
1 

 

Author Response to Interactive comment on “Reflection tomography of time-lapse GPR data for studying dynamic 1 

unsaturated flow phenomena” by Adam R. Mangel et al. 2 

This response is directed toward the comments left by Anonymous Referee #1, posted to the Hydrology and Earth 3 

Systems Sciences (HESS) discussion board for manuscript hess-2018-230 on August 5, 2018. 4 

First and foremost, the authors would like to thank Anonymous Referee #1 (AR1) for devoting time to reviewing our 5 

manuscript and for providing a critical review of the content. Below, the authors have outlined responses to individual 6 

comments made by the reviewer. 7 

AR1: Yet, I have found it to a large extent disappointing that the authors seem to give too much credit to their own 8 

past work, and neglect a large body of literature considering multi-offset GPR processing, that dates back at least a 9 

couple of decades. 10 

Author Response: The authors have added additional references for processing of multi-offset GPR data as suggested 11 

by the reviewer. 12 

AR1: Even more serious, is the lack of proper reference to wave migration methods that are state of the art in 13 

industrial seismic processing, and are yet presented herewith as if they are novel, or at least rediscovered by the 14 

authors. 15 

Author Response: The authors have added additional references for wave migration methods as suggested by the 16 

reviewer. The authors do not claim to have ‘rediscovered’ the methods used but are simply the first to apply them to 17 

time-lapse GPR data for imaging dynamic hydrologic conditions, which is novel. 18 

AR1: From a technical viewpoint, I am a bit puzzled by the error estimates for water content estimates that is 5-10% 19 

in vol/vol (is it saturation or moisture content?) – as compared to 5-15% from soil moisture probes (again, same 20 

question). I feel this error is too high to make the estimates useful (if it is moisture content as I read it!). Note that in 21 

cross-hole GPR usually 2-3% error in volumetric moisture content is generally accepted as realistic. 22 

Author Response: All soil moisture data is reported as volumetric water content. Errors calculated in the manuscript 23 

are absolute errors in volumetric water content between the soil moisture probe data and the values derived from 24 

analysis of the GPR data. 25 

Errors in the estimation of volumetric water content from the simulated and measured GPR data vary over space and 26 

time. The authors offer explanations for these errors which will be the focus of later research, e.g. evidence of non-27 

uniform wetting of the sand from soil moisture probe data and migration artifacts present in the Kirchoff migration. 28 

The authors do not recommend directly comparing results of this method to those of cross-hole GPR given increased 29 

data coverage using cross-hole GPR methods. The appeal of this method is partially because boreholes are not required 30 

to image the subsurface. 31 

AR1: Finally, as much as I like GPR, it should be clearly stated in the introduction that GPR can only be used in 32 

relatively resistive soil conditions. This is generally omitted when presenting GPR applications, yet in many practical 33 

situations the soil conductivity is high enough to force us to shift to ERT or EMI for soil moisture content estimates. 34 

Author Response: The authors have added a statement to the introduction that describes the limitations of GPR in 35 

conductive media. 36 
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Author Response to Interactive comment on “Reflection tomography of time-lapse GPR data for studying dynamic 37 

unsaturated flow phenomena” by Adam R. Mangel et al. 38 

This response is directed toward the comments left by Anonymous Referee #2, posted to the Hydrology and Earth 39 

Systems Sciences (HESS) discussion board for manuscript hess-2018-230 on October 23, 2018. 40 

