Author’s response (changes made in red)
Author’s response (AR) to reviewer #1:
We would like to thank the reviewer for his/her insightful comments.

RC: Relationship between the propensity index for surface runoff and effective infiltration coefficient
(runoff coefficient) should be better explained or at least more detailed discussed. The consultation of
the paper “Monthly and annual effective infiltration coefficients in Dinaric karst: example of the
Gradole karst spring catchment” published in Hydrological Sciences Journal 46:2, 287-299, DOI:
10.1080/02626660109492822 will be useful for this.

AR: Mean altitude of the recharge area of the spring is app. 1700 m asl and soils are shallow and
sparsely vegetated. In some parts losses due to evapotranspiration (ET) may play a role for the
general soil moisture status in summer (e.g. areas with high local groundwater levels, water-logged
areas). These properties are incorporated into the mapping and are classified to a relative high
surface runoff propensity. It can be that, after long dry periods, these areas are drier than the
assumption for the index (mean soil moisture status). We addressed this point and included the
suggested paper into the discussion, but long-term spring water balance aspects are not an issue in
the paper.

Role of vegetation in different seasons should be better explained.

AR: Since mapping concentrates on the summer months and heavy rainfall events, this plays a
minor role for surface runoff generation. Influence of ET losses in some areas see AR above. This is
an interesting point though, and we made a comment to this effect in the revised paper.

RC: In karst terrains very important role plays groundwater level. This fact has to be stressed.

AR: While the karst groundwater level is very relevant for spring discharges it is not really relevant
in this area for runoff generation. The karst massif reaches altitudes of more than 2200 m asl and
karstification is very deep. There are a few exceptions where the local groundwater level
approaches the surface, where it is accounted for by the index as described in the mapping (e.g.,
local springs, GW-exfiltration, water logging). Again, we made a comment to this effect in the
revised paper.



Author’s response (AR) to reviewer #2 (J. Juilleret):
We would like to thank the reviewer for his insightful comments.

1) Introduction Despite the effort, | found that the paper lack the "state of the art" on HRU,
consequently | suggest that the authors highlight the previous similar studies concerning HRU and
how different sources of information can contribute to the development of perceptual models in their
introduction. | kindly ask them to better explain difference between HRU and HSA, limits and
advantage of the HRU approach. | would like that the authors better explain why their method is
innovative and better adapted in karstic and/or mountainous environment. Link to that, explain why
traditional methods tend to focus on geology, geomorphology and not soil. What is the reason?
(Suggestion: lack of soil map, if maps exist difficulties to translate the soil map unit classification into
pedohydrological concept). Please provide references in your general assertion like karst water is used
for water supply in Vienna, in karstic areas soils tend to be shallow, etc...

AR: We will revise the introduction to address the remarks above. The basic studies of mapping
HRUs in the context of the Dominant Processes Concept (DPC) have already been referred to, and
we extended the description. We added some more literature for a more comprehensive state-of-
the-art overview. The HRU (surface runoff and contaminant transport) and HSA concepts are
similar, but we have no hard data about distributed erosion paths and no hard data about
contamination loads, which we will mention. A statement about the challenges with soil data and
the difficulties of translating existing soil maps into dominant processes descriptions were added.
Reference regarding the Vienna Water supply was given. We added a statement why the focus in
hydrogeological mapping is on geology and the difference between HRUs and HSAs.

2) Case study area Please specify where the Hochschwab massif is in a general map representing
Austria. Add references on the vegetation cover. | miss a more information (map) from the key
lookout points in the polygons (number, position). | don’t consider this request as mandatory,
however it will be appreciate, indeed if the information is available, it will help to appreciate the
advantage in time and space to cover the entire zone.

AR: The catchment can be identified by the coordinates in the left upper corner, but we added a
small inset map of Austria within Fig. 1 for clarity. While a number of vegetation data sets are
available in Austria, their resolution is relatively low. In this study, vegetation was therefore
mapped as part of the field efforts. We will add a comment for clarification. The location of the
lookout points had not been logged during the survey, but that’s a very good point for future
applications of the method.

3) Method of process based mapping of surface runoff propensity Inverse the order (i), (ii) and (iii).
Indeed, in the article you follow the inverse order.

AR: The presentation was reversed as suggested. Also, for clarity Table 1 was revised, and major
changes have been made in sub-chapter 3 in the text to be consistent with the table.

3a) Geology | suggest that the authors develop the methodology to assess the karstification potential
of the bedrock. | understood that the "Rock Quality Designation (RQD)" was used but the link between
this method and the 3 geology classes (limestone, dolomite, calcareous sandstone), however it is
unclear. Provide more details.



AR: Regarding karstification potential and hence, water infiltration/retention potential, three
classes were identified from a regionalization procedure (RQD) out of a number of geologic
formations. This had been done in previous studies providing the “hydrogeological map”. Uncertain
boundaries were checked during the field mapping. A link to the RQD concept was added to the
manuscript.

3b) Soils. Please better explain the "visual assessment" of the soils. What is the threshold between
deep vs shallow soil? Provide a thickness range. Do they authors assess the texture of the soil (clay,
silt, sand)? Or do they just classify between fine (< 2mm) and coarse (> 2mm)? If so; why do they
consider that it’s important? Why the authors did not use the available soil map? Why the author did
not use of soil survey to complement the visible soil profiles in the polygons? | think that it would have
been be more relevant than the use of the TDR. Please explain better how you obtain the three
infiltration capacity classes, it’s not clear.

AR: As mentioned in the manuscript, mapping of soil depths is limited to available slope cuttings
(point data) and extrapolated into space by sedimentation considerations based on morphology
and geology (weathering, land and rockslide). A detailed mapping at the catchment scale would be
very difficult, among other things, due to floating rocks. The threshold between deep and shallow
soils was approximate. Soil depths were mapped at the mapping points, which are often also slope
cuttings. For description the limits <0.1m, 0.1 —0.5m, >0.5m and > 1m were used. Soil depths
larger than 1m were an indication of large storage, and only if a large areal extent could clearly be
identified (e.g., by evident debris), it was used as additional information to confirm the extent and
classification of the polygon. We provided the classes for clarification and added a statement of
classification of the infiltration capacity of the soils/debris.

From soil physical considerations it can be assumed that a higher fraction of fine material increases
storage capacity and decreases permeability (related to soil physical parameters such as field
capacity and hydraulic conductivity). 2 mm is often used in soil mapping as a threshold for fine and
coarse material (e.g. in the mapping guide of AG BODEN (1994) used in Germany and Austria). For
example, soils with a very large fine material fraction (> 80%, corresponding to “loam”) were
directly classified into low infiltration capacity (GIN). We added a statement on this in the
manuscript and added the following reference.

AG BODEN: Bodenkundliche Kartieranleitung. - 4. Auflage; Bundesanstalt fiir Geowissenschaften und
Rohstoffe und geologische Landesdmter der Bundesrepublik Deutschland, Hannover, 1994.

