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Abstract  9 

Ground-penetrating radar (GPR) reflection tomography algorithms allow non-invasive monitoring of water content 10 

changes resulting from flow in the vadose zone.  The approach requires multi-offset GPR data that is traditionally 11 

slow to collect.  We automate GPR data collection to reduce the survey time significantly, thereby making this 12 

approach to hydrologic monitoring feasible.  The method was evaluated using numerical simulations and laboratory 13 

experiments that suggest reflection tomography can provide water content estimates to within 5-10% vol./vol. for the 14 

synthetic studies, whereas the empirical estimates were typically within 5-15% of measurements from in-situ probes.  15 

Both studies show larger observed errors in water content near the periphery of the wetting front, beyond which 16 

additional reflectors were not present to provide data coverage. Overall, coupling automated GPR data collection with 17 

reflection tomography provides a new method for informing models of subsurface hydrologic processes and a new 18 

method for determining transient 2D soil moisture distributions. 19 

1. Introduction  20 

Preferential flow is ubiquitous in the vadose zone, occurring under a wide variety of conditions and over a 21 

broad range of scales (Nimmo, 2012).  Reviews such as those by Hendrickx and Flury (2001) and Jarvis (2007) 22 

illustrate that a basic mechanistic understanding of preferential flow exists.  Jarvis et al. (2016) point out, however, 23 

that we still lack models capable of reproducing empirical observations in the field and highlight the importance of 24 

non-invasive imaging techniques for improving this understanding.  We suggest that ground-penetrating radar (GPR) 25 

reflection tomography could fill this need by quantitatively mapping changes in water content through space and time 26 

at the sub-meter scale. 27 

Reflection GPR is commonly used to image subsurface structures, but is also well suited to understanding 28 

hydrologic variability due to the strong dependence of EM wave velocities on soil volumetric water content (Topp et 29 

al., 1980).  As a result, GPR has been adapted to monitor variability in hydrologic processes at multiple scales through 30 

time and space in a variety of contexts (Buchner et al., 2011; Busch et al., 2013; Guo et al., 2014; Haarder et al., 2011; 31 

Lunt et al., 2005; Mangel et al., 2012, 2015b, 2017; Moysey, 2010; Saintenoy et al., 2007; Steelman and Endres, 2010; 32 

Vellidis et al., 1990). Note that GPR methods are not applicable in media with relatively high electrical conductivity. 33 

While these studies have illustrated a variety of techniques for monitoring changes in water content within 34 

the subsurface, they have generally required assumptions to constrain the interpretation, such as the use of a priori 35 

information regarding subsurface structure (e.g., Lunt et al., 2005) or the GPR wave velocity (Haarder et al., 2011).  36 
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These limitations arise from the fact that GPR data are recorded as energy arriving at the receiver antenna as a function 37 

of time.  Inherent assumptions therefore exist in analyzing traveltime data collected with antennas separated by a fixed 38 

offset because both the distance travelled by the GPR wave to a reflector and the velocity of the GPR wave are 39 

unknown.  It has been demonstrated that GPR data collected via a multi-offset survey can constrain both the depth to 40 

a moving wetting front and the water content behind the front over the course of an infiltration event (Gerhards et al., 41 

2008; Mangel et al., 2012).  The limitation of these studies, however, was that the authors assumed a 1D flow system 42 

and that GPR data lacked information regarding lateral variability in soil moisture. 43 

Extending multi-offset techniques (Forte and Pipan, 2017; Jaumann and Roth, 2017; Klenk et al., 2015; 44 

Lambot et al., 2004, 2009) to image flow in the vadose zone requires an increase in the speed at which these data can 45 

be collected and advanced processing methods that can combine thousands of measurements into spatially and 46 

temporally variable water content estimates.  We have recently overcome the data collection problem by automating 47 

GPR data collection using a computer controlled gantry, thereby reducing the data collection time for large multi-48 

offset surveys from hours to minutes (Mangel et al., 2015a).  Reflection tTomography and wave migration algorithms 49 

from seismic literature have been available in the seismic industry for decades (Baysal et al., 1983; Lafond and 50 

Levander, 1993; Sava and Biondi, 2004a, 2004b; Stork, 1992; Yilmaz and Chambers, 1984) and were firstare being 51 

continually adapted to  imaging GPR applications. For example, this work is made possible due to a velocity variations 52 

by Bradford (2006)daptation of the pre-stack migration algorithm (Leparoux et al., 2001) and adaptation of the 53 

reflection tomography algorithm (Bradford, 2006) to multi-offset GPR data.  Subsequent studies have demonstrated 54 

the use of GPR reflection tomography for imaging static distributions of subsurface water content with great detail 55 