First and foremost, the authors would like to thank Anonymous Referee #2 (AR2) for devoting time to reviewing our 41 

manuscript and for providing a critical review of the content. Below, the authors have outlined responses to individual 42 

comments made by the reviewer. 43 

AR2: In section 2.2, line 128, authors mention that 101 CMPs were collected (between y=1m and y=3m). I think there 44 

must be a typo here. It should “COPs.” Otherwise, it does not make sense. If the transmitter and the receiver have 45 

moved 2cm each time, you should have 51 profiles. If each one has moved 1cm at a time, then you will have 101 46 

profiles. Please fix and/or clarify. 47 

Author Response: The discussion of the data collection geometry in the manuscript has been reviewed by the 48 

corresponding author and is correct. A common-midpoint profile (CMP) was collected at 101 individual points 49 

between y = 1 m and y = 3 m (see Figure 1f in the manuscript). To collect a CMP, the transmitter and receiver are 50 

expanded or contracted about a central point. The central point locations are spaced at 2 cm intervals along the line at 51 

x = 2 m over the distance of y = 1 to 3 m. Therefore, the total transect distance of 2 meters (3 m – 1 m) is covered in 52 

100 steps of 2 cm increments. Counting the starting position, this calculates to a total of 101 CMPs.  53 

Of course, you could rearrange the data to give you multiple common offset profiles across the tank. The number of 54 

COPs in this case would depend on the number of offsets collected in each CMP, which for this experiment was 84. 55 

These COPs, however, would be collected with significant temporal disparity such that the traces at either end of the 56 

COP would be separated in time by 3.9 minutes. This would distort the reflectors in the COPs due to the dynamic 57 

nature of the infiltration process being monitored. The COPs are of little value to our work, however, as they do not 58 

contain the reflector moveout relationships that are used to estimate wave velocities. Thus, we only collected data in 59 

CMP configurations. 60 

AR2: It is mentioned that the flux is 0.125 cm/min, but the authors did not explain how uniform the irrigation was 61 

(inside the irrigation area). 62 

Author Response: Lines 104-105 of the manuscript mention heterogeneity in the applied flux. This 63 

may indeed be a factor in the heterogeneity of the wetting front, but we have gone through many 64 

iterations of the irrigation equipment to minimize the problem and have made progress in 65 

homogenizing the applied flux over a prescribed area. While we continue to work on this issue, it 66 

does not impact the validity of our results give that we do not fundamentally assume homogeneity 67 

of the infiltration flux across the tank for reflection tomography to be applicable. To the contrary, 68 

our GPR and moisture probe results are both consistent with some degree of variability occurring 69 

in the applied flux. For this work, we feel that homogeneous application of water at the surface is 70 

less important than the fact that we are able to discriminate a heterogeneous response, which is 71 

more representative of real systems and points to the capability of reflection tomography for 72 

measuring heterogeneous water distributions in the environment. 73 

 74 
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AR2: The moisture probes were situated 0.5 m away from the line of GPR scan. Unless, the irrigation was uniform, 75 

it does not make sense to compare the results of moisture content from the GPR scans to moisture content data from 76 

the probes. I guess, we assume the sand layer was homogeneous. 77 

Author Response: The sand layer is homogeneous, meaning that it is all the same sand, from the same company, and 78 

was packed into the tank in a uniform manner. However, homogenous systems can exhibit heterogeneous flow 79 

responses due to small variabilities in initial and boundary conditions or very minor contrasts in sorting at the grain 80 

scale. The overall agreement between the patterns of water content change observed in the reflection tomography and 81 

probe responses suggest that the general comparison between the datasets we performed is valid, though we agree 82 

with the reviewer that over analysis of the two data sets is not warranted given this limiting factor as well as the fact 83 

that the measurements represent different scales of investigation. 84 

The moisture probes were located off the GPR transect to avoid backscattering or the transmitted signal that would 85 

interfere with analysis of the GPR wave velocities. Though this is not an ideal setup for comparison of the moisture 86 

probe data to the GPR estimated of water content, it was necessary to ensure that high-quality reflection tomography 87 

data could be collected. 88 

AR2: In line 183, it is mentioned that a refraction is also observed on the CMPs. Please discuss and explain why 89 

refraction happened in this case. 90 

Author Response: Refraction occurs in this case because a wet low-velocity layer is present above a dry high-velocity 91 

layer. Overall, the refraction is irrelevant to this work, but the authors point it out as a rarity in the simulated GPR 92 

data. The refraction is not observed in the empirical GPR data and warrants no further discussion. 93 