A soil map does not exist in this high Alpine region.
Infiltration class see 3d).

3c) Vegetation. Please provide more information on your choice between dense and sparse. Any
references?

AR: The method of Markart & Kohl (2004) was used here. “Sparse” vegetation is mainly assigned to
the typical high alpine grassland above the karstic bed-rock (mostly as a mosaic pattern). Sparse
vegetation was assigned to an area not fully covered by vegetation, i.e. the canopy cover was less
than about 90 % in terms of ground area. This information was added in the revised manuscript. ET
and interception processes are of minor importance.



3d) Infiltration capacity. | agree that there is always subjectivity when the field experimentalist
propose his perceptual model of a catchment, but in your case you should make effort in such a way
that everybody can reproduce your decision tree. This paragraph lacks the methodology on how the
authors make the synthesis of the mapped properties. A clear methodology should be provided to
obtain the different classes of each polygon.

AR: As the infiltration capacity was classified in the field by the field experimentalist based on the
combination of the different indicators and by the use of soft data and expert knowledge, there is
no a priori decision tree. We gave two examples and the typical scale of the polygon lumping in our
description to clarify the method. We will add the sequence of the mapping process in more detail
as follows: After the “reading the landscape” step the field experimentalist reached the area of
interest. Note that, in some cases with limited sight of line, the borders of the homogeneous area
(polygon) could no longer be identified. The location of the field experimentalist was checked by
GPS. Next, the field experimentalist confirmed the vegetation type and density and its relationship
with other variables. Dense vegetation, for example, makes high infiltration capacity (HIN) less
likely. Next he/she mapped the soils/debris/loose sediment and looked for appropriate and
representative points or slope cuttings where he/she could map the soil depth and check the fine
material fraction by sieving (> 80% is directly classified to GIN). Based on the soil type so identified,
the spatial homogeneity was carefully checked for extrapolation to the mapped area. Only if the
spatial extent of large soil depths could be clear identified, it was used for further classification of
the polygon.

Most of the mapped properties so far are related to a certain underlying lithology, so the occurring
geologic type (what the field experimentalist could see in the field) must be consistent with this, so
was cross-checked with the hydrogeological map. Finally, any traces of surface runoff or erosion
visible from a distance, the apparent existence of permanent flow anywhere in the polygon, and
any temporary flow or very rare flow (e.g. due to infiltration excess) were used to verify the
assessment. The resulting infiltration class is a synthesis of the properties above, i.e. the choice was
made to be consistent with the various, complementary pieces of evidence.

We have re-written the sub-chapter 3d) for clarity.
Figure 2 and 5: add scale and orientation of the view

AR: A note was added in the figure caption on the extent of, e.g., one of the polygons in the front in
Fig. 2 and the length of the main flow path in Fig. 5. A north arrow was added.

Figure 3 : please make effort to have a real geological cross-section, bedding and fault are missing
and the vertical limits between Dolomite, Calcareous Sandstone and Limestone units seems not
natural to me.

AR: The cross section is indeed schematic. We will examine whether there is sufficient field
information to add the information above to the cross section, but at this point this does not seem
to be the case.

7) Discussion. Provide reference on the assertion that surface runoff propensity is at the pixel scale
(10 m* 10 m). Discuss not only the advantage of the methodology but also the limits (like subjectivity,
compilation of knowledge in different disciplines) and how can you overcome the limits. You should
also go beyond the case of study, explaining how field experimentalist are still essential into the



understanding of catchment behavior, showing that even if there is subjectivity in their assessment,
the role of the field experimentalist is crucial to the hydrological community in the understanding of
hydrological basin and their prioposition of perceptual models.

AR: The working grid size will be justified more fully in chapter 6 in terms of the processes captured
and those missed. For the index we chose 10 m x 10 m as a compromise to represent the mapped
polygons (smallest polygon A=450 m?) and computational costs. For typical HRUs in catchment
modelling the grid size is usually larger, resulting in more pixels with mixed properties, e.g.,
geology, soils, and the associated infiltration capacity. We will more fully discuss not only the
advantage of the methodology but also the limits in the revised manuscript.

We will note the important role of experimentalists, extend the reference to subjectivity, and make
further comparisons with other disciplines relying on mapping (vegetation, geology). Of course, the
crucial part of the mapping and the translation into hydrological process descriptions is an
important part of the message.

We added a statement about the working grid size and added a note regarding the important role
of experimentalists.

8) Conclusion. Please provide some widening ideas on your method. As example, in flat areas the field
person can be help by the use of drones, consequently the method can also be apply in other non-
mountainous context. Provide some advice on how the method can be adapt in non-karstic context.

AR: Aerial photos such as from drones could be useful to resolve more spatial detail than the aerial
photos used here, but visibility in the forests is an issue. We will add advice on how to transfer the
method to non-karstic catchments as other properties and processes may gain more importance,
e.g., lateral subsurface flow, shallow groundwater level fluctuations, connectivity of flow paths,
runoff routing, etc.) and, briefly, how these could be captured.

We added a note on these points in the discussion section.



Author’s response (AR) to reviewer #3:

We would like to thank the reviewer for his/her insightful comments.
General comments

RC: A “Technical Note” format might proof more useful.

AR: We consider this manuscript to go beyond what is usually reported in a technical note. It is not
on a technical aspect of an existing method, but broader. We developed and tested the method for
a case study area. We therefore believe that a regular paper would be more appropriate for this
manuscript.

RC: The discussion section could strongly improve from discussing limitations of the proposed method
more in detail. It could also address whether this method is transferable to other geological settings
and catchment types.

AR: We will discuss the limitations of the method in more detail as well as the transferability to
other (e.g. in non-karstic) regions and additional processes in the revised manuscript.

We added a paragraph about transferability to non-karstic catchments.
Specific Comments
RC: p1, 110: “spatial distribution” or “occurrence”

AR: It is the spatial distribution of the frequency of runoff occurrence. We extended the sentence
to read “.. to understand the spatial distribution of the frequency of surface runoff ..”.

RC: p1, 117: please put “in the study area” at the end or beginning of this sentence.
AR: “in the study region” was moved to end of sentence.

RC: P3, 115 How did you delineate the catchment extent? | assume that this is derived from GIS
delineation based on the surface topography (not accounting for the subsurface catchment)?

AR: There are catchment boundaries available from previous studies estimated by geological and
hydrological considerations including isotope data and tracer experiment data (see references).
However, the mapped area is somewhat larger than the catchment area, and the plotted polygon
follows the mapped area. We added a note that the estimated catchment does differ significantly
from the topographic catchment.

RC: P4, 116 How was the lookout point chosen? Were there logistical constrains?

AR: We added a short description of how the lookout points were chosen in terms of line of sight,
interesting landscape features and logistical constraints.

RC: P5, |1-5 Please rephrase here
AR: We will rephrase adding more detail for clarity.