(Bradford, 2008; Bradford et al., 2009; Brosten et al., 2009).  The combination of automated GPR data collection and 56 

reflection tomography makes time-lapse imaging of water content during infiltration a feasible means to study flow 57 

in the vadose zone. 58 

The objective of this study is to evaluate reflection tomography of high-resolution GPR data as a tool for 59 

observing and characterizing unsaturated flow patterns during infiltration into a homogeneous soil.  To evaluate the 60 

efficacy of the algorithm for resolving dynamic soil water content in 2D, we first test the algorithm using numerical 61 

simulations and compare the results to true water content distributions.  We then apply the algorithm to time-lapse 62 

GPR data collected during an infiltration and recovery event in a homogeneous soil and compare results to 63 

measurements from in-situ soil moisture probes. 64 

2. Methods 65 

2.1. The Reflection Tomography Algorithm 66 

The goal of reflection tomography is to determine a velocity model that best aligns migrated reflection 67 

arrivals for a common reflection point across a set of source-receiver offsets.  For brevity, we will limit our discussion 68 

here to the key ideas and methods of the tomography algorithm; we refer the reader to Stork (1992) for the original 69 

tomography algorithm and to Bradford (2006) for the application to GPR data. 70 

The data required for this algorithm are an ensemble of common-midpoint (CMP) gathers collected along a 71 

path.  Given that GPR data is a time-series record of electromagnetic energy arriving at a point in space, we must 72 

know the proper velocity structure to migrate the data and produce a depth registered image of the GPR energy. 73 
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Migration attempts to remove the hyperbolic trend of reflections with respect to antenna offset (Figure 1a) by using 74 

the wave velocity to reposition reflections to the proper depth at which they occur.  If CMP data are migrated with the 75 

correct velocity, reflections from layers in the subsurface are flattened as a function of offset (Fig. 1c).  If the velocity 76 

estimate is incorrect, e.g. 10% too slow (Fig. 1b) or 10% too fast (Fig. 1d), the arrival is not flat and exhibits residual 77 

moveout (RMO). To solve for the velocity structure and properly migrate the data, the reflection tomography 78 

algorithm proceeds as follows (Bradford, 2006; Stork, 1992): 79 

1. Generate a starting depth vs. velocity model. 80 

2. Migrate the data with the starting velocity model and stack the data. 81 

3. Pick horizons on the stacked image. 82 

4. Perform ray-tracing to the picked horizons with the velocity model. 83 

5. Evaluate horizons for residual moveout. 84 

6. Adjust velocity model using reflection tomography. 85 

7. Apply revised velocity model using migration and quality check RMO. 86 

8. Iterate at step three if necessary. 87 

For this work, starting velocity models for the tomography algorithm are determined by smoothing results 88 

from 1D velocity analysis of individual CMPs (Neidell and Taner, 1971).  The reflection tomography algorithm then 89 

adjusts the velocity distribution until reflections in the depth corrected (i.e., migrated) data line up to produce a 90 

reflection at a consistent depth across all traces in a CMP.  Through sequential iterations of the tomographic inversion, 91 

the RMO metric is reduced on a global scale.  For this work, the reflection tomography was performed using the 92 

SeisWorks software suite and Kirchhoff pre-stack depth migration (Yilmaz and Doherty, 2001). 93 

2.2. Experimental Setup and Procedure 94 

We used a 4 m x 4 m x 2 m tank for the controlled study of unsaturated flow phenomenon with GPR (Fig. 95 

1e, f). We filled the tank with a medium-grained sand to a depth of 0.60 m.  Below the sand was a 0.30 m layer of 96 

gravel that acts as backfill for 16 individual drain cells that are pitched slightly toward central drains that route water 97 

to outlets on the outside of the tank.  We constructed an automated data collection system to allow for the high-speed 98 

high-resolution collection of GPR data (Mangel et al., 2015a); the GPR gantry fits inside of the tank so the antennas 99 

are in contact with the sand surface.  All GPR data described here were collected along the y-axis of the tank at a fixed 100 

position of x = 2.0 m, where the bottom of the tank is flat (Fig. 1e, f). 101 

The automated system, which utilizes a 1000 MHz Sensors and Software bistatic radar (Sensors and 102 

Software, Inc.), was operated to obtain 101 CMPs spaced at 0.02 m intervals between y = 1.0 - 3.0 m.  Each CMP 103 

consisted of 84 traces with offsets between 0.16-1.0 m at 0.01 m step size.  Thus, a complete CMP data set for one 104 

observation time consists of almost 8,500 individual GPR traces. With this configuration using the automated system, 105 

a CMP at a single location could be collected in 1.8 seconds with a total cycle of CMP data locations collected every 106 