AR2: In section 4, line 225, the error was reported for water content near the edges of the advancing plume. Please 94 

explain how the errors were calculated considering the fact that the GPR scans were collected at fixed x=2.0 m and 95 

the probes are 0.5 m away from the line of scan. How did you calculate the water content error for the central area 96 

versus the edges of the plume. Please explain. 97 

Author Response: Errors in the estimates of water content are calculated by comparing the difference between the 98 

soil moisture probe data and the values derived from analysis of the GPR data. We must assume homogeneity in the 99 

x-direction to directly compare these measurements which is why the errors are not discussed in greater detail in this 100 

work. Rather, the authors provide these numbers as a general metric regarding the performance of the GPR data 101 

analysis. 102 

  103 
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Abstract  112 

Ground-penetrating radar (GPR) reflection tomography algorithms allow non-invasive monitoring of water content 113 

changes resulting from flow in the vadose zone.  The approach requires multi-offset GPR data that is traditionally 114 

slow to collect.  We automate GPR data collection to reduce the survey time significantly, thereby making this 115 

approach to hydrologic monitoring feasible.  The method was evaluated using numerical simulations and laboratory 116 

experiments that suggest reflection tomography can provide water content estimates to within 5-10% vol./vol. for the 117 

synthetic studies, whereas the empirical estimates were typically within 5-15% of measurements from in-situ probes.  118 

Both studies show larger observed errors in water content near the periphery of the wetting front, beyond which 119 

additional reflectors were not present to provide data coverage. Overall, coupling automated GPR data collection with 120 

reflection tomography provides a new method for informing models of subsurface hydrologic processes and a new 121 

method for determining transient 2D soil moisture distributions. 122 

1. Introduction  123 

Preferential flow is ubiquitous in the vadose zone, occurring under a wide variety of conditions and over a 124 

broad range of scales (Nimmo, 2012).  Reviews such as those by Hendrickx and Flury (2001) and Jarvis (2007) 125 

illustrate that a basic mechanistic understanding of preferential flow exists.  Jarvis et al. (2016) point out, however, 126 

that we still lack models capable of reproducing empirical observations in the field and highlight the importance of 127 

non-invasive imaging techniques for improving this understanding.  We suggest that ground-penetrating radar (GPR) 128 

reflection tomography could fill this need by quantitatively mapping changes in water content through space and time 129 

at the sub-meter scale. 130 

Reflection GPR is commonly used to image subsurface structures, but is also well suited to understanding 131 

hydrologic variability due to the strong dependence of EM wave velocities on soil volumetric water content (Topp et 132 

al., 1980).  As a result, GPR has been adapted to monitor variability in hydrologic processes at multiple scales through 133 

time and space in a variety of contexts (Buchner et al., 2011; Busch et al., 2013; Guo et al., 2014; Haarder et al., 2011; 134 

Lunt et al., 2005; Mangel et al., 2012, 2015b, 2017; Moysey, 2010; Saintenoy et al., 2007; Steelman and Endres, 2010; 135 

Vellidis et al., 1990). Note that GPR methods are not applicable in media with relatively high electrical conductivity. 136 

While these studies have illustrated a variety of techniques for monitoring changes in water content within 137 

the subsurface, they have generally required assumptions to constrain the interpretation, such as the use of a priori 138 

information regarding subsurface structure (e.g., Lunt et al., 2005) or the GPR wave velocity (Haarder et al., 2011).  139 
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These limitations arise from the fact that GPR data are recorded as energy arriving at the receiver antenna as a function 140 

of time.  Inherent assumptions therefore exist in analyzing traveltime data collected with antennas separated by a fixed 141 

offset because both the distance travelled by the GPR wave to a reflector and the velocity of the GPR wave are 142 

unknown.  It has been demonstrated that GPR data collected via a multi-offset survey can constrain both the depth to 143 

a moving wetting front and the water content behind the front over the course of an infiltration event (Gerhards et al., 144 