RC: P5, 119 show



AR: OK
RC: P8, 111-12 rephrase

AR: We will rephrase adding more detail for clarity. Done
RC: P11, I8 runoff instead of runon

AR: We actually are meaning to say “runon” to refer to surface runoff that eventually infiltrates.
The word “runon” is used in the karst literature and other hydrological literature (e.g., Calvo-Cases
et al. 2003).

Figures

RC: Fig. 1 Please put the label “LKAS2” in the map and show the state Austria in a smaller map with
the location of this study area.

AR: OK

RC: Fig. 2 Why does Zone no 7 not go further downslope into Zone no 1? As the visible bedrock
outcrop emerges below Polygon.

AR: The slope is flatter, so that a thin soil layer has developed in Zone no. 7 resulting in denser
vegetation. In No. 1 vegetation is negligible and so it is classified as bare rock. However, one cannot
compare this kind of vegetation with the vegetation on e.g., areas with organic soils in no. 17. We
will add a statement for clarification.

RC: Fig. 3 Please enlarge labels in the cross-section.
AR: OK

RC: Fig6/7 Please use a) and b) labels for both subplots. Also use a colour for the Spitzboden
catchment extent in the lower subplot.

AR: OK
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Abstract. Karst aquifers are an important water resource, but are particularly vulnerable to pollution due to the typically
short residence times. As the rainwater runs off on the surface it may collect contamination from faeces and other sources,

before infiltrating. It is therefore important to understand the spatial distribution of the frequency of surface runoff in Karst

areas. This paper proposes a new field mapping method for the ability of the landscape to produce and convey surface
runoff. The mapping method is based on (i) prior spatial information (e.g. geological map. terrain model), )Hteeal-data
%Hee&en%&%ﬁekk(%g—se&me&s&&%gfaﬂks&z%d}smbaﬁeﬁ%(u) a visual assessment from a distance at the landscape

atia ation—{e-g m 3 (iii) local data

collection in the field (e.g. soil moisture, grain size distribution). -The focus on variables that can be assessed from a distance

scale (e.g. traces of surface runoff) and

in the landscape makes the method suitable for mapping larger areas than traditional field mapping. The mapping method is
developed and tested for the 60 km?> Hochschwab area in Austria. The field mapping is used to specify a surface runoff
propensity index which is tested against the spatial distribution of observed sink holes in the area. The mapping indicates
that, in the study region, runoff occurs much more frequently in the poorly karstified dolomitic areas than in the limestone
areas that are highly karstified. On dolomites, low permeable soils or debris prevail, often resulting in a permanent surface
drainage network. On karstified limestone, sometimes overlaid by debris, surface runoff only occurs through infiltration
excess at high rainfall intensities. Overall the analyses suggest that the mapping method is suitable for efficiently and

reliably identifying spatial patterns of the ability of the landscape to produce and convey surface runoff in karst areas.

1 Introduction

Karst groundwater is an important source for drinking water in many countries around the world. In Austria, numerous karst
springs exist, e.g., in the Northern Calcareous Alps, where the water is used for the drinking water supply of Vienna_(e.g..
Plan et al., 2010). In karst areas, soils tend to be shallow, and the fast drainage through the karst system make karst springs
very vulnerable to pollution in the source areas. Pollution may include faeces from cattle farming and wild animals, tourism

and accidental fuel spills on forest roads. Safeguarding the quality of karst springs therefore involves land management of
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the source areas in order to minimize the risk of pollution. An understanding of the processes of surface runoff may enhance
the efficiency of the land management by quantifying the hazard of contaminant input into the karst system, particularly
during high intensity, convective storms. During convective storms, flow processes tend to accelerate (Bonacci, 2001a), they
therefore play an important role for material mobilization and transport. The longer contaminants are in contact with the
surface water, the more likely is their transport to sink holes and further into the karst system towards the spring. Frequent
surface runoff in karst areas can therefore be associated with high contamination risk, all other factors being equal.

At the plot scales, the propensity of areas to produce surface runoff is usually mapped by field surveys (e.g., Peschke et al.,
1998; Scherrer and Naef, 2003) based on a detailed mapping of hydrological properties, often including sprinkling

experiments (Markart and Kohl, 2004). Such mapping exercises have been used to develop methodologies for identifying

Hydrological Response Units (HRUs). HRUs are based on the idea that areas of similar physiographic properties, such as

slope aspect, vegetation type and soil type, imply hydrological similarity, i.e. similar runoff response (Fliigel 1995). The way

the layers of information are combined can have various degrees of process representation. For example, Fliigel (1995)

combined the layers by reasoning for a unit to represent ‘rangeland on gley soil at the valley floor with shallow groundwater

over impervious bedrock’.

In karstic catchments, traditional mapping methods tend to focus on the geology and the hydrogeology (e.g., Andreo et al.,
2006; Goldscheider, 2015), which comprise the lithology, the existence of faults and their permeability, the location of karst

forms (e.g., dolines, poljes) and, less often, soil surveys. The focus on geology may be related to the wider availability of

geological maps than soil maps and to the deep subsurface flow paths feeding karst springs. Sprinkling experiments in the

limestone region of southeastern Spain were used for elucidating the mechanisms of runoff generation and infiltration. For
example, Calvo-Cases et al. (2003) found that runoff on bare patches was mainly generated by the Hortonian mechanism. At
the slope scale, Hortonian discontinuous runoff occurred on the most degraded slopes or during high intensity rain events,
and mixed runoff generation on less degraded slopes or on previously wet soils. For both types, there was a patchwork of
runoff and runon areas. Li et al. (2011) found vegetation cover, litter, and rainfall intensity to be the main controls of
infiltration rates, and the presence of bare soil and rainfall intensity to be the main controls of the runoff coefficient. Canton
et al. (2016) found generally higher clay contents towards the foot of hillslopes which explained the increase of soil moisture
downslope at depths of 0.1-0.35 m. Macropores (rock and soil cracks) disconnected the surface water fluxes and reduced
run-on to the lower part of the hillslope during wet periods. The spatial connectivity of flow processes tends to enhance fast
contaminant transport (Western et al., 1998; 2001), but Fiener et al. (2011) point out that the effects of patchiness and the
spatial organization of landscape characteristics on flow and transport processes are still poorly understood.

Fu et al. (2016) studied the role of “epikarst” in near-surface hydrological processes in a subtropical karst region of
southwestern China based on plot-scale rainfall simulation experiments. They found that more than 70% of the total rainfall
moved vertically through the shallow soil layer and was redistributed as subsurface flow at the soil-epikarst interface or
percolated deeper into the rock. Fu et al. (2015; 2016) and Chen et al. (2010) identified the spatial variability of the topsoil

saturated hydraulic conductivity, surface soil water content and soil moisture dynamics as the main controls of infiltration in

2
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a small karst catchment in a subtropical region of China, and Peng and Wang (2012) found that surface runoff from the
karstic hillslopes in southwestern China was much less than that from non-karstic areas and that limestone fissures and
fractures played important roles in surface runoff generation on karst limestone slopes due to their large infiltration and
storage capacities.

