Responses to Referee 1:

We greatly appreciate the valuable comments, and they were very helpful to improve the manuscript. Specific
responses are following as per comment.

1. This paper has integrated the logistic regressions with the ecoengineering decision scaling framework to evaluate
the risk of system failures in contrast to expected performance under dynamic climate change scenarios. This
paper contains new insights and contains a lot of information for scientific community. However, the authors have
explained the manuscript in complicated ways which I think could be explained in a simplified manner therefore,
the authors are advised to avoid using complex English sentences and try to make their next manuscript as simple
as possible which would ultimately increase understanding as well as attract more readers. In a nutshell, the
results of this paper are convincing enough to support the basic objective and stance of this paper in its current
version. Therefore, after a minor revision, this paper can be given a green signal to be published in journal
‘Hydrology and Earth System Sciences (HESS)’.

- Considering constructive comments from Referee 2, we substantially revised the initial version of our manuscript.

The manuscript is now retitled as “incorporating the logistic regression in a decision-centric framework for
probabilistic assessment of climate change impacts on a complex water system”. The revised manuscript was
focused on the meaning of the logistic regression in decision-centric assessment.

Minor Comments:

1. The authors have used 25 GCMs in current study and all of them have different spatial resolution which has a lot
of implications in results section. Therefore the authors are advised to explain how the spatial resolution of all those
GCMs are made consistent with each other.

- They were bias-corrected by a statistical downscaling method. We applied the detrended quantile mapping as
described in P6L27-P7L6. By the statistical downscaling, the climate hindcasts and forecasts were bias-corrected
towards the observed climates during a reference period. Perhaps, the method is inadequately explained. We will
add more explanation there.

2. Page6 Linel3: In current study, only high demand scenario has been chosen from a conservative perspective
whereas the low demand scenarios has been discarded with the justification of declining rice-planting lands.
However the authors did not provide any reference which supports author assumption of declining rice-planting
lands.

3. Page6 Linell: Authors are suggested to please explain how they calculated economic growth and effectiveness so
that it could be easy for readers to comprehend.

- Comments 2 and 3 are all related to the demand data, but to improve conciseness of the manuscript, the parted
that explained the demand projection was removed. This is because this information is available in the given
reference (L6-17 in page 6). The revised manuscript is more focused on the logistic surfaces. The decreasing
agricultural land is also presented in the given reference

4. Page8 Line27: The line “The four free parameters of GR4J. . ..inputs” is confusing and needs to be rephrased.
Four free parameters has not been defined yet, therefore, to make it convenient for reader, please first define the four
free parameters before abovementioned line.

- In L8-14 in page 8, GR4J was re-described.

5. Page14 Linel4: Please rephrase “more water resources need be transferred” with “more water resources need to
be transferred”
= In revision, the sentence was removed, and replaced with new discussion (from P12L.22-P13L4).

6. Page16 Line9: In line “More reliable risk estimates can be achieved from other uncertainty assessment methods
though expensive efforts may be required” Please mention few other uncertainty assessment methods you are talking
about so that it could be easy for readers to comprehend the context.

= In revision, we added a part for validation of the logistic regressions using the stochastic sampling (L28 in page

14 and Figure 9).




7. Page24 Figure 1: The annotation color in inset maps needs to be changed because its not clear enough.
- This might be the resolution problem when converting the word document to a pdf format. We believe that the
original figure file would be okay. If necessary, we will make a further improvement.




Responses to Referee 2:

We greatly appreciate valuable efforts of the referee 2. All the comments were sound and constructive to improve
our manuscript in the revision process. Specific responses are following as per comment.

General Comments:

This manuscript describes a method of extending a bottom-up climate risk assessment by using logistic regression to
estimate the probability that a water system will meet minimum performance criteria over a planning horizon based
on the values of climate variables. The method is demonstrated through a case study of water management in the
Geum River Basin in South Korea. The Geum River is host to two dams which are managed for water supply, flood
control, and environmental flows. The case study analyzes two alternative operating policies’ ability to meet both
water supply goals and instream flow requirements under a broad range of potential changes in average temperature,
average precipitation, and precipitation variability. It is interesting to see the framework applied for multiple sub-
basins within a larger system, and important to acknowledge uncertainty that an operating policy will meet a
performance goal within specific climate scenarios. The text is poorly written and organized, with many strangely
used words that inhibit understanding. Key examples include “successive”, “sub-component”, and “risk of system
failure,” which are applied in ways that are not standard in the literature and never clearly defined. Many crucial
details related to the methods and motivation do not become clear until carefully examining the results section. For
example, | believed the logistic model was simply modeling the water supply/environmental flow reliability as a
function of climate variables rather than the risk of falling short of the reliability threshold until carefully examining
the figures and results. This was the main point of the manuscript, so it is critically important that it is immediately
apparent upon reading the abstract and within every part of the manuscript. The text requires substantial rewording
and re-organization to clearly summarize the methodological contribution and motivation earlier in the text, better
define scientific notation, and ensure new words and concepts are defined clearly the first time they are introduced.
While the goal of the logistic model is a worthy one, it is not clear that the framework has been well executed in the
case study or that the novel technical contribution bears sufficient relationship to the EEDS framework to be named
for it. This lack of clarity may be a symptom of the confused text. However, based on my understanding of the case
study, the methods used to execute the case study are flawed in several important ways. Further, the interpretation of
results relies on questionable assumptions related to the fithess of GCM projections for water system risk
assessment. Both the manuscript and analysis require major revisions.

- We substantially revised the manuscript to present the main point from the case study. The revised manuscript
retitled as “Incorporating the logstic regression into a decision-centric framework for probabilistic assessment of
climate change impacts on a complex water system”. This may be better than using the term “logistic EEDS”. The
revised manuscript focuses on assessing the probabilities of system failures (i.e. system performances less than pre-
defined thresholds) using the logistic regressions. The varying performances across the river basin is now not a
major part of this work. The terms “successive” and “sub-components” were not used in the revision, while the risk
of system failures was still in use. We believe it can be viewed as the probability of unsatisfactory performances
against the threshold. Now, the EEDS frameworKk is a case study for an application of the proposed approach.

To improve the manuscript, we revised the introduction to emphasize the uncertainty associated with the response
surfaces of performance metrics with several prior studies. This implies that risks of unsatisfactory performances
can exist even within the climate zone of satisfactory performance in the response surfaces. Incorporating the
logistic regression may be an approximate approach to supplement this weakness of the response surfaces. For
validating the logistic regressions, we conducted stochastic analysis using the same system models but with arbitrary
climate perturbations that were not included in the logistic regressions (Figure 9). The probabilities of satisfactory
performances from the stochastic samplings and the logistic model approximately agreed. This will improve the
validity of the proposed approach.

The contribution of our work is to combine the logistic regression with the bottom-up approach (not limited to the
EEDS) so that users can efficiently quantify the probability of system failures. The value of the logistic regression is
to enable to estimates the probability without a large number of realizations. If one estimate it using many (or long)
stochastic generations, computational costs would be expensive. When 100 random samplings are applied for a
single climatic perturbation, computational costs increase by 100 times. The logistic regression can help to solve this
problem. Although it is an approximate approach, the internal variation of 20-year-long stochastic weathers is
different from one perturbation to another used in the stress tests. Thus, the impacts of internal climate variation




would be captured in a collective manner by the logistic regression. In revision, we used 539 perturbations for the
stress tests with a shorter interval for the mean precipitation. It will reduce the concern that the referee commented.

Specific Comments:

Logistic regression model: (1) Limited calibration set: It is my understanding that the logistic model was calibrated
from 434 binary values that correspond to either water supply reliability or environmental flow reliability meeting a
threshold under 434 unique combinations of three climate variables. If my understanding is correct, this would mean
that there is one response (binary performance metric) per climate scenario (this should be clarified in the
manuscript if that is incorrect). This is a very limited data set for analyzing risk of failure resulting from internal
climate variability, especially given that each scenario-specific stochastic trace was (a) only 20 years long, and (b)
initially identical to every other weather sequence in the analysis that had then been perturbed from the original trace
to match a unique combination of average precipitation, average temperature, and precipitation coefficient of
variation using quantile mapping. To characterize the effects of internal variability on risk of failure over a planning
period, it would be preferable to use the binary reliability outcomes from many more stochastic realizations of
weather sequences within each combination of climate variables. With a single stochastic trace perturbed into many
climate scenarios, the modelled risk of failure is likely to be driven entirely by the climate scenario rather than the
actual risk of missing a performance target under internal climate variability, and furthermore heavily biased across
the climate response function by the single stochastic realization used to generate all climate scenarios. This seems
to be the opposite of the intentions described in the introduction.

