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Abstract. Climate change is a global stressor that can undermine water management policies developed with the assumption 

of stationary climate. While the response-surface-based assessments provided a new paradigm for formulating actionable 

adaptive solutions, the uncertainty associated with the stress tests pose challenges. To address the risks of unsatisfactory 

performances in a climate domain, this study proposed to incorporate the logistic regression into a decision-centric 10 

framework. The proposed approach replaces the “responses surfaces” of the performance metrics typically used for the 

decision scaling framework with the “logistic surfaces” that describes the risk of system failures against pre-defined 

performance thresholds. As a case study, water supply and environmental reliabilities were assessed within the eco-

engineering decision scaling framework for a complex river basin in South Korea. Results showed that human-demand-only 

operations in the river basin could result in water deficiency at a location requiring environmental flows. To reduce the 15 

environmental risks, the stakeholders could accept increasing risks of unsatisfactory water supply performance at the sub-

basins with small water demands. This study suggests that the logistic surfaces could provide a computational efficiency to 

measure system robustness to climatic changes from multiple perspectives together with the risk information for decision-

making processes. 

1 Introduction 20 

Climate change is a global stressor that poses prodigious challenges to long-term management of water resources. 

While water infrastructures have been constructed across the globe to sustain human livelihood and activities, those assets 

have been traditionally managed by heuristic operation policies developed under the assumption of stationary climate 

(Cosgrove and Loucks, 2015; Cully et al., 2016). However, probabilistic behaviours of hydrological processes can be 

significantly altered by the warming atmosphere; thereby, the heuristic policies are expected to become increasingly 25 

vulnerable (Brown et al., 2015; Georgakakos et al., 2012). 

When formulating management solutions to non-stationary climate for a water system, an essential step is to assess 

impacts of climate change on its performance. An established method for the impact assessment was to investigate outputs of 

relevant system models forced by projections of the general circulation models (GCMs) under hypothetical greenhouse gas 
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(GHG) emission scenarios (e.g., Xu et al., 2015; Eum and Simonovic, 2010). This type of assessments takes the „predict-

then-act‟ paradigm for which the first prerequisite is sufficiently reliable predictions. The GCM projections, however, are 

often biased by inappropriate model formulations and/or imperfectly understood physical processes (Stevens and Bony, 2013; 

Deser et al., 2012; Dufresne and Bony, 2008; Stainforth et al., 2005). Thus, they may contain unacceptable risk costs for 

policymakers (Brown et al. 2012), hindering utilization of GCM-led strategies (Weaver et al., 2013; Brown and Wilby, 5 

2012). 

To overcome the weakness of GCM-driven assessments in practical decision support, alternative frameworks within 

the „robust decision‟ paradigm have emerged (e.g., Hadka et al., 2015; Whateley et al., 2014; Lampert and Groves, 2010). 

These decision-centric approaches seek robust solutions that can minimize adverse effects of climatic stresses on given 

hydrological systems. Examples include the decision scaling (Brown et al., 2012), the dynamic adaptive policy pathways 10 

(Haasnoot et al., 2013), the real option analysis (Woodward et al., 2014), the Info-gap decision theory (Korteling et al., 

2013), and the robust decision making (Lempert and Groves, 2010) among others. Whereas the „predict-then-act‟ paradigm 

focuses on the most likely future conditions that can maximize expected utility, the decision-centric approaches pay attention 

to sensitivity (or vulnerability) of system performance to climatic stressors (Weaver et al., 2013; Brown et al., 2012). This 

paradigm accepts the irreducible uncertainty in climate predictions as an inevitable part of long-term planning, and guide 15 

decision-makers toward low-regret strategies for sustainable system performance under non-stationary climate. 

Among the decision-centric frameworks, the assessments based on the response functions of system performance 

have provided convenience to define decision thresholds at which adaptation actions are required (e.g., Kim et al., 2018; 

Steinschneider et al., 2015a; Turner et al., 2014; Whateley et al., 2014; Brown et al., 2012; Prudhomme et al., 2010). They 

developed the relationships between system performances and climatic stressors (hereafter referred to as the “response 20 

surfaces”) via stress tests. Then, GCM projections were employed to indicate future system performance on the response 

surfaces. The response-surface-based methods have been refined to consider spatially varying system performance (e.g., 

Schlef et al., 2018) and multiple management objectives within a hydrological system (e.g., Cully et al., 2016). They allowed 

efficient evaluation of climate change risks simply by comparing the performance metrics indicated by a collection of GCMs 

against pre-defined thresholds. 25 

Nonetheless, uncertainty of the response surfaces cannot be neglected due to assumptions and simplifications 

associated with the stress tests. Kim et al. (2018), for instance, showed how climate change risks could be underestimated if 

a modelling scale was inappropriately chosen. Kay et al. (2014) emphasized the importance of uncertainty allowances to be 

used alongside with the response surfaces. Moreover, Steinschneider et al. (2015b) suggested that hydrological modelling 

and climatic variability may introduce uncertainty in the response surfaces as much as GCM projections. The prior studies 30 

imply that over-reliance on the response surfaces of general performance metrics may misguide users to inappropriate and/or 

untimely adaptation policies. Importantly, the response surfaces have usually been developed with climatic shifts defined by 

long-term changes in statistical moments of weather observations (e.g., Poff et al., 2016; Steinschneider et al., 2015a; 

Whateley et al., 2014; Turner et al., 2014), even though they might insufficiently explain variation of the chosen 
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performance indicators. Whateley and Brown (2016) found that the performance variation of a water supply system can be 

attributed significantly to the internal climate variability over a time horizon of policy planning. In other words, even if a 

projected climatic shift indicates a satisfactory performance on the response surface, the system of interest could be still 

subject to a considerable risk of unsatisfactory performance.  

Due to the associated uncertainty, the response surface of general system performance needs to be treated in a 5 

probabilistic manner. A possible approach is to gauge the uncertainty via the Monte-Carlo sampling of system performances 

per climate stress (e.g., Steinschneider et al., 2015b; Whateley and Brown, 2016). However, if a complex system model is 

employed with a large combination of climate stressors, this stochastic sampling approach would require expensive 

computational costs even with modern computing power (Whateley et al., 2016). To explore the effect of internal climate 

variability with the exhaustive Monte-Carlo sampling, the computational burden for the stress test would be multiplied by 10 

many times. 

 In this work, therefore, an efficient approach was proposed to evaluate the risks of system failures within a 

decision-centric framework. We simply incorporated the logistic regression into typical stress tests for the response-surface-

based assessments. This study shows the response surface could be simply converted into a probabilistic domain by 

categorizing the performance samples from the stress tests against a threshold. As a case study, here we provided a slightly 15 

modified version of the eco-engineering decision scaling framework (Poff et al., 2016) to explore the probabilities of system 

failures varying across a complex river system with two contrasting management purposes. 

