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General:  

The submitted manuscript of Naz et al. (2018) evaluates the effect of soil moisture 
assimilation (namely ESA-CCI product) into the CLM 3.5 over Europe during 2000- 
2006. The Ensemble Kalman Filter is used for the model analysis, the observations are 
sampled using 100 randomly located points across the entire domain, while the remaining 
locations are used for independent evaluation. The CLM model operates at 3km spatial 
resolution, while the assimilation product is available at coarser, approx. 25km 
(0.25degree) resolution. Additionally, the gridded (monthly) runoff product available at 
0.5 degree is used for evaluation of the model runs. Results are presented for the open 
loop (OL) and data assimilation (DA) runs. Results are presented in terms of the RMSE 
and relative bias per nine PRUDENCE regions. I find this topic relevant for HESS, 
however, according to my opinion, the manuscript is not suitable for publication in the 
present form:  

We would like to thank the anonymous reviewer for his/her comments and constructive 
suggestions, which we believe have led to an improved manuscript. 

1. As correctly stated in Section 3.3, before applying any DA methods, the modeler 
should better parameterize and constrain the model parameters, reduce systematic 
biases etc. I am afraid you cannot apply DA after seeing those strong biases in the 
open loop estimates (Figures 6 or 10) at all. I encourage authors to pay attention 
to proper model calibration before DA analysis. � 

RESPONSE: Hydrologic states and fluxes simulated by Land Surface Models (LSM) are 
often biased due to, e.g., systematic biases in input forcings, uncertainty of input 
parameters, the use of parameterizations and uncertainty related to the (bio)physical 
processes representation in the models (e.g Yin et al., 2014; Han et al., 2014).  
Traditionally, the calibration of model parameters is performed using in situ data to 
resolve these biases. However, such in situ data – soil moisture in particular – are often 
unavailable at a large scale.  In this study, we have utilized the remotely sensed soil 
moisture for evaluating the performance of DA in reducing the model biases as previous 
studies have shown  (e.g. Moradkhani et al., 2005; Liu and Gupta, 2007; Kumar et al., 
2008; Nie et al., 2011; Chen et al., 2013; Lievens et al., 2016; Lannoy and Reichle, 
2016). Another motivation of this study is not only to improve the soil moisture through 
data assimilation approach, but also to evaluate the assimilations impacts on other land 
surface variables such as runoff. Model calibration prior to assimilation, e.g., with the 
runoff data set of Gudmundsson and Seneviratne (2016) would violate the independency 
criterion of calibration and validation data for the impact assessment of the data 
assimilation procedure. 

Furthermore, in land surface modeling systematic differences between the model 
climatology and the observation data climatology are traditionally corrected before 



assimilation, to ensure that data assimilation is applied under conditions of no systematic 
bias. However, different procedures to correct bias are used, like the estimation of a 
single constant bias value, seasonal dependent bias or CDF-matching (e.g. Reichle and 
Koster, 2004 and Drusch et al., 2005). The procedure has some important limitations: (i) 
the bias is only partially corrected or over-corrected; (ii) the bias in the DA-procedure is 
not assigned to the model or measurement data, but after the assimilation it is implicitly 
assumed that the systematic bias is related to the bias in the measurements (model states 
are not corrected for a systematic bias). We did therefore not perform any bias correction 
of the soil moisture observation by rescaling of the observations to model climatology. A 
further argument for not following this approach was that spatial patterns could be altered 
and thereby some of the independent information provided by the satellite may be 
removed; it is desirable to retain as much of the independent satellite information as 
possible. 

The alternative procedure we followed here was to neglect systematic biases, but 
assimilate with a sufficient ensemble spread so that observations allow correcting model 
predictions. This approach results in a stronger corrective effect of measurement data. A 
further alternative is to attribute systematic biases to erroneous model parameter values, 
which is one of the main sources of error and uncertainty in land surface model 
predictions. We explore this option now in the revised version of the manuscript using a 
joint state-parameter estimation approach. Although this approach has also important 
limitations, related to the fact that we do not know well enough the relative importance of 
systematic model errors and systematic errors in the measurement data, an advantage is 
that we correct for possible systematic model bias by modifying soil texture parameters.  

Therefore, we evaluated now the impact of soil texture properties like the percentages of 
clay and sand on the CLM model performance and jointly estimated model states and 
parameters in the data assimilation experiment. We plotted the results as mean monthly 
soil moisture for the 2000 – 2006 time period for CLM-OL, CLM-DA (only state update) 
and CLM-DA (joint state and parameter updates) as shown in Fig. R1. We see that in 
both cases (state updating alone, joint state-parameter updating) the DA-runs are quite 
close to the observed values. However, parameter updating is supposed to have corrected 
part of the systematic model bias and other fluxes like evapotranspiration and also 
discharge can show larger modifications as response to the different parameters.  