= As replied to the general comment, we added a validation of the logistic model by testing 100 weather
generations for three arbitrarily chosen perturbations that were not used for logistic model. Figure 9 shows that the
probability estimates from the logistic model and the stochastic sampling approximately agreed. We believe this
would improve validity of the logistic surfaces. Even though one set of weather series was generated for a single
climate perturbation, 539 perturbations should have different internal variability due to randomness. Thus, the
logistic regression can capture the impact of internal climatic variability in a collective manner.

(2) 1 do not see any part of the manuscript that assesses the performance of the logistic regression model using out-
of-sample data. This is critical to the manuscript’s success because it would provide evidence that the loss of
information from modelling the risk of failing a satisficing criterion rather than evaluating the risk of failure through
many simulations at each combination of climate variables could be worth the savings in computation time.

= All the logistic regressions applied to the case study are summarized in Table A2 with the McFadden R2. As
replied to comment 1, 3 sets of out of sample data were used for validation.

(3) It is not clear whether there are separate logistic regression models for each subbasin, performance metric, etc.
How many logistic regression models are there in this case study? One per sub-basin, to model simultaneously
meeting water supply reliability and environmental flow requirements? Two per sub-basin, each modelling risk of
failing one of the objectives’ minimum performance criterion? One, with subbasins represented through dummy
variables? If the model is used to predict risk of failing mutual satisficing rather than risk of failing one performance
threshold, would the model structure work if the two objectives were in tension (as in the Poff et al. 2015 case study)
rather than aligned (as they are in this case study)? This section needs to clearly list the explanatory variables and
document the dependent variables much more clearly.

—> All the logistic regressions applied to the case study are presented in Table A2. This will prevent the confusion.

Water system modelling framework:

(1) Synthetic weather generator and streamflow temporal resolution: A daily weather generator is used to generate
perturbed weather sequences and run them through a runoff model to generate streamflow. After simulating climate-
changed streamflow using the runoff model, daily streamflows are aggregated to monthly flow. Why aggregate ex
post rather than using a computationally cheaper weather generator and/or runoff model that is designed to operate
at the monthly temporal resolution?

—> This was because validity of the hydrological model. We needed a method for ungauged basins for each sub-
basin, and already had a validated model. GR4J was validated by the LOOCV across South Korea by Kim et al.
(2017). Though it is true that a monthly model is computationally efficient than daily models, another validation for
ungauged basins will be required. Aggregating daily simulations was not very time-consuming, but the main




computational cost in this work was the time required for 20-year-long sequential optimizations. We did not change
the model for revision.

(2) Temporal aggregation and precipitation coefficient of variation (cv): Perhaps the monthly streamflow resolution
is the reason precipitation coefficient of variation was not a strong predictor of performance metrics? The authors
should consider this possibility and potentially discard precipitation cv from their analysis, which might be better
served by more stochastic realizations in each climate scenario rather than more cli mate variables.

—> Itis unlikely. Even with the temporal aggregation from daily to monthly values, the monthly flows were affected
by P.,. A higher P, resulted in larger streamflow, because precipitated water would reside in the soil for a shorter
length due to more frequent high-intensity rainfall events, leading to less evapotranspiration. We found that P, was
one of significant factors that explain the variation of total streamflow. However, it was not significant to explain the
variation of the water supply reliability to 539 perturbations. It is explained in L18-28 in page 10.

(3) Climate response surface: The sampling of average precipitation and precipitation coefficient of variation (cv) is
coarse (20% increments). | suggest sampling these factors at tighter increments. (4) The computational expense of
conducting bottom-up climate risk assessment is mentioned several times in the text. How computationally intense
is the Geum water system model to evaluate?

= In revision, the perturbations for P,,, were adjusted to (e.qg., -60% to +40% at a 10% interval). While we reached
the same conclusions, this refinement would improve reliability of the logistic surfaces.

Role of GCM projections in the case study:

(1) GCMs are limited in their ability to simulate land/ocean/atmospheric mechanisms, especially those that take
place at sub-grid scale resolution. This limits the information that can be credibly derived from projections for water
resources planning. Precipitation coefficient of variation (CV), one of the climate variables used in the case study, is
not well represented in GCMs so it is questionable to infer precipitation CV from GCM projections. This is why
GCM projections are not shown on some of the response surfaces in Poff et al. 2015 (in response to page 3, Line 18-
19 of this manuscript).

- ltis true that GCM projections are subject to significant uncertainty. It is not limited to Pcv. P,,, and T, may not
be well captured by GCMs either. However, because of that reason, the bottom-up frameworks emerged by
employing the stochastic tests imposing arbitrary climatic stresses on the hydrologic systems. Overlaying GCMs
projections on the response surfaces is a common approach to gauge climate change risks in the bottom-up
assessments. Superimposing GCMs on the logistic surfaces can provide information of future climate risks together
with system robustness to climate change. It is discussed in L28 in page 14.

(2) This manuscript repeatedly mentions GCM counts as though GCM count in the feasible region on the climate
response surface could be a decision criterion (e.g. page 3 line 19), and perhaps to some stakeholders it would be.
However, this could also imply an attempt to quantify risk across the entire sampled climate space. Uncertainty
quantification via ensembles of GCM projections is a challenging research question in its own right and would not
be well treated by simply counting GCM projections from an arbitrary ensemble. Indeed, the point of bottom-up
decision frameworks for climate risk management is avoiding this type of reliance on GCM projections with little
scientific basis. Since this manuscript is designed to build on a bottom-up risk assessment framework, it is strange
that so much emphasis is put on understanding performance under GCM projections in the text and figures. Titling
the framework: As mentioned above, it is not clear whether the logistic model is designed to model the risk of
failing to mutually satisfice the eco-engineering performance thresholds or the risk of failing to meet one
performance threshold. If the latter, the main technical contribution seems as appropriate for any single-objective
climate response surface type risk assessment as for multi-objective climate response surface analyses, though it is
applied here in a multi-objective climate response surface analysis. | would suggest the authors re-frame the analysis
and revise the title to put the focus on the manuscript’s main technical contribution, which is analyzing and
communicating probabilistic information through a climate response surface (with an eco-engineering case study)
rather than presenting a novel decision framework.

—> Considering this comment, the manuscript was retitled. By its nature, a multi-purpose response surface should
have a narrower acceptable range than a single-purpose one. For better indications from the multi-purpose response
surfaces, we just attempted to convert them to the logistic surfaces directly indicating the risk of system failure and
then overlay climate projections. This point is highlighted in the revised manuscript, rather than focusing on the
GCM counts.




Technical corrections (typing errors, etc.)

Word choice: The meaning of the terms “successive”, “risk of system failure”, and “sub-components” in the context
of this analysis is not clear from the text.

- As replied, in the revised manuscript, we did not use the terms “successive” and “sub-components”, but “risk of
system failure” is still in use. It can be viewed as the probability of unsatisfactory performances throughout the
manuscript.

Page 2, line 31: Whatley et al. 2014 should be Whateley et al. 2014 —> We will globally check mistypos.
- We globally checked the mistypos, and re-listed the references.

Page 3, section 5: “However, all assessments using the response surfaces have focused on the “expected
performance” rather than risk of system failure” Is this true? I thought many decision scaling papers evaluated
reliability, which is risk of failure.

- Instead, we emphasized the uncertainty in the response surfaces in the introduction (L26 in page 2).

Figure 9: Labels on X axis would be clearer in words. Also, isolating the results of the analysis to GCM projections
is totally counter-intuitive here. The point of bottom-up climate response surface analyses is to avoid relying on
GCMs in climate risk management.

—> Figure 9 was removed in the revision. Instead, we explained the trade-off between the location E and the sub-
basin 2 when considering the instreamflow requirement using the logistic regressions in Figure 7.

Figure 2: It is not clear where and how the logistic model comes into this framework based on Figure 2. Figures:
None of the response surface figures include precipitation CV as one of the axes, though this is one of the sampled
climate variables. The reasoning behind this should be clarified in the text.