2 Methodology 

2.1 Eco-engineering decision scaling framework 

The eco-engineering decision scaling (EEDS) framework (Poff et al., 2016) expanded the decision scaling (Brown et al., 20 

2012) to consider stakeholders‟ multifaceted interests in the response surfaces. Iterative five-steps are required for this 

framework. Step 1 is to identify possible management options (e.g., upgrading operations and/or structural investments), to 

select indicators of ecological and engineering performances (e.g., water supply reliability and ecological vulnerability), and 

to define user-specific thresholds under which the system performs unacceptably. Step 2 is to build system models for the 

hypothetical stress tests. For water resources management, the system models may include a runoff model and a water 25 

allocation model. By exposing the system models to a wide range of hypothetical climatic stressors, ecological and 

engineering performances can be evaluated. In step 3, the response surfaces of engineering and ecological performances are 

developed with outcomes of the stress tests. For vulnerability analysis, the pre-defined thresholds are imposed on the 

response surfaces. Step 4 is to evaluate the management options with the size of the climatic zones satisfying the 

performance thresholds. In step 5, preferred decisions for the management options can be made. Or, if necessary, the 30 

assessment from step 1 to 4 can be repeated with new management options and/or different criteria. 
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In the EEDC framework, the key information would be the size of the climate zone mutually satisfying the engineering and 

ecological thresholds since it measures overall system robustness to climate stresses. Decision-makers may prefer 

management options that can widen the mutual climate zone, if they are socio-economically viable. However, the system 

robustness is not the only criterion for selecting management options. In decision-making processes, questions can be raised 

such as “what if future climates will not fall within the mutual climate zone?” and “how much risks of system failures still 5 

exist within the climate zone that expects satisfactory performances?” Those questions can be answered by incorporating the 

logistic regression and a collection of GCM projections into the EEDC framework. 

2.2 Incorporating the logistic regression into the stress tests 

The stress tests in step 3 for the EEDC framework are intended to find expected performances per given climate exposure. 

By comparing the obtained performances against a pre-defined threshold, the climate exposures applied to the stress tests can 10 

be categorized into binary outcomes (i.e., 1 for satisfactory performances and 0 for otherwise). With no needs of the 

homogeneity and normality assumptions, the logistic regression model allows to explain occurrences of the satisfactory 

performances with the sigmoid function of the climate exposures (xi): 

 

  
 

     [ (              )]
          (1) 15 

 

where, π is the probability of satisfactory performance, and βi are the regression coefficients. Thus, 1-π becomes the 

probability of unsatisfactory performance.  

When two explanatory variables are chosen for xi (e.g., changes in mean annual precipitation and temperature), it is possible 

to develop a 2-dimensional surface to describe variation of π within a climate domain. Hereafter, the surface of π will be 20 

referred to as the “logistic surface”. In this study, the logistic surfaces were used for the steps 3 and 4 of the EEDC 

framework in lieu of the response surfaces. The following example shows how to assess the risk of system failures together 

with robustness to climate stresses for a complex water system.  

3 Application: A case study for optimal water allocation in a complex water system 

3.1 Study area 25 

The case study area is the Geum River Basin located in the west-central part of South Korea with a total area of 9,915 km
2 

(Figure 1). The mean and the highest elevations in the river basin are 85 m and 1,596 m above the sea level, respectively. 

The mean basin slope is 16.7%. The total length of the main channel is approximately 402 km. The river basin has a semi-

humid climate with monsoonal summer seasons. Wet air masses moving from the North Pacific usually make hot and humid 

summer seasons, whereas winter seasons are dry and cold due to the Siberian high pressure. Approximately, 60-70% of 30 
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annual precipitation falls in June to September (KMA, 2011); thus, river flows across the basin peaks in the middle of 

summer monsoon seasons. Snowmelt runoff minimally contributes to streamflow variations due to small winter precipitation 

(Bae et al., 2008). 

The Geum River Basin is officially divided into 14 sub-basins for administrative purposes along the geomorphological 

boundaries. The sub-basin areas vary between 120 and 1,856 km
2
 with an average of 708 km

2
. 60% of the entire river basin 5 

is covered by forests, while agricultural areas account for 18%. The forest covers and agricultural lands within the 14 sub-

basins occupy 33-83% and 4.6-42%, respectively. The sub-basins with relatively large agricultural lands tend to have small 

forest covers. The urban areas are 5.3% of the river basin in total. According to the Korea Forest Service (http://forest.go.kr), 

the soils across the Geum River Basin have moderate to high infiltration capacity, implying sub-surface runoff generations 

are dominant. 10 

Human interventions affect the flow regimes in the Geum River Basin. The main channel is regulated by two large dams 

serially connected for water supplies and flood controls. The Yongdam Dam located in the upper river basin has an effective 

storage capacity of 809 Mm
3
, while the Daecheong Dam at the middle of the main channel has a larger capacity of 1,040 

Mm
3
. Water storages in both dams are delivered to several sub-basins through water distribution systems developed for 

municipal and industrial (M&I) water demands, making non-geomorphological human-made connectivity between the sub-15 

basins. The two large dams supply water to the demand sectors in outsides of the river basin through the distribution systems; 

hence, inter-basin water transfers may conflict with water demands within the river basin. During monsoon seasons, 

Yongdam and Dacheong Dams should reduce their storage limits by 137 Mm
3
 and 250 Mm

3
 for flood control, respectively. 

In addition, many small-size local reservoirs are widespread across the river basin to sustain irrigated agriculture (mostly for 

planting paddy rice). Though 95% of the small reservoirs have minimal storage capacities below 1 Mm
3
, their gross capacity 20 

is more than 320 Mm
3
 and thus considerably alters natural flow regimes. The total storage capacities of the agricultural 

reservoirs in the 14 sub-basins are from 1.1 Mm
3
 to 100.9 Mm

3
 with a median value of 12.5 Mm

3
. In each sub-basin, natural 

river flows and water transferred from the storage facilities (i.e., the agricultural reservoirs and dams) are consumed for 

agricultural, and municipal and industrial purposes. The water diverted for the M&I demands could return to the rivers, 

becoming available water for lower demand sectors. 25 

For water allocation modelling, we simplified the complex river system with a node-and-link network shown in Figure 1. 