 



 

Figure R1: Multi-ensemble spatially averaged mean monthly soil water content (2000 – 
2006) simulated with CLM-OL (no assimilation; gray colour) and CLM-DA (with data 
assimilation) and compared with CCI-SM data over the PRUDENCE regions. The blue 
colour indicates CLM-DA-S (state updates only) and red colour indicates CLM-DA-SP 
(joint state-parameter update).  

We have now discussed above points in the revised version of the paper and also include 
information from additional experiments for joint state-parameter updating in the revised 
manuscript. 

2. This is not much of surprise when soil moisture gets assimilated into a model that 
model simulations at the analysis step get more close to the “observation- based” 
product, as much as the prescribed observation errors allow (given there exists 
spatial correlation between the 100 assimilated locations and remaining 
“withheld” observations). By assimilating the ESA-CCI product, the authors 
claim to improve the initial conditions of the model. That’s all . . . I would 
welcome then the added value/implications of the improved initial model 
(wetness) conditions (e.g. with respect to some longer lead-times): OL vs. DA. � 

RESPONSE: Most land data assimilation studies only aim at improving the model initial 
conditions. These improved model initial conditions would impact other modeled fluxes 
like discharge (which is a focus of this paper), but also latent and sensible heat fluxes 
between the land and atmosphere, which could potentially improve weather predictions. 
The added value of our study is to apply a data assimilation modeling framework over 
Europe along the complete simulation time span to derive a longer-term and high spatial 
resolution land surface data assimilation product in order to increase monitoring accuracy 
for land surface moisture and water states and fluxes. 

Beyond that, a continuous DA approach allows to monitor long-term changes of the 



terrestrial water cycle and enhance our understanding of the role of land surface 
processes on, e.g. atmospheric boundary layer dynamics. Therefore, high quality soil 
moisture product is needed. Since point scale measurements from in situ sensors are only 
available at a limited number of locations, remotely sensed soil moisture products are 
promising for a more large scale improvement of soil moisture variations. However, 
sparse data coverage in satellite observations still limits their ability to provide spatially 
and temporally consistent time series of water balance estimates. To overcome this 
limitation, in our study, we used data assimilation to merge coarse resolution satellite 
observations with a land surface model to generate higher horizontal resolution i.e. 
downscaled estimates of the full soil moisture profile with complete spatio-temporal 
coverage.  

We now discussed the added value of our data assimilation experiment in the 
introduction and conclusions section of the revised manuscript. 

 

3. Additionally, using EnKF the authors modify the internal model states and thus 
introduce some numerical instability (against internal physical constraints for the 
model), which was not discussed at all. How do you handle this issue after the 
analysis step? � 

RESPONSE: In the DA scheme we ensure that updated states (soil moisture) are kept in 
reasonable physical ranges (between residual soil moisture and porosity) to yield 
physically consistent estimates of fluxes and maintained the water budget. Additionally, 
numerical stability is not significant compared to, e.g., groundwater models/ atmospheric 
models where PDE's are solved with iterative methods. In CLM (and generally in land 
surface models) the equations/algorithms for deriving mass/energy budgets/transfer are 
simpler and more robust (numerically) than for full PDE-based systems.   

We have now discussed these points in the revised manuscript. 

4. Hardly any discussion for (OL and DA) results is done with respect to other SM data 
assimilation/modeling studies over Europe ... which could be used as a 
benchmark(?)� 

RESPONSE: We appreciate the suggestion. We added several references of other 
assimilation/modeling studies over Europe in the introduction section of the revised 
manuscript. For instance, many studies have explored the role of soil moisture 
assimilation in different modeling frameworks over Europe (e.g. Albergel et al., 2017; de 
Rosnay et al., 2013; Brocca et al., 2010; Draper et al., 2009; Ni-Meister et al., 2006). 
Albergel et al. (2017) applied a global land data assimilation system at 0.5° over the 
Europe and Mediterranean domain to sequentially assimilate ESA CCI satellite-derived 
soil moisture data and leaf-area index product into the ISBA (Interactions between Soil, 
Biosphere and Atmosphere) land surface model. They found more improvements in the 
surface soil moisture and particularly in the summer and autumn than in the winter and 
spring but found little improvements to the discharge when compared to the open loop 



(i.e. no assimilation) simulations. 

