework  
Bibi S. Naz1,2, Wolfgang Kurtz1,2, Carsten Montzka1, Wendy Sharples2,3, Klaus Goergen1,2, Jessica 
Keune4, Huilin Gao5, Anne Springer6, Harrie-Jan Hendricks Franssen1,2, Stefan Kollet1,2 
1Research Centre Jülich, Institute of Bio- and Geosciences: Agrosphere (IBG-3), Jülich 52425, Germany  5 
2Centre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich 52425, Germany 
3 Research Centre Jülich, Jülich Supercomputing Centre, Jülich 52425, Germany 

4Laboratory of Hydrology and Water Management, Ghent University, Ghent 9000, Belgium 
5Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843, USA 
6Institute of Geodesy and Geoinformation, Bonn University, Nussallee 17, Bonn 53115, Germany 10 

Correspondence to: Bibi S. Naz (b.naz@fz-juelich.de) 

Abstract. Accurate and reliable hydrologic simulations are important for many applications such as water resources 

management, future water availability projections and predictions of extreme events. However, the accuracy of water 

balance estimates is limited by the lack of observations at large scales and the uncertainties of model simulations due to 

errors in model structure and inputs (e.g. hydrologic parameters and atmospheric forcings). In this study, we assimilated 15 

ESA CCI soil moisture (SM) information to improve the estimation of continental-scale soil moisture and runoff. The 

assimilation experiment was conducted over a time period from 2000 to 2006 with the Community Land Model, version 3.5 

(CLM3.5) integrated with the Parallel Data Assimilation Framework (PDAF) at spatial resolution of 0.0275° (~3 km) over 

Europe. The model was forced with the high-resolution reanalysis COSMO-REA6 from the Hans-Ertel Centre for Weather 

Research (HErZ). Our results show that estimates of soil moisture have improved, particularly in the summer and autumn 20 

seasons when cross-validated with independent CCI-SM observations. On average, the mean bias in soil moisture was 

reduced from 0.1 mm3/mm3 in open-loop simulations to 0.004 mm3/mm3 with SM assimilation. The assimilation experiment 

also shows overall improvements in runoff, particularly during peak runoff. The results demonstrate the potential of 

assimilating satellite soil moisture observations to improve high-resolution soil moisture and runoff simulations at the 

continental scale, which is useful for water resources assessment and monitoring. 25 

1 Introduction 

Soil moisture (SM) constitutes a key variable in major processes of the hydrologic cycle related to infiltration and runoff 

generation, root water uptake and plant transpiration, and evaporation (Vereecken et al., 2016). Thus, soil moisture strongly 

influences the partitioning of incoming radiative energy into latent and sensible heat and significantly affects the land surface 

energy and water budgets. Consequently, accurate estimates of SM at large scale are needed for: (1) hydrologic predictions 30 

(such as soil moisture and discharge) (Western et al., 2002) and water resource management and planning (e.g. groundwater 
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recharge, mitigation of droughts) (Dobriyal et al., 2012; Andreasen et al., 2013; Sridhar et al., 2008), (2) identifying regions 

susceptible to extreme events such as droughts and floods (Seneviratne et al., 2010), (3) numerical weather predictions 

(Drusch, 2007), and (4) irrigation management and agriculture practices (Shock et al., 1998; Bolten et al., 2010).  

At continental space and inter-annual time scales, SM typically exhibits large variability (Brocca et al., 2010), depending on 

rainfall distribution, topography, soil physical properties, vegetation characteristics, and human impacts, such as irrigation. 5 

However, monitoring of soil moisture remains challenging due to the scarcity of in situ SM observations networks. Recent 

advancements in satellite-based sensors offer great potential to monitor SM over large scales for continental water resources 

assessment, particularly in areas where ground observation networks are sparse (Mohanty et al., 2017). Conventionally, 

satellite observations have been used in global water balance studies to provide information on the water cycle components, 

such as precipitation, evapotranspiration, soil moisture, water storage and runoff (Running et al., 2004; Kiehl and Trenberth, 10 

1997; Vinukollu et al., 2011; Trenberth et al., 2007). However, sparse data coverage in satellite observations limits their 

ability to provide spatially and temporally consistent time series of water balance estimates. Another approach to facilitate 

studies at a regional to global scale is to estimate water budget components using land surface models forced with 

precipitation and other atmospheric data (such as the Community Land Model (CLM) (Lawrence et al., 2011), the Variable 

Infiltration Capacity (VIC) model (Liang et al., 1994; 1996), or the Joint UK Land Environment Simulator (JULES) (Best et 15 

al., 2011; Clark et al., 2011). The simulated soil moisture distributions from the land surface models provide spatially and 

temporally continuous information, yet their accuracy is limited by model deficiencies, and uncertainties in both model 

parameters and atmospheric forcing variables (Draper et al., 2009; Chen et al., 2013). Estimates from observational and 

modeling approaches can be merged by data assimilation to provide improved estimates of hydrologic variables at large 

scales (Lahoz and De Lannoy, 2014). Recent studies showed that assimilation of soil moisture data into hydrologic modeling 20 

could improve water balance predictions such as evaporation and runoff (e.g. Crow et al., 2017; Mohanty et al., 2013; 

Brocca et al., 2012; Matgen et al., 2012; Draper et al., 2011; Pauwels et al., 2002; 2001). However, many of these studies 

mainly focused on improved predictions at watershed scales using in situ observations. Only few studies demonstrated the 

potential of using satellite observations to improve runoff estimates at regional and global scales (e.g. Liu and Mishra, 2017; 

López López et al., 2016; Renzullo et al., 2014; Crow and Ryu, 2009; Pan et al., 2008). 25 

Several studies evaluated the assimilation of satellite SM observations into land surface models to produce optimal soil 

moisture estimates (e.g., Reichle and Koster, 2005; Han et al., 2014; Lievens et al., 2015; De Lannoy and Reichle, 2016). For 

example, Rains et al. (2017) assimilated SMOS data into CLM over Australia for drought monitoring purposes. Han et al. 

(2014) evaluated the joint state and parameter estimation method for the coupled CLM and Community Microwave 

Emission Model (CMEM) (de Rosnay et al., 2009) through assimilation of synthetic microwave brightness temperature data. 30 

Similarly, Liu and Mishra (2017) also used assimilation of satellite SM data at the global scale to evaluate the performance 

of the community land surface model (CLM4.5) in simulating hydrologic fluxes such as SM, ET and runoff at 0.5° spatial 

resolution. They found that assimilating satellite SM data into the CLM4.5 model improved the soil moisture simulations, 

which also lead to better representation of other hydro-meteorological variables in the model, such as ET and runoff. Despite 
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these important advancements, the current spatial resolution of these global scale studies is too coarse to provide locally 

relevant information (Wood et al., 2011, Bierkens et al., 2015). For example, predicting water cycle processes for scientific 

and applied assessment of the terrestrial water cycle requires a high-resolution modeling framework on the order of 100km. 

The spatial mismatch between coarse-resolution satellite data and high-resolution hydrologic models constitutes a great 

challenge. To address this issue, the spatial mismatch between observations and modeling approaches needs to be taken into 5 

account either in the data assimilation algorithm (Sahoo et al., 2013; De Lannoy et al., 2012), or through pre-processing of 

satellite products to match the model resolution (Merlin et al., 2010; Verhoest et al., 2015). Another challenge is the 

availability of computational resources, since the computational burden increases (non-) linearly with increasing model 

resolution, the number of ensemble members in the data assimilation system as well as the complexity of simulated 

processes.  10 

The objective of this study is to investigate the performance of a high-resolution, continental land surface model in 

simulating soil moisture and runoff for different climatic zones using data assimilation to incorporate coarser resolution 

satellite soil moisture data. We used CLM3.5 coupled to the parallel data assimilation framework (PDAF) library (Kurtz et 

al., 2016; Nerger and Hiller, 2013). PDAF is computationally efficient due to its parallelization of data assimilation routines 

and is suitable for applications at large spatial scales and high-resolution over long time periods (Kurtz et al., 2016). The 15 

remainder of this paper is organized as follows: the model and observational data sets as well as methods, including the 

CLM-PDAF setup and experimental design are described in Sect. 2; the results, including model validation and analysis of 

simulated soil moisture and runoff are documented in Sect. 3; while the conclusions are presented in Sect. 4. 

2 Methods and Data 

2.1 Model Description 20 

In this study, the Community Land Model version CLM3.5 (Oleson et al., 2004) was applied to represent land surface 

processes such as surface and subsurface runoff, snow, soil moisture evolution, evaporation from soil and vegetation, 

transpiration and interception of precipitation by vegetation canopy, throughfall and infiltration. Specifically, runoff is 

parameterized using a simple TOPMODEL-based scheme (SIMTOP; Niu et al., 2005). Soil water is calculated by solving 

the one-dimensional Richards equation (Zeng and Decker, 2009). Groundwater table depth and recharge to groundwater 25 

from the soil column is updated dynamically using the algorithm described in Niu et al. (2007). The snow model in CLM 

explicitly simulates multilayer snow depending on the total snow depth, and includes processes such as snow-melting, 

surface frost and sublimation, liquid water retention and thawing-freezing processes, (Dai et al., 2003, Dickinson et al. 2006; 

Stöckli et al., 2008). Total runoff is calculated as the sum of the subsurface runoff, surface runoff and runoff generated from 

lakes, glaciers, and wetlands (Oleson et al., 2004).  30 

CLM3.5 offers significant improvements in estimating the subcomponents of the terrestrial water cycle compared to earlier 

versions (Oleson et al., 2008), including improvements in soil water availability and resistance terms to reduce the soil 
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evaporation which was overestimated in earlier versions (Niu et al., 2005; Oleson et al., 2008; Yang and Niu 2003). For a 

detailed description of CLM3.5, the readers are referred to Oleson et al. (2008). CLM3.5 was used in this study, instead of its 

most recent version, to keep the modeling framework consistent to Kurtz et al. (2016). 