Each sub-basin was conceptualized as a node with natural water availability (i.e., natural runoff), storage capacity (i.e., water 

storage in the agricultural reservoirs), and water demands (i.e., agricultural and M&I water uses). The sub-basin nodes were 

connected by the stream links (the continuous lines). The two large dams were represented by the nodes only having storage 

capacities and located between the two adjacent sub-basins accordingly. The outside water demands sectors were represented 30 

by nodes with no natural flows and zero storage capacities. The human-made connections between the dams and the sub-

basins were conceptualized by separate links (the dashed lines) with conveyance limits. 
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3.2 Data collections 

3.2.1 Climate and water demand data 

We collected daily precipitation and maximum and minimum temperatures over South Korea at 3-km grid resolution for 

1973-2015. The grid data were produced by interpolating synoptic observations at 60 stations in the automated surface 

observing system (ASOS) operated by the Korea Meteorological Administration. The point weather data were spatially 5 

interpolated by the Parameter-elevation Regression on Independent Slope Model (PRISM; Daly et al., 2008), and 

overestimated values were smoothed by the inverse distance method. Jung and Eum (2015) found improved performance of 

the combined method in South Korea via comparative evaluations to the original PRISM. For the case study, the collected 

grid data were spatially aggregated with the sub-basin boundaries. The aggregated daily precipitation and temperature were 

perturbed by a stochastic weather generator for the stress tests, and then used to generate streamflow at the sub-basin nodes. 10 

According to the grid data, the mean annual precipitation and temperature over the Geum River Basin for 1976-1995 were 

1,245 mm and 11.7 °C, respectively. They have risen to 1,325 mm (+6.4%) and 12.2 °C (+0.5°C) during 1996-2015, 

providing an indication that atmospheric water supply and demand gradually increase over time within the river basin. 

The water demands for 2030 were taken as the reference demands to evaluate water allocation performance across the river 

basin. In South Korea, government-driven national water resources plans are legally developed for sustainable resources 15 

management for every 20-year period. The water resources plan for 2020 was first established in 2000 including water 

demand projections up to 2020 (MOCT, 2000), and has been revised three times to consider hydrologic and socioeconomic 

changes since the initial version (MOCT, 2006; MLTM, 2011; MOLIT, 2016). In the third version of the water resources 

plan for 2020 (MOLIT, 2016), the water demands across South Korea were re-projected up to 2030. By an electronic 

correspondence (requested on Sep-26/2017), we obtained the demand data projected to 2030 given at 10-day intervals for the 20 

sub-basins and the two outside nodes directly linked to sub-basins from the team leading the national water plan at the Korea 

Institute of Civil Engineering and Building Technology. Among the high, standard, low demand scenarios given in MOLIT 

(2016), we chose the high demand scenario from a conservative perspective. More details about the demand projections are 

available in MOLIT (2016). For simplicity, the M&I demands at the two outside nodes connected with the two dams were 

estimated by the water transfer records. 25 

In addition, we collected the information of the minimum flow rates required for ecosystem sustainability, namely “instream 

flows” (Jowett, 1997), at seven locations within the river basin. The instream flows are determined by the experts‟ 

investigations into water quality and ecological conditions in the vicinity of major rivers in South Korea, and officially 

announced by the Ministry of Environment and the Ministry of Land, Infrastructure, and Transport (MOLIT, 2016). Though 

the human water demands (i.e., agricultural and M&I uses) are the first priority of the local and regional authorities (MOLIT, 30 

2016), they are recommended to consider the instream flows for environmental sustainability. Table 1 summarizes the 

agricultural and M&I demands for the year of 2030 and the instream flow requirements. For water allocation modelling, the 

demand data at 10-day interval were aggregated into monthly values. 
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3.2.2 Bias-corrected GCM projections 

Daily precipitation and temperature projections of 25 GCMs (Table A1) were collected from the archive of the Coupled 

Model Intercomparison Project Phase 5 (Taylor et al., 2012). Two representative concentration pathways (RCPs), RCP4.5 

and RCP8.5, were selected to assess the water supply capacity of the river basin for the upcoming 20-year period of 2020-

2039. RCP4.5 and RCP8.5 were used as scenarios of stabilized and increasing greenhouse gas concentrations frequently in 5 

climate change studies (e.g., Yan et al., 2015; Zhang et al., 2016; Moursi et al., 2017). 

The 50 GCM projections (i.e., 25 GCMs×2 RCPs) were bias-corrected by the de-trended quantile mapping (DQM; Bürger et 

al., 2013; Eum and Cannon, 2017) that can preserve raw climate change signals given by GCMs. The DQM removes the 

long-term mean change in projected values first. After applying the ordinary quantile mapping (QM; e.g., Hwang and 

Graham, 2013) to the de-trended values, the removed trend is reintroduced to the bias-corrected projections. The de-trending 10 

procedure may prevent the exaggeration of raw climate change signals, which is a typical drawback of the ordinary QM. 

More details about DQM and related bias correction methods are available in Bürger et al. (2013), Cannon et al. (2015), and 

Eum and Cannon (2017). To correct the 50 GCM projections toward the spatial averaged precipitation and temperatures over 

the Geum River Basin, 1976-2005 and 2006-2099 were set as the reference and the projection periods, respectively. 

3.3 Stress tests for water allocation performances 15 

The stress tests were conducted for optimal water allocations in the node-and-link system. The 14 sub-basins are forced by 

atmospheric drivers (i.e., precipitation and temperature) to generate natural streamflow. The generated streamflows are 

regulated to meet the water demands and instream flow requirements. The operations should be constrained by 

geomorphological and management conditions. We used a conceptual runoff model and an optimization model for 

evaluating water supply and ecological performances with stochastic weather series perturbed by hypothetical climate 20 

stresses. 

3.3.1 Generating climate-stress-induced weather series 

The stochastic weather generator (WG) by Steinschneider and Brown (2013) was employed to produce plausible daily 

precipitation and temperature sequences with climatic perturbations (i.e., generating climate stresses). Several bottom-up 

assessments successfully used this model to evaluate performance of hydrologic systems under varying climate stresses (e.g., 25 

Whateley et al., 2014; Steinschneider et al., 2015b).  The semi-parametric WG combines two stochastic models. The wavelet 

autoregressive model proposed by Kwon et al. (2007) first generates annual precipitation series spatially-averaged within a 

region of interest for a desired length (20 years in this study). The wavelet components of the annual precipitation series are 

extended by the autoregressive model to embed the low-frequency structure inherent in observations. Then, daily weather 

series conditioned by the random annual precipitation are simulated by the Markovian bootstrap resampler of Apipattanavis 30 

et al. (2007). In this process, the daily observations are resampled by the k-nearest-neighbour scheme and the precipitation 
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occurrence series generated by the standard Markovian process (e.g., Wilks, 1998). The weather data at multiple locations 

within the region of interest are sampled together for spatial coherence. As the final step, the mean and variance of stochastic 

precipitation series are adjusted by the ordinary QM to impose climatic perturbations stresses. The temperature series are 

simply perturbed by adding a temperature differential. Further in-depth details about the stochastic WG are found in 