At the scales of a couple of square kilometres or more that are more relevant from a management perspective, karst studies
are traditionally based on GIS tools with little field validation. Vulnerability is often mapped by combining various layers of
spatial data such as vegetation, land use, soil texture and geology (e.g., Fliigel, 1995; Cost Action 620). Walter et al. (2000)
presented a GIS based conceptual approach to assessing water quality risk in agricultural catchment based on the variable
source area concept, following Frankenberger et al. (1999). They used the term hydrologically sensitive area (HSA) to refer
to areas that are especially prone to generating runoff and therefore transporting contaminants to surface water bodies. HSAs

are similar to HRUs, but differ from them in terms of their stronger emphasis on flow connectivity and transport of

contaminants. The method was further developed by Thomas et al. (2016) by the use of LiDAR elevation models and by
validation against rainfall and quickflow measurements. Similar to the HSA concept, Plan et al. (2009) identified “ultra-
vulnerable areas” by a mapping procedure that involves the automatic delineation of local catchment boundaries of
individual karst forms.

The purpose of this paper is to propose a method that allows the mapping of surface runoff propensity in karstic

environments at the catchment scale. The main innovation of the method is that it allows the more rapid mapping of larger

areas than the traditional geological mapping paradigm which consists of fully walking the region of interest. The study is set

in a 63 km? karst plateau in Austria which is the recharge area of the main springs of the Vienna drinking water supply.

2 Case study area

The study area is part of the Hochschwab massif, one of the important karst areas in Austria. It consists of Triassic
limestones and dolostones with a thickness of up to 2000 m. The karstified rocks sit on shales and sandstones of the Werfen
formation (Mandl et al., 2002). The geological setup has led to intensive karstification including numerous cave systems and
a range of surface karst forms such as dolines, karren, polja and ponors.

Due to the tectonic structure (Decker et al., 2006), the main karst spring (LKAS2) is situated at the northern slope of the
Hochschwab massif. The catchment (Fig. 1) of the main spring covers an area of about 60 km?. Elevations range from 650 to
2277 m a.s.l. with a mean elevation of 1720 m a.s.l. (Stadler and Strobl, 2006). The vegetation mainly comprises forests,
krummholz-areas, alpine pastures on the plateau and badlands in the peak regions. Alpine farming and touristic activities
during the summer months are important land use activities and potential sources for contamination of the karst aquifer.
Additionally, faeces of wildlife may contaminate the aquifer.

A hydrogeological map was compiled in consistency with a detailed geological map (Mandl et al., 2002) and information

from additional mapping surveys. The basic concept of compiling the map was the hydrogeological quality rating of the
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rocks, according to the “Rock Quality Designation (RQD)” concept of exploration geology (Stadler et al., 2016). This
hydrogeological quality rating describes fundamental properties of the rocks such as karstification capacity, tectonic stress
related to water storage capacity and permeability, bedding, underline and fall. The objective was to combine different
lithological units to units with similar hydrogeological behaviour.

The delineation of the catchment boundaries of the spring is based on two pieces of information: the detailed geological
mapping and investigation of geological structures; and a long term analysis of stable isotopes, 180 and Deuterium, which
provided robust estimates of the mean altitude of the spring (Stadler and Strobl, 2006). Spring discharge measurements with
high temporal resolution (15 minutes) have been conducted by Vienna Water since 1992. A stream gauge at the Spitzboden

site is used to assess whether the local stream is permanent or not._The catchment boundary differs significantly from the

topographic boundary of the spring.

"t
o

Figure 1: Area subject to mapping (red line) in the catchment of the Hochschwab spring (LKAS2). Yellow circles indicate the
locations of Fig. 2, 3, and 5.

3 Method of process based mapping of surface runoff propensity

The proposed method of mapping runoff characteristics consists of combining (i) prior spatial information (e.g. geological

map, digital elevation model)&

, (i) a visual

assessment from a distance at the landscape scale (e.g. traces of surface runoff, spatial extent of hydrologically homogeneous

areas) and_(iii) local data collection in the field (e.g. soil moisture, grain size distribution)-()-prier—spatial-information{e-g-
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geological-map;—digital elevation-medel. The mapping results in a classification of the entire landscape which is used for

calculating a surface runoff propensity index. The mapping method was developed and tested for the Hochschwab area.

Before starting the field campaign, available spatial information of the study region was analysed. A LiDAR data set at Im
resolution was used to obtain a prior understanding of the geomorphology of the area (including karst forms), and for
orientation in the field. A hydrogeological map was analysed to obtain an understanding of the bedrock (Stadler and Strobl
2006, based on geological and tectonic information by Mandl et al. 2002, Decker 2006, and Bryda et al. 2013). On the basis

of both maps, strategic lookout points were identified that were suitable for a landscape scale assessment. These were mainly

vegetation-free hilltops or locations on counter slopes, preferably with the line of sight orthogonal to the land surface, and

that were accessible during the campaign.

During the field campaign, the field person positioned him/herself at a lookout point. On the basis of a visual assessment of
the landscape, its geomorphology, apparent soil characteristics, surface runoff traces, water logging and vegetation patterns
(“reading the landscape™) the field person then tentatively delineated polygons on the map with approximately homogenous
characteristics (Hydrological Response Units, HRUs) and specified these characteristics. Next he/she selected representative
points in these polygons, still from the lookout point, to test their position and characteristics. Selection and number of points
depended on the size of the polygon (more points in larger areas), line of sight from the lookout point (no interruption by
vegetation) and the spatial patterns of similarity indicators such as morphology and slope. He/she then walked to these
representative points and performed local measurements (soil depth, grain size, soil moisture, ...) which they used to revise
the polygons or characteristics, if necessary. The procedure was repeated starting with the next lookout point. In some cases
it was found more practical to apply the method in reversed order. Representative points, i.e. positions where a significant
change in properties were found while walking on a slope, were mapped locally and the transfer to the area was done
afterwards from a lookout point.
The mapping of the polygons, or HRUs, involves four characteristics, and each polygon consists of a combination of these
characteristics (Tab. 1):

- geology

- soils and debris

- vegetation, and

- infiltration capacity.

(a) Geology (3 classes): Three geological classes occur in the study region according to the geological map: limestone
(KAL), dolomite (DOL) and calcareous sand stone (KSS). The three classes mainly differ in their karstification potential.
KAL is much more karstified than DOL and KSS and thus, cracks and fissures predominantly lead to immediate percolation
into the karst system. DOL and KSS bedrock often shows ponding characteristics which favours the generation of surface

runoff and lateral subsurface flow towards a drainage network. The classification was based on the hydrogeological map and

‘ was checked during the field campaign, and was complemented by an assessment of the karstification capacity and tectonic
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stress related to water storage capacity based on the Quality Designation Concept. Finally, the infiltration capacity of the

bedrock was classified into high, medium and low on the basis of the geological classes and the additional hydrogeological

assessment above for each polygon.