2008; Mangel et al., 2012).  The limitation of these studies, however, was that the authors assumed a 1D flow system 145 

and that GPR data lacked information regarding lateral variability in soil moisture. 146 

Extending multi-offset techniques (Forte and Pipan, 2017; Jaumann and Roth, 2017; Klenk et al., 2015; 147 

Lambot et al., 2004, 2009) to image flow in the vadose zone requires an increase in the speed at which these data can 148 

be collected and advanced processing methods that can combine thousands of measurements into spatially and 149 

temporally variable water content estimates.  We have recently overcome the data collection problem by automating 150 

GPR data collection using a computer controlled gantry, thereby reducing the data collection time for large multi-151 

offset surveys from hours to minutes (Mangel et al., 2015a).  Reflection tTomography and wave migration algorithms 152 

from seismic literature have been available in the seismic industry for decades (Baysal et al., 1983; Lafond and 153 

Levander, 1993; Sava and Biondi, 2004a, 2004b; Stork, 1992; Yilmaz and Chambers, 1984) and were firstare being 154 

continually adapted to  imaging GPR applications. For example, this work is made possible due to a velocity variations 155 

by Bradford (2006)daptation of the pre-stack migration algorithm (Leparoux et al., 2001) and adaptation of the 156 

reflection tomography algorithm (Bradford, 2006) to multi-offset GPR data.  Subsequent studies have demonstrated 157 

the use of GPR reflection tomography for imaging static distributions of subsurface water content with great detail 158 

(Bradford, 2008; Bradford et al., 2009; Brosten et al., 2009).  The combination of automated GPR data collection and 159 

reflection tomography makes time-lapse imaging of water content during infiltration a feasible means to study flow 160 

in the vadose zone. 161 

The objective of this study is to evaluate reflection tomography of high-resolution GPR data as a tool for 162 

observing and characterizing unsaturated flow patterns during infiltration into a homogeneous soil.  To evaluate the 163 

efficacy of the algorithm for resolving dynamic soil water content in 2D, we first test the algorithm using numerical 164 

simulations and compare the results to true water content distributions.  We then apply the algorithm to time-lapse 165 

GPR data collected during an infiltration and recovery event in a homogeneous soil and compare results to 166 

measurements from in-situ soil moisture probes. 167 

2. Methods 168 

2.1. The Reflection Tomography Algorithm 169 

The goal of reflection tomography is to determine a velocity model that best aligns migrated reflection 170 

arrivals for a common reflection point across a set of source-receiver offsets.  For brevity, we will limit our discussion 171 

here to the key ideas and methods of the tomography algorithm; we refer the reader to Stork (1992) for the original 172 

tomography algorithm and to Bradford (2006) for the application to GPR data. 173 

The data required for this algorithm are an ensemble of common-midpoint (CMP) gathers collected along a 174 

path.  Given that GPR data is a time-series record of electromagnetic energy arriving at a point in space, we must 175 

know the proper velocity structure to migrate the data and produce a depth registered image of the GPR energy. 176 
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Migration attempts to remove the hyperbolic trend of reflections with respect to antenna offset (Figure 1a) by using 177 

the wave velocity to reposition reflections to the proper depth at which they occur.  If CMP data are migrated with the 178 

correct velocity, reflections from layers in the subsurface are flattened as a function of offset (Fig. 1c).  If the velocity 179 

estimate is incorrect, e.g. 10% too slow (Fig. 1b) or 10% too fast (Fig. 1d), the arrival is not flat and exhibits residual 180 

moveout (RMO). To solve for the velocity structure and properly migrate the data, the reflection tomography 181 

algorithm proceeds as follows (Bradford, 2006; Stork, 1992): 182 

1. Generate a starting depth vs. velocity model. 183 

2. Migrate the data with the starting velocity model and stack the data. 184 

3. Pick horizons on the stacked image. 185 

4. Perform ray-tracing to the picked horizons with the velocity model. 186 

5. Evaluate horizons for residual moveout. 187 

6. Adjust velocity model using reflection tomography. 188 

7. Apply revised velocity model using migration and quality check RMO. 189 

8. Iterate at step three if necessary. 190 

For this work, starting velocity models for the tomography algorithm are determined by smoothing results 191 