3.9 minutes. 107 

GPR data collection occurred prior to irrigation to evaluate background conditions.  Data collection continued 108 

during irrigation, which was applied at a flux of 0.125 cm/min for a duration of 2.13 hrs.  Spatial heterogeneity in the 109 

applied flux has been observed in laboratory testing of the irrigation equipment. Fifteen EC-5 soil moisture probes 110 
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(METER, Inc.) logged volumetric water content at 10 second intervals during the experiment (Fig. 1e, f).  Note that 111 

the soil moisture probes are located out of the plane of the GPR line by 0.5 m (Figure 1f).  GPR data collection 112 

continued for 40 min. after the irrigation was terminated.  In total, 45 complete sets of data were collected over the 113 

course of the 3-hour experiment, yielding more than 500,000 GPR traces in the experimental data set. 114 

2.3. Execution of the Numerical Simulations 115 

We employed HYDRUS-2D (Simunek and van Genuchten, 2005) to simulate a theoretical and realistic 116 

hydrologic response to an infiltration event using two different initial conditions: i) hydrostatic equilibrium leading to 117 

a water content distribution controlled by the soil water retention curve, and ii) a uniform soil with a water content of 118 

0.07.  We selected the Mualem-van Genuchten soil model (Mualem, 1976) and parameterized the model as follows 119 

based on hydraulic testing of the sand: residual water content (θr) = 0.06, saturated water content (θs) = 0.38, air-entry 120 

pressure (α) = 0.058 cm-1, shape parameter (n) = 4.09, and saturated hydraulic conductivity (Ks) = 4.6 cm min-1.  The 121 

hydraulic conductivity for the homogeneous model was reduced to 1 cm min-1 to build a larger contrast of water 122 

content across the wetting front. For all HYDRUS simulations, we used a constant flux boundary condition of 0.125 123 

cm/min from y = 1.6 - 2.4 m along the ground surface, set the model domain depth to 0.6 m, length to 4.0 m, and 124 

nominal cell size to 0.04 m.  Remaining nodes at the surface were set to no flow boundaries and lower boundary nodes 125 

were set to a seepage face with the pressure head equal to zero. 126 

We calculated relative dielectric permittivity values for the GPR simulations by transforming water content values 127 

from HYDRUS-2D using the Topp equation (Topp et al., 1980).  We used the magnetic permeability of free space for 128 

the entire model domain and set electrical conductivity of the soil to 1 mS/m.  Although electrical conductivity changes 129 

as a function of the water content, these changes primarily influence wave attenuation, which is not significant or 130 

accounted for in the processing performed with the SeisWorks software. 131 

We performed GPR simulations in MATLAB using a 2D finite-difference time-domain code (Irving and 132 

Knight, 2006).  The GPR model domain was set to 4.0 m long and 1.1 m high with a cell size of 0.002 m.  The lower 133 

0.3 m of the domain was set to a relative dielectric permittivity of 2.25 to represent the lower gravel layer and the 134 

upper 0.2 m was modeled as air to simulate the air-soil interface. Simulated data were collected as described in the 135 

section detailing the tank experiment. For quick computation, simulations were deployed on the Palmetto 136 

supercomputer cluster at Clemson University, where single source simulations ran in 20 minutes using nodes with 8 137 

CPUs and 32 GB of RAM. 138 

3. Reflection ToOmography oOf Ssimulations 139 

The HYDRUS-2D output shows the development of an infiltrating wetting front for the two scenarios with 140 

differing initial conditions (Figs. 2a, f, k).  For conditions prior to irrigation, the bottom of sand reflection (B) is 141 

horizontal on the common-offset profile (COP) data indicating a constant velocity across the model domain (Fig. 2b).  142 

Additionally, the CMPs show identical hyperbolic moveout, i.e., the offset vs. traveltime relationship, indicating a 143 

homogeneous velocity across the model domain (Fig. 2c-e). The airwave and groundwave are also visible in the data, 144 

but are not analyzed, or further discussed. 145 

During infiltration, (B) is distorted at the center of the COP due to the decreased velocity caused by the 146 

infiltrating water (Figs. 2g, l).  A reflection from the infiltrating wetting front (W) is faintly visible for the model with 147 
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variable initial water contents (Fig. 2g) and comparatively strong for simulations with a dry background (Fig. 2l) due 148 

to different levels of dielectric contrast across the wetting front in each case.  CMPs also indicate perturbations in the 149 