2.2 Data assimilation framework 

The Parallel Data Assimilation Framework (PDAF) (Nerger and Hiller, 2013) was used to assimilate satellite soil moisture 5 

into CLM3.5. PDAF provides data assimilation methods such as the ensemble Kalman filter (EnKF) (Evensen, 2003; 

Burgers et al., 1998) and the local ensemble transform Kalman filter (LETKF) (Hunt et al., 2007). In this study, we used the 

EnKF, which is a relatively simple and flexible technique for assimilating satellite data into land surface models (e.g. Draper 

et al., 2012; Reichle et al., 2002, 2008; Kumar et al., 2008, 2009; Pipunic et al., 2008; Crow and Wood, 2003;). It used 

ensembles of model states to approximate the model state error covariance matrix in order to optimally merge model 10 

predictions with observations.  

The EnKF calculates the ensemble of updated states variable 𝒙!! at each time 𝑡 of the model estimated state variable 𝒙!, as 

 

𝒙!! =  𝒙!  +  𝒌! 𝒍! − 𝐇!𝑋!          (1) 

Where 𝒍! is the perturbed observation vector and 𝒌! is the Kalman gain vector defined as: 15 

 

𝒌! = 𝐏!𝐇!
! 𝐑! + 𝐇!𝐏!𝐇!

! !!          (2) 

 

where 𝐇!
! is the transpose matrix of the observation model at time 𝑡, 𝐑! is the measurement error matrix, which is defined a 

priori based on the expected measurement error of the ESA CCI soil moisture product and  𝐏! is the state error covariance 20 

matrix of the model predictions calculated as:  

 

𝐏!  =  𝒙! ! 𝒙 𝒙!!𝒙 !!
!!!

!!!
          (2) 

 

 25 

where  𝒙 is the vector which contains the ensemble average soil moisture contents for the different grid cells and N is the 

number of ensemble members.  

Kurtz et al. (2016) recently provided a framework to couple PDAF with the land surface–subsurface part of the Terrestrial 

Systems Modelling Platform (TerrSysMP; Gasper et al., 2014; Shrestha et al., 2014). They showed the efficient use of 

parallel computational resources by TerrSysMP-PDAF, which is needed to simulate predicted states and fluxes over large 30 

spatial domains and long simulations. In this study, we used the CLM-PDAF setup, in which PDAF is coupled with the 
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stand-alone CLM3.5 for soil moisture assimilation. Readers are referred to Kurtz et al. (2016) for technical descriptions of 

coupling and model performance. 

2.3  Data 

2.3.1 Land surface data and atmospheric forcing 

The land surface static input data used in this study consist of topography, soil properties, plant functional types, and 5 

physiological vegetation parameters (Fig. 1). Digital elevation model (DEM) data were acquired from the 1km Global Multi-

resolution Terrain Elevation Data 2010 (GMTED2010) (Danielson et al., 2010) as shown in Fig. 1a. The land use data was 

based on the Moderate Resolution Imaging Spectroradiometer (MODIS) data set (Friedl et al., 2002) (Figure 1b), where the 

land use types are transferred to Plant Functional Types (PFT). The properties of each of the sub-grid land fractions, such as 

the leaf area index, the stem area index, and the monthly heights of each PFT, were calculated based on the global CLM3.5 10 

surface data set (Oleson et al., 2008). To provide soil texture data in the model (Fig. 1c and 1d), sand and clay percentages 

were prescribed based on pedotransfer functions from Schaap and Leij (1998) for 19 soil classes derived from the 

FAO/UNESCO Digital Soil Map of the World (Batjes, 1997). 

[Figure 1] 

The high-resolution reanalysis COSMO-REA6 dataset (Bollmeyer et al., 2015) from the Hans-Ertel Centre for Weather 15 

Research (HErZ; Simmer et al., 2016) for the time period of 2000-2006 was used as the atmospheric forcing for CLM3.5. 

The essential meteorological variables applied in this study, such as barometric pressure, precipitation, wind speed, specific 

humidity, near surface air temperature, downward shortwave radiation and downward longwave radiation were downloaded 

from the German Weather Service (DWD; ftp://ftp-cdc.dwd.de/pub/REA/). The COSMO-REA6 reanalysis is based on the 

COSMO model and available at 0.055° (~6 km) covering the CORDEX EUR-11 domain (Gutowski et al., 2016). COSMO-20 

REA6 was produced through the assimilation of observational meteorological data using the existing nudging scheme in 

COSMO with boundary conditions from ERA-Interim data. Bollmeyer et al., 2015 compared the COSMO-REA6 

precipitation data with the precipitation data from Global Precipitation Climatology Centre and showed that COSMO-REA6 

performed well compared to observations with small underestimations of precipitation in mid and southern Europe and 

overestimations of precipitation in Scandinavia, Russia and along the Norwegian coast. Additionally, Springer et al. (2017) 25 

assessed the closure of the water budget in the 6-km COSMO-REA6 and compared to global reanalyses (Interim ECMWF 

Reanalysis (ERA-Interim), Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)) for 

major European river basins. In their study, Springer et al. (2017) found that the COSMO-REA6 closes the water budget 

within the error estimates whereas the global reanalyses underestimate the precipitation minus evapotranspiration deficit in 

most river basins. A more comprehensive assessment of the precipitation of the HErZ reanalysis can be found in Wahl et al. 30 

(2017), albeit based on the 2 km data product, only available for central Europe. 
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2.3.2 ESA CCI microwave soil moisture 

The European Space Agency (ESA) Climate Change Initiative (CCI) program provides daily soil moisture (CCI-SM) at 

0.25° spatial resolution for approximately the top few millimeters to centimeters of soil from 1978 to 2016. The daily CCI-

SM product (v03.2) is produced at 0.25° spatial resolution from the microwave retrieved surface soil moisture data and is 

merged from multiple sensors (Dorigo et al., 2017; Liu et al., 2012; Liu et al., 2011; Wagner et al., 2012; http://www.esa-5 

oilmoisture-cci.org). For the study period of 2000 to 2006, the CCI-SM data are based on passive microwave observations 

(i.e. DMSP SSM/I, TRMM TMI, Aqua AMSR-E and Coriolis WindSat; Owe et al., 2008), whereas the active data products 

are based on observations from the C-band scatterometers on board of the ERS-1 and ERS-2 (Wagner et al., 2013; Bartalis et 

al., 2007) satellites. In this product, the absolute soil moisture was re-scaled against the 0.25° land surface modeling soil 

moisture (GLDAS-NOAH, Rodell et al., 2004) using cumulative density function matching. In this study, we used the 10 

merged product of active and passive soil moisture data which showed better accuracy than either of the passive or active 

data alone (Liu et al., 2011). To match the spatial resolution of our CLM3.5 setup, the original SM values were re-sampled 

and re-gridded to 0.0275° using the first-order conservative interpolation method (Jones, 1999) which is based on the ratio of 

source cell area overlapped with the corresponding destination cell area. The conservative regridding scheme preserves the 

physical flux fields between the source and destination grid.  15 

The CCI-SM dataset shows large gaps in data availability over the European continent during the four seasons (December - 

February (DJF; Winter), March-May (MAM; Spring), June-August (JJA; Summer), and September-November (SON; 

Autumn); Fig. 2b). According to Fig. 2b, the temporal coverage (i.e. the ratio between the number of days and the total 

number of days in a season).is generally low during the winter and spring seasons, ranging from less than 30% 

(Scandinavian regions) to about 60% in southern Europe. SM observations show the highest temporal coverage during the 20 

summer and autumn. Due to the sparseness of the SM data at daily temporal resolution, 100 grid cells were randomly 

selected covering the complete model domain (Fig. 2a). The satellite CCI-SM daily soil moisture data at these locations were 

assimilated in the data assimilation framework. However, the number of observations for each day ranged between 2 to 75 

depending on the availability of the daily CCI-SM data. As shown in Fig. 2c, there is a higher level of noise in the CCI-SM 

data for the first two years (2000 and 2001) which might be due to the fact that data from other sensors such as AMSRE-E 25 

and Windsat become available after 2002. Moreover, availability of selected observations was lower during winter and 

spring, while summer soil moisture was well covered during years 2003 to 2006. This seasonal difference in data availability 

is related to the occurrence of soil freezing events and snow cover.  

[Figure 2] 

2.3.3 Observational gridded monthly runoff 30 

In order to evaluate the potential of improving runoff estimates by assimilating soil moisture observations, observational 

gridded monthly runoff data from Gudmundsson and Seneviratne (2016, E-RUN version 1.1) were used. This product 
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provides monthly pan-European runoff estimates from 1950 to 2015 at 0.5° resolution. The monthly runoff rates were 

generated using a collection of streamflow observations from small catchments combined with gridded precipitation and 

temperature data using a machine learning approach (Gudmundsson and Seneviratne, 2016). Monthly runoff was estimated 

using a regression model, which was trained with a subset of observed runoff rates and E-OBS precipitation and temperature. 