from 1D velocity analysis of individual CMPs (Neidell and Taner, 1971).  The reflection tomography algorithm then 192 

adjusts the velocity distribution until reflections in the depth corrected (i.e., migrated) data line up to produce a 193 

reflection at a consistent depth across all traces in a CMP.  Through sequential iterations of the tomographic inversion, 194 

the RMO metric is reduced on a global scale.  For this work, the reflection tomography was performed using the 195 

SeisWorks software suite and Kirchhoff pre-stack depth migration (Yilmaz and Doherty, 2001). 196 

2.2. Experimental Setup and Procedure 197 

We used a 4 m x 4 m x 2 m tank for the controlled study of unsaturated flow phenomenon with GPR (Fig. 198 

1e, f). We filled the tank with a medium-grained sand to a depth of 0.60 m.  Below the sand was a 0.30 m layer of 199 

gravel that acts as backfill for 16 individual drain cells that are pitched slightly toward central drains that route water 200 

to outlets on the outside of the tank.  We constructed an automated data collection system to allow for the high-speed 201 

high-resolution collection of GPR data (Mangel et al., 2015a); the GPR gantry fits inside of the tank so the antennas 202 

are in contact with the sand surface.  All GPR data described here were collected along the y-axis of the tank at a fixed 203 

position of x = 2.0 m, where the bottom of the tank is flat (Fig. 1e, f). 204 

The automated system, which utilizes a 1000 MHz Sensors and Software bistatic radar (Sensors and 205 

Software, Inc.), was operated to obtain 101 CMPs spaced at 0.02 m intervals between y = 1.0 - 3.0 m.  Each CMP 206 

consisted of 84 traces with offsets between 0.16-1.0 m at 0.01 m step size.  Thus, a complete CMP data set for one 207 

observation time consists of almost 8,500 individual GPR traces. With this configuration using the automated system, 208 

a CMP at a single location could be collected in 1.8 seconds with a total cycle of CMP data locations collected every 209 

3.9 minutes. 210 

GPR data collection occurred prior to irrigation to evaluate background conditions.  Data collection continued 211 

during irrigation, which was applied at a flux of 0.125 cm/min for a duration of 2.13 hrs.  Spatial heterogeneity in the 212 

applied flux has been observed in laboratory testing of the irrigation equipment. Fifteen EC-5 soil moisture probes 213 
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(METER, Inc.) logged volumetric water content at 10 second intervals during the experiment (Fig. 1e, f).  Note that 214 

the soil moisture probes are located out of the plane of the GPR line by 0.5 m (Figure 1f).  GPR data collection 215 

continued for 40 min. after the irrigation was terminated.  In total, 45 complete sets of data were collected over the 216 

course of the 3-hour experiment, yielding more than 500,000 GPR traces in the experimental data set. 217 

2.3. Execution of the Numerical Simulations 218 

We employed HYDRUS-2D (Simunek and van Genuchten, 2005) to simulate a theoretical and realistic 219 

hydrologic response to an infiltration event using two different initial conditions: i) hydrostatic equilibrium leading to 220 

a water content distribution controlled by the soil water retention curve, and ii) a uniform soil with a water content of 221 