- Now, the EEDC framework is narratively described rather than using Figure.
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Abstract. Climate change is a global stressor that can undermine water management policies developed with the assumption

of stationary climate. While the response-surface-based assessments provided a new paradigm for formulating actionable

adaptive solutions, the uncertainty associated with the stress tests pose challenges. To address the risks of unsatisfactory

performances in a domain of climate stresses, this study proposed to incorporate the logistic regression into a decision-

centric framework. The proposed approach replaces the “responses surfaces™ of the performance metrics typically used for

the decision scaling framework with the “logistic surfaces” that describes the risk of system failures against pre-defined
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performance thresholds. As a case study, water supply and environmental reliabilities were assessed within the eco-

engineering decision scaling framework for a complex river basin in South Korea. Results showed that human-demand-only

operations in the river basin could result in water deficiency at a location requiring ecological flows. To reduce the

environmental risks, the stakeholders should accept increasing risks of unsatisfactory water supply perforamnce at the sub-

basins with small water demands. This study suggests that the logistic surfaces could provide convenience to measure system

robustness to climatic changes from multiple perspectives together with the risk information for decision-making processes.

1 Introduction

Climate change is a global stressor that poses prodigious challenges to long-term management of water resources.
While water infrastructures have been constructed across the globe to sustain human livelihood and activities, those assets
have been traditionally managed by heuristic operation policies developed under the assumption of stationary climate
(Cosgrove and Loucks, 2015; Cully et al., 2016). However, Fhe—probabilistic behaviours of hydro-climatological
variableshydrological processes —hewever—can be significantly altered by the warming atmosphere; thereby, the traditional

heuristic management is expected to become increasingly vulnerable (Brown et al., 2015; Georgakakos et al., 2012).—Fhe

When formulating management solutions to non-stationary climate for a water system, an essential step is to assess

impacts of climate change on its performance. For-assessingtmpacts—ef-climate—changeon—waterreseurees-—systems—the
primary-An established method appreach-for the impact assessment was to investigate outputs of relevant system models

forced by projections of the general circulation models (GCMs) under hypothetical greenhouse gas (GHG) emission

scenarios (Brown-et-al—2012;-Wiby-and-Dessai—2010e.9., Xu et al., 2015; Eum and Simonovic, 2010). Fheugh-it-was

Brown-and-WHby,—2012)-This type of assessments takes the ‘predict-then-act’ paradigm for which the first prerequisite is
aceurate—andsufficiently reliable predictions. Hewever—substantial-efforts—are—stil-necessary—to-deliver—improvement-in

The GCM projections, however, are often biased by inappropriate model formulations and/or imperfectly understood

physical processes (Stevens and Bony, 2013; Deser et al., 2012; Dufresne and Bony, 2008; Stainforth et al., 2005). :-Thus,

they may be-subject-to-unaceeptable-contain unacceptably high uneertainty-and-petential-risk costs for policymakersregrets
(Brown et al. 2012), leading to underutilization of GCM-led strategies (Weaver et al., 2013; Brown and Wilby, 2012).
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To overcome the weakness of the-seerarioGCM-drivenled strategies—assessments in practical decision support,

alternative approaches-frameworks within the ‘robust decision” paradigm have emerged (e.g., Hadka et al., 2015; Whateley
et al., 2014; Lampert and Groves, 2010). These decision-centric {ernamely—bettom-up~)y-approaches seek robust solutions
that_can minimize adverse effects of climatic stresses on given hydrological systems—ef-interest. Examples include the

decision scaling (Brown et al., 2012), the dynamic adaptive policy pathways (Haasnoot et al., 2013), the real option analysis

(Woodward et al., 2014), the Info-gap decision theory (Korteling et al., 2013), and the robust decision making (Lempert and
Groves, 2010) among others. Whereas the ‘predict-then-act’ paradigm tep-dewnframework-focuses on the most likely
future conditions that can te-maximize expected utility, the bettem-updecision-centric approaches pay attention to sensitivity
(or vulnerability) of system performance to climatic stressors (Weaver et al., 2013; Brown et al., 2012). Examples-include

{-e—impact—assessment)—_ This—risk-basedThis paradigm —framewerk—accepts the irreducible uncertainty in climate
predictions as an inevitable part of long-term planning, and guides decision-makers toward low-regret strategies for
sustainable system performance under non-stationary climate (Poff et al., 2016).

frameworks, the assessments based on the response functions of system performance -have provided convenience to define

decision thresholds at which adaptation actions are required (e.g., Kim et al., 2018; Steinschneider et al., 2015a; Turner et al.,
2014; Whateley et al., 2014; Brown et al., 2012; Prudhomme et al., 2010)Prudhomme—et-al—2010;Brown-etal—2012:
Steinschneider—etal—2015a Whateleyetal2014). They developed the relationships between system performances and

climatic stressors (hereafter referred to as the “response surfaces™) via stress tests. Then, GCM projections were employed to

indicate future system performance on the response surfaces. The response-surface-based methods have been refined to

consider spatially varying system performance (e.g., Schlef et al., 2018) and multiple management objectives within a

3



10

15

20

25

30

hydrological system (e.g., Cully et al., 2016). They allowed efficient evaluation of climate change risks simply by comparing

the performance metrics indicated by a collection of GCMs against pre-defined thresholds.

Nonetheless, uncertainty of the response surfaces cannot be neglected due to assumptions and simplifications

associated with the stress tests (Kay et al., 2014). Indeed, Steinschneider et al. (2015b) argued that hydrological modelling

and climatic variability may introduce uncertainty in the response surfaces as much as GCM projections. Kim et al. (2018)

showed how climate change risks can be underestimated when a modelling scale was inappropriately chosen. Hence, over-

reliance on the response surfaces of general performance metrics may misguide users to inappropriate and/or untimely

adaptation policies. Importantly, the response surfaces have usually been developed with climatic shifts defined by long-term

changes in statistical moments of weather observations (e.g., Kim et al., 2018; Poff et al., 2016; Steinschneider et al., 2015a;

Whateley et al., 2014), even though they might insufficiently explain variation of chosen performance indicators. Whateley

and Brown (2016) found that water supply system performance can be attributed mostly to uncertainty in internal climate

variability over a time horizon of policy planning.

The prior studies imply that risks of system failures still exists even in the climate zone of satisfactory performance

in the response surfaces. This uncertainty issue may be mended in part by evaluating the risks of system failures along with

the response surfaces of expected performances. While it is possible to conduct stochastic uncertainty analyses with the

stress tests (e.g., Steinschneider et al., 2015b; Whateley and Brown, 2016), this approach would require expensive

computational costs even with modern computing power (Whateley et al., 2016). In this work, therefore, an efficient

approach was proposed to evaluate the risks of system failures within a decision-centric framework. We simply incorporated

the logistic regression into typical stress tests for the response-surface-based assessments. As a case study, here we provided

a slightly modified version of the eco-engineering decision scaling framework (Poff et al., 2016) to explore the probabilities

of system failures varying across a complex river system with two contrasting management purposes.
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3-2 Methodology

32.1 Fhelogistic-eEco-engineering decision scaling framework

The eco-engineering decision scaling (EEDS) framework (Poff et al., 2016) expanded the decision scaling (Brown et al.,

2012) to consider stakeholders’ multifaceted interests in the response surfaces. Iterative five-steps are required for this

framework. Step 1 is to identify possible management options (O; and O,), to select indicators of ecological and engineering

performances (e.g., water supply reliability and ecological vulnerability), and to define user-specific thresholds under which

resources management, the system models may include a runoff model and a water allocation model. By exposing the

system models to a wide range of hypothetical climatic stressors (x; and x,), ecological and engineering performances can be

8
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evaluated. In step 3, the response surfaces of engineering and ecological performances are developed with outcomes of the

stress tests. For vulnerability analysis, the pre-defined thresholds (6, and 0,) are imposed on the response surfaces. Step 4 is

to evaluate the management options with the size of the climatic zones satisfying the performance thresholds. In step 5,

preferred decisions for the management options can be made. Or, if necessary, the assessment from step 1 to 4 can be

repeated with new management options and/or different criteria.

In the EEDC framework, the key information would be the size of the climate zone mutually satisfying the engineering and

ecological thresholds, since it measures overall system robustness to climate stresses. Decision-makers may prefer

management options that can widen the mutual climate zone, if they are socio-economically viable. However, the system

robustness is not the only criterion for selecting management options. In decision-making processes, questions can be raised

such as “what if future climates will not fall within the mutual climate zone?”” and “how much risks of system failures still

exist within the climate zone that expects satisfactory performances?” Those guestions can be answered by incorporating the

logistic regression and a collection of GCM projections into the EEDC framework.

2.2 Incorporating the logistic regression into the stress tests

The stress tests in step 3 for the EEDC framework are intended to find expected performances per given climate exposures.