The fitted model was subsequently applied to all grid cells of the E-OBS data to derive pan-European estimates of monthly 5 

runoff (Gudmundsson and Seneviratne, 2016). Using this cross-validation method, Gudmundsson and Seneviratne (2016) 

reported higher accuracy in central and western Europe, while accuracy was lower in other regions due to low density of 

available stations. In the current study, the half degree monthly runoff rates were resampled and re-gridded to 0.0275° using 

the first-order conservative interpolation method for comparison with the CLM3.5 simulated total runoff. 

2.4 CLM-PDAF experimental design 10 

The assimilation experiments were performed for the time period of January 2000 to December 2006. A spinup of 45 years, 

by simulating the time period from 1997 to 2006 five times, was performed in order to obtain equilibrium initial state 

variables. In this study, we implemented CLM3.5 for the EURO-CORDEX domain with a spatial resolution of 0.0275° (~ 

3km), inscribed into the official EUR-11 grid at 0.11° spatial resolution. The model was run with 1h time step and the time 

window for soil moisture updates was set to 1 day. In this study, we assumed a spatially uniform observational error of 0.02 15 

mm3/mm3 for CCI-SM in the CLM-PDAF setup. 

The outputs of a land surface model are sensitive to both atmospheric forcings and soil characteristics. To account for 

uncertainties in atmospheric forcing and soil texture, precipitation and soil texture (%sand and %clay) were perturbed in this 

study. Log-normally distributed, spatially homogeneous and temporally uncorrelated multiplicative perturbations were added 

to precipitation. The mean and standard deviation of the applied perturbation factors for precipitation were equal to one and 20 

0.15, respectively. Sand and clay content were perturbed using a random noise with a standard deviation of 10%. In order to 

guarantee the physical meaning of the soil parameters, the sand and clay content were constrained to have a sum of 100%. 

The initial ensemble size was set to 12 for the precipitation and soil texture in the simulation/assimilation experiment to 

update the volumetric soil water content (SWC) of the top soil layer (~ 2cm). 

Our main experiment consists of two CLM-PDAF simulations: (a) an open-loop simulation (no data assimilation, CLM-OL) 25 

and (b) an ensemble simulation with data assimilation of ESA CCI-SM data (CLM-DA) at 100 random locations (Figure 2a). 

We evaluated the results of both simulations by a cross-validation with ESA CCI-SM data as shown in Figure 2a. The soil 

moisture validation of the CLM-DA and CLM-OL simulations used all the available CCI-SM data in the time period of 2000 

to 2006. This approach also allowed us to independently cross-validate the SM values over grid cells that were not used in 

the data assimilation. For SM comparison, the average of simulated SWC in the top two layers (i.e. at 0.007 and 0.03 m 30 

depth) was used. Additionally, the monthly runoff dataset E-RUN as described in Sect. 2.3 was used to validate runoff as 

simulated by CLM-OL and CLM-DA. 
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To assess the skill of the assimilation experiments, the root mean square error (RMSE) and the mean bias error (BIAS) were 

used as validation measures. 

𝑅𝑀𝑆𝐸 = !
!

𝑌! − 𝑌!"#,!
!!

!!!           (4) 

𝐵𝐼𝐴𝑆 = !
!

𝑌! − 𝑌!"#,!!
!!!          (5) 

where n is the total number of time steps; 𝑌! and 𝑌!"#,! represent the simulated ensemble mean and observation values at time 5 

step 𝑖, respectively. 

3 Results and discussion 

In this section, the impact of assimilating the ESA CCI-SM data into CLM3.5 on the terrestrial hydrologic cycle is analyzed 

focusing on soil moisture and runoff. The results are presented for the complete CORDEX EUR-11 domain and for 8 pre-

defined analysis regions from the “Prediction of Regional scenarios and Uncertainties for Defining European Climate change 10 

risks and Effects” (PRUDENCE) project (Christensen et al., 2007) as shown in Fig. 1a. We refer to these regions as the 

"PRUDENCE" regions. 

3.1 Regional evaluation of soil moisture 

3.1.1 Seasonal mean comparison 

Figure 3 shows a comparison of the seasonal mean volumetric SWC (mm3/mm3) from the CLM3.5 experiments (CLM-OL, 15 

CLM-DA) with the satellite seasonal mean CCI-SM data. The CLM-OL simulation exhibits higher SWC in all seasons over 

most part of Europe compared to the CLM-DA simulations. Seasonally, the spatial distribution of SWC in summer and 

autumn is better reproduced in the CLM-DA simulations than in the CLM-OL when compared with the CCI-SM (Fig. 3c and 

3d).  Furthermore, Fig. 4 shows the comparison of 2000 to 2006 temporally averaged SM estimated by CLM-OL and CLM-

DA with the CCI-SM dataset over PRUDENCE regions. Generally, CLM-OL overestimated the SWC values for all sub-20 

regions and in all seasons. This overestimation of soil moisture in CLM was also reported by Cai et al. 2014 when compared 

with other land surface models and observations over Continental US. However, using data assimilation, this overestimation 

was reduced consistently in all sub-regions, as shown with CLM-DA. Noticeably, assimilation also helped to reduce the 

spatial variability, as indicated by the narrow spread of quartiles of CLM-DA estimated SWC compared to CLM-OL in Fig. 

4. Similarly, validating the simulations with CCI-SM data, the improvements of the CLM-DA vary within PRUDENCE 25 

regions and seasons. Improvements were more prominent for the UK, France, and Central Europe (for all seasons), while for 

other regions SWC was slightly overestimated in spring (Fig. 4b) and underestimated in summer and autumn (Fig. 4c and 

Fig. 4d). The underestimation of SWC was particularly pronounced over the Iberian Peninsula and the Mediterranean 

regions in summer (Fig. 4c). 
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[Figure 3] 

[Figure 4] 

In order to validate the skill of CLM-DA relative to CLM-OL, a cross-validation with CCI-SM observations was performed 

and RMSE and BIAS for soil moisture were calculated using daily values for each PRUDENCE region and each season, as 

shown in Fig. 5. Note, that for calculating these statistics, model data were only used for the days when satellite data were 5 

available. Over Scandinavia, the Alpine, the Mediterranean and Eastern Europe PRUDENCE regions, CLM-DA showed a 

consistently lower RMSE than CLM-OL for all seasons, except for winter, where improvements in SWC were comparatively 

small (Fig. 5a and Fig. 5b). The BIAS for CLM-OL indicates a clear overestimation of soil moisture relative to satellite CCI-

SM observations (Fig. 5c), whereas the BIAS for soil moisture from CLM-DA is significantly reduced (Fig. 5d). The mean 

BIAS dropped from 0.1 mm3/mm3 (CLM-OL) to 0.004 mm3/mm3 (CLM-DA) for all regions. However, data assimilation 10 

introduced a dry BIAS in summer (up to −0.03 mm3/mm3), as indicated by CLM-DA in Fig. 5d. 

[Figure 5] 

3.1.2 Daily validation 

The long-term (January 2000 to December 2006) daily SM averaged over PRUDENCE regions (Fig. 1) in Europe, as 

simulated by CLM-OL and CLM-DA, and observed by CCI-SM are shown in Fig. 6. The assimilated CCI-SM data 15 

improved the simulations of surface soil moisture in CLM-DA. The daily soil moisture patterns simulated by CLM-DA show 

a strong agreement with the CCI-SM observations, with peaks and troughs generally coinciding for all regions and over the 

European domain except for the years 2000 and 2001. The CCI-SM observations show increased variability and drier soil 

moisture values for the years 2000 and 2001 compared to the full period. This can be explained by the strong contribution of 

the X-band passive microwave data of SSM/I and TRMM to the final CCI-SM product. Wang (1987) showed that X-band 20 

data have a very shallow soil penetration depth of a few millimeters and sensitive to vegetation cover. After implementing 

the C-band radiometer data of AMSR-E in 2002 and Windsat in 2003 into CCI-SM, noise level and bias was reduced 

(Dorigo et al., 2017). Overall, the daily soil moisture values estimated by the CLM-DA show a slightly better agreement 

with the CCI-SM data for the summer and autumn seasons than for the spring and winter seasons. The winter season bias is 

pronounced particularly over Scandinavia, the Alpine region and Eastern Europe. The poorer performance of CLM-DA in 25 

these regions might be due to the limited amount of CCI-SM data in the winter season (Fig. 2b), dense vegetation, frozen soil 

(e.g. in the Scandinavian regions) and/or CLM3.5 model errors related to simulating soil moisture in colder regions (Oleson 

et al. 2008, Decker and Zeng, 2009). Additionally, the magnitudes of the bias and variance of the CCI-SM observational 

error could be important. As indicated by Dorigo et al. (2017), the CCI-SM error variance is low where the satellite track 

density increases and the error variance is high in areas with more data gaps. Note that the setup of CLM-DA in this study 30 

assumed a spatially uniform observational error for CCI-SM. 

[Figure 6] 
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3.2 Regional evaluation of seasonal runoff 

Figure 7 shows the runoff estimates of the two experiments, i.e. CLM-OL and CLM-DA, compared to the E-RUN 

observational product. CLM-DA reduces the runoff bias compared to CLM-OL. CLM-OL simulates higher magnitudes of 

runoff (on average 1.42 mm/day) over most parts of Europe compared to CLM-DA (on average 0.25 mm/day) in all seasons. 