0.07.  We selected the Mualem-van Genuchten soil model (Mualem, 1976) and parameterized the model as follows 222 

based on hydraulic testing of the sand: residual water content (θr) = 0.06, saturated water content (θs) = 0.38, air-entry 223 

pressure (α) = 0.058 cm-1, shape parameter (n) = 4.09, and saturated hydraulic conductivity (Ks) = 4.6 cm min-1.  The 224 

hydraulic conductivity for the homogeneous model was reduced to 1 cm min-1 to build a larger contrast of water 225 

content across the wetting front. For all HYDRUS simulations, we used a constant flux boundary condition of 0.125 226 

cm/min from y = 1.6 - 2.4 m along the ground surface, set the model domain depth to 0.6 m, length to 4.0 m, and 227 

nominal cell size to 0.04 m.  Remaining nodes at the surface were set to no flow boundaries and lower boundary nodes 228 

were set to a seepage face with the pressure head equal to zero. 229 

We calculated relative dielectric permittivity values for the GPR simulations by transforming water content values 230 

from HYDRUS-2D using the Topp equation (Topp et al., 1980).  We used the magnetic permeability of free space for 231 

the entire model domain and set electrical conductivity of the soil to 1 mS/m.  Although electrical conductivity changes 232 

as a function of the water content, these changes primarily influence wave attenuation, which is not significant or 233 

accounted for in the processing performed with the SeisWorks software. 234 

We performed GPR simulations in MATLAB using a 2D finite-difference time-domain code (Irving and 235 

Knight, 2006).  The GPR model domain was set to 4.0 m long and 1.1 m high with a cell size of 0.002 m.  The lower 236 

0.3 m of the domain was set to a relative dielectric permittivity of 2.25 to represent the lower gravel layer and the 237 

upper 0.2 m was modeled as air to simulate the air-soil interface. Simulated data were collected as described in the 238 

section detailing the tank experiment. For quick computation, simulations were deployed on the Palmetto 239 

supercomputer cluster at Clemson University, where single source simulations ran in 20 minutes using nodes with 8 240 

CPUs and 32 GB of RAM. 241 

3. Reflection ToOmography oOf Ssimulations 242 

The HYDRUS-2D output shows the development of an infiltrating wetting front for the two scenarios with 243 

differing initial conditions (Figs. 2a, f, k).  For conditions prior to irrigation, the bottom of sand reflection (B) is 244 

horizontal on the common-offset profile (COP) data indicating a constant velocity across the model domain (Fig. 2b).  245 

Additionally, the CMPs show identical hyperbolic moveout, i.e., the offset vs. traveltime relationship, indicating a 246 

homogeneous velocity across the model domain (Fig. 2c-e). The airwave and groundwave are also visible in the data, 247 

but are not analyzed, or further discussed. 248 

During infiltration, (B) is distorted at the center of the COP due to the decreased velocity caused by the 249 

infiltrating water (Figs. 2g, l).  A reflection from the infiltrating wetting front (W) is faintly visible for the model with 250 
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variable initial water contents (Fig. 2g) and comparatively strong for simulations with a dry background (Fig. 2l) due 251 

to different levels of dielectric contrast across the wetting front in each case.  CMPs also indicate perturbations in the 252 

velocity field as the moveout changes dramatically when the wetted zone is encountered (Figs. 2h-j, m-o). A refraction 253 

is also observed on the CMPs, which is a rare occurrence considering that GPR wave velocity typically decreases with 254 

depth. 255 

Prior to the onset of flow, the reflection tomography algorithm produces a uniform water content distribution 256 

that agrees with the arithmetic average of the true water content but does not capture the vertical gradation observed 257 

in Figure 3a.  This is because information regarding vertical velocity variations is absent, i.e., more reflectors at 258 

different depths are required to capture this variability. As a result, errors in the water content estimation exceed 10% 259 

vol./vol (Fig. 3c). 260 

During infiltration the wetting front is imaged relatively well for the case where the soil was initially dry 261 

(Figs. 3g-i), particularly as the plume advances deeper into the subsurface (Figs. 3j-l) where there is improved data 262 

coverage.  Considerable errors in the tomography results persist, however, with the results degrading further for the 263 

scenario with variable initial water content (Figs. 3d-f) given that reflection contrasts with the wetting front are weaker. 264 

The presence of an additional reflector, however, increases the ability of the tomography to resolve vertical variability, 265 

e.g. Figure 2e vs. Figure 2b. Overall, errors are reduced near reflectors to about 5% vol./vol.  These results suggest 266 

that water content changes resulting from unsaturated flow can be imaged and that as more information becomes 267 

available in the form of additional reflections, the tomography results improve. 268 