Steinschneider and Brown (2013). 5 

Using the stochastic WG, we generated 539 sets of 20-year-long precipitation and temperature time series perturbed by a 

combination of three climatic stresses for each. Since each weather series was newly generated, the 539 stochastic series 

contain different internal variations from each other. The 539 perturbations were 11 changes in the average of daily 

precipitation, 7 changes in the coefficient of variance (CV) of daily precipitation, and 7 increases in the mean temperature 

over the 20-year time horizons. The perturbations of mean precipitation were from -60% to +40% at 10% increments relative 10 

to the observations for 1973-2015, while the CV changes were from -40% to +80% at 20% increments. The temperature 

perturbations were from +0 °C to +6 °C at 1°C increments The 539=11×7×7 sets of climate-stress-induced weather series 

were input to a rainfall-runoff model to quantify natural water flows at the sub-basins. To develop the logistic response 

surfaces, each weather series generated by the WG were represented with the mean annual precipitation (Pavg), the CV of 

daily precipitation (Pcv), and the mean annual temperature (Tavg) over the 20-year time horizon. 15 

3.3.2 Simulating natural runoff at the sub-basin nodes 

A simple rainfall-runoff model, GR4J (Perrin et al., 2003), was used to simulate natural flows at the sub-basins nodes. GR4J 

has been frequently employed in many studies under diverse climates, such as parameter regionalization (e.g., Oudin et al., 

2010), predicting flow durations (e.g., Zhang et al., 2015), and low flow estimations (e.g. Demirel et al., 2015) among many 

others. GR4J uses four conceptual parameters to describe functional behaviours of a watershed in response to lumped 20 

precipitation and potential evapotranspiration (PET) inputs. The parameters implicitly explain soil water storage, 

groundwater exchange, routing storage, and excess runoff generations within a watershed. The parsimonious structure of 

GR4J poses relatively small equifinality problem in parameter calibration and regionalization (Oudin et al., 2008; Perrin et 

al., 2010). Perrin et al. (2003) provides the computation procedures in detail. 

In the case study, a proximity-based regionalization was applied for parameter identification, because almost no natural 25 

streamflow observations are available at the outlets of the sub-basins. The operational inflow records at the Yongdam Dam 

were the only applicable observations for parameter calibration at the sub-basin 3001. For the other sub-basins, the 

parameter sets were transferred from neighbouring watersheds assessed in Kim et al. (2017). Kim et al. (2017) comparatively 

assessed performance of the proximity-based parameter transfer in comparison to several alternative methods, concluding 

that spatial proximity well captured functional similarity between 45 gauged watersheds in South Korea. The mean Nash-30 

Sutcliffe efficiency (NSE) was 0.53 with a standard deviation of 0.41, when transferring the parameter sets of five 

neighbouring catchments calibrated with observed hydrographs (Kim et al., 2017). Hence, for the 13 sub-basins from 3002 

to 3014, natural flows were simulated with the transferred parameter sets from five nearby gauged watersheds, while flows at 
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the sub-basin 3001 were generated by the parameters calibrated against the inflow data. The five runoff simulations were 

averaged for the sub-basins in which the regionalization scheme was used. The parameter set calibrated against the inflow 

records for the sub-basin 3001 yielded a NSE value of 0.62 for 2007-2015. The daily natural flows simulated by GR4J with 

the 539 climate-altered versions of the stochastic weather simulations were temporally aggregated at monthly values for 

water allocation modelling. 5 

3.3.3 Water allocation modelling 

The total water availability in the river basin during a certain month is water storages in the dams and reservoirs at the end of 

the previous month plus the natural flows at the sub-basins in the current month. Some of the available water is again kept in 

the storage facilities for supplying water in upcoming months. Thus, operators‟ decisions on water storages in each month 

recursively affect supply performance in the river basin through a 20-year period. A monthly sequential optimization model 10 

was used to determine amounts of the water storages and consumptions at each sub-basin. The operators should to minimize 

water deficiency during a current month, while the water storages need to be maximized for water supplies in upcoming 

months. We assumed that the two conflicting objectives are equally important for the operators. Hence, the objective 

function to determine water supplies and storages at the nodes for a particular month was: 

 15 
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where, Di is the total demand, Si is the total supply, Vi is the water storage, and Ci is the storage capacity (Ci) at node i. SAi 20 

and SMi are agricultural and M&I water supplied for agricultural (DAi) and M&I demands (DMi) at node i, respectively. The 

total water demand at each node (Di) is the sum of agricultural demand (DAi) and M&I demand (DMi). Likewise, the water 

supply at each node is divided into agricultural supply (SAi) and M&I supply (SMi). 

The monthly optimizations were subject to constraints. The water supply (Si) to a demand node was limited by water 

availability, which is the sum of natural flow at the node in the current month, flows from other nodes via the stream and the 25 

human-made links in the current month, and water storage at the node in the previous month. Water surplus at the nodes was 

not allowed (i.e., Si ≤ Di). The water remained after supplies and storage at a sub-basin node should be discharged from the 

node through the channel network. The water storage at each node is constrained by its storage capacity (Vi ≤ Ci). The water 

transfers through the human-made links were only supplied for M&I demands of destination nodes, and were limited by the 

conveyance capacity (40 Mm
3 

month
-1

). The agricultural and M&I demands were of equal priorities in optimizations. 30 

With 20-year-long natural flows per climatic perturbation, we determined SAi, SMi, and Vi month by month using the global 

optimization tool “fmincon” in the Matlab software. Since Vi values determined for a month become water availability for its 
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next month, optimizations for 240 months interplay sequentially. To consider the return flows, we followed the assumptions 

in the water plan for 2020 (MOLIT, 2016). Simply, 65% of the M&I water use at each node was assumed to return and 

become available water for following nodes, while no return flows after agricultural uses were considered in the water plan 

due to high water use efficiency. 

3.3.4 Evaluating water supply and ecological performances 5 

Using the optimized SAi, SMi, and Vi values, water supply performances at the demand nodes were measured for the given 

20-year-long stress-imposed weather series. For each sub-basin node, we measured the water supply reliability (ρs,i) defined 

as the probability of satisfactory supply against 99% of the monthly demands: 

 

          [         ]           (3) 10 

 

The amount of water passing the seven locations with the instream flow requirements can be also calculated using the 

decision variables and the natural flows. The environmental reliability at a instramflow location j (ρe,j) was evaluated by: 

 

          [         ]           (4) 15 

 

where, Fj and Fmin,j are the flow passing location j and the instream flows required for ecosystem sustainability at the location, 

respectively. 

In total, water reliabilities at the 14 demand nodes (14 sub-basins) and the 7 locations requiring instream flows were 

evaluated for each climatic perturbation. These 21 sets of performance indicators were used to develop the logistic response 20 

functions for each sub-basin node and instream flow location with corresponding climate stress. To develop the logistic 

surfaces, we assumed that the stakeholder-driven thresholds for ρs,i and ρe,j were 0.95 and 0.70, respectively. The 539 sets of 

Pavg, Pcv, and Tavg that represent the perturbed weather series were categorized into zero and one against the two thresholds 

for the logistic regressions. 