By comparing the obtained performances against a pre-defined threshold, the climate exposures applied to the stress tests can

be categorized into binary outcomes (i.e., 1 for satisfactory metrics and O for otherwise). With no needs of the homogeneity

and normality assumptions, the logistic regression model allows to explain occurrences of the satisfactory performances with

the sigmoid function of the climate exposures (x;):

1
m=
1+exp[—(Bo+B1x1+B2x2+)]

1)

where, © is the probability of satisfactory performance, and {; are the regression coefficients. Thus, 1-m becomes the

probability of unsatisfactory performance.

When two explanatory variables are chosen for x; (e.g., changes in mean annual precipitation and temperature), it is possible

to develop a 2-dimensional surface to describe variation of 7 within a climate domain. Hereafter, the surface of = will be

referred to as the “logistic surface”. In this study, the logistic surfaces were used for the steps 3 and 4 of the EEDC

framework in lieu of the response surfaces. The following example shows how to assess the risk of system failures together

with robustness to climate stresses for a complex water system.
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3 Application: A case study for optimal water allocation in a complex water system

3.1 Study area

The case study area is the Geum River Basin located in the west-central part of South Korea with a total area of 9,915 km?

(Figure 1). The mean and the highest elevations in the river basin are 85 m and 1,596 m above the sea level, respectively.

The mean basin slope is 16.7%. The total length of the main channel is approximately 402 km. The river basin has a semi-

humid climate with monsoonal summer seasons. Wet air masses moving from the North Pacific usually make hot and humid

summer seasons, whereas winter seasons are dry and cold due to the Siberian high pressure. Approximately, 60-70% of

annual precipitation falls in June to September (KMA, 2011); thus, river flows across the basin peaks in the middle of

summer monsoon seasons. Snowmelt runoff minimally contributes to streamflow variations due to small winter precipitation

(Bae et al., 2008).

10
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The Geum River Basin is officially divided into 14 sub-basins for administrative purposes along the geomorphological

boundaries. The sub-basin areas vary between 120 and 1,856 km? with an average of 708 km2 60% of the entire river basin

is covered by forests, while agricultural areas account for 18%. The forest covers and agricultural lands within the 14 sub-

basins occupy 33-83% and 4.6-42%, respectively. The sub-basins with relatively large agricultural lands tend to have small

forest covers. The urban areas are 5.3% of the river basin in total. According to the Korea Forest Service (http://forest.go.kr),

the soils across the Geum River Basin have moderate to high infiltration capacity, implying sub-surface runoff generations

are dominant.
Human interventions affect the flow regimes in the Geum River Basin. The main channel is regulated by two large dams

serially connected for water supplies and flood controls. The Yongdam Dam located in the upper river basin has an effective

storage capacity of 809 Mm®,_while the Daecheong Dam at the middle of the main channel has a larger capacity of 1,040

Mm?. Water storages in both dams are delivered to several sub-basins through water distribution systems developed for

municipal and industrial (M&I) water demands, making non-geomorphological human-made connectivity between the sub-

basins. The two large dams supply water to the demand sectors in outsides of the river basin through the distribution systems;

hence, inter-basin water transfers may conflict with water demands within the river basin. During monsoon seasons,

Yongdam and Dacheong Dams should reduce their storage limits by 137 Mm?® and 250 Mm? for flood control, respectively.

In addition, many small-size local reservoirs are widespread across the river basin to sustain irrigated agriculture (mostly for

planting paddy rice). Though 95% of the small reservoirs have minimal storage capacities below 1 Mm?, their gross capacity

is more than 320 Mm® and thus considerably alters natural flow regimes. The total storage capacities of the agricultural

reservoirs in the 14 sub-basins are from 1.1 Mm® to 100.9 Mm?® with a median value of 12.5 Mm®. In each sub-basin, natural

river flows and water transferred from the storage facilities (i.e., the agricultural reservoirs and dams) are consumed for

agricultural, and municipal and industrial purposes. The water diverted for the M&I demands could return to the rivers,

becoming available water for lower demand sectors.

For water allocation modelling, we simplified the complex river system with a node-and-link network shown in Figure 1.

Each sub-basin was conceptualized as a node with natural water availability (i.e., natural runoff), storage capacity (i.e., water

storage in the agricultural reservoirs), and water demands (i.e., agricultural and M&I water uses). The sub-basin nodes were

connected by the stream links (the continuous lines). The two large dams were represented by the nodes only having storage

capacities and located between the two adjacent sub-basins accordingly. The outside water demands sectors were represented

by nodes with no natural flows and zero storage capacities. The human-made connections between the dams and the sub-

basins were conceptualized by separate links (the dashed lines) with conveyance limits.
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3.2 Data collections

3.2.1 Climate and water demand data 3 { Formatted: Heading 3

We collected daily precipitation and maximum and minimum temperatures over South Korea at 3-km grid resolution for

1973-2015. The grid data were produced by interpolating synoptic observations at 60 stations in the automated surface

observing system (ASOS) operated by the Korea Meteorological Administration. The point weather data were spatially

interpolated by the Parameter-elevation Regression on Independent Slope Model (PRISM; Daly et al., 2008), and

overestimated values were smoothed by the inverse distance method. Jung and Eum (2015) found improved performance of

the combined method in South Korea via comparative evaluations to the original PRISM. For the case study, the collected

grid data were spatially aggregated with the sub-basin boundaries. The aggregated daily precipitation and temperature were

perturbed by a stochastic weather generator for the stress tests, and then used to generate streamflow at the sub-basin nodes.

According to the grid data, the mean annual precipitation and temperature over the Geum River Basin for 1976-1995 were
1,245 mm and 11.7 °C, respectively. They have risen to 1,325 mm (+6.4%) and 12.2 °C (+0.5°C) during 1996-2015,

providing an indication that atmospheric water supply and demand gradually increase over time within the river basin.

The water demands for 2030 were taken as the reference demands to evaluate water allocation performance across the river

basin. In South Korea, government-driven national water resources plans are legally developed for sustainable resources

management for every bi-decadal period. The water resources plan for 2020 was first established in 2000 including water

demand projections up to 2020 (MOCT, 2000), and has been revised three times to consider hydrologic and socioeconomic
changes since the initial version (MOCT, 2006; MLTM, 2011; MOLIT, 2016). In the third version of the water resources
plan_for 2020 (MOLIT, 2016), the water demands across South Korea were re-projected up to 2030. By electronic

correspondence (requested on Sep-26/2017), we obtained the demand data projected to 2030 given at 10-day intervals for the

sub-basins and the two outside nodes directly linked to sub-basins from the team leading the national water plan at the Korea

Institute of Civil Engineering and Building Technology. Among the high, standard, low demand scenarios given in MOLIT

(2016), we chose the high demand scenario from a conservative perspective. More details about the demand projections are
available in MOLIT (2016). The M&I demands at the two outside nodes connected with the two dams were estimated by the

water transfer records for simplicity.

In_addition, we collected the information of the minimum flow rates required for ecosystem sustainability, namely

“instreamflows” (Jowett, 1997), at seven locations within the river basin. The instreamflows are determined by the experts’

investigations into water quality and ecological conditions in the vicinity of major rivers in South Korea, and officially

announced by the Ministry of Environment and the Ministry of Land, Infrastructure, and Transport (MOLIT, 2016). Though

the human water demands (i.e., agricultural and M&aI uses) are the first priority of the local and regional authorities (MOLIT,

2016), they are recommended to consider the instreamflows for environmental sustainability. Table 1 summarizes the

agricultural and M&I demands for the year of 2030 and the instreamflow requirements. For water allocation modelling, the

demand data at 10-day interval were aggregated into monthly values.
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3.2.2 Bias-corrected GCM projections

Daily precipitation and temperature projections of 25 GCMs (Table A1) were collected from the archive of the Coupled

Model Intercomparison Project Phase 5 (Taylor et al., 2012). Two representative concentration pathways (RCPs), RCP4.5

and RCP8.5, were selected to assess the water supply capacity of the river basin for the upcoming bi-decadal period of 2020-

2039. RCP4.5 and RCP8.5 were used as scenarios of stabilized and increasing greenhouse gas concentrations frequently in

climate change studies (e.g., Yan et al., 2015; Zhang et al., 2016; Moursi et al., 2017).