velocity field as the moveout changes dramatically when the wetted zone is encountered (Figs. 2h-j, m-o). A refraction 150 

is also observed on the CMPs, which is a rare occurrence considering that GPR wave velocity typically decreases with 151 

depth. 152 

Prior to the onset of flow, the reflection tomography algorithm produces a uniform water content distribution 153 

that agrees with the arithmetic average of the true water content but does not capture the vertical gradation observed 154 

in Figure 3a.  This is because information regarding vertical velocity variations is absent, i.e., more reflectors at 155 

different depths are required to capture this variability. As a result, errors in the water content estimation exceed 10% 156 

vol./vol (Fig. 3c). 157 

During infiltration the wetting front is imaged relatively well for the case where the soil was initially dry 158 

(Figs. 3g-i), particularly as the plume advances deeper into the subsurface (Figs. 3j-l) where there is improved data 159 

coverage.  Considerable errors in the tomography results persist, however, with the results degrading further for the 160 

scenario with variable initial water content (Figs. 3d-f) given that reflection contrasts with the wetting front are weaker. 161 

The presence of an additional reflector, however, increases the ability of the tomography to resolve vertical variability, 162 

e.g. Figure 2e vs. Figure 2b. Overall, errors are reduced near reflectors to about 5% vol./vol.  These results suggest 163 

that water content changes resulting from unsaturated flow can be imaged and that as more information becomes 164 

available in the form of additional reflections, the tomography results improve. 165 

4.  Reflection Ttomography of Experimental dData 166 

At initial conditions, the sand layer reflection (B) is visible at 10 ns traveltime in the COP collected over the 167 

imaging area (Fig. 4a).  Normal hyperbolic moveout of (B) is observed on the CMPs (Fig.4b, c, d).  These results are 168 

qualitatively identical to observations from numerical simulations (Figs. 2b-e).  169 

During infiltration, the water content of the sand layer increases substantially (Fig. 5) and longer traveltimes 170 

of the arrivals on the COP data are observed near the center of the tank (Figs. 4f, i).  Rather than a coherent reflection 171 

for the wetting front (W) (Fig. 2l), multiple discrete reflections are present in the COP data (Fig. 4e, i, m) indicating 172 

a heterogeneous wetting of the soil.  These reflections are difficult to identify on the CMPs given the complex moveout 173 

pattern (Fig. 4i) but are more easily identified in animations of COP projections of the data (included as a 174 

supplementary file).  Analysis of the data was greatly aided by the animation of the data and the pre-stack migration 175 

algorithm, which stacks the data over all offsets to produce a coherent image of reflectors with an increased signal to 176 

noise ratio.  Heterogeneous wetting of the soil is also very pronounced in the soil-moisture probe data with many of 177 

the probes responding out of sequence with depth (Fig 5). After irrigation, the soil moisture probes show a decrease 178 

in the soil water content (Fig. 5) apart from one probe (Fig. 5c) and the GPR data show a slight decrease in the 179 

traveltime of the bottom of sand reflection (Figs. 4k-n). 180 

The tomographic imaging results from the initial GPR data set collected prior to irrigation agree with data 181 

from soil moisture probes which indicates an average soil moisture of roughly 5% during this time (Figs. 4e, 5).  182 

During infiltration and recovery, tomographic images of the tank show a wet zone at the center and relatively dry 183 

edges outside the irrigated area (Figs. 4j, o).  Overall, the tomography results near the center of the tank are within 184 
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10% vol./vol. of the soil moisture data and show a non-uniform wetting of the soil during infiltration that was not 185 

observed in the numerical study, suggesting the occurrence of preferential flow.  Errors in the estimates of water 186 

content near the edges of the advancing plume exceed 15% vol./vol. (Fig. 4b, c), though the general patterns in wetting 187 

are consistent.  After irrigation, the tomography results on the edges of the wetted zone are in better agreement with 188 

the soil moisture probe data, but less spatial information is available given the lack of a wetting front reflection (Fig. 189 

4o). 190 

5. Conclusions 191 

Reflection tomography in the post-migrated domain is a viable method for resolving transient soil moisture 192 

content in 2D associated with an infiltration and recovery event in a homogeneous soil.  Reflection tomography of 193 

numerical data produced water content distributions that were in good agreement with true water content values from 194 

the simulations.  The tomography was generally able to match the true water content values to within 5-10% vol. /vol.  195 