4 Results 25 

4.1 Water supply performance at the sub-basins 

The stress tests that forced the system models (i.e., GR4J and the optimization model) with the perturbed weather series 

produced 539 sets of reliabilities for each sub-basin and each location of instream flow. Figure 2 displays the scatter plots 

between water supply reliability (ρs) at the sub-basin 3001 and corresponding changes in Pavg, Pcv, and Tavg relative to 1996-

2015. We preliminarily checked statistical significance of the explanatory variables using the multiple linear regressions. 30 
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The changes in Pavg and Tavg were of very high significance to variation of the ρs values (p-values < 10
-16

), whereas the 

change in Pcv was insignificant (p-value = 0.744). This indicates that the water supply reliability is generally determined by 

variations of the mean precipitation and temperature for a 20-year period. Though higher precipitation variability (Pcv) could 

generate more direct runoff across the river basin, storage capacities of the agricultural reservoirs and dams seem to nullify 

the impacts of Pcv changes on the variation of water supply reliability. The preliminary regression analysis led us to a 5 

hypothesis that changes in Pavg and Tavg could sufficiently capture the variation of water supply reliabilities across the river 

basin. 

Figure 3a illustrates the multiple regression function between the ρs values and changes in Pavg and Tavg (the coefficient of 

determination is 0.93), on which the collection of 50 GCM projections was overlaid. Most of the 50 GCMs expected that ρs 

at the sub-basin 3001 would be greater than 0.95 for 2020-2039. This type of response surfaces between expected 10 

performance and hypothetical climatic stresses have been commonly used in the decision-centric assessments (e.g., Brown et 

al., 2012; Whateley et al., 2014; Turner et al., 2014). Figure 3c indicates that ρs at the sub-basin 3001 could be less than 0.95, 

if Pavg decreases by 30% approximately. The ρs values varied significantly even with zero decrease in Pavg, indicating that 

there might be the risk of unsatisfactory supply performance even with no changes in Pavg. 

The risk of ρs < 0.95 could be evaluated by the logistic surface shown in Figure 3b. The sigmoid functions fitted to the binary 15 

outcomes categorized against the threshold of ρs > 0.95 (Figure 3d) could provide approximate probabilities of ρs > 0.95 

(hereafter referred to as πs95) at the sub-basin 3001. πs95 declined with rising temperatures, since water availability was 

reduced by evaporation losses. The πs95 values indicated by the 50 GCMs ranged between 74 and 99% for 2020-2039. It 

should be noted that the climatic bound for ρs = 0.95 (dashed lines in Figure 3a and b) has the risk of ρs < 0.95 at 40-60% of 

chances on the logistic surfaces. It seems that there still exist considerable risks of unsatisfactory performances on the zone 20 

of satisfactory performance in Figure 3a. 

Likewise, we fitted the sigmoid functions to the binary outcomes against the threshold of ρs > 0.95 for the other sub-basins. 

Figure 4 displays the climatic bounds at which πs95 = 95% for each sub-basin. The sub-basin 3001 was of the highest bound 

among the 14 sub-basins, indicating that the uppermost sub-basin is the most vulnerable to changes in Pavg and Tavg. 15 

GCMs were located below the climate boundary of the sub-basin 3001. On the contrary, the boundary of the sub-basin 3012 25 

was the lowest. For every GCM projections, πs95 at the sub-basin 3012 was larger than 99%. The sub-basins with limited 

connections to the upper sub-basins tend to have higher climatic bounds of πs95 = 95%. The lower sub-basins receiving 

streamflow generated by the upper sub-basins are likely to withstand stronger climate stresses, even though they have 

relatively large agricultural demands.  

4.2 Environmental reliability against the instream flow requirements 30 

We compared the modelled flows at the 7 locations of instream flow against the minimum requirements, and evaluated the 

environmental reliabilities (i.e., ρe) at each location. Figure 5 shows the box plots of ρe values at the seven locations in 

response to the 539 climate perturbations. While ρe values at all the locations decreased as climate became drier, the location 
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E was the most vulnerable. Even with no changes in Pavg and Tavg, the outflows from the sub-basin 3011 were often less than 

the minimum requirement, implying that ecosystems near the location E might be currently undermined by the large 

agricultural and M&I demands in the sub-basin 3011. If Pavg decreased by 20% and Tavg rose by 3°C, ρe at the location E 

would fall below 0.5. On the other hand, streamflow at the location D perfectly satisfied the instream flow requirement under 

the same stress. Despite the second-largest M&I demands in the sub-basin 3009, water transfers from the two large dams 5 

could deliver sufficient water supplies. 65% of the water supplies for M&I demand was supposed to return to the stream 

network and became streamflow to meet the instream flow requirement at the location D. Although both sub-basins 3009 

and 3011 had limited geomorphological connectivity to the upper sub-basins, their demand components and linkages to the 

two large dams made the significant difference between their ρe values. 

We developed the logistic response surfaces with binary outcomes against the threshold of ρe > 0.70 at which the instream 10 

flow requirement at the location E were satisfied in the optimization model under no climate stresses (i.e., no changes in Pavg 

and Tavg relative to 1996-2015) Figure 6 displays the climatic bounds at which the probability of ρe > 0.70 (hereafter referred 

to as πe70) is 95% for all the locations requiring instream flow. As expected, the bound for the location E was the highest, and 

the climate zone for πe70 > 95% sensitively declines with rising Tavg. The bound for πs95 = 95% at the sub-basin 3001 (black 

dashed line) was below the bounds for the locations E. The human-demand-only operations would increase the risks of 15 

ecosystem degradation near the locations E if climate becomes drier. The environmental risks at the locations E seem to be 

more sensitive to rising Tavg than the water supply risk at the sub-basin 3001. Only 5 out of the 50 GCMs for 2020-2039 

(10%) indicate πe70 > 95% at the location E. 

4.3 Consideration of the instream flow into water management 

From the assessments with the logistic surfaces and the GCM projections, the environmental risk at the location E was likely 20 

to become an issue for 2020-2039. As an adaptation strategy, the instream flow could be considered in water management to 

be balanced between water supply and environmental risks. We modelled this management option by including the instream 

flow requirement at the location E in the objective function of the water allocation model as: 

 

         
∑   ∑  

∑  
 
∑   ∑  

∑  
  

         

      
          (4) 25 

 

where, Qmin,E and QE are the instream flow requirement and flow at the location E, respectively. w is a weight representing 

relative importance of the instream flow in water management. While the instream flow requirement at the location E could 

be treated as a constraint for optimizations, this approach may lead to no optimal solutions under severe climate stresses. 