The 50 GCM projections (i.e., 25 GCMsx2 RCPs) were bias-corrected by the de-trended quantile mapping (DQM:; Biirger et

al., 2013; Eum and Cannon, 2017) that can preserve raw climate change signals given by GCMs. The DQM removes the

long-term mean change in projected values first. After applying the ordinary quantile mapping (QM; e.q., Hwang and

Graham, 2013) to the de-trended values, the removed trend is reintroduced to the bias-corrected projections. The de-trending

procedure may prevent the exaggeration of raw climate change signals, which is a typical drawback of the ordinary QM.

More details about DOM and related bias correction methods are available in Biirger et al. (2013), Cannon et al. (2015), and

Eum and Cannon (2017). To correct the 50 GCM projections toward the spatial averaged precipitation and temperatures over

the Geum River Basin, 1976-2005 and 2006-2099 were set as the reference and the projection periods, respectively.

3.3 Stress tests for water allocation performances

The stress tests were conducted for optimal water allocations in the node-and-link system. The 14 sub-basins are forced by<-

atmospheric _drivers (i.e., precipitation and temperature) to generate natural streamflow. The generated streamflows are

regulated to meet the water demands and instreamflow requirements. The operations should be constrained by

geomorphological and management conditions. We used a conceptual runoff model and an optimization model for

evaluating water supply and ecological performances with stochastic weather series perturbed by hypothetical climate

stresses.

3.2-3.1 Generating climate-stress-induced weather series

The stochastic weather generator (WG) by Steinschneider and Brown (2013) was employed to produce plausible daily

precipitation and temperature sequences with climatic perturbations_(i.e., generating climate stresses). Several bottom-up

assessments successfully used this model to evaluate performance of hydrologic systems under varying climate stresses (e.g.,
Whateley et al., 2014; Steinschneider et al., 2015b).

Two stochastic models are combined in the semi-parametric WG. The wavelet autoregressive model proposed by Kwon et al.
(2007) first generates annual precipitation series spatially-averaged within a region of interest for a desired length (20 years
in this study). The wavelet components of the annual precipitation series are extended by the autoregressive model to embed
the low-frequency structure inherent in observations. Then, daily weather series conditioned by the random annual
precipitation are simulated by the Markovian bootstrap resampler of Apipattanavis et al. (2007). In this process, the daily
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observations are resampled by the k-nearest-neighbour scheme and the precipitation occurrence series generated by the
standard Markovian process (e.g., Wilks, 1998). The weather data at multiple locations within the region of interest are
sampled together for spatial coherence. As the final step, the mean and variance of stochastic precipitation series are adjusted
by the ordinary QM to impose climatic perturbations stresses. The temperature series are simply perturbed by adding a
temperature differential. Further in-depth details about the stochastic WG are found in Steinschneider and Brown (2013).

To examine the water supply performance under climatic stresses, we generated 343-539 sets of precipitation and
temperature time series spatially coherent between the 14 sub-basins. The perturbations imposed on the precipitation time
series were changes in the mean of non-zero daily precipitation and its coefficient of variance (CV). The applied mean ane
CV/-changes of precipitation were from -4060% to +80640% at 2610% increments relative to the observations for 1973-2015,
while the CV changes were from -40% to +80% at 20% increments-respectively (i.e., 711x7 perturbations for precipitation).
The temperature time series were perturbed by adding 0-6 °C at 1°C increments (i.e., 7 perturbations for temperature). Thus,
Fhe-the total number of the climatic perturbations is-was #11x7x7=343539. The 343-539 sets of climate-stress-induced

weather series were input to a rainfall-runoff model to quantify natural water flows at the sub-basins. To develop the logistic

response surfaces, each weather series generated by the WG were summarized by three bi-decadal properties of the mean

annual precipitation (P,), the CV of daily precipitation (P.,), and the mean annual temperature (T,yq).

3.3.2 Simulating natural runoff at the sub-basin nodes

A simple rainfall-runoff model, GR4J (Perrin et al., 2003), was utHized-used to simulate natural flows at the sub-basins
nodes. GR4J has been frequently adepted-employed in many studies fer-various—purpeses-under diverse climates, such as
parameter regionalization (e.g., Oudin et al., 2010), predicting flow durations (e.g., Zhang et al., 2015), and low flow

estimations (e.g. Demirel et al., 2015) among many others. Fhe—four—free—parameters—of-GR4J uses four conceptual
parameters to describe eoneeptuatize-functional behaviours of a watershed in response to lumped precipitation and potential

evapotranspiration (PET) inputs. The free-parameters implicitly explain soil water storage, groundwater exchange, routing
storage, and excess runoff generations within a watershed. The parsimonious structure of GR4J poses relatively small equi-
finality problem in parameter calibration and regionalization (Oudin et al., 2008; Perrin et al., 2007). Perrin et al. (2003)
provides the computation procedures in detail.

In the case this-study, a proximity-based regionalization was applied for parameter identification, because almost no natural
streamflow observations are available at the outlets of the sub-basins. The operational inflow records at the Yongdam Dam
were the only applicable observations for parameter calibration at the sub-basin 3001. For the other sub-basins, the
parameter sets were transferred from neighbouring watersheds assessed in Kim et al. (2017). Kim et al. (2017) comparatively
assessed performance of the proximity-based parameter transfer in comparison to several alternative methods, concluding
that spatial proximity well captured functional similarity between 45 gauged watersheds in South Korea. The mean Nash-
Sutcliffe efficiency (NSE) was 0.53 with a standard deviation of 0.41, when transferring the parameter sets of five
neighbouring catchments calibrated with observed hydrographs (Kim et al., 2017). Hence, for the 13 sub-basins from 3002
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to 3014, natural flows were simulated with the transferred parameter sets from five nearby gauged watersheds, while flows at
the sub-basin 3001 were generated by the parameters calibrated against the inflow data. The five runoff simulations were
averaged for the sub-basins in which the regionalization scheme was used. The parameter set calibrated against the inflow
records during—2067-2015-for the sub-basin 3001 yielded a NSE value of 0.62 for 2007-2015. The daily natural flows
simulated by GR4J with the 343-539 stochastic weather sets were temporally aggregated at monthly values for water

allocation modellingreseurces-system-analyses.

3.3.4-3 Water allocation modellingEvaluating-water-supply-and-environmental-reliabHities

The total water availability in the river basin during a certain month is water storages in the dams and reservoirs at the end of
the previous month plus the natural flows at the sub-basins in the current month. Some of the available water is again kept in
the storage facilities for supplying water in upcoming months. Thus, operators’ decisions on water storages in each month
recursively affect supply performance in the river basin through a bi-decadal period. A monthly sequential optimization
model was used to determine amounts of the water storages and tses-consumptions at each sub-basin. The operators should
to minimize water deficiency during a current month, while the water storages need to be maximized for water avaHabiity
supplies in upcoming months. We assumed that the two conflicting objectives are equally important for the operators. Hence,
the objective function to determine water supplies and storages at the nodes for a particular month was:

Minimize

Zl)zi:—zsi _ZLVi-¥G (1—6@)

e
D; = DA; + DM; (3b2b)
S; = SA; + SM;  (%e20)

where, D; is the total demand, S; is the total supply, V; is the water storage, and C; is the storage capacity (C;) at node i. SA;
and SM; are agricultural and M&I water supplied for agricultural (DA;) and M&I demands (DM;) at node i, respectively. The
total water demand at each node (D;) is the sum of agricultural demand (DA;) and M&I demand (DM;). Likewise, the water
supply at each node is divided into agricultural supply (SA;) and M&I supply (SM).

The monthly optimizations were subject to constraints. The water supply (S;) to a demand node was limited by water
availability, which is the sum of natural flow at the node in the current month, flows from other nodes via the stream and the
human-made links in the current month, and water storage at the node in the previous month. Water surplus at the nodes was
not allowed (i.e., S; < D;). The water remained after supplies and storage at a sub-basin node should be discharged from the
node through the channel network. The water storage at each node is constrained by its storage capacity (V; < C;). The water
transfers through the human-made links were only supplied for M&I demands of destination nodes, and were limited by the

conveyance capacity (40 Mm® month™). The agricultural and M&I demands were of equal priorities in optimizations.
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Using-With 20-year-long natural flows per climatic perturbation, we determined SA;, SM;, and V; month by month using the
global optimization tool “fmincon” in the Matlab software. Since V; values determined for a month become water
availability for its next month, optimizations for 240 months interplay sequentially. To consider the return flows, we
followed the hypetheses-assumptions in the water plan for 2020 (MOLIT, 2016). Simply, 65% of the M&I water use at each
node was assumed to return and become available water for following nodes, while no return flows after agricultural uses
were considered in the water plan due to high water use efficiency.