The overestimation in the CLM-OL simulations was more pronounced in the summer and spring seasons (Fig. 7b and Fig. 5 

7c). Compared to CLM-OL, regional runoff patterns simulated by CLM-DA agree better with runoff observations. At the 

seasonal scale, CLM-DA shows similar spatial runoff distributions in winter and spring as the E-RUN runoff data set (Fig. 

7a and Fig. 7b). However, CLM-DA underestimates runoff in summer and autumn particularly in Mid- and Southern Europe 

(Fig. 7c and Fig. 7d). It is obvious that the assimilation of soil moisture led to an overall improvement in the simulated total 

runoff for all regions as shown in Fig. 8. However, improvements in runoff are more prominent over the alpine, Scandinavia 10 

and Eastern Europe regions, where CLM-DA minimized the difference to E-RUN from 1.41 mm/day, 1.22 mm/day and 0.85 

mm/day, to -0.5 mm/day, -0.06 mm/day and -0.03 mm/day, respectively (Table 1). The improvements over other regions, 

such as the UK, Iberian Peninsula, France and Mediterranean, were comparatively small. These findings indicate the 

potential of satellite soil moisture assimilation in CLM3.5 to improve other terrestrial components of the water cycle as a 

basis for more accurate water balance analyses. 15 

[Figure 7] 

[Figure 8] 

[Table 1] 

Figure 9 shows that simulations based on CLM-OL have higher RMSE and BIAS values than CLM-DA simulations (with 

respect to E-RUN data). The RMSE and BIAS for CLM-OL for mean monthly runoff over all regions and in all seasons vary 20 

between 0.4 and 1.5 mm/day and -0.11 to 2.5 mm/day, respectively. CLM-DA reduces the range of both RMSE and BIAS of 

mean monthly runoff to 0.2 to 1 mm/day and -1.5 to 0.27 mm/day, respectively, across all regions (Fig. 9b and Fig. 9d). 

However, the data assimilation in CLM-DA also introduces a negative BIAS for most regions, which indicates 

underestimation of monthly runoff relative to E-RUN. This underestimation might be related to model limitations to 

correctly represent saturation excess runoff processes at the large spatial scales, particularly in the arid to semi-arid regions. 25 

In the dry regions, assimilation of soil moisture data may result in reduction of soil moisture values close to the residual 

water content values which may lead to small runoff generation. Currently, the CLM-PDAF setup only performs state 

updates. In future, joint update of states and hydraulic parameters related to soil texture and runoff generation may further 

improve runoff estimates (Huang et al., 2013). 

[Figure 9] 30 

The time series of monthly runoff, as illustrated in Figure 10, show that CLM-OL highly overestimates the magnitude of 

runoff. The CLM-DA reduces these biases over all regions, but at the same time induces a dry bias for some regions. At the 

regional scale, the CLM-DA performs better when compared to E-RUN in Mid-Europe, Scandinavia, Alpine and Eastern 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-24
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 23 March 2018
c© Author(s) 2018. CC BY 4.0 License.



11 
 

Europe regions in capturing peaks and low runoff. In the UK, Iberian Peninsula, France and the Mediterranean regions, 

however, peak runoff in winter is underestimated whereas low runoff in summer is in correspondence with observed monthly 

runoff data. The relatively poor performance of CLM-OL may be related to several limitations in the CLM model (Li et al., 

2011). For example, Li et al. (2011) showed unrealistic behavior of subsurface runoff and high runoff peaks in CLM4.0, 

which they attributed to the exponential form of the surface runoff parameterization. Additionally, the assumption of 5 

topographically controlled surface runoff generation in the CLM model (Oleson et al. 2008) is problematic in areas with flat 

topography, thick soils, or deep groundwater (Li et al., 2011). Another reason may be uncertainties of E-RUN runoff data 

used in this study, which are derived from gridded atmospheric variables at coarser resolution (0.5° x 0.5° grid resolution) 

and flow observations. In future, additional observational data need to be explored in assimilation experiments and 

assessment of the results. 10 

[Figure 10] 

3.3 Uncertainties and limitations 

This study demonstrates that the assimilation of coarse-scale satellite CCI soil moisture data is beneficial and improves the 

high-resolution CLM model simulations of soil moisture and runoff over a large spatial domain. However, we note a number 

of limitations in this study. The spatial mismatch between the coarser resolution CCI-SM and our high-resolution land 15 

surface model was tackled by rescaling the CCI-SM data to the model resolution (~3km) without any bias correction. An 

adequate bias correction of CCI-SM data for high resolutions may require more elaborated methods and techniques to 

account for the increased variability over time. A further possibility is the multiscale assimilation of the CCI-SM data, which 

would allow to update various model grid cells covered by a satellite observation (Montzka et al., 2012). In multiscale 

assimilation, the average soil moisture content for the group of grid cells covered by the satellite measurement is compared 20 

with the satellite-based soil moisture content which may result in slightly improved CLM simulation results, but was beyond 

the scope of this study.  

In addition to discrepancies at the spatial scale, uncertainties in soil moisture estimations may result from data gaps in 

satellite soil moisture retrievals, which are limited in regions of pronounced topography, standing water, areas of dense 

vegetation and snow covered areas and frozen soil. Additionally, CCI-SM is a merged product from a variety of sensors 25 

leading to inconsistencies due to differences in viewing angle, sensor characteristics and soil moisture retrieval algorithms 

(Dorigo et al., 2017). In future, more observations are needed to independently validate model and assimilation experiments. 

In this work, the CCI-SM dataset was also used for verification over grid cells that were not used in the data assimilation. 

However, it would be preferable to validate with another independent dataset at the continental scale. The problem is that at 

the model grid scale only very limited independent (in situ) soil moisture data are available.    30 

Furthermore, in order to reduce model errors from parameter uncertainties, this study only allows to account for uncertainties 

in the soil texture parameters. In data assimilation, it is preferable to account for additional model parameter uncertainties 

towards runoff that shows a high sensitivity. Alternatively, prior model calibration can be considered to constrain model 
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parameters better and reduce systematic biases and uncertainties in CLM3.5 before applying the assimilation framework. For 

improvement of hydrologic predictions, joint assimilation of additional datasets such as river discharge and snow data may 

also be considered in future research. 

4 Summary and conclusions 

A soil moisture data assimilation framework at the continental scale was applied to generate long-term daily soil moisture 5 

and runoff estimates as part of a terrestrial systems monitoring framework for Europe at approximately 3 km resolution for 

the years 2000 to 2006. An ensemble was generated by perturbing precipitation and soil texture properties. This ensemble 

was used as input in the CLM-PDAF data assimilation framework (Kurtz et al., 2016) and used to assimilate CCI-SM soil 

moisture data. The impact of satellite soil moisture assimilation on daily soil moisture and runoff was evaluated and cross-

validated with CCI-SM data and gridded runoff from E-RUN observations at regional and seasonal scales. Using this high-10 

resolution CLM-PDAF setup, the conclusions of this study are:  

1. This study showed that assimilation of satellite SM improved the soil moisture simulations over most parts of 

Europe relative to open-loop simulations. Open loop simulations overestimated SM in most parts of Europe 

and in all seasons. For the study domain, on average, the mean bias in soil moisture was reduced from 0.1 

mm3/mm3 in open-loop simulations to 0.004 mm3/mm3 with SM assimilation. 15 

2. Regionally, significant improvements were achieved for soil moisture across most regions, except over 

Scandinavia and Eastern Europe. The low performance of CLM-OL and CLM-DA in these regions might be 

due to lack of data in space and time, as caused by track changes, radio-frequency interference, dense 

vegetation, and frozen soil limiting the assimilation of soil moisture data in land surface processes 

simulations. Similarly, both CLM-OL and CLM-DA performed poorly for years 2000 and 2001, which 20 

appears to be related to large data gaps and higher noise levels in CCI-SM satellite data in these years. This 

indicates adequate suitability of ESA CCI soil moisture for data assimilation studies from 2002 onwards, 

whereas the accuracy and noise levels of earlier periods data is not appropriate for this purpose. 

3. At the seasonal time scale, the CLM-DA simulations performed better in the summer and autumn seasons than 

in the winter and spring seasons. This might be again related to large data gaps in the winter season or model 25 

limitations to correctly represent complex cold region processes such as frozen soil.   

4. The assimilation of CCI-SM data into CLM3.5 also improved the overall performance of the CLM3.5 model 

in simulating total runoff (i.e. surface and subsurface runoff). The largest improvements were achieved in the 

simulation of peak runoff as result of soil moisture assimilations. The improvement in peak runoff could be 

particular importance in the management of extreme events such as flooding.  30 

The results from this study are not only useful as a standalone, high-resolution product for evaluating trends in soil moisture 

patterns across Europe, but can also be used as an independent dataset for validation of other land surface models. 
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Additionally, by selecting the ESA CCI soil moisture product for assimilation, the potential impact of a long term soil 

moisture observations on hydrologic simulations can be assessed for climate change studies. Moreover, CLM3.5 is also part 

of the fully coupled Terrestrial Systems Model Platform (TerrSysMP; Shrestha et al., 2014, Gasper et al., 2014, Keune et al., 

2016) that simulates the full terrestrial hydrologic cycle including feedbacks between atmosphere, land-surface and 

subsurface compartments of the water cycle. The impact of satellite soil moisture assimilation on other water cycle variables 5 

across the soil-vegetation-atmosphere system using TerrSysMP and its effects on the accuracy of model simulations at the 

continental scale remains to be explored.  