(b) Soils/debris (8 classes): The main mapping item was the type of the loose material, debris and soils along with their
infiltration characteristics. Grain sizes were visually assessed. One soil sample per site at selected mapping points was sieved
to obtain information about water storage capacity and infiltration capability, using a 2 mm sieve to separate sand and gravel

(i.e. fraction of material larger than 2 mm in vol.-%)._The 2 mm threshold was chosen as it lends itself to dry sieving and

because of its frequent use in soil mapping as a threshold between fine and coarse material (AG Boden, 1994). These

measurements are quick to make and require a minimum of equipment. A total of 26 points was selected for detailed
analyses during the field campaigns. Soil depths were mapped based on visible soil profiles at slope cuttings. They were

classified into_four groups (-<0.1m, 0.1-0.5m, 0.5-1m, >1m). shallew-and-deep-seils—Deeper soils indicate larger storage

capacity and delayed runoff. Table 3 provides a summary of the soil/debris type classification.

An important item in this study was the mapping of surface runoff traces at hillslopes, such as washed out sediments and
bent vegetation. Characteristics related to surface runoff were visually mapped from a distance, particularly observable
permanent flow (drainage network and springs), indications for temporary surface flow, such as dry creeks, bent vegetation
(post event), erosion traces on the hillslopes or sediment that accumulated during surface flow. The observations on a
particular day reflected all visible traces from the events during a period preceding the mapping date. Some of the surveys
were performed immediately after heavy storms (e.g. a storm on 4 August 2013) which allowed mapping of particularly
clear traces of surface runoff (post event surveys, see e.g. Borga et al., 2008). Intense and large storm events may also leave
traces of infiltration excess runoff on the highly permeable debris. Temporary and permanent creeks were visually mapped
(also from a distance), and the order of magnitude of the flow width was estimated visually (Om, 0-10m, 10-100m, >100m).
Water logging occurrences, also by mapping vegetation wetness indicators (Markart and Kohl, 2004; Rogger et al., 2012),
assisted in identifying areas where saturation excess is deemed to occur frequently. Water logging and surface runoff traces
are related to the soils and were therefore used as one of the indicators for the soil classification.

Another spatio-temporal characteristic variable is soil moisture, which was measured during the field campaigns by portable
TDR (“ThetaProbe”, UMS) equipment down to 6 cm depth. Standard equations recommended by the sensor producer were
used to transform the measured dielectric constant to volumetric water content for organic and mineral soils (UMS, 2001).
Measurements at characteristic points were performed primarily to confirm (or otherwise) the assessed drainage
characteristics of the corresponding polygon. The measurements were conducted to assess the spatial variability of soil
moisture (e.g. 7 points in the Spitzboden test area) and the temporal variability (e.g. 11 points along an easily accessible
transect on three dates).

FEinallymtTypical karst forms were identified from a distance, and the locations were cross-checked with the hydrogeological

map and the Im elevation model. Only those karst forms were mapped that were considered significant regarding surface
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runoff and subsequent direct infiltration. These were generally non-filled sinks with runoff traces indicating a sizeable local

catchment. Finally, the infiltration capacity of the soils/debris layer was classified into high, medium and low on the basis of

the soils/debris information described above for each polygon, including general morphology (i.e. apparent karst forms), soil

moisture measurements, water logging and surface runoff traces.

(c) Vegetation (2 classes): Vegetation cover was assigned one of two classes, dense vegetation (SVE) and sparse vegetation

(GVE). Dense alpine forest does not occur on the plateau. Areas with dense grassland (SVE) mostly exhibit soils with

significant organic matter and high moisture content. Sparse vegetation was assigned to an area not fully covered by

vegetation, i.e. included areas with bare soil or bare rock. Since the campaigns were conducted in the summer and the focus

was on summer conditions, the vegetation state during the campaigns was considered representative. Wetness indicators

based on hydrophilic plants were mapped according to Markart and Kohl (2004) (also see Rogger et al., 2012 for application
of the method). The occurrence of wetness indicators indicates low storage capacity (high local groundwater table), reduced
infiltration capacity and the potential for preferential surface flow paths.

(d) Infiltration capacity (3 classes): As a synthesis of the classifications of the infiltration capacity of the bedrock and that of

the soils/debris, and accounting for vegetation effectsmapped-properties-and-theresulting-indicatorelasses-abeve, the overall
infiltration capacity of each polygon was classified in-situ by the field person (Tab. 1) into three classes—foreach-peolygon:

High (HIN), medium (MIN) and low (GIN) infiltration_capacity. Conceptually it was considered to represent the infiltration

capacity for a typical summer storm, across a polygon. This classification is an attempt of an overall evaluation of the

infiltration capacity of the everlyingmaterialrock/soil/vegetation continuum in the field-and-invelvessomesubjeetivity. The

overall capacity was therefore determined as the minimum of the infiltration capacities of the two layers, soils/debris and

bedrock. For example, low infiltration capacity of the soils/debris and high infiltration capacity of the bedrock was

considered to result in an overall low infiltration capacity. High infiltration capacity of the soils/debris and medium

infiltration capacity of the bedrock was considered to result in an overall medium infiltration capacity. The minimum was

chosen as an approximation to the effective hydraulic conductivity of a layered porous medium with flow perpendicular to

the layers which is the harmonic mean of the individual conductivities. To account for the effect of vegetation on the

infiltration capacity, in case of dense grassland (SVE) the overall infiltration capacity was reduced from high to medium (the

other two classes were not changed). This change reflects the uptake of water by the vegetation and enhanced surface runoff

on mountain meadows (Markart and Kohl, 2004). Ceneeptualby-it-was-considered-to-represent-the-infiltration-eapaecityfora

the classification was clear. For example, on the high alpine, intensely karstified plateau with no significant soils, no

vegetation, but clearly visible karst forms, the high infiltration capacity classification was obvious. In other areas, the
characteristics within the polygons were heterogeneous, so the classification was more difficult. Typically, units with a scale

of more than 100 m were resolved (e.g. a debris area of 200 m length) while smaller units were lumped into the same
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polygon (e.g. an area with debris at the foot of a slope of 20 m length). This synthesis step also allowed a plausibility check

of the polygon delineation in terms of the homogeneity of the polygons and their mapped properties.

This approach contrasts with the traditional geological mapping paradigm which consists of fully walking the region. The

proposed approach uses variables that can be assessed from a distance in the landscape. While the accuracy may be

somewhat lower, it enables the rapid mapping of larger areas. In this study, a total area of 63 km? was mapped by one person

within a total of 12 days, a two-day campaign in July 2012, and a campaign from 1 July to 6 September 2013.The

Table 1: Process oriented mapping catalogue involving geology, soils and debris, vegetation, and infiltration capacity. x indicates
whether information from existing data, local mapping or from a distance has been used. * indicates that information has been
combined from the previous rows.