Hence, it would be better to consider the instream flow requirement in the objective function for the stress tests.  30 

Through trial and error experiments with the 539 climate perturbations, we found that ρe at the location E could considerably 

increase with a tiny w value. The sequential optimizations with w=0.01 allowed us to have a fairly improved ρe value at the 
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location E. However, we found that the improved ecological reliability at the location E was from substantial reduction in 

water supply reliability at the sub-basin 3002. Figure 7 illustrates the logistic models for water supply at the sub-basin 3002 

and the instream flow requirement at the location E under the two operation options applied to the case study. The first 

operation was only considering the given agricultural and M&I demands (O1), whereas the deficit against the instream flow 

requirement was considered in the second option (O2). By changing the operation objective from O1 to O2, the risk of ρe < 5 

0.95 at the sub-basin substantially increased at the sub-basin 3002. The risk of unsatisfactory water supply was found even 

with increasing Pavg under O2. Indeed, the water supply performance became much more sensitive to Tavg changes. 

Conversely, the risk of unsatisfactory ecological reliability at the location E substantially declined. This is because the 

optimization model could not increase discharge from the sub-basin 3011 for the instream flow requirement due to the high 

agricultural demands. Instead, the model forced to increase outflows from the Yongdam dam to meet the agricultural 10 

demands at the sub-basins 3012 and 3014 and the instream flow at the location E. It was inevitable to have deficient water 

supplies in the sub-basin 3002 with relatively small demands even under optimized water allocations. In other words, 

minimizing total water deficiency of the entire basin may force the local water deficit in the sub-basin 3002. 

4.4 Validating the logistic models and assessing the management options with the EEDC framework 

Since the sigmoid function is hypothetical, the logistic surfaces need to be validated to ensure their predictive performance. 15 

As an interval validation (i.e., reusing the 539 sets of performance samples for validation), the logistic models were 

evaluated with the bootstrap prognoses (Harrel et al., 1996). To measure the “optimism” of each logistic model, we used the 

Nagelkerke pseudo R
2
 (Nagelkerke, 1991; hereafter simply R

2
) as the metric of predictive performance. The optimism of a 

regression model can be evaluated with performance differences between the original model and the models developed by 

bootstrap samples (with replacements). Hence, it indicates a potential performance loss when applying new samples to the 20 

original model. Together with the regression results, Table 2 summarizes the optimism estimated from 2,000 bootstrap 

models. Most of the logistic models showed 0.9 or higher R
2
 values, and the highest optimism was 0.80% only. The internal 

validation implies that predictive performance of the logistic models seems acceptably high and robust. As an external 

validation (i.e., validation with out-of-sample data), we conducted additional stress tests of the river system with three 

arbitrary perturbations of (-37.1%, +2.5°C), (-27.7%, +1.3°C), (-13.6%, +0.6°C) for Pavg and Tavg, respectively. The change 25 

in Pcv was fixed at a random value of +21%, because it was insignificant to the regression models. Then, 100 sets of 20-year-

long weather series were generated for each perturbation using the stochastic WG, and the system models were forced by the 

generated weather series. By counting the cases satisfying ρs > 0.95 or ρe > 0.70 among the 100 simulations, the πs95 and πe70 

estimates at the sub-basins and the instream flow locations were obtained for each perturbation. Figure 8 compares the πs95 

and πe70 estimates from the stress tests against those estimated by the logistic models for the sub-basins and the instream flow 30 

locations. The probability estimates from the two methods seem to agree approximately. The median and the highest 

differences between the two estimates were 0.004 and 0.15, respectively. 
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The internal and external validations led us to believe that the logistic surfaces could be acceptable for impact assessments 

using the bias-corrected GCM projections. By overlapping the logistic models, we could assess the two operation options 

applied in the case study for all the sub-basins and the instream flow locations simultaneously (Figure 9). For the assessment, 

we used the boundaries of πs95 = 95% and πe70 = 95%. With the logistic surfaces, the system robustness to climate change 

could be measured in the same manner proposed in the original EEDC framework (Poff et al., 2016). By comparing the two 5 

middle panels for πe70 in Figure 9, it is indicated that considering the instream flow in the objective function significantly 

lowered the climatic bound of πe70 = 95% at the location E, thereby widening the climatic zone within which all the locations 

mutually satisfy πe70 > 95%. However, in trade-off, the bound of πs95 = 95% for the sub-basin 3002 moved upward, 

narrowing the climatic zone mutually satisfying πs95 > 95% for all the demand nodes. Overall, the climatic zone mutually 

satisfying πs95 > 95% and πe70 > 95% for all the sub-basins and instream flow locations was expected to decrease when the 10 

instream flow requirement at the location E was considered. Based on the reduced mutual climate zone, considering the 

environmental requirement in operations would slightly decrease overall system robustness to climate stresses. 

In summary, water supply reliabilities at the sub-basins 3001 and 3002 would be the most vulnerable to climate stresses. The 

highest environmental risks from climate change would be found at the locations E in terms of the instream flow 

requirements. To reduce the environmental risk at the location E, fairly increasing risks of ρs ≤ 0.95 at the sub-basin 3002 15 

should be accepted. Only 4 out of the 50 GCMs indicated πs95 > 0.95. 

5 Discussion and conclusions 

5.1 Use of the logistic surfaces for the EEDC framework 

The response surfaces allowed users to estimate expected performances of hydrologic systems in response to climate 

stressors, providing convenience to promptly evaluate many GCM projections (e.g., Turner et al., 2014; Brown et al., 2012; 20 

Prudhomme et al., 2010). Nevertheless, they could provide insufficient probabilistic information needed for decision-making 

processes. A possible approach to evaluating the risk of unsatisfactory performances was to count the GCM projections 

satisfying a pre-defined threshold (e.g.., Moursi et al., 2017; Brown et al., 2012). However, the GCM counts are highly 

dependent on the size of the GCM collections. Even in the case that all the GCMs in users‟ hand fall within the favourable 

climate zone on the response surfaces, it does not guarantee that future system performance will be satisfactory at 100% 25 

confidence. 

The logistic response surface could supplement this weakness of the ordinary response surfaces. It enables to directly 

evaluate the risk of system failures from a single climate projection. The probability estimates from the logistic surfaces can 

play a role in risk-based decision-making particularly when an adaptive solution is targeted at a particular climate prediction 

(e.g., resizing infrastructures for a reference climate condition). The logistic surface developed for the adaptive solution may 30 

directly provide the risk of system failures under the climate prediction. Since it requires no more than a simple conversion 

of the sampled performance metrics, the logistic regression allows a probabilistic evaluation of system performance in a very 
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efficient manner. If a complex hydrologic system is assessed within the bottom-up framework, a typical approach such as an 

exhaustive Monte-Carlo sampling may not be preferred for uncertainty analysis due to expensive computational costs. In 

such a case, the logistic surfaces may become an alternative to simply assess the associated risks. 