Applying CLM over EU is indeed challenging, but there are other models already able to 
simulate SM and the choice of CLM is not well described either. � 

(Below is the same response to Reviewer 1, comment 1) 

RESPONSE: We selected CLM because it is one of the most complete land surface 
model at the moment and part of a large community effort (Community Earth System 
Model; http://www.cesm.ucar.edu/). It has been widely applied at continental and global 
scales to understand how land processes and anthropogenic impact on land states affect 
climate (e.g. Bonan et al., 2002; Dickinson et al., 2006). The CLM model parameterizes 
most of the land surface processes (such as infiltration, evaporation, surface runoff, 
subsurface drainage, canopy and snow processes) using the water and energy balance 
equations. In addition, CLM was designed for coupling with climate models and is also 
part of the fully coupled Terrestrial Systems Model Platform (TerrSysMP; Shrestha et al., 
2014) that simulates the full terrestrial hydrologic cycle including feedbacks between 
atmosphere, land-surface and subsurface compartments of the water cycle. For upcoming 
studies, it is planned to use TerrSysMP including the parallel data assimilation 
framework (PDAF) to assess the impacts of satellite soil moisture assimilation on other 
water cycle variables across the soil-vegetation-atmosphere system and its effects on the 
accuracy of model simulations at the continental scale can be explored. Moreover, the 
CLM model can efficiently run for large model domains and at high spatial resolution. 
Since we performed our simulations at high spatial resolution at continental scale, we 
selected the TerrSysMP -PDAF modeling framework which can be run on high 
performance computational infrastructure and can efficiently cope with the high 
computational burden of ensemble-based data assimilation framework. 

The authors have “high-resolution” in their title. I strongly encourage them to eliminate 
this from the title, especially if they use such coarse scale data to as-similate. � 

RESPONSE: As discussed in the response to comment 2, in this study we used data 
assimilation approach to highlight the added value of merging coarse resolution satellite 
observations with a land surface model to generate higher spatial resolution, downscaled 
estimates of the surface soil moisture profile with complete spatio-temporal coverage and 
with a higher accuracy than that of the open loop model estimates. Many applications 
(such as drought, flood, irrigation management) require observations of the complete soil 
moisture profile and with finer spatial and temporal resolutions than those of remotely 
sensed products. To the best of our knowledge, this is the first study of its kind to provide 
a downscaled daily soil moisture product at 3km resolution over Europe. In order to 
accommodate the reviewer comment, we replaced “high resolution” in the title with 
“3km”. 

5. Why the authors did not use “high-resolution” discharge data for independent model 
evaluation? There are thousands of gauges with daily time step over Europe, if the 
routing would be enabled. I am afraid that using monthly gridded runoff is not 
sufficient for a “high-resolution” study. � 



RESPONSE: We agree that discharge data from many gauging stations are available and 
can be used for independent evaluation. However, in the current version of the CLM 
model, the routing scheme is based on simple linear storage outflow relationships, in 
which a prescribed channel velocity field without temporal variability is used. This 
simplified assumption can lead to an offset even in the monthly peak streamflow in large 
catchments (Li et al., 2011).  In addition, in the CLM 3.5, the river routing module is 
implemented at 0.5° where the discretization of river routing elements is based on a grid 
method in which the grid for river routing is independent of the grid for runoff 
simulation. Therefore, a coarse spatial resolution, such as 0.5° can lead to unrealistic flow 
accumulation paths and cannot be used to evaluate discharge at small catchments. Due to 
the aforementioned points, adequate validation of the results is therefore not possible. 

In this study, we instead used the E-RUN runoff product which combines observed river 
flow with gridded estimates of precipitation and temperature using machine learning. 
Therefore, this gridded runoff dataset is solely derived from observations and does not 
rely on any modeling assumptions. We believe that using an observation-based non-
routed gridded runoff product has distinct advantage to evaluate the impact of soil 
moisture assimilation on runoff at every grid cell within a spatial domain. Using gridded 
runoff is also useful to evaluate model structure errors in representation of runoff 
generation in the model. In the land surface models such as CLM, the representation of 
runoff is often simplistic and conceptual and many previous studies have shown that 
performance of the CLM model in simulating hydrological processes varies based on 
regions. This might be attributed to the fact that assumptions to estimate surface and 
subsurface runoff in the model might be valid in some regions but not in other regions 
(e.g. humid vs. dry regions). We also noted similar behavior of CLM in our study where 
the assimilation of soil moisture helps to improve runoff in some regions but degraded in 
other regions. 

In the CLM 3.5 runoff scheme, runoff is partitioned into surface flow and subsurface 
flow and basic simulation element of runoff is the grid cell. In the revised version of the 
manuscript, the performances of the surface flow and base flow are evaluated separately 
in order to identify the dominant factor in total runoff generation as a result of soil 
moisture assimilation. 

6. The authors could have easily run their model at the resolution of the data and save 
their larger efforts in computer resources. � 

RESPONSE: The goal and added value of the study was to produce a high-resolution, 
downscaled land surface hydrology over Europe. It is true that (a large number of) 1D 
soil moisture DA-experiments could have been conducted at the measurement locations 
(where we assimilated ESA CCI soil moisture in this experiment), but an essential 
component of this work is that we updated soil moisture contents at other locations (at the 
European scale), based on spatial correlations, and investigated whether soil moisture 
characterization between measurement locations could also be improved, and if this 
improves also runoff characterization at the European scale. As a conclusion, we 
respectfully disagree with this point of the reviewer.  