Mapping
Main Item existing from a loca} Synthesis Method Examples Processes
property data distance mapping
Limestone (KAL), |Percolation into karst
Geological map, randomly |Dolomite (DOL), |system vs. lateral
Classification X X checked in the field Calcareous subsurface flow
(hydrochloric acid test) sandstone (KSS), 3 [towards drainage
classes; network
Karstification Percolation into karst
Geology capacity, tectonic  [system vs. lateral
Assessment X X Rock Quality Designation |stress related to subsurface flow
water storage towards drainage
capacity network
Classification 3 classes: high -
of infiltration % Synthesis of geological medium — low
capacity of the - information infiltration capacity
bedrock of the bedrock
Grain sizes X Descriptive Silt, sand, gravel, Genera! soil physical
etc. properties
Reduced storage
Fraction larger In-situ sieving at selected capacity and increased
than 2 mm X mapping points hydraulic
conductivities
Morphological estimates Increased storase
Soils and  [Soil depths X based on visible soil profiles |Deep, shallow . £
debris at slope cuttings capacity, runoff delay
p g
(surface Surface runoff
material) Surface runoff . o Gullies, erf)sion generation propensity
traces X X Visual examination traces, sedlments, and frequency:
bent vegetation temporary and
permanent creeks
No/very low storage
Indication for . L capacity, immediate
. X X Visual examination Swamps, ponds
waterlogging surface runoff
generation




Soil moisture at
time of survey

TDR (portable)

Relative differences
between mapping
points (spatially)
and between
different dates
(temporally)

Distinction between
generally wet or dry
areas (spatially),
wetting and drying
dynamics (temporally)

Karst forms and
surface runoff

Visual examination, assisted
by Im DTM and

Dolines, sinks

capacity

of the bedrock with those of
the soils/debris, accounting
for vegetation effects

capacity (HIN-
MIN-GIN)

towards these hydrogeological map
Classification . Synthesis-of Based on soil Sti“((}é]zg E;el;l)sgée
of soil type - and debris descriptors Tat; 3 ’
3 classes: high -
Classification medium — low
of infiltration . Synthesis of soil and debris |infiltration capacity
capacity of the - descriptors of soils/debrisOEG;
soils/debris B e
R
. Interception and ET
Classification Visual examination é\c/gsses. GVE, processes (of minor
relevance in this work)
water logging, high
Vegetation water availability for
Wetness According to Markart and - plants (c.g. high local
indicators Kohl (2004) Hydrophilic plants |groundwater table),
low storage capacity,
preferential surface
flow paths
Synthesis-ofat-the L
abeveCombination of 3 classes: high -
Infiltration . . ) infiltration capacity classes medlum - low .
Classification * overall infiltration

4 Examples of mapping results

Figure 2 shows an example of the mapped polygons. Polygons no. 1, no. 4 and no. 7 consist of limestone (KAL) and differ in

their overlying material/debris: in polygon no. 1 bare rock occurs, no. 4 is a rockfall area and no. 7 is flatter and exhibits a

thin soil layer. Soil samples indicated fine soils (BOF, Tab. 3). All three polygons show sparse vegetation (GVE). No. 13,

10 no. 16 and no. 17 are examples for underlying calcareous sandstone (KSS) with low permeabilities compared to KAL. They

differ in their slopes which has led to different soil sedimentation processes. The flat area in no. 17 shows organic soils with

high wetness (BOO). A drainage network originates in this polygon, which forms a permanent creek. In polygon no. 13
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much less organic material has been deposited, but there is a high fraction of fine material in the soil (BOF) (identified by
detailed mapping). Polygon nNo. 16 is a rock fall area, but the vegetation cover (SVE) indicates some water storage in the
debris fed by runoff from the adjacent bare rock areas and supported by the ponding properties of the underlying KSS.
Except for no. 17, surface runoff traces such as gullies are not pronounced in the polygons, which indicates low surface
runoff propensity and significant deep percolation.

Figure 3 shows a cross section of the mapping results in the Spitzboden area (see Fig. 1). Bare dolomitic rock at the
Plankogel (far SW, left in Fig. 3) shows low infiltration capacity, because of its small fissures. Precipitation falling on these
areas will mostly flow towards the debris and the drainage network on the surface, due to the steep slopes. Only at high
precipitation intensities will water flow through the debris and reach the drainage network as surface runoff, otherwise it is
expected to infiltrate into the debris and contribute to the springs. In these ditches connected to the neighbouring rock walls
only occasional surface runoff traces were found in the field. The springs form a drainage system and a small creek, which
sinks into a karst doline right after the stream gauge location. The bottom of the Spitzboden (centre in Fig. 3) is dominated
by low permeable sediments overlain by soils with high organic contents. A permanent drainage system exists, which
facilitates surface and subsurface flow generated by the precipitation on the area itself and subsurface flow from the
neighbouring dolomitic debris. Due to the available but low storage capacity of the organic soil (BOO), surface runoff is
expected to be slightly delayed (saturation overland flow). On the neighbouring debris, temporary surface runoff traces
(small ditches) were observed, but springs at the bottom of the slope indicate that, most of the time, precipitation infiltrates
and subsurface flow tends to occur at the interface to the relatively low permeability underlying dolomite (interflow, shallow
groundwater flow). Permanent spring discharge could be observed which contributes to the Spitzboden drainage network.
However, the small ditches indicate surface runoff towards the lower permeable organic soils, i.e. the network, at high
rainfall intensities. Rocks in the northeastern parts (right in Fig. 3) are calcareous sandstones and limestones with high
infiltration capacities. From the Spitzboden to the foot of the Schaufelwand the bare rock is covered by coarse debris (gravel)
and rockfall material with very high permeability. It is very likely that precipitation falling on these areas contribute very
little to the Spitzboden creek. Direct infiltration is dominant with subsequent deep percolation into the karst system.
Exceptions are the very steep slopes where surface runoff can occur but will infiltrate immediately into the debris at the

slope bottom, as inferred by the short flow lengths of the gullies observed.
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Figure 2: Example of delineation of response units based on Tab. 1. Explanation of units see Tab. 2. For illustrating the scale: The

diameter of polygon no. 16 from left to right is app. 300m.

Table 2: Hydrological Response Units of Fig.2.

No Geology Soils, debris Vegetation Infiltration capacity

1 Limestone Bare bedrock Sparse High

2 Limestone Coarse debris Sparse High

4 Limestone Boulders Sparse High

7 Limestone Loam Dense Medium

8 Dolomite Bare bedrock Sparse Low

12 Dolomite Loam Dense Medium

13 Calcareous sandstone Loam Dense Medium

16 Calcareous sandstone Boulders Dense High

17 Calcareous sandstone Organic soils Dense Low

11




Table 3: Classification of “soils/debris” type into 8 classes.