The external validation of the logistic models (Figure 8) implies that the effect of interval climatic variability might be 

measured in a collective manner, despite the varying climatic perturbations of the weather series. Even though the 5 

perturbations were different, the same probabilistic structure would be inherent in all the generated weather series. This 

might allow the logistic models to collectively capture the effect of internal climate variability from the 539 weather series 

having different climate alterations. Thus, uncertainty associated with the stress tests could be in part gauged with the simple 

regression approach. However, this also implies that the external validation might be imperfect, and hence  a more rigorous 

stress test and validation would be necessary to improve reliability of the response-surface-based assessment. Given the large 10 

uncertainty associated with climatic variability, a single stochastic structure might be insufficient for developing and 

validating the logistic and response surfaces. If affordable, multiple WGs should be employed with a large number of 

stochastic generations.  

The EEDC framework (Poff et al., 2016) integrates the responsive behaviours of multiple performance metrics into a single 

climate space. By measuring the size of the climate zone mutually satisfying the multiple criteria, decision-makers can 15 

perceive the robustness of system performance with conflicting interests. The decision-makers may select solutions that can 

widen the mutual climate zone for robust adaptations to climate change. Poff et al. (2016) provided a prominent example that 

assessed adaptation costs and potential environmental risks with this framework in order to find the most robust strategies in 

a dam site to climate change. In this study, we showed the advantage of this framework to explore performances at many 

sub-components of a large system in a single climate domain. 20 

One difference between this study and Poff et al. (2016) is that we used the logistic climate bounds to measure the size of the 

mutual climate zone satisfying the multiple probabilistic thresholds. Since the original EEDC framework was focused on 

expected performances, a question can be raised as to “what if no climate projections fall within the mutual climate zone?” 

In this case, stakeholders may perceive unacceptable risks even though an adaptive solution can enlarge the mutual climate 

zone for multiple criteria. By its nature, the EEDC considering multiple criteria should have a narrower acceptable climate 25 

zone than single-criterion assessments. If the logistic response surfaces were employed instead, users can simultaneously 

measure how much system robustness can be obtained from an adaptive solution and how much risks of unsatisfactory 

performances are indicated by climate projections. They may be necessary information for decision-making processes. 

5.2 Limitations 

There are several caveats in the case study. First, the monthly operations to balance between water scarcity and storages 30 

might be only a part of operators‟ interests. The stakeholders in practice may have conflicting interests (e.g., reducing flood 

risks vs. increasing water storage) rather than taking actions toward the single objective. Thus, this study should be deemed a 
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special case focused on the maximum supply reliability under the given operational objectives. A validated simulation model 

for water allocation will be needed for a more realistic application.  

Second, it was unavoidable for us to use many simplifications and assumptions for modelling optimal water managements in 

the study river basin with complicated features (e.g., monthly dam operations and simple temperature perturbations). Given 

the substantial uncertainty sources associated with system models, the risks of system failures might be greater than our 5 

assessments. The logistic surfaces in this work would only consider the impacts of internal climatic variability on system 

performances. 

5.3 Conclusions 

In this study, we proposed to incorporate the logistic regression into a decision-centric framework for probabilistic impact 

assessments. The proposed approach requires no more stress tests than typical response-surface-based assessments, albeit 10 

some validation is needed. Thus, it may be an efficient method to support risk-based decision making processes. Following 

conclusions are worth emphasizing: 

(1) The logistic surfaces can provide convenience to explore potential risks of system failures when a pre-defined threshold 

is available, while the response surface can show system performance. On the logistic surfaces, the risk of system failures 

could be directly indicated by individual GCMs. 15 

(2) Within the eco-engineering decision scaling framework, the logistic surfaces can be flexibly used to evaluate robustness 

of hydrological systems to climate stressors. Multi-faceted stakeholders‟ interests can be considered in a domain of 

probability. 

 (3) The case study for the Geum River Basin in South Korea provides an assessment that the human-demand-only 

operations would make the eco-systems increasingly vulnerable. To consider the instream flow requirement in operations for 20 

2020-2039, risks of insufficient water supply should increase at the upper sub-basins with small water demands. 
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Appendix 1. The information of general circulation models 

Table A1. List of the selected GCMs for the impact assessment under the RCP 4.5 and 8.5 scenarios. 

No. Model Name 
Resolution 

(degree) 
Producing Institution 

1 CMCC-CM 0.750×0.748 Centro Euro-Mediterraneo per I Cambiamenti Climatici 

2 CCSM4 1.250×0.942 

National Center for Atmospheric Research 3 CESM1-BGC 1.250×0.942 

4 CESM1-CAM5 1.250×0.942 

5 MRI-CGCM3 1.125×1.122 Meteorological Research Institute 

6 CNRM-CM5 1.406×1.401 Centre National de Recherches Meteorologiques 

7 HadGEM2-AO 1.875×1.250 

Met Office Hadley Centre 8 HadGEM2-CC 1.875×1.250 

9 HadGEM2-ES 1.875×1.250 

10 INM-CM4 2.000×1.500 Institute for Numerical Mathematics 

11 IPSL-CM5A-MR 2.500×1.268 Institut Pierre-Simon Laplace 

12 MPI-ESM-LR 1.875×1.865 
Max Planck Institute for Meteorology (MPI-M) 

13 MPI-ESM-MR 1.875×1.865 

14 FGOALS-s2 2.813×1.659 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences 

15 NorESM1-M 2.500×1.895 Norwegian Climate Centre 

16 GFDL-ESM2G 2.500×2.023 
Geophysical Fluid Dynamics Laboratory 

17 GFDL-ESM2M 2.500×2.023 

18 BCC-CSM1-1 2.813×2.791 
Beijing Climate Center, China Meteorological Administration 

19 BCC-CSM1-1-M  1.125×1.122 

20 IPSL-CM5A-LR 3.750×1.895 
Institut Pierre-Simon Laplace 

21 IPSL-CM5B-LR 3.750×1.895 

22 MIROC5 1.406×1.401 Atmosphere and Ocean Research Institute, National Institute for 

Environmental Studies, and Japan Agency for Marine-Earth Science and 

Technology 

23 MIROC-ESM-CHEM 2.813×2.791 

24 MIROC-ESM 2.813×2.791 

25 CanESM2 2.813×2.791 Canadian Centre for Climate Modelling and Analysis 
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Table 1: Annual agricultural and M&I demands per demand node and the minimum instream flows from the sub-basins 

corresponding to the seven locations. 

 ID No. 