4.  Reflection Ttomography of Experimental dData 269 

At initial conditions, the sand layer reflection (B) is visible at 10 ns traveltime in the COP collected over the 270 

imaging area (Fig. 4a).  Normal hyperbolic moveout of (B) is observed on the CMPs (Fig.4b, c, d).  These results are 271 

qualitatively identical to observations from numerical simulations (Figs. 2b-e).  272 

During infiltration, the water content of the sand layer increases substantially (Fig. 5) and longer traveltimes 273 

of the arrivals on the COP data are observed near the center of the tank (Figs. 4f, i).  Rather than a coherent reflection 274 

for the wetting front (W) (Fig. 2l), multiple discrete reflections are present in the COP data (Fig. 4e, i, m) indicating 275 

a heterogeneous wetting of the soil.  These reflections are difficult to identify on the CMPs given the complex moveout 276 

pattern (Fig. 4i) but are more easily identified in animations of COP projections of the data (included as a 277 

supplementary file).  Analysis of the data was greatly aided by the animation of the data and the pre-stack migration 278 

algorithm, which stacks the data over all offsets to produce a coherent image of reflectors with an increased signal to 279 

noise ratio.  Heterogeneous wetting of the soil is also very pronounced in the soil-moisture probe data with many of 280 

the probes responding out of sequence with depth (Fig 5). After irrigation, the soil moisture probes show a decrease 281 

in the soil water content (Fig. 5) apart from one probe (Fig. 5c) and the GPR data show a slight decrease in the 282 

traveltime of the bottom of sand reflection (Figs. 4k-n). 283 

The tomographic imaging results from the initial GPR data set collected prior to irrigation agree with data 284 

from soil moisture probes which indicates an average soil moisture of roughly 5% during this time (Figs. 4e, 5).  285 

During infiltration and recovery, tomographic images of the tank show a wet zone at the center and relatively dry 286 

edges outside the irrigated area (Figs. 4j, o).  Overall, the tomography results near the center of the tank are within 287 
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10% vol./vol. of the soil moisture data and show a non-uniform wetting of the soil during infiltration that was not 288 

observed in the numerical study, suggesting the occurrence of preferential flow.  Errors in the estimates of water 289 

content near the edges of the advancing plume exceed 15% vol./vol. (Fig. 4b, c), though the general patterns in wetting 290 

are consistent.  After irrigation, the tomography results on the edges of the wetted zone are in better agreement with 291 

the soil moisture probe data, but less spatial information is available given the lack of a wetting front reflection (Fig. 292 

4o). 293 

5. Conclusions 294 

Reflection tomography in the post-migrated domain is a viable method for resolving transient soil moisture 295 

content in 2D associated with an infiltration and recovery event in a homogeneous soil.  Reflection tomography of 296 

numerical data produced water content distributions that were in good agreement with true water content values from 297 

the simulations.  The tomography was generally able to match the true water content values to within 5-10% vol. /vol.  298 

However, distinct migration artifacts were produced around the edges of the wetting front, especially for cases where 299 

the initial water content was non-uniform, obscuring details about the shape of the wetted region. Analysis of data 300 

collected in a sand tank proved to be more difficult, however, the tomography was able to produce hydrologically 301 

realistic distributions of water content in space and time that were generally within 5-15% vol./vol. of measurements 302 

from in-situ soil moisture probes.  This may have to do with the complex distribution of the wetted soil as a result of 303 

heterogenous distribution of water at the surface, texture variability in the soil, or other preferential flow mechanisms 304 