Type

(Acronym) Name Description

OLG Bare rock Bare rock (no soils), properties of geology control runoff generation

HSF Fine debris Debrls predomlnar}tly fine material from dolomitic rocks, low permeability, medium to
high storage capacity

HSG Coarse debris Debris predominantly coarse material, often at the bottom of steep calcareous slopes

BST Boulders Rockfall material: large'boulders, infiltration properties of underlying geology (mainly
limestone) becomes dominant

FLS Fluviatile sand F'me.ﬂuwatlle sediments (small depth), connected to permanent water flow (creek bed,
riparian zone), occurs rarely
Soil with high fraction of fine material, mainly Neogene (‘“red loam”, secondary sediments

BOF Loam from crystalline), comprise organic material, potential humus, grain size: silt/clay, very
low permeability
Soil with low/no fraction of fine material, in-situ developed mainly over limestone, small

BOG Coarse sand
depths, occurs also at steeper slopes, very low storage

BOO Organic soil Soil with significant organic components (humus), mainly above BOF with shallow

impermeable layers, low storage

12
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Figure 3: Cross section of the Spitzboden area illustrating the mapped properties (geology, soils and debris, vegetation and
infiltration capacity, see Tab. 1). Yellow and grey shading relates to organic soil layer and coarse debris from the wall in the
Northeast (NE), respectively. Blue arrows indicate dominant drainage directions during a typical summer storm; a higher density

of arrows indicates larger fluxes.

5 Definition of the surface runoff propensity index

An index is proposed based on the mapped infiltration capacity to summarize typical patterns of surface runoff. We term this
index “surface runoff propensity index”. It is intended to reflect the likelihood of a particular location to exhibit surface
runoff during high intensity summer storms. Since the rainfall mechanisms are rather uniform in the study area, the index
focuses on the infiltration capacity of the soil as well as topographic slope. The latter reflects the field observation in the

study area that steep slopes tend to exhibit surface runoff more frequently than flatter slopes with the same soil types. Even

13



10

15

20

in intensely karstified areas with coarse debris on steep slopes surface runoff was observed to occur. Traces (gullies) were
observed resulting from runon from bare rock areas above and surface runoff generated on the area itself. For example, Fig.
5 shows traces of a temporary flow path above highly permeable sediment after the extreme event on 4 August 2013. The
flow path collected surface runoff from the steep upslope areas (bare rock and debris) associated with the infiltration excess
mechanism. Incorporating topographic slope in the surface runoff propensity index is mainly intended to represent the steep
slopes of karstified bare rock and debris with high and medium infiltration capacities. For areas with low infiltration
capacity, slope was not used in the index.

The index values are estimated by a decision tree from the classified infiltration capacity and topography (Fig. 4). Four
classes were defined: no surface runoff, low, medium and high surface propensity. No surface runoff can be expected at
locations with coarse sediments/debris and intensely karstified rocks with high infiltration capacity (HIN) in relatively flat
areas. The surface roughness of these areas is high, and rainfall as well as rare infiltration excess surface flow will infiltrate
immediately. The field mapping and morphologic analyses showed that 20° is the range of threshold slopes beyond which
gullies occur much more frequently, so the threshold slope was set to 20°. Low propensity is assigned to areas with intensely
karstified rocks with high infiltration (HIN) and steep slopes (slope > 20°) as well as areas with medium infiltration (MIN)
and flat slopes. Only short gullies can sometimes be observed on steep slopes in these areas. Clear surface runoff traces were
not observed, but ephemeral surface runoff with very short flow lengths (<10 m) and subsequent infiltration in adjacent areas
may sometimes occur. Medium propensity is assigned to areas with medium infiltration (MIN) and steep slopes. Traces of
temporary surface runoff are clearly evident (gullies with surface flow lengths of up to about 100 m) in these areas. High
propensity is assigned to areas with low infiltration (GIN), showing a pronounced drainage network with surface flow

lengths generally much larger than 100 m. This class is independent of the slope.

‘ Mapped infiltration capacity ‘

low
Slope > 20° Slope > 20°
no yes no yes
no surface runoff  low prop. low prop. medium prop. high prop

Figure 4: Decision tree for assigning the propensity index to the mapped polygons of infiltration capacity.
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Figure S: Examples of traces of surface runoff paths from the extreme event on 4 August 2013 (photos taken 4 days after event at
location indicated in Fig. 1). Thin blue arrows: surface runoff traces on highly permeable gravel/debris; thick blue arrows: larger
surface runoff paths, collecting runoff from larger areas during the event. The main water flow path in the left photo ends at the
edge of the rock wall, and the right photo shows the situation at the foot of the wall. The red circle indicates the leafless vegetation

caused by a temporary waterfall (water and debris)._For illustrating the scale: The flow length of the main flow path in the left
photo is app. 20m.

6 Testing the surface runoff propensity index

The spatial pattern of the surface runoff propensity index (4 classes, Fig. 4) was tested by comparing it with patterns of sink
holes identified from the digital terrain model (DTM). The sink holes were identified by aggregating the 1m DTM to 3m and
delineating pixels without outflow. The sink hole distribution was not used for estimating the index, so can be used for
testing it. The index was processed on a raster with a cell size of 10 m.

Figure 6 shows a detail of the study area including the Spitzboden catchment where permanent runoff was observed. The
location of the sinks (plot b) corresponds very well with the areas of index no. 1, which indicates no surface runoff. High
propensity is assigned to the areas with less karstified bare rock (DOL), sometimes overlaid by low permeability debris and
organic soils. In these areas surface runoff can occur very often and, depending on the morphology, a permanent drainage
network is likely to develop. Even formation of ponds and small lakes, such as the one in the southeastern part of the test
catchment, is possible. In the large karstified areas the distinction between low (no. 2) and medium (no. 3) is mainly a result
of differences in the topographic slope (Fig. 4). In these areas only temporary surface runoff occurs with very short flow
lengths until the flow sinks into highly permeable debris or dolines.

In Fig. 7 the surface runoff propensity index in the whole study area (Hochschwab region, plot a) is plotted and compared to
the sink holes_(plot b). No surface runoff is calculated in 11 % (7 km?), low propensity in 65 % (41 km?), medium propensity
in 21 % (13 km?), and high propensity in 3 % (2 km?) of the study area.
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Figure 6: Comparison of the surface runoff propensity index (a) with sink holes_(b). Sink holes have been automatically generated
from the LiDAR terrain model at 3m resolution. Shading represents topography from the 1m terrain model. Black polygon shows
the topographic catchment of the Spitzboden stream gauge.
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Figure 7: Top: Surface runoff propensity index in the whole study region (Hochschwab region, a). Bottom_(b): sink holes from the
terrain model. Shading represents topography from the 1m terrain model.

7 Discussion

The main advantage of the proposed mapping method over traditional field mapping (e.g., Scherrer and Naef, 2003) is its
ability to use variables that can be assessed from a distance in the landscape, so large areas can be mapped efficiently. The
main advantage over traditional vulnerability mapping (e.g., Cost Action 620, 2003; Andreo et al., 2006) is the incorporation
of hydrological processes in the mapping.