Acknowledgements 

The authors gratefully acknowledge the computing time granted by the JARA-HPC Vergabegremium on the supercomputer 

JURECA at Forschungszentrum Jülich. This work was supported by the Energy oriented Centre of Excellence (EoCoE), 10 

grant agreement number 676629, funded within the Horizon2020 framework of the European Union. C. Montzka was 

funded by BELSPO (Belgian Science Policy Office) in the framework of the STEREO III programme – HYDRAS+ 

(SR/00/302). W. Kurtz was supported by SFB-TR32 “Patterns in soil–vegetation–atmosphere systems: monitoring, 

modelling and data assimilation” funded by the German Science Foundation (DFG). 

 15 

References 

Andreasen, M., Andreasen, L. A., Jensen, K. H., Sonnenborg, T. O., and Bircher, S.: Estimation of regional groundwater 

recharge using data from a distributed soil moisture network, Vadose Zone J., 12, doi: 10.2136/vzj2013.01.0035, 2013. 

Bartalis, Z., Wagner, W., Naeimi, V., Hasenauer, S., Scipal, K., Bonekamp, H., Figa, J., and Anderson, C.: Initial soil 

moisture retrievals from the METOP‐A Advanced Scatterometer (ASCAT), Geophys. Res. Lett., 34, doi: 20 

10.1029/2007gl031088, 2007. 

Batjes, N.: A world dataset of derived soil properties by FAO–UNESCO soil unit for global modelling, Soil use and 

management, 13, 9-16, doi:10.1111/j.1475-2743.1997.tb00550.x. 1997. 

Best, M., Pryor, M., Clark, D., Rooney, G., Essery, R., Ménard, C., Edwards, J., Hendry, M., Porson, A., and Gedney, N.: 

The Joint UK Land Environment Simulator (JULES), model description–Part 1: energy and water fluxes, Geosci. Model 25 

Dev., 4, 677-699, doi:10.5194/gmdd-4-595-2011, 2011. 

Bierkens, M. F., Bell, V. A., Burek, P., Chaney, N., Condon, L. E., David, C. H., de Roo, A., Döll, P., Drost, N., and 

Famiglietti, J. S.: Hyper-resolution global hydrological modelling: What is next? Everywhere and locally relevant, 

Hydrol. Process, 29, 310-320, doi: 10.1002/hyp.10391, 2015. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-24
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 23 March 2018
c© Author(s) 2018. CC BY 4.0 License.



14 
 

Bollmeyer, C., Keller, J., Ohlwein, C., Wahl, S., Crewell, S., Friederichs, P., Hense, A., Keune, J., Kneifel, S., and Pscheidt, 

I.: Towards a high‐resolution regional reanalysis for the European CORDEX domain, Q. J. Royal Meteorol. Soc., 141, 

1-15, doi: 10.1002/qj.2486, 2015. 

Bolten, J. D., Crow, W. T., Zhan, X., Jackson, T. J., and Reynolds, C. A.: Evaluating the utility of remotely sensed soil 

moisture retrievals for operational agricultural drought monitoring, IEEE J. Sel. Topics Appl. Earth Observ. in Remote 5 

Sens., 3, 57-66, doi: 10.1109/jstars.2009.2037163, 2010. 

Bonan, G. B., Lawrence, P. J., Oleson, K. W., Levis, S., Jung, M., Reichstein, M., Lawrence, D. M., and Swenson, S. C.: 

Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically 

inferred from FLUXNET data, J. Geophys. Res-Biogeo., 116, doi: 10.1029/2010jg001593, 2011. 

Brocca, L., Melone, F., Moramarco, T., and Morbidelli, R.: Spatial‐temporal variability of soil moisture and its estimation 10 

across scales, Water Resour. Res., 46, doi: 2010. 

Brocca, L., Moramarco, T., Melone, F., Wagner, W., Hasenauer, S., and Hahn, S.: Assimilation of surface-and root-zone 

ASCAT soil moisture products into rainfall–runoff modeling, IEEE T. Geosci. Remote, 50, 2542-2555, doi: 

10.1109/tgrs.2011.2177468, 2012. 

Burgers, G., Jan van Leeuwen, P., and Evensen, G.: Analysis scheme in the ensemble Kalman filter, Mon. weather rev., 126, 15 

1719-1724, doi: 10.1175/1520-0493(1998)126<1719:asitek>2.0.co;2, 1998. 

Cai, X., Yang, Z. L., Xia, Y., Huang, M., Wei, H., Leung, L. R., and Ek, M. B.: Assessment of simulated water balance from 

Noah, Noah‐MP, CLM, and VIC over CONUS using the NLDAS test bed, J. Geophys. Res-Atmos., 119, doi: 

10.1002/2014jd022113, 2014. 

Chen, Y., Yang, K., Qin, J., Zhao, L., Tang, W., and Han, M.: Evaluation of AMSR‐E retrievals and GLDAS simulations 20 

against observations of a soil moisture network on the central Tibetan Plateau, J. Geophys. Res-Atmos., 118, 4466-4475, 

doi: 10.1002/jgrd.50301, 2013. 

Christensen, J. H., and Christensen, O. B.: A summary of the PRUDENCE model projections of changes in European 

climate by the end of this century, Climatic change, 81, 7-30, doi: 10.1007/s10584-006-9210-7, 2007. 

Clark, D., Mercado, L., Sitch, S., Jones, C., Gedney, N., Best, M., Pryor, M., Rooney, G., Essery, R., and Blyth, E.: The 25 

Joint UK Land Environment Simulator (JULES), model description-Part 2: carbon fluxes and vegetation dynamics, 

Geosci. Model Dev., 4, 701, doi: 10.5194/gmd-4-701-2011, 2011. 

Crow, W., and Ryu, D.: A new data assimilation approach for improving runoff prediction using remotely-sensed soil 

moisture retrievals, Hydrol. Earth Sys. Sc., 13, 1-16, doi: 10.5194/hess-13-1-2009, 2009. 

Crow, W., Chen, F., Reichle, R., and Liu, Q.: L‐band microwave remote sensing and land data assimilation improve the 30 

representation of pre‐storm soil moisture conditions for hydrologic forecasting, Geophys. Res. Lett., doi: 2017. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-24
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 23 March 2018
c© Author(s) 2018. CC BY 4.0 License.



15 
 

Crow, W. T., and Wood, E. F.: The assimilation of remotely sensed soil brightness temperature imagery into a land surface 

model using ensemble Kalman filtering: A case study based on ESTAR measurements during SGP97, Adv. Water 

Resour., 26, 137-149, doi: 10.1016/s0309-1708(02)00088-x, 2003. 

Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich, M. G., Denning, A. S., Dirmeyer, P. A., Houser, P. 

R., and Niu, G.: The common land model, B. Am. Meteorol. Soc., 84, 1013-1023, doi: 10.1175/BAMS-84-8-1013, 5 

2003. 

Danielson, J. J., and Gesch, D. B.: Global multi-resolution terrain elevation data 2010 (GMTED2010), US Geological 

Survey 2331-1258, 2011. 

De Lannoy, G. J., Reichle, R. H., Houser, P. R., Arsenault, K. R., Verhoest, N. E., and Pauwels, V. R.: Satellite-scale snow 

water equivalent assimilation into a high-resolution land surface model, J. Hydrometeorol., 11, 352-369, doi: 10 

10.1175/2009jhm1192.1, 2010. 

De Lannoy, G. J., Reichle, R. H., Arsenault, K. R., Houser, P. R., Kumar, S., Verhoest, N. E., and Pauwels, V.: Multiscale 

assimilation of Advanced Microwave Scanning Radiometer–EOS snow water equivalent and Moderate Resolution 

Imaging Spectroradiometer snow cover fraction observations in northern Colorado, Water Resour. Res., 48, doi: 

10.1029/2011wr010588, 2012. 15 

De Lannoy, G. J., and Reichle, R. H.: Global assimilation of multiangle and multipolarization SMOS brightness temperature 

observations into the GEOS-5 catchment land surface model for soil moisture estimation, J. Hydrometeorol., 17, 669-

691, doi: 10.1175/jhm-d-15-0037.1, 2016. 

De Rosnay, P., Drusch, M., Boone, A., Balsamo, G., Decharme, B., Harris, P., Kerr, Y., Pellarin, T., Polcher, J., and 

Wigneron, J. P.: AMMA Land Surface Model Intercomparison Experiment coupled to the Community Microwave 20 

Emission Model: ALMIP‐MEM, J. Geophys. Res-Atmos., 114, doi: 10.1029/2008jd010724, 2009. 

Dickinson, R. E., Oleson, K. W., Bonan, G., Hoffman, F., Thornton, P., Vertenstein, M., Yang, Z.-L., and Zeng, X.: The 

Community Land Model and its climate statistics as a component of the Community Climate System Model, J. Climate, 

19, 2302-2324, doi: 10.1175/jcli3742.1, 2006. 

Dobriyal, P., Qureshi, A., Badola, R., and Hussain, S. A.: A review of the methods available for estimating soil moisture and 25 

its implications for water resource management, J. Hydrol., 458, 110-117, doi: 10.1016/j.jhydrol.2012.06.021, 2012. 

Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., and Gruber, 

A.: ESA CCI Soil Moisture for improved Earth system understanding: state-of-the art and future directions, Remote 

Sens. Environ., doi: 10.1016/j.rse.2017.07.001, 2017. 

Draper, C., Mahfouf, J. F., and Walker, J.: An EKF assimilation of AMSR‐E soil moisture into the ISBA land surface 30 

scheme, J. Geophys. Res-Atmos., 114, doi: 10.1029/2008jd011650, 2009. 

Draper, C., Mahfouf, J.-F., Calvet, J.-C., Martin, E., and Wagner, W.: Assimilation of ASCAT near-surface soil moisture 

into the SIM hydrological model over France, Hydrol. Earth Sys. Sc., 15, 3829, doi: 10.5194/hess-15-3829-2011, 2011. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-24
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 23 March 2018
c© Author(s) 2018. CC BY 4.0 License.



16 
 

Draper, C., Reichle, R., De Lannoy, G., and Liu, Q.: Assimilation of passive and active microwave soil moisture retrievals, 

Geophys. Res. Lett., 39, doi: 10.1029/2011gl050655, 2012. 

Drusch, M.: Initializing numerical weather prediction models with satellite‐derived surface soil moisture: Data assimilation 

experiments with ECMWF's Integrated Forecast System and the TMI soil moisture data set, J. Geophys. Res-Atmos., 

112, doi: 10.1029/2006JD007478, 2007. 5 

Evensen, G.: The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean dynam., 53, 343-

367, doi: 10.1007/s10236-003-0036-9, 2003. 

Friedl, M. A., McIver, D. K., Hodges, J. C., Zhang, X., Muchoney, D., Strahler, A. H., Woodcock, C. E., Gopal, S., 

Schneider, A., and Cooper, A.: Global land cover mapping from MODIS: algorithms and early results, Remote Sens. 

Environ., 83, 287-302, doi:  10.1109/igarss.2002.1027129, 2002. 10 

Gasper, F., Goergen, K., Shrestha, P., Sulis, M., Rihani, J., Geimer, M., and Kollet, S.: Implementation and scaling of the 

fully coupled Terrestrial Systems Modeling Platform (TerrSysMP v1. 0) in a massively parallel supercomputing 

environment–a case study on JUQUEEN (IBM Blue Gene/Q), Geosci. Model Dev., 7, 2531-2543, doi: 10.5194/gmdd-7-

3545-2014, 2014. 

Gudmundsson, L., and Seneviratne, S. I.: Observational gridded runoff estimates for Europe (E-RUN version 1.0), Earth 15 

Sys. Sci. Data, 2016, 1-1, doi: 10.5194/essd-2015-38, 2016. 

Gutowski Jr, W. J., Giorgi, F., Timbal, B., Frigon, A., Jacob, D., Kang, H.-S., Raghavan, K., Lee, B., Lennard, C., and 

Nikulin, G.: WCRP coordinated regional downscaling experiment (CORDEX): a diagnostic MIP for CMIP6, Geosci. 

Model Dev., 9, 4087, doi: 10.5194/gmd-2016-120, 2016. 

Han, X., Franssen, H. J. H., Montzka, C., and Vereecken, H.: Soil moisture and soil properties estimation in the Community 20 

Land Model with synthetic brightness temperature observations, Water Resour. Res., 50, 6081-6105, doi: 

10.1002/2013wr014586, 2014. 

Huang, M., Hou, Z., Leung, L. R., Ke, Y., Liu, Y., Fang, Z., and Sun, Y.: Uncertainty analysis of runoff simulations and 

parameter identifiability in the community land model: evidence from MOPEX basins, J. Hydrometeorol., 14, 1754-

1772, doi: 10.1175/jhm-d-12-0138.1, 2013. 25 

Hunt, B. R., Kostelich, E. J., and Szunyogh, I.: Efficient data assimilation for spatiotemporal chaos: A local ensemble 

transform Kalman filter, Physica D: Nonlinear Phenomena, 230, 112-126, doi: 10.1016/j.physd.2006.11.008 2007. 

Keune, J., Gasper, F., Goergen, K., Hense, A., Shrestha, P., Sulis, M., and Kollet, S.: Studying the influence of groundwater 

representations on land surface‐atmosphere feedbacks during the European heat wave in 2003, J. Geophys. Res-Atmos, 

121, doi: 10.1002/2016jd025426, 2016. 30 

Kiehl, J. T., and Trenberth, K. E.: Earth's annual global mean energy budget, B. Am. Meteorol. Soc., 78, 197-208, doi: 

10.1175/1520-0477(1997)078<0197:eagmeb>2.0.co;2, 1997. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-24
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 23 March 2018
c© Author(s) 2018. CC BY 4.0 License.



17 
 

Kumar, S. V., Reichle, R. H., Peters-Lidard, C. D., Koster, R. D., Zhan, X., Crow, W. T., Eylander, J. B., and Houser, P. R.: 

A land surface data assimilation framework using the land information system: Description and applications, Adv. 

Water Resour., 31, 1419-1432, doi: 10.1016/j.advwatres.2008.01.013, 2008. 

Kumar, S. V., Reichle, R. H., Koster, R. D., Crow, W. T., and Peters-Lidard, C. D.: Role of subsurface physics in the 

assimilation of surface soil moisture observations, J. Hydrometeorol., 10, 1534-1547, doi: 10.1175/2009jhm1134.1, 5 

2009. 

Kurtz, W., He, G., Kollet, S. J., Maxwell, R. M., Vereecken, H., and Hendricks Franssen, H.-J.: TerrSysMP–PDAF (version 

1.0): a modular high-performance data assimilation framework for an integrated land surface–subsurface model, Geosci. 

Model Dev., 9, 1341-1360, https://doi.org/10.5194/gmd-9-1341-2016, 2016. 

Lahoz, W. A., and De Lannoy, G. J.: Closing the gaps in our knowledge of the hydrological cycle over land: conceptual 10 

problems, Surv. Geophys., 35, 623-660, doi: 10.1007/978-94-017-8789-5_8, 2014. 

Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C., Lawrence, P. J., Zeng, X., Yang, Z. L., 

Levis, S., and Sakaguchi, K.: Parameterization improvements and functional and structural advances in version 4 of the 

Community Land Model, J. Adv. Model Earth Sy., 3, doi: 10.1029/2011ms00045, 2011. 

Li, H., Huang, M., Wigmosta, M. S., Ke, Y., Coleman, A. M., Leung, L. R., Wang, A., and Ricciuto, D. M.: Evaluating 15 

runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous 

watershed, J. Geophys. Res-Atmos., 116, doi: 10.1029/2011jd016276, 2011. 

Li, M., and Ma, Z.: Soil moisture drought detection and multi-temporal variability across China, Science China. Earth Sci., 

58, 1798, doi: 10.1007/s11430-015-5076-8, 2015. 

Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple hydrologically based model of land surface water and 20 

energy fluxes for general circulation models, J. Geophys. Res-Atmos., 99, 14415-14428, doi: 10.1029/94jd00483, 1994. 

Liang, X., Wood, E. F., and Lettenmaier, D. P.: Surface soil moisture parameterization of the VIC-2L model: Evaluation and 

modification, Global Planet. Change, 13, 195-206, doi: 1996. 

Lievens, H., Tomer, S. K., Al Bitar, A., De Lannoy, G., Drusch, M., Dumedah, G., Franssen, H.-J. H., Kerr, Y., Martens, B., 

and Pan, M.: SMOS soil moisture assimilation for improved hydrologic simulation in the Murray Darling Basin, 25 

Australia, Remote Sens. Environ., 168, 146-162, doi: 10.1016/j.rse.2015.06.025, 2015. 

Liu, D., and Mishra, A. K.: Performance of AMSR_E soil moisture data assimilation in CLM4. 5 model for monitoring 

hydrologic fluxes at global scale, J. Hydrol., 547, 67-79, doi: 10.1016/j.jhydrol.2017.01.036, 2017. 

Liu, Y., Dorigo, W. A., Parinussa, R., de Jeu, R. A., Wagner, W., McCabe, M. F., Evans, J., and Van Dijk, A.: Trend-

preserving blending of passive and active microwave soil moisture retrievals, Remote Sens. Environ., 123, 280-297, doi: 30 

10.1016/j.rse.2012.03.014, 2012. 

Liu, Y. Y., Parinussa, R., Dorigo, W. A., De Jeu, R. A., Wagner, W., Van Dijk, A., McCabe, M. F., and Evans, J.: 

Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals, 

Hydrol. Earth Syst. Sc., 15, 425, doi: 10.5194/hessd-7-6699-2010, 2011. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-24
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 23 March 2018
c© Author(s) 2018. CC BY 4.0 License.



18 
 

Matgen, P., Fenicia, F., Heitz, S., Plaza, D., de Keyser, R., Pauwels, V. R., Wagner, W., and Savenije, H.: Can ASCAT-

derived soil wetness indices reduce predictive uncertainty in well-gauged areas? A comparison with in situ observed soil 

moisture in an assimilation application, Adv. Water Resour., 44, 49-65, doi: 10.1016/j.advwatres.2012.03.022, 2012. 