(Jarvis et al., 2016). Regardless, the fact that the GPR data were able to capture this heterogeneity is an impressive 305 

feat given that tomographic imaging operated independently of any hydrologic information and provided evidence 306 

that our conceptual model was not representative of the physical system. 307 

Regardless of discrepancies observed between the GPR and probe water content values, it is evident that 308 

automated high-speed GPR data acquisition coupled with reflection tomography algorithms can provide a new 309 

approach to hydrologic monitoring.  Testing and revision of conceptual hydrologic models regarding non-uniform 310 

flow in the vadose zone demands such non-invasive time-lapse imaging data.  Artifacts observed in the numerical 311 

simulation results, however, suggest that improvements in this methodology could be achieved.  While there are likely 312 

fundamental limitations to the information content of the data, the Kirchhoff pre-stack depth migration algorithm used 313 

in this study could be replaced by more sophisticated algorithms like reverse-time migration (Baysal et al., 1983) 314 

which may reduce the observed imaging artifacts.  Additionally, results from the tomography algorithm may prove to 315 

be beneficial as a precursor to higher-order inversion techniques, like full-waveform inversion, which requires detailed 316 

starting models of velocity for convergence.  Overall, coupling automated GPR data collection with reflection 317 

tomography provides a new method for informing models of subsurface hydrologic processes and a new method for 318 

determining transient 2D soil moisture distributions. 319 
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8. Figures 417 

Figure 1 418 

 419 

Figure 1: a) Example CMP data showing the airwave (A), groundwave (G) and reflection from a layer (B).  Data in (a) is migrated to form (b) a migrated gather 420 

with velocity 10% slow; c) a migrated gather with correct velocity; and d) a migrated gather with velocity 10% fast. Panel (e) shows a cross-section of the experiment 421 

at y = 2.0 where t1, t2, and t3 are arbitrary times during the infiltration. Panel (f) shows the plan-view of the experiment. Note that the bottom of the sand layer is 422 

flat where GPR data collection occurs, i.e. on a boundary between drain cells, and pitched elsewhere toward cell drains. 423 
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Figure 2 424 

 425 

Figure 2: Panels (a), (f), and (k) show volumetric moisture distribution from HYDRUS-2D simulations used to generate simulated common-offset GPR data (b, g, 426 

l) and multi-offset GPR data (c-e, h-j, and m-o).  Vertical dashed lines indicate the extent of the wetted surface.  Annotated arrivals are the bottom of sand layer 427 

reflection (B), wetting front reflection (W), and refraction (R). Note that the base of sand reflection (B) is caused by the boundary at 0.60 m depth between the sand 428 

and gravel, not the capillary rise shown in panels (a) and (f).  429 
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Figure 3 430 

 431 

Figure 3: Panels (a), (d), (g), and (j) show true volumetric water content distributions from HYDRUS-2D.  Panels (b), (e), (h), and (k) show results of tomography 432 

of the simulated GPR data as volumetric water content.  Difference plots (c), (f), (i), and (l) were calculated by subtracting the tomography results from the true 433 

water content distributions; red areas indicate volumetric moisture underestimation while blue areas indicate volumetric moisture overestimation. 434 

 435 
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Figure 4 436 

 437 

Figure 4: Panels (a, f, and k) are common-offset GPR data collected during the experiment. Panels (b-d, g-i, and l-n) are CMP data collected during the experiment.  438 

Arrivals annotated are the sand layer reflection (B) and wetting front reflection (W). Panels (e, j, and o) show tomography results for the corresponding GPR data. 439 

Vertical lines indicate the lateral extent of the wetted surface. Shapes correspond to the soil moisture data for the given y-location in Figure 5, colors correspond to 440 

the measured soil moisture.  Adjacent symbols are from probes that are located at different x-locations, but identical depths.441 
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Figure 5  442 

 443 

Figure 5: Soil moisture probe data from the in-situ moisture probes along the GPR line at a) y = 1.6 m; b) y = 2.0 m; 444 

and c) y = 2.4 m.  Vertical dashed lines indicate the start and stop of irrigation. Gray bars indicate the times when data 445 

in Figure 4 were collected.  Symbols for a given data set match those on Figures 4e, j, and o. Soil moisture data were 446 

collected 60 minutes beyond the end of GPR data collection. 447 