3.3.4 Evaluating water supply and ecological performances

Using the optimized SA;, SM;, and V; values, water supply performances at the demand nodes were measured for the given
20-year-long stress-imposed weather series. For each demand-sub-basin node-ef-the-node-and-Hnrk-network, we measured the
water supply reliability (ps;) defined as the probability of satisfactory supply against 99% of the monthly demands:

psi = prob [S; > 0.99D;] @)

The amount of water passing the seven locations with the instream-flow_requirements can be also calculated using the
decision variables and the natural flows. The environmental reliability at a instramflow location j (p.;) was evaluated by:

Pej = Prob [Fj = Fpyinj] (3)

where, Fj and Fp,,; are the flow passing location j and the instream flows required for ecosystem sustainability at the location,
respectively.

In total, water reliabilities at 8-the 14 demand nodes (14 sub-basins-and—4—demand-nodes—out-of-the-basin) and the 7
locations requiring instreamflows the-environmental-flows-were evaluated for each climatic perturbation. These 25-21 sets of
performance indicators ane-cerresponding-chimatic-perturbation-were used to develop the logistic response functions for each
sub-basin node and instreamflow location with corresponding climate stressef-system-performance-to-chmatie-stressors. To

develop the logistic surfaces, we assumed that the stakeholder-driven thresholds for ps; and p.; were 0.95 and 0.70,

respectively. the 539 sets of Py, Pe,, and T, that represent the perturbed weather series were categorized into zero and one

against the two thresholds for the logistic regressions.
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4 Results

4.1 Evaluating-water-Water supply reliabilitperformance at the sub-basinsy-using-the-logistic-response-surfaces

The stress tests that forced the system models (i.e., GR4J and the optimization model) by the perturbed weather series

produced 539 sets of reliabilities for each sub-basin and each location of instreamflow. Figure 3-2 displays the scatter plots
between the-three-explanatory—variables(P..qPo—and—Tag)-and-water supply reliability (ps) at the sub-basin 3001 and
corresponding changes in Paq, P, and T, relative to 1996-2015. eeHected-from-343-sets-of-the-sequential-optimizations:
We preliminarily checked statistical significance of the explanatory variables using the linear-multipleregressionmultiple
linear regressions. The changes in P,,4 and T,,, Was-were of very high significance the-mest-significant-to explain-variation

of the p; values (p-values < 10™°)followed-by-T.,, (p-value-<-107%), whereas the change in P, was insignificant ef-a-low

significanee-below-5%-level-(p-value = 0.28744). Fhis-impliesThis indicates that the bi-decadal water supply reliability is
generally determined by variations of the mean -tetal-precipitation and the-mean-temperature for a bi-decadal period. Though
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higher precipitation variability (P.,) could generate more direct runoff across the river basinindicates—more—intensified
rainfall-events-generating-larger-direct-runoff, storage capacities of the agricultural reservoirs and the-dams seem to dampen
nullify the effeets-impacts of P, changes on the variation of water supply reliability.p.— The preliminary regression analysis
led us to an-indication-a_hypothesis that the-two-explanatory-variables-changes in P,y and T, could sufficiently capture the
variation of water supply perfermanee-reliabilities across the demand-nedesriver basin.

Fheinearregression-between{(P.. g Fav)-and-the-p-values-can-show-responses-of-a-system-performance-to-climatic-stresses:
Figure 4a-3a illustrates the regression function surface-between the p; values and changes in P, and T,,q changes-relative-to
1996-2015-(R? = 0.900.93), on which the collection of 50 GCM projections was overlaid. AH-Most of the 50 GCMs expected
that ps at the sub-basin 3001 would be greater than 0.95 for 2020-2039. This type of response surfaces between expected

performance and hypothetical climatic stresses have been commonly used in the decision-centric bottem-up-assessments
(e.g., Brown et al., 2012; Whateley et al., 2014; Turner et al., 2014). Figure 3c indicate that p at the sub-basin 3001could be

less than 0.95, if P,,, decreases by 30% approximately. The p values varied significantly even with zero decrease in Pqq,

indicating that there might be the risk of unsatisfactory supply performance even with no changes in P,yq.

The risk of p, < 0.95 could be evaluated by the logistic surface shown in Figure 3b. The sigmoid functions fitted to binary

outcomes categorized against the threshold of py > 0.95 (Figure 3d) could provide approximate probabilities of p, > 0.95

(hereafter referred to as ms) at the sub-basin 3001. mes declined with rising temperatures, since water availability was

reduced by evaporation losses.-On-the

values-for the-sub-basin-3001 (MecFaddenR*=0.84)- The & 505 Values indicated by Fhe-the 50 individual-GCMs predicted-the
prebabﬂﬁy—ef—p >—0—95—(hereafter—refe#ed—&e—as—ns%)—wﬁh—a~ranqed between 74 and 99%Fange—ef—18-99% for 2020-2039.-A

projections— It should be noted that the climatic bound for pg = 0.95 >-0-95= in-the-ordinary-respense-surface-(dotted-dashed

lines in Figure 43a and b) has the risk of p; < 0.95 at 40-60% of chances on the logistic surfaces. It seems that there still exist

considerable risks of unsatisfactory performances on the zone of satisfactory performance in Figure 3a. eeﬁespend&te@ﬁly
AEEEL e

Likewise, Foreach-demand-node—we developed-fitted the logisticrespense—funetionssigmoid functions to ef-the binary
outcomes against the threshold of ps=-> 0.95 for the other sub-basins.-using-the-segquential-optimizationresults,-and-found
the-climatic-bounds-at-which-7,5-was-95%- Figure 5-4 displays shews-the climatic bounds at which mes = 95% for each sub-

basin.ef#gs——=95%for-the-al-demand-nodestoegether: The sub-basin 3001 was of the highest bound among the 14 sub-

basins, indicating that the uppermost sub-basin is the most vulnerable to changes in P, and T,,. 15 GCMs were located
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below the climate boundary of the sub-basin 3001. On the contrary, the boundary of the sub-basin 3012 was the lowest. For

every GCM projections, mgs at the sub-basin 3012 was larger than 99%. The sub-basins with limited connections to the

upper sub-basins tend to have higher climatic bounds of nss = 95%. The lower sub-basins receiving streamflow generated by

the upper sub-basins were likely to withstand stronger climate stresses, even though they have relatively large agricultural

demands.

from—the—optimizations—and—the—givennaturalflowestimates—We compared the modelled flows at the 7 locations of

instreamflow against the minimum requirements, and evaluated the environmental reliabilities (i.e., pe) at each location.

Figure 6-5 shows the box plots of p, values at the seven locations in response to the 343-539 climate perturbations. While p,
values at all the locations decreased as climate became drier, the location E was seems-to-be-the most vulnerable. Even with
no changes in P,q and T, the outflows from the sub-basin 3011 were often less than the minimum requirement, implying
that ecosystems near the location E might be currently undermined by the large agricultural and M&I demands at the sub-
basin 3011. If P, was-declineddecreased by 20% and T, rose by 3°C, p, at the location E would fall below 0.5. On the
other hand, streamflow at the location D perfectly satisfied the minimum-instreamflow requirement under the same stress.
Despite the second-largest M&I demands at the sub-basin 3009, water transfers from the two large dams could deliver
sufficient water supplies. 65% of the water supplies for M&I demand was supposed to return to the stream network and
became streamflow to meet the instream-flow requirement at the location D. Although both sub-basins 3009 and 3011 have
limited geomorphological connectivity to the upper sub-basins, their demand components and linkages to the two large dams
made the significant difference between their p, values.

We developed the logistic response surfaces with binary outcomes against_the threshold of p, => 0.70 at which the

instreamflow requirement at the location E were satisfied in the optimization model under no climate stresses (i.e., no
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2015)- Figure 7-6 displays the climatic bounds at which the probability of p,> 0.70 (hereafter referred t0 as merq)- is 95% for
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all the locations requiring instreamflow.(hereafterreferred-te-as.0) As expected-from-Figure-6, the bound for the location E

was the highest, and the climate zone for me7o > 95% sensitively declines with rising T,y,. The bound for mes = 95% at the

sub-basin 3001 (erange-black dashed line) was below the bounds for the locations E-aré—F. The human-demand-only
operations would increase the risks of ecosystem degradation near the locations E-and—F if climate becomes drieralters
toward-drier-conditions. The environmental risks at the locations E ard-F-seem to be more sensitive to rising T,y than the

water supply risk at the sub-basin 3001. Fhe-50-GCM-projectionsfor2020-2039-predicted-that .ot the-location-E-weuld
drop-by-32%-relative-t0-1995-2015-Only 6-5 out of the 50 GCMs for 2020-2039 (3+210%) indicate w70 > 95% at the location

E.