Rogger et al. (2012) used geologic maps, orthophotos and geomorphic information to identify the dominant subsurface
processes in Alpine catchments. These were combined with the surface runoff process maps of Markart et al. (2004) that are
based on sprinkling experiments using vegetation and soil characteristics as indicators for event runoff coefficients.
Sprinkling experiments are logistically challenging in remote alpine areas of the size of the study area. Instead, the mapping
method in this study puts more emphasis on “reading the landscape” for delineating Hydrological Response Units (HRUs)
and classifying them according to geology, soils/debris, vegetation and infiltration capacity. Spotting karst forms and surface
runoff traces are an important part of the method. The field mapping is supported by morphological and geological maps, but
they are not directly used for HRU delineation as in traditional vulnerability mapping. Additionally, the location of springs

provides in situ information on the hydrogeology (see, e.g., Cervi et al., 2017).

17



10

15

20

25

30

The mapping catalogue proposed here is defined in a way that it maximizes the information that can be mapped in the field
with a view of surface runoff propensity, including infiltration/storage characteristics, immediate response vs. delayed
response. Of course, like in any field mapping method, some subjectivity is involved but minimized by the use of a
catalogue. We would also like to point out that alternative methods usually also involve a certain level of subjectivity in
terms of choice of variables and model structure.

We used the mapping results for estimating a surface runoff propensity index at the pixel scale (10 m x 10 m) that is a

measure of the frequency with which surface runoff occurs. Although the pixel scale is 10 m, the aggregation scale is larger

as it is mainly controlled by the size of the mapped polygons which are on average 32 ha in area. The hydrological

characteristics do vary within the polygons. This means that the smaller scale spatial variability is not explicitly represented

by the index.

The index also points towards possible flow lengths as typically, areas of more frequent runoff generation in the study region
are also those with larger flow lengths. The propensity index is derived from the mapped infiltration capacity and
topographic slope. It compares well against the sink hole distribution. The index can be used for a rapid regional assessment
of contamination risk for water resource purposes. Additionally, the index could be used for supporting the parameter
estimation of a rainfall-runoff model in the context of the “Dominant Processes Concept” (e.g., Grayson and Bloschl, 2000;
Reszler et al., 2008) and more generally for regionalising hydrological characteristics related to surface runoff (Bloschl et al.,
1995; Bloschl, 2006).

In karstic areas, surface runoff occurrence depends on the infiltration properties of the soil, debris and the underlying
geology. In the study area, organic soils have mostly developed above poorly karstified rocks and, hence low permeability
lithology such as dolomite. In these areas, a permanent drainage network is prone to occur, the soils have small storage
capacities and water logging, including the formation of ponds, is likely to occur, leading to frequent surface runoff. Both the
local drainage network and the ponds drain into the karst. Processes on these arcas have substantial similarity to the
Saturation Overland Flow mechanism (Dunne, 1983), which is common in humid climates at the foot of hillslopes as they
flatten out. Such areas are important to identify, but their extent in karstic catchments are sometimes small. In the
Hochschwab study region, 3% of the area was classified as high surface runoff propensity based on the index. When
substantial debris is found above the ponding layer, mostly in dolomitic areas with higher slopes, local springs indicate the
dominance of storage and subsurface flow that exfiltrates and feeds the local drainage network. Traces of surface runoff
paths above the debris were visible during the surveys, but pronounced continuous flow paths were hardly found. This
implies that flow connectivity to the creek is only established at high rainfall intensities.

The mean altitude of the recharge area of the spring is about 1700 m a.s.l. and soils are shallow and sparsely vegetated. In

some parts of the area, losses due to evapotranspiration may play a role for the general soil moisture status in summer (€.g. in

areas with high local groundwater levels, water-logged areas). These characteristics are captured by the mapping and are

classified as a relative high surface runoff propensity. It is possible that, after long dry periods, these areas are drier than
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predicted by the index. However, given the depth to the groundwater table in most of the area, long-term spring water

balances could not be used to validate the index (Bonacci 2001b).

In the highly karstified areas of the study region, often overlaid by debris and/or a thin humus layer, surface runoff occurs
only during high intensity storms and is therefore very rare. This is consistent with the literature (e.g., Zhang et al. 2011;
Peng and Wang 2012). The storm of 4 August 2013 (return period of about 10 years) allowed the mapping of particularly
clear surface runoff traces during a post-event survey. Rainfall intensities of about 100 mm in 75 minutes were recorded at
the nearby stations, which is on the order of the rainfall necessary for generating surface runoff obtained by sprinkling
experiments in semi-arid karstic environments (Li et al., 2011; Calvo-Cases et al. 2003). The index results suggest that in
about 50% of the area no surface runoff occurs or the surface runoff propensity is low. However, some high intensity (local)
rainfall events are likely to occur every summer, which do produce surface runoff even in areas that are highly karstified.

The index proposed in this paper could also be adopted for non-karstic regions. The overall methodology of combining prior

spatial information, a visual assessment from a distance at the landscape scale and local data collection in the field, as well as

the combination of geological, soils/debris and vegetation information, may remain similar. However, the individual

geological, soils and vegetation classes will obviously change. Also, some of the field instrumental methods may change,

depending on the local hydrology, as other processes may gain more importance, e.g., lateral subsurface flow, shallow

groundwater level fluctuations, connectivity of flow paths, runoff routing. Of course, stream gauging would become more

important in non-karstic areas. In any case, there is a very important role of the field persons in assessing the hydrological

situation. Even though this implies some subjectivity, we believe the additional information obtained during the field

campaigns outweighs any subjectivity. Aerial photos such as from drones could be useful to resolve more spatial detail than

the aerial photos used here, but visibility in the forests is an issue.

8 Conclusions

A new method for mapping the propensity for surface runoff in karst areas is proposed. The method puts emphasis on
“reading the landscape”. It includes information that can be assessed from a distance, such as visible traces of overland flow,
so large areas can be mapped efficiently. The outcome of the mapping is a tesselation of the landscape into Hydrological
Response Units, based on a classification of the geology, soils and debris, vegetation, and infiltration capacity. The method
was applied to the karstic Hochschwab area in Austria. In this region, surface runoff is generally more frequent in less
karstified dolomitic areas than in limestone areas. Low permeability soils or debris are more likely to occur above dolomitic
geology, where a permanent drainage network tends to develop. A “surface runoff propensity index” is estimated from the
classified infiltration capacity obtained by the mapping. It represents an index of how frequently surface runoff may occur.
The index compares well with the spatial distribution of sink holes. The surface propensity index can be used to assist in
safeguarding the quality of the water supply from karst aquifers, particularly for optimizing land management and

formulating water safety plans in a risk based procedure by comparing the patterns with potential contamination loads. Since
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the overall conceptualization of the mapping procedure is generic to karst areas, it may be applied to other karst regions

around the world.
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