It should also be noted that we made an extensive effort to collect and organize high 
resolution land surface data and atmospheric forcing datasets to implement the CLM 
model at 3-km resolution over Europe. Particularly, the COSMO-REA6 is available at a 
high 6 km spatial resolution. The organization of COSMO-REA6 hourly record for the 
entire Europe is not a trivial task. The applicability of COSMO-REA6 for a land surface 
model simulation over the EURO-CORDEX domain has never been shown previously.   

In addition to forcings, this study also uses high-resolution land surface information in 
order to better represent the effects of land surface heterogeneity and provide climate 
information at the scales needed for impact assessment. In the current version of the 
CLM model, the officially released land surface datasets are provided at 0.5° by 0.5° or 
coarser resolutions. For example, in our study, PFTs fractional cover data were derived 
using high resolution MODIS data. Such a data-intensive effort is unprecedented in the 
previous studies, and hence the new resource will be valuable because it will prompt 
future hydro-climate studies. 

7. Another limitation of this study is the limited ensemble size. 12 members are way too 
low (this number is stated on p. 7, l. 23). Also, the ad-hoc construction of the 
perturbations needs better reasoning and clarifications! � 

 RESPONSE: While we agree with this comment, the number of ensemble member, 
however, was set to 12 members in our study, due to the large number of grid cells and 
required computational resources. From previous literatures (e.g., Kumar et al., 2008; 
Pan and Wood, 2010; De Lannoy et al., 2012; Yin et al., 2015), it is clear that the 
performance of EnKF relies on the ensemble size. For example, (Kumar et al., 2008; Yin 
et al., 2015) indicated that when the ensemble size is close to 12, it may lead to efficient 
DA updating process, while (Pan and Wood, 2010; De Lannoy et al., 2012) suggested 20 
ensemble members.  

 We now evaluated the impact of the number of ensembles numbers on the performance 
of EnKF by increasing the ensemble size to 20 and run the model for one test year (i.e. 
2006). We plotted the results as an ensemble mean of spatially averaged daily soil 
moisture for the year 2006 for CLM-DA (12 vs. 20 ensemble members) and compared 
with the daily ESA CCI soil moisture values over PRUDENCE regions as shown in Fig. 
R2. 



  

 Figure R2: Spatially averaged ensemble daily soil water content (SWC) simulated with 
CLM-DA (ensemble mean of 12 and 20 ensemble members) and compared with CCI-
SM data for year 2006 over the PRUDENCE regions. The R2 values in each panel are r-
squared calculated for both CLM-DA with 12 and 20 ensemble members.  

 While, we see some improvements in the simulated soil moisture as results of using 20 
ensemble members, particularly in the winter season and in some regions such as, SC, 
Al and EA when compared to observations, in both cases the simulated soil moisture 
from the DA-runs with 12 and 20 ensemble members are quite close to the observed 
values. We will now include this sensitivity analysis in the discussion section of revised 
manuscript. 

 In addition, please note that using an increased number of ensemble members is a big 
challenge for large-scale high-resolution model because of needed computation memory 
and storage, and to a lesser degree also because of the computational burden. One year 
of model run with 20 ensemble members requires 680GB of computer storage per output 
variable (i.e. equivalent to 5TB of storage for 7 years of simulations per variable at daily 
time scale) and has resulted in the use of 76,800 CPU core-hours (compare to 46,000 
core-hours with 12 ensemble members).   

 We clearly noted the limitations of our study in the manuscript. In future, with improved 
availability of computing resources, larger ensemble sizes will be possible. 



8. The uncertainty in the time series figures is for the 12 ensemble members? � 

Correct. We included this information in the figure captions. 

9. Numerous papers mentioned in the text are not included in the reference list!!! � 

Thanks	you	for	pointing	this	out.	We	added	missing	references	in	the	reference	list. 

Technical:� 

Spell-out ESA-CCI in the abstract. 

This modification has been made 

�p.1,line 14: remove “and the . . . due to”� 

This modification has been made 

p.5, line 28: remove “In their study” 

This modification has been made. 

�p. 6: “this product” => which product you refer to here?  

We referred to gridded runoff product E-RUN version 1.1 (Gudmundsson and 
Seneviratne, 2016). We modified text for clarity. 

p. 6, line 19: missing space after parenthesis 

We removed the space after parenthesis. 

�p.10, l. 13: “UK” => “BI”� 

This modification has been made 

p.12, line 9: runoff => “monthly runoff”� 

This modification has been made. 

Figs. 5 and 9, caption: “a,c” => “a,b”  

The figure caption has been modified for clarity. 
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