4.3 Consideration of ing-the-instream-flowsthe instreamflow into water management

From the assessments with the logistic respense-surfaces and the GCM projections, the environmental risk at the location E
for—2020-2039-was likely to become an issue for 2020-2039due—to—chmate—change. As an adaptation strategy, the
instreamflow -Flews-could be considered in water management to be balanced between water supply and environmental risks.
We modelled this-seenarie-this management option by including the ervirenmentat-instreamflow requirement at the location
E in the objective function ferof the water allocation modelthe-seguential-optimizations as:

XDi-XSi _ XVi-XGi + WQmin,E—QE (4

Minimize
XD; %G Qmin,E

where, Qmine and Qg are the instream-flow requirement and the-streamflowflow at the location E, respectively. w is a weight

representing the-relative importance of the instreamflow in water management.flew-deficieney-against-the-environmental

regquirerent: While the minimum—instream—flow_requirement at the location E could be treated as a constraint for

optimizations, this approach may lead to no optimal solutions under severe climate stresses. Hence, it would be better to
consider the epvironmental-instreamflow requirement in the objective function for the stress testsvarying-climate-stresses.

Through trial and error experiments with the 343-539 climate perturbations, we found that p, at the location E could
substantialhy-considerably increase with a smali-tiny w value. The sequential optimizations with w=0.01 allowed us to have a
fairly improved p, value at the location E._However, we found that the improved ecological reliability at the location E was

by substantial reduction in water supply reliability at the sub-basin 3002. Figure 7 illustrates the logistic models for water

supply at the sub-basin 3002 and the instreamflow requirement at the location E under the two operation options applied to
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the case study. The first operation was only considering the given agricultural and M&I demands (O;), whereas the deficit

against the instreamflow requirement was considered in the second option (O;). By changing the operation objective from O,

supply was found even with increasing P, under O,. Indeed, the water supply performance became much more sensitive to
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Tavg_changes. Conversely, the risk of unsatisfactory ecological reliability at the location E substantially declined. This is

because the optimization model did not increase discharge from the sub-basin 3011 for the instreamflow requirement due to

the high agricultural demands. Instead, the model forced to increase outflows from the Yongdam dam to meet the

agricultural demands at the sub-basins 3012 and 3014 and the instreamflow at the location E. It was inevitable to have

deficient water supplies in the sub-basin 3002 with relatively small demands even under optimized water allocations. In

other words, minimizing total water deficiency of the entire basin may force the local water deficit in the sub-basin 3002.

4.4 Assessing the management options with the EEDC framework

The two operation options applied in the case study were assessed with the logistic surfaces for the all the sub-basins and the

instreamflow locations simultaneously (Figure 8). Table A2 summarizes all the logistic regressions applied in the case study.

We simply used the boundaries of mss = 95% and merq = 95% for the assessment. With the logistic surfaces, the system

robustness to climate change could be measured in the same manner proposed in the original EEDC framework (Poff et al.,

2016).

-By comparing

the middle panels_in Figure 8, it is indicated that considering the minimum—instreamflow in the objective function
significantly lowered the climatic bound of n.;o = 95% at the location E, thereby widening the climatic zone within which all
the locations mutually satisfy me;o > 95%. However, in trade-off, the bound of ms = 95% for the sub-basin 3002 moved
upward, narrowing the climatic zone mutually satisfying mss > 95% for all the demand nodes. Overall, the climatic zone
mutually satisfying mss > 95% and me;o > 95% for all the sub-basins and instreamflow locations sub-eempenents—was

expected to decrease when the minimum-instream-flow _requirement at the location E was considered. Based on the reduced
reduetion-in-the-mutual climate zone, considering the ervironmental-instreamflow requirement in operations would ray-be
unattractive-slightly decrease overall system robustness to climate stresses.
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In summary, Fhe-impact-assessments-using-the-logistic-bounds-show-that-water supply reliabilities at the sub-basins 3001
and 3002 would be the most vulnerable to climate stresses-fer-watersupphy. The highest environmental risks from climate

change would be found at the locations E-aré-F in terms of -against-the instream-flow requirements. Fhe-box-plots-in-Figure
9-display 7.5 and-s.o-expected-by-the 50-GCM-colections-at-the-two-sub-basins-and-the two-locations. The-50-GCM

the-vieinity-of-the-lecation-E-To reduce the environmental risk at the location E, en-the-other-hand-fairly increasing risks of
ps < 0.95 at the sub-basin 3002 should be accepted. Only 4 out of the 50 GCMs indicated mss > 0.95.

5 Discussion and conclusions

5.1 Use of theFhe- logistic respense-surfaces for climat change impact assessment-ef-elimate-change
The erdinary-response surfaces allowed users to estimate the-expected performances of hydrologic systems in response to

climate stressors, providing convenience to promptly evaluate many GCM projections (e.g., Steinschneider-Turner et al.,

2015a2014; Brown et al., 2012; Prudhomme et al., 2010). Nevertheless, the-response-surface-of performance—aetriesthey

could —might-provide insufficient probabilistic information needed for decision-making processes. A possible approach to

evaluating the risk of unsatisfactory performances was to count the GCM projections satisfying a pre-defined threshold (e.g..,

Moursi et al., 2017; Brown et al., 2012).

of-system-performance: Even in the case that all the GCMs projections-in users’ hand fall within the desirable-favourable

climate zone on the response surfacesabeve—the—thresheld, it does not guarantee weuld—not—imply-that future system

performance wold-will be suecessive-satisfactory at 100% confidence.

The logistic response surface could supplement the weakness of the erdinary-climate-response surfacesfunetion. It enables to
directly evaluate the risk of estimate—the—probability—of-successive—performance—system failures from a single climate
projection; it b S } i i ior. The
probability estimates from the logistic surfaces respense-function-can play a role in risk-based decision-making particularly

when an adaptive solution sheuld-beis targeted at a particular climate prediction (e.g., resizing infrastructures for a reference

25
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climate condition)._The logistic surface developed for the adaptive solution may directly provide the risk of system failures

under the climate prediction.

Hence, we attempted to comparatively evaluate the w5 and 770 values from the logistic surfaces using a typical stochastic

resampling with the same system models. For the validation, three arbitrary perturbations were selected as (-37.1%, +2.5°C),
(-27.7%, +1.3°C), (-13.6%, +0.6°C) for P, and T, respectively Then, 100 sets of 20-year-long weather series were

generated for each perturbation using the stochastic weather generator, and the system models were forced by the generated

weather series. By counting the cases satisfying ps > 0.95 or p, > 0.70 among the 100 simulations, the probability estimates

at the sub-basins and instreamflow locations were obtained for each perturbation. Figure 9 shows the 1:1 plot comparing the

probability estimates gained from the stochastic sampling and the logistic regressions for the three perturbations. The

probability estimates from the two approaches agreed approximately. The stochastic sampling was to quantify the impacts of

internal climate variability within a bi-decadal period; however, it may require unacceptable computational costs. 300 sets of

stress tests were necessary only for the three perturbations. The 1:1 plot in Figure 9 may imply that the impacts of internal

climate variability could be approximately captured by the logistic regression that described collective behaviours of the 539

stress tests. If affordable, a more rigorous validation may be possible with a higher number of stochastic weather generations

with additional perturbations.

5.2 Eco-engineering decision scaling with the logistic ehmate-boundssurfaces

The EEDC framework ece-engineering-deeision-sealing-(Poff et al., 2016) integrates the responsive behaviours of multiple
performance metrics into a single climate space. By measuring the size of the climate zone mutually satisfying the multiple
criteria, decision-makers can perceive the robustness of system performance with conflicting interests. The decision-makers
may select solutions that can widen the mutual climate zone for robust adaptations to climate change. Poff et al. (2016)
provided a prominent example that assessed adaptation costs and potential environmental risks with this framework in order
to find the most robust strategies in a dam site to climate change. In this study, we showed the advantage of this framework
to explore performances at many sub-components of a large system in a single climate domain.