Merlin, O., Al Bitar, A., Walker, J. P., and Kerr, Y.: An improved algorithm for disaggregating microwave-derived soil 

moisture based on red, near-infrared and thermal-infrared data, Remote Sens. Environ., 114, 2305-2316, doi: 5 

10.1016/j.rse.2010.05.007, 2010. 

Mohanty, B. P., Cosh, M., Lakshmi, V., and Montzka, C.: Remote sensing for vadose zone hydrology—a synthesis from the 

vantage point, Vadose Zone J., 12, doi: 10.2136/vzj2013.07.0128, 2013. 

Mohanty, B. P., Cosh, M. H., Lakshmi, V., and Montzka, C.: Soil moisture remote sensing: State-of-the-science, Vadose 

Zone J., 16, doi: 0.2136/vzj2016.10.0105, 2017. 10 

Montzka, C., Pauwels, V. R., Han, X., Franssen, H. J. H. and Vereecken, H.: Multiscale and multivariate data assimilation in 

terrestrial systems: A review, Sensors. 12, 16291-16333, doi:10.3390/s121216291, 2012. 

Nerger, L., and Hiller, W.: Software for ensemble-based data assimilation systems—Implementation strategies and 

scalability, Comput. Geosci., 55, 110-118, doi: 10.1016/j.cageo.2012.03.026, 2013. 

Niu, G. Y., Yang, Z. L., Dickinson, R. E., and Gulden, L. E.: A simple TOPMODEL‐based runoff parameterization 15 

(SIMTOP) for use in global climate models, J. Geophys. Res-Atmos., 110, doi: 10.1029/2005jd006111, 2005. 

Niu, G. Y., Yang, Z. L., Dickinson, R. E., Gulden, L. E., and Su, H.: Development of a simple groundwater model for use in 

climate models and evaluation with Gravity Recovery and Climate Experiment data, J. Geophys. Res-Atmos., 112, doi: 

10.1029/2006jd007522, 2007. 

Oleson, K., Dai, Y., Bonan, G., Bosilovich, M., Dickinson, R., Dirmeyer, P., Hoffman, F., Houser, P., Levis, S., and Niu, G.: 20 

Technical description of the community land model (CLM), NCAR Technical Note NCAR/TN-461+ STR, National 

Center for Atmospheric Research, Boulder, CO, 2004. 

Oleson, K., Niu, G. Y., Yang, Z. L., Lawrence, D., Thornton, P., Lawrence, P., Stöckli, R., Dickinson, R., Bonan, G., and 

Levis, S.: Improvements to the Community Land Model and their impact on the hydrological cycle, J. Geophys. Res-

Biogeo., 113, doi: 10.1029/2007jg000563, 2008. 25 

Owe, M., de Jeu, R., and Holmes, T.: Multisensor historical climatology of satellite‐derived global land surface moisture, J 

Geophys. Res-Earth, 113, doi: 10.1029/2007jf000769, 2008. 

Pan, M., Wood, E. F., Wójcik, R., and McCabe, M. F.: Estimation of regional terrestrial water cycle using multi-sensor 

remote sensing observations and data assimilation, Remote Sens. Environ., 112, 1282-1294, doi: 

10.1016/j.rse.2007.02.039, 2008. 30 

Pauwels, V., Hoeben, R., Verhoest, N. E., De Troch, F. P., and Troch, P. A.: Improvement of TOPLATS‐based discharge 

predictions through assimilation of ERS‐based remotely sensed soil moisture values, Hydrol. Process., 16, 995-1013, 

doi: 10.1002/hyp.315, 2002. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-24
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 23 March 2018
c© Author(s) 2018. CC BY 4.0 License.



19 
 

Pauwels, V. R., Hoeben, R., Verhoest, N. E., and De Troch, F. P.: The importance of the spatial patterns of remotely sensed 

soil moisture in the improvement of discharge predictions for small-scale basins through data assimilation, J. Hydrol., 

251, 88-102, doi: 10.1016/s0022-1694(01)00440-1, 2001. 

Pipunic, R., Walker, J., and Western, A.: Assimilation of remotely sensed data for improved latent and sensible heat flux 

prediction: A comparative synthetic study, Remote Sens. Environ., 112, 1295-1305, doi: 10.1016/j.rse.2007.02.038, 5 

2008. 

Reichle, R., Crow, W., Koster, R., Sharif, H., and Mahanama, S.: Contribution of soil moisture retrievals to land data 

assimilation products, Geophy. Res. Lett., 35, doi: 10.1029/2007gl031986, 2008. 

Reichle, R. H., McLaughlin, D. B., and Entekhabi, D.: Hydrologic data assimilation with the ensemble Kalman filter, Mon. 

Weather Rev., 130, 103-114, doi: 10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2, 2002. 10 

Reichle, R. H., and Koster, R. D.: Global assimilation of satellite surface soil moisture retrievals into the NASA Catchment 

land surface model, Geophy. Res. Lett., 32, doi: 10.1029/2004gl021700, 2005. 

Renzullo, L. J., Van Dijk, A., Perraud, J.-M., Collins, D., Henderson, B., Jin, H., Smith, A., and McJannet, D.: Continental 

satellite soil moisture data assimilation improves root-zone moisture analysis for water resources assessment, J. hydrol., 

519, 2747-2762, doi: 10.1016/j.jhydrol.2014.08.008, 2014. 15 

Rodell, M., Houser, P., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C., Arsenault, K., Cosgrove, B., Radakovich, J., and 

Bosilovich, M.: The global land data assimilation system, B. Am. Meteorol. Soc., 85, 381-394, doi: 10.1175/BAMS-85-

3-381, 2004. 

Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., and Hashimoto, H.: A continuous satellite-derived 

measure of global terrestrial primary production, BioScience, 54, 547-560, doi: 10.1641/0006-20 

3568(2004)054[0547:ACSMOG]2.0.CO;2, 2004. 

Sahoo, A. K., De Lannoy, G. J., Reichle, R. H., and Houser, P. R.: Assimilation and downscaling of satellite observed soil 

moisture over the Little River Experimental Watershed in Georgia, USA, Adv. Water Resour., 52, 19-33, doi: 

10.1016/j.advwatres.2012.08.007, 2013. 

Schaap, M. G., and Leij, F. J.: Database-related accuracy and uncertainty of pedotransfer functions, Soil Sci., 163, 765-779, 25 

doi: 10.1097/00010694-199810000-00001, 1998. 

Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., and Teuling, A. J.: 

Investigating soil moisture–climate interactions in a changing climate: A review, Earth-Sci Rev., 99, 125-161, doi: 

10.1016/j.earscirev.2010.02.004, 2010. 

Shock, C. C., Barnum, J. M., and Seddigh, M.: Calibration of watermark soil moisture sensors for irrigation management. 30 

Proc. Int. Irrig. Show, San Diego California USA, 139–146, doi: 1 10.1007/bf00007875, 998. 

Shrestha, P., Sulis, M., Masbou, M., Kollet, S., and Simmer, C.: A scale-consistent terrestrial systems modeling platform 

based on COSMO, CLM, and ParFlow, Mon. weather rev., 142, 3466-3483, doi: 10.1175/mwr-d-14-00029.1, 2014. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-24
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 23 March 2018
c© Author(s) 2018. CC BY 4.0 License.



20 
 

Simmer, C., Adrian, G., Jones, S., Wirth, V., Göber, M., Hohenegger, C., Janjic, T., Keller, J., Ohlwein, C., and Seifert, A.: 

HErZ: The German Hans-Ertel Centre for Weather Research, B. Am. Meteorol. Soc., 97, 1057-1068, doi: 

10.1175/bams-d-13-00227.1, 2016. 

Springer, A., Eicker, A., Bettge, A., Kusche, J., and Hense, A.: Evaluation of the Water Cycle in the European COSMO-

REA6 Reanalysis Using GRACE, Water, 9, 289, doi:10.3390/w9040289, 2017. 5 

Sridhar, V., Hubbard, K. G., You, J., and Hunt, E. D.: Development of the soil moisture index to quantify agricultural 

drought and its “user friendliness” in severity-area-duration assessment, J. Hydrometeorol., 9, 660-676, doi: 

10.1175/2007jhm892.1, 2008. 

Stöckli, R., Lawrence, D., Niu, G. Y., Oleson, K., Thornton, P. E., Yang, Z. L., Bonan, G., Denning, A., and Running, S. W.: 

Use of FLUXNET in the Community Land Model development, J. Geophys. Res-Biogeo., 113, doi: 10 

10.1029/2007jg000562, 2008. 

Trenberth, K. E., Smith, L., Qian, T., Dai, A., and Fasullo, J.: Estimates of the global water budget and its annual cycle using 

observational and model data, J. Hydrometeorol., 8, 758-769, doi: 10.1175/jhm600.1, 2007. 

Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M. H., Amelung, W., 

Aitkenhead, M., Allison, S. D., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., 15 

Govers, G., Ghezzehei, T., Hallett, P., Hendricks Franssen, H. J., Heppell, J., Horn, R., Huisman, J. A., Jacques, D., 

Jonard, F., Kollet, S., Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka, C., Nowak, W., 

Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss, Y., Rowe, E. C., Schwen, A., Šimůnek, J., Tiktak, A., Van 

Dam, J., van der Zee, S. E. A. T. M., Vogel, H. J., Vrugt, J. A., Wöhling, T., and Young, I. M.: Modeling Soil 

Processes: Review, Key Challenges, and New Perspectives, Vadose Zone J., 15, 10.2136/vzj2015.09.0131, 2016. 20 

Verhoest, N. E., van den Berg, M. J., Martens, B., Lievens, H., Wood, E. F., Pan, M., Kerr, Y. H., Al Bitar, A., Tomer, S. K., 

and Drusch, M.: Copula-based downscaling of coarse-scale soil moisture observations with implicit bias correction, 

IEEE T. Geosci. Remote, 53, 3507-3521, doi: 10.1109/tgrs.2014.2378913, 2015. 