However, distinct migration artifacts were produced around the edges of the wetting front, especially for cases where 196 

the initial water content was non-uniform, obscuring details about the shape of the wetted region. Analysis of data 197 

collected in a sand tank proved to be more difficult, however, the tomography was able to produce hydrologically 198 

realistic distributions of water content in space and time that were generally within 5-15% vol./vol. of measurements 199 

from in-situ soil moisture probes.  This may have to do with the complex distribution of the wetted soil as a result of 200 

heterogenous distribution of water at the surface, texture variability in the soil, or other preferential flow mechanisms 201 

(Jarvis et al., 2016). Regardless, the fact that the GPR data were able to capture this heterogeneity is an impressive 202 

feat given that tomographic imaging operated independently of any hydrologic information and provided evidence 203 

that our conceptual model was not representative of the physical system. 204 

Regardless of discrepancies observed between the GPR and probe water content values, it is evident that 205 

automated high-speed GPR data acquisition coupled with reflection tomography algorithms can provide a new 206 

approach to hydrologic monitoring.  Testing and revision of conceptual hydrologic models regarding non-uniform 207 

flow in the vadose zone demands such non-invasive time-lapse imaging data.  Artifacts observed in the numerical 208 

simulation results, however, suggest that improvements in this methodology could be achieved.  While there are likely 209 

fundamental limitations to the information content of the data, the Kirchhoff pre-stack depth migration algorithm used 210 

in this study could be replaced by more sophisticated algorithms like reverse-time migration (Baysal et al., 1983) 211 

which may reduce the observed imaging artifacts.  Additionally, results from the tomography algorithm may prove to 212 

be beneficial as a precursor to higher-order inversion techniques, like full-waveform inversion, which requires detailed 213 

starting models of velocity for convergence.  Overall, coupling automated GPR data collection with reflection 214 

tomography provides a new method for informing models of subsurface hydrologic processes and a new method for 215 

determining transient 2D soil moisture distributions. 216 
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8. Figures 314 

Figure 1 315 

 316 

Figure 1: a) Example CMP data showing the airwave (A), groundwave (G) and reflection from a layer (B).  Data in (a) is migrated to form (b) a migrated gather 317 

with velocity 10% slow; c) a migrated gather with correct velocity; and d) a migrated gather with velocity 10% fast. Panel (e) shows a cross-section of the experiment 318 

at y = 2.0 where t1, t2, and t3 are arbitrary times during the infiltration. Panel (f) shows the plan-view of the experiment. Note that the bottom of the sand layer is 319 

flat where GPR data collection occurs, i.e. on a boundary between drain cells, and pitched elsewhere toward cell drains. 320 
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Figure 2 321 

 322 

Figure 2: Panels (a), (f), and (k) show volumetric moisture distribution from HYDRUS-2D simulations used to generate simulated common-offset GPR data (b, g, 323 

l) and multi-offset GPR data (c-e, h-j, and m-o).  Vertical dashed lines indicate the extent of the wetted surface.  Annotated arrivals are the bottom of sand layer 324 

reflection (B), wetting front reflection (W), and refraction (R). Note that the base of sand reflection (B) is caused by the boundary at 0.60 m depth between the sand 325 

and gravel, not the capillary rise shown in panels (a) and (f).  326 
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Figure 3 327 

 328 

Figure 3: Panels (a), (d), (g), and (j) show true volumetric water content distributions from HYDRUS-2D.  Panels (b), (e), (h), and (k) show results of tomography 329 

of the simulated GPR data as volumetric water content.  Difference plots (c), (f), (i), and (l) were calculated by subtracting the tomography results from the true 330 

water content distributions; red areas indicate volumetric moisture underestimation while blue areas indicate volumetric moisture overestimation. 331 

 332 
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Figure 4 333 

 334 

Figure 4: Panels (a, f, and k) are common-offset GPR data collected during the experiment. Panels (b-d, g-i, and l-n) are CMP data collected during the experiment.  335 

Arrivals annotated are the sand layer reflection (B) and wetting front reflection (W). Panels (e, j, and o) show tomography results for the corresponding GPR data. 336 

Vertical lines indicate the lateral extent of the wetted surface. Shapes correspond to the soil moisture data for the given y-location in Figure 5, colors correspond to 337 

the measured soil moisture.  Adjacent symbols are from probes that are located at different x-locations, but identical depths.338 
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Figure 5  339 

 340 

Figure 5: Soil moisture probe data from the in-situ moisture probes along the GPR line at a) y = 1.6 m; b) y = 2.0 m; 341 

and c) y = 2.4 m.  Vertical dashed lines indicate the start and stop of irrigation. Gray bars indicate the times when data 342 

in Figure 4 were collected.  Symbols for a given data set match those on Figures 4e, j, and o. Soil moisture data were 343 

collected 60 minutes beyond the end of GPR data collection. 344 