Mean annual 

flow* 

(Mm3 yr-1) 

Agricultural 

demand 

(Mm3 yr-1) 

M&I 

demand 

(Mm3 yr-1) 

Total storage 

capacity 

(Mm3) 

Instream flow 

requirement 

 (Mm3 month-1) 

Sub-basin 

node 

3001 639.6 50.9 7.6 29.7  

3002 97.3 4.0 0.4 1.0  

3003 254.5 13.1 2.4 5.0  

3004 498.6 50.5 15.8 10.1 8.9 (A) 

3005 382.8 42.3 5.1 14.9 6.6 (B) 

3006 82.6 9.2 3.3 6.8  

3007 384.0 74.2 6.1 22.0 7.4 (C) 

3008 473.6 36.9 34.4 7.2  

3009 465.8 31.5 208.5 7.0 6.7 (D) 

3010 92.2 19.3 16.4 0.2 20.8 (E) 

3011 1145.0 356.6 296.2 100.9  

3012 1437.2 367.9 75.1 38.4 45.9 (F) 

3013 506.1 193.2 26.4 47.4 6.4 (G) 

3014 340.7 215.1 10.3 29.6  

Outside 

demand 

node 

OD 1   20.6   

OD 2   42.1   

OD 3   5.1   

OD 4   4.0   

Total 6,800.0 1464.7 779.8 320.2  
* Natural runoff averaged over 20-year rainfall-runoff simulations with stochastic weather series containing zero climatic perturbations 5 
(ΔPavg = 0%, ΔPcv = 0%, ΔTavg = 0%) relative to 1996-2015. 
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Table 2: The summary of logistic regressions and internal validations. The explanatory variables were statistically significant (p-

values < 10-3) for all the regression models. 

 

 

O1: Human-demand-only operation O2: Considering the instream flow at E 

Regression coefficients 
*R2 **Optimism 

Regression coefficients 

R2 Optimism 
Intersect 

ΔPavg 

(%) 

ΔTavg 

(°C) 
Intersect 

ΔPavg 

(%) 

ΔTavg 

(°C) 

Sub-basin 

3001 4.38 0.245 -0.630 0.91 0.0023 3.55 0.234 -0.529 0.90 0.0027 

3002 14.5 0.401 -0.900 0.93 0.0035 1.86 0.189 -0.883 0.86 0.0029 

3003 12.8 0.368 -0.776 0.94 0.0035 10.3 0.312 -0.605 0.92 0.0035 

3004 14.1 0.388 -0.872 0.93 0.0037 13.1 0.363 -0.760 0.93 0.0034 

3005 12.3 0.405 -0.724 0.94 0.0034 12.9 0.426 -0.806 0.94 0.0031 

3006 16.8 0.430 -0.922 0.93 0.0033 13.6 0.354 -0.812 0.92 0.0032 

3007 8.97 0.338 -0.866 0.94 0.0025 7.42 0.295 -0.812 0.93 0.0025 

3008 21.0 0.528 -1.03 0.94 0.0036 18.2 0.465 -0.954 0.94 0.0037 

3009 10.3 0.302 -0.527 0.91 0.0031 10.3 0.302 -0.527 0.91 0.0037 

3010 23.6 0.507 -0.654 0.94 0.0038 22.5 0.470 -0.761 0.93 0.0041 

3011 11.2 0.383 -0.736 0.94 0.0030 11.9 0.410 -0.765 0.94 0.0028 

3012 24.0 0.493 -0.825 0.93 0.0045 22.5 0.458 -0.790 0.92 0.0042 

3013 11.4 0.292 -0.396 0.90 0.0036 11.0 0.284 -0.384 0.90 0.0038 

3014 21.2 0.439 -0.690 0.92 0.0040 21.9 0.448 -0.729 0.92 0.0039 

Instream 

flow 

locations 

A 28.1 0.644 -1.69 0.96 0.0015 27.6 0.634 -1.67 0.96 0.0019 

B 11.1 0.432 -1.11 0.95 0.0028 10.7 0.423 -1.00 0.95 0.0027 

C 6.43 0.370 -1.25 0.94 0.0033 6.51 0.399 -1.31 0.94 0.0028 

D 25.9 0.445 -0.638 0.85 0.0068 21.1 0.402 -0.49 0.88 0.0052 

E 1.47 0.282 -1.08 0.90 0.0033 7.02 0.533 -1.51 0.96 0.0016 

F 5.44 0.332 -1.12 0.93 0.0032 6.52 0.385 -1.32 0.94 0.0023 

G 14.1 0.591 -1.58 0.97 0.0017 13.0 0.547 -1.38 0.97 0.0022 
* Nagelkerke Pseudo R2, ** Mean performance loss in Nagelkerke Pseudo R2 evaluated using 2,000 bootstrap models. 

        5 
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Figure 1: Layout of the Geum River Basins (left) and the simplified node-and-link network for modelling water allocations (right). 
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Figure 2: Scatter plots between the water supply reliability at the sub-basin 3001 and changes in (a) Pavg, (b) Tavg, and (c) Pcv 

collected from the stress tests driven by the 539 sets of stochastically generated stress-imposed weather series. 
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Figure 3: (a) Response surface of ρs at the sub-basin 3011, (b) logistic response surface of the probability of ρs > 0.95. (c) the scatter 

plot between ρs and change in Pavg, (d) the binary outcomes against the threshold of ρs > 0.95 and the sigmoid functions for the 

probability of ρs > 0.95. The empty and filled circles overlaid on (a) and (b) are the 50 GCM projections for 2020-2039. The dashed 

lines in (a) and (b) are the climatic bounds for the climatic threshold of ρs=0.95.  5 
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Figure 4: Climatic bounds for Prob[ρs>0.95]=95% for the 14 sub-basins, on which the 50 GCM projections for 2020-2039 were 

superimposed. 
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Figure 5: Reliability against the instream flow requirements at the seven locations obtained from the 539 sequential optimizations 

with stress-induced weather series. The blue, grey, and red lines connect the reliabilities at the seven locations under the three 

representative climatic stresses. 5 
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Figure 6: As in Figure 4, but for the probability of ρe>0.70 at the seven locations of instream flow. 
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Figure 7: The logistic regression models for πs95 at the sub-basin 3002 (left) and  πe70 at the location E (right) under the human-

demand-only operation (upper) and the operation considering human demands and instream flow together (lower) 
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Figure 8: 1:1 plots between the probability estimates from the stochastic sampling and those from the logistic regressions for the 

case study. The probabilities of satisfactory performance at the 14 sub-basins and the 7 instream flow locations were estimated by 

the 100 Monte-Carlo simulations for each climatic perturbation. The number of points for comparison to the logistic models 

becomes 3 (perturbations) × 21 (locations) = 63. 5 
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Figure 9: Climatic bounds for πs95 = 95% (left) and πe70 = 95% (middle), and the bound mutually satisfying both criteria (right) 

under the human-demand-only operations (top) in comparison to the operations considering the instream flows at the location E 

(bottom). The empty and filled circles are the 50 GCM projections for 2020-2039. 