Vinukollu, R. K., Wood, E. F., Ferguson, C. R., and Fisher, J. B.: Global estimates of evapotranspiration for climate studies 

using multi-sensor remote sensing data: Evaluation of three process-based approaches, Remote Sens. Environ., 115, 25 

801-823, doi:  10.1016/j.rse.2010.11.006, 2011. 

Wagner, W., Dorigo, W., de Jeu, R., Fernandez, D., Benveniste, J., Haas, E., and Ertl, M.: Fusion of active and passive 

microwave observations to create an essential climate variable data record on soil moisture, ISPRS Annals of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Annals), 7, 315-321, 2012. 

Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S., Figa-Saldaña, J., de Rosnay, P., Jann, A., and 30 

Schneider, S.: The ASCAT soil moisture product: A review of its specifications, validation results, and emerging 

applications, Meteorol. Z., 22, 5-33, doi: 10.1127/0941-2948/2013/0399, 2013. 

Wang, J. R.: Microwave emission from smooth bare fields and soil moisture sampling depth, IEEE transactions on 

geoscience and remote sensing, 616-622, 1987, doi: 10.1109/TGRS.1987.289840. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-24
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 23 March 2018
c© Author(s) 2018. CC BY 4.0 License.



21 
 

Western, A. W., Zhou, S.-L., Grayson, R. B., McMahon, T. A., Blöschl, G., and Wilson, D. J.: Spatial correlation of soil 

moisture in small catchments and its relationship to dominant spatial hydrological processes, J. Hydrol., 286, 113-134, 

doi: 10.1016/j.jhydrol.2003.09.014, 2004. 

Wood, E. F., Roundy, J. K., Troy, T. J., Van Beek, L., Bierkens, M. F., Blyth, E., de Roo, A., Döll, P., Ek, M., Famiglietti, 

J., Gochis, D., van de Giesen, N., Houser, P., Jaffé, P. R., Kollet, S., Lehner, B., Lettenmaier, D. P., Peters-Lidard, C., 5 

Sivapalan, M., Sheffield, J., Wade, A., and Whitehead, P.: Hyperresolution global land surface modeling: Meeting a 

grand challenge for monitoring Earth's terrestrial water, Water Resour. Res., 47, 10.1029/2010WR010090, 2011.  

Wu, D. D., Anagnostou, E. N., Wang, G., Moges, S., and Zampieri, M.: Improving the surface‐ground water interactions in 

the Community Land Model: Case study in the Blue Nile Basin, Water Resour. Res., 50, 8015-8033, doi:  

10.1002/2013wr014501, 2014. 10 

Yang, Z.-L., and Niu, G.-Y.: The versatile integrator of surface and atmosphere processes: Part 1. Model description, Global 

Planet. Change, 38, 175-189, doi: 10.1016/S0921-8181(03)00028-6, 2003. 

Zeng, X., and Decker, M.: Improving the numerical solution of soil moisture–based Richards equation for land models with 

a deep or shallow water table, J. Hydrometeorol., 10, 308-319, doi: 10.1175/2008jhm1011.1, 2009. 

 15 

 

 

 

 

 20 

 

 

 

 

 25 

 

 

 

 

 30 

 

 

 

 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-24
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 23 March 2018
c© Author(s) 2018. CC BY 4.0 License.



22 
 

 

 

Tables and Figures 

 

 5 

Table 1: Monthly mean bias (CLM minus E-RUN) in mean seasonal runoff (mm/day) for CLM-OL and CLM-DA for 
all PRUDENCE regions and all seasons, i.e. winter (DJF), spring (MAM), summer (JJA) and autumn (SON). 
 Winter Spring Summer Autumn Annual  
Regions 

CLM-OL  

(mm/d) 

CLM-DA  

(mm/d) 

CLM-OL  

(mm/d) 

CLM-DA  

(mm/d) 

CLM-OL  

(mm/d) 

CLM-DA  

(mm/d) 

CLM-OL 

(mm/d) 

CLM-DA  

(mm/d) 

CLM-OL 

(mm/d) 

CLM-DA 

(mm/d) 

BI 1.56 -1.07 1.50 -0.52 0.93 -0.27 0.41 -0.95 1.10 -0.70 

IP 0.24 -0.49 0.53 -0.34 0.32 -0.03 -0.11 -0.20 0.24 -0.27 

FR 1.26 -0.44 1.42 -0.33 0.71 -0.06 0.26 -0.23 0.91 -0.26 

ME 0.57 -0.33 1.27 -0.15 0.53 -0.10 0.35 -0.23 0.68 -0.20 

SC 0.79 -0.14 0.53 -0.10 2.48 0.29 1.09 -0.29 1.22 -0.06 

AL 1.26 -0.49 1.30 -0.76 2.05 -0.13 1.02 -0.68 1.41 -0.52 

MD 0.53 -0.49 1.30 -0.23 0.67 0.04 0.18 -0.16 0.67 -0.21 

EA 0.54 -0.10 1.34 0.10 0.91 -0.02 0.62 -0.09 0.85 -0.03 

EU 0.84 -0.44 1.15 -0.29 1.08 -0.04 0.48 -0.35 0.89 -0.28 

 

 

 10 
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Figure 1: Model surface input data: a) USGS GMTED2010 DEM, b) dominant land use type based on MODIS data, c) percent 
sand content, and d) percent clay content based on global FAO soil database. The land use indices in (b) are defined as: 
1:Evergreen Needleleaf Forest, 2:Evergreen Broadleaf Forest, 3:Deciduous Needleleaf Forest, 4:Deciduous Broadleaf Forest, 
5:Mixed Forests, 6:Closed Shrublands, 7:Open Shrublands, 8: Woody Savannas, 9:Savannas, 10:Grasslands, 11:Permanent 5 
Wetlands, 12: Croplands, 13: Urban and Built-Up, 14: Cropland/Natural Vegetation Mosaic, 15: Snow and Ice, 16: Barren or 
Sparsely Vegetated,17: Water, 18:Wooded Tundra, 19:Mixed Tundra, 20:Barren Tundra, 21: Lakes. The inner boxes in (a) show 
the boundaries of the PRUDENCE regions (FR: France, ME: mid-Europe, SC: Scandinavia, EA: Eastern Europe, MD: 
Mediterranean, IP: Iberian Peninsula, BI: British Islands, AL: Alpine region; Christensen et al., 2007). 
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Figure 2: Satellite ESA-CCI soil moisture data resampled to 0.0275° resolution for the time period of 2000 to 2006 over EU-
CORDEX. (a) Temporally averaged soil moisture content for different seasons, (b) fraction of days that soil moisture observations 
were reported during different seasons, and (c) number of selected observations with valid data for the respective day over the 
2000-2006 period used for assimilating SM in data assimilation experiment. Black circles in (a) indicate the location of grid cells 5 
selected for data assimilation. 
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Figure 3: Temporally averaged soil moisture (mm3/mm3) content over different seasons simulated by CLM-OL and CLM-DA for 
2000-2006 for a) DJF (December, January and February), (b) MAM (March, April, May), c) JJA (June, July and August) and d) 
SON (September, October, November) seasons. Temporally averaged seasonal soil moisture data from CCI-SM are also shown for 
comparison. 5 
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Figure 4: Box plots showing the spread of seasonally averaged soil water content (mm3/mm3) over the 2000 – 2006 time period and 
in the PRUDENCE regions for (a) DJF, (b) MAM, (c) JJA and (d) SON seasons. The boxplots illustrate the spatial distribution of 
SWC with quartiles, median and extreme values marked by solid lines. 
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Figure 5: RMSE and BIAS for daily soil water content over different seasons and PRUDENCE regions for (a,c) CLM-OL and 
(b,d) CLM-DA simulations over the years 2000-2006. 
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Figure 6: Spatially averaged daily soil water content (SWC) simulated with CLM-DA and CLM-OL and compared with CCI-SM 
data for the years 2000 – 2006 over the PRUDENCE regions. 
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Figure 7: Temporally averaged monthly runoff (mm/day) over different seasons simulated by CLM-OL and CLM-DA for the 
years 2000 – 2006 for a) DJF, (b) MAM, c) JJA and d) SON seasons. Temporally averaged monthly runoff from E-RUN is shown 
for comparison. 
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Figure 8: Boxplots of temporally averaged runoff (mm/day) over the years 2000 – 2006 for all PRUDENCE region and seasons, i.e. 
(a) DJF, (b) MAM, (c) JJA and (d) SON. The boxplots indicate the spatial distribution of monthly averaged runoff over each 
region. 
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Figure 9: Root mean square error and mean bias error for runoff (mm/day) over different seasons in the PRUDENCE regions for 
(a,c) CLM-OL and (c,d) CLM-DA simulations over the years 2000-2006. 
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Figure 10: Monthly time series of runoff from CLM-DA and CLM-OL simulation and compared with E-RUN runoff observation 
data for the years 2000 – 2006 over the PRUDENCE regions. 
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