One difference between this study and Poff et al. (2016) is that we used the logistic climate bounds to measure the size of the
mutual climate zone satisfying the multiple probabilistic thresholds. Since Fhe-the original EEDC framework eee-
engineering-decision-seating-was focused on the-expected system-performances,-since-the-erdinary-response-surfaces-were
used—Then, a question can be raised as to “what if no climate projections fall within the mutual climate zone?” In this case,
stakeholders may perceive unacceptable risks even though the-an adaptive solutions can enlarge the mutual climate zone for

multiple criteria. By its nature, the EEDC considering multiple criteria should have a narrower acceptable climate zone than

a single-criterion assessment. On-the—ether—hand,—H-If the logistic response surfaces were employed instead, users can
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Fhelogistic—eco-engineering—decision—seating—ean—simultaneously measure shew-how much system robustness can be

obtained from an adaptive solution and how much risks of system non-successive outcomes are indicated by climate

projections. Henee,—The logistic surfaces may be useful to support fer-risk-based decision-making processes;—the-logistic

5.3 Limitations

There are several caveats in this-the case study. First, the monthly operations to balance between water scarcity and storages
might be only a part of operators’ interests. The stakeholders in practice may have conflicting interests (e.g., reducing flood
risks vs. increasing water storage) rather than taking actions toward the single objective. Thus, this study should be deemed a
special case focused on the maximum supply reliability under the given operational objectives. A validated simulation model

for water allocation will be needed for a more realistic application.

FinalySecond, it was unavoidable for us to use many simplifications and assumptions for modelling optimal water
managements in the study river basin with complicated features (e.g., monthly dam operations and simple temperature
perturbations). Given the substantial uncertainty sources associated with system modelsin-the-hydrelogie-rredels, the risks of
system failures might be greater than our assessments. The logistic surfaces in this work would only consider the impacts of

internal climatic variability on system performances.

5.4 Conclusions

In this study, we proposed to incorporate the logistic regression into a decision-centric framework for probabilistic impact

assessments. The proposed approach requires no more stress tests than typical response-surface-based assessments, albeit

some validation is needed. Thus, it may be an efficient method to support risk-based decision making processes. assessee

engineering-decision-seating-framewsork-Following conclusions are worth emphasizing:
(1) The logistic respense—surfaces can provide convenience to explore potential risks of system failures wnsatisfactory

outcomes-when against-a pre-defined performance-threshold is availablein-response-to-elimaticstresses, while the erdinary
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response surface can show system performance-erty. On the logistic surfaces, the risk of system failures could be directly
indicated by individual GCMs.
(2) Within the Fhe-eco-engineering decision scaling framework, the logistic surfaces can be flexibly used to evaluate

robustness of hydrological systems to climate stressors. Multi-faceted stakeholders’ interests can be considered in a domain
of probability.

(43) The case study for the Geum River Basin in South Korea provides an assessment that watersupphy-performance—for

020-2039-seems—to—be—sufficient—against-the—water—demands—projected—to—2030.—However—the human-demand-only
operations would make the eco-systems increasingly vulnerable. To consider the instream-flow requirement in operations for
2020-2039, risks of insufficient water supply should increase at the upper sub-basins with small water demands.

Acknowledgement

This study was supported by the APEC Climate Center. We send special thanks are-very-thankful-for the water demand data
provided by the team leading for the national water resources plan at the Korea Institute of Civil Engineering and Building
Technology. The GCMs downscaled by Dr. Hyung-1l Eum at the Alberta Environment and Parks are greatly appreciated. All
authors declare no conflict of interests. The data required to reproduce the results are available upon request from the authors
(d.kim@apcc21.org, sjchoi@kict.re.kr).

References

28



10

15

20

25

30

29



10

15

20

25

30

30



10

15

20

25

30




10

15

20

25

30

32



10

15

20

25

30

Apipattanavis, S., Podesta, G., Rajagopalan, B., and Katz, R. W.: A semiparametric multivariate and multisite weather

generator, Water Resour. Res., 43, W11401, https://doi.org/10.1029/2006WR005714., 2007

Bae, D.-H., Jung, |.-W., and Chang, H: Long-term trend of precipitation and runoff in Korean river basins, Hydrol. Process.,
22, 2644-2656, 2008.

Brown, C. M., Lund, J. R., Cai, X., Reed, P. M., Zagona, E. A., Ostfeld, A., Hall, J., Characklis, G. W., Yu, W., and Brekke,
L.: The future of water resources systems analysis: Toward a scientific framework for sustainable water management, Water
Resour. Res., 51, 6110-6124, https://doi.org/10.1002/2015WR017114, 2015.

Brown, C., and Wilby, R. L.: An alternate approach to assessing climate risks. Eos Trans. AGU, 93(41), 401, 2012.

Brown, C., Ghile, Y., Laverty, M., and Li, K.: Decision scaling: linking bottom-up vulnerability analysis with climate
projections in the water sector. Water Resour. Res., W09537, https://doi.org/10.1029/2011WR011212, 2012.

Biirger, G., Sobie, S. R., Cannon, A. J., Werner, A. T., and Murdock, T. Q.: Downscaling extremes: an intercomparison of
multiple methods for future climate. J. Clim., 26(10), 3429-3449, https://doi.org/10.1175/JCLI-D-12-00249.1, 2013.
Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias correction of GCM precipitation by quantile mapping: How well do

methods preserve changes in quantiles and extremes?, J. Clim. 28, 6938-6959, 2015.

Cosgrove, W. J., and Loucks, D. P.: Water management: Current and future challenges and research directions, Water
Resour. Res., 51, 4823-4839, https://doi.org/10.1002/2014WR016869, 2015.
Culley. S., Noble, S., Yates, A., Timbs, M., Westra, S., Maier, H. R., Giuliani, M., and Castelletti, A.: A bottom-up approach

to_identifying the maximum operational adaptive capacity of water resource systems to a changing climate, Water Resour.
Res., 52, 6751-6768, https://doi.org/10.1002/2015WR018253, 2016.

Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., Curtis, J., and Pasteris, P. P.:
Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States,
Int. J. Climatol., 28, 2031-2064, https://doi.org/10.1002/joc.1688, 2008.

33



10

15

20

25

30

Demirel, M. C., Booij, M. J., and Hoekstra, A. Y.: The skill of seasonal ensemble low-flow forecasts in the Moselle River
for three different hydrological models, Hydrol. Earth Syst. Sci., 19, 275-291, https://doi.org/10.5194/hess-19-275-2015,
2015.

Deser, C., Phillips, A., Bourdette, V., and Teng, H.: Uncertainty in climate change projections: the role of internal variability.
Clim. Dyn., 38, 527-546, doi:10.1007/s00382-010-0977-x., 2012.

Dufresne, J.-L., and Bony, S.: An assessment of the primary sources of spread of global warming estimates from coupled

atmosphere-ocean models, J. Clim., 21, 5135-5144, 2008.

Eum, H.-1., and Cannon, A. J.: Intercomparison of projected changes in climate extremes for South Korea: Application of
trend preserving statistical downscaling methods to the CMIP5 ensemble. Int. J. Climatol., 37(8), 3381-3397, 2017.

Eum, H.-1., and Simonovic, S. P.: Integrated reservoir management system for adaptation to climate change: The Nakdong
River Basin in Korea, Water Resour. Manage., 24, 3397-3417, 2010.
Georgakakos, A. P., Yao, H., Kistenmacher, M., Georgakakos, K. P., Graham, N. E., Cheng, F.-Y., Spencer, C., and Shamir

E.: Value of adaptive water resources management in Northern California under climatic variability and change: Reservoir
management, J. Hydrol., 412-413, 34-46, https://doi.org/ 10.1016/j.jhydrol.2011.04.038, 2012.
Haasnoot, M., Kwakkel, J. H., Walker, W. E., and ter Maat, J.: Dynamic adaptive policy pathways: A method for crafting

robust decisions for a deeply uncertain world, Glob. Environ. Change, 23, 485-498, 2013.

Hadka, D., Herman, J., Reed, P., and Keller, K.: An open source framework for many-objective robust decision making
Environ. Model. Softw., 74, 114-129, 2015.

Hwang, S. and Graham, W. D.: Development and comparative evaluation of a stochastic analog method to downscale daily
GCM precipitation, Hydrol. Earth Syst. Sci., 17, 4481-4502, https:/doi.org/10.5194/hess-17-4481-2013, 2013.

Jowett, I. G.: Instream flow methods: a comparison of approaches. Regul. Rivers: Res. Mgmt., 13, 115-127, 1997.

Jung, Y., and Eum, H.-I.: Application of a statistical interpolation method to correct extreme values in high-resolution
gridded climate variables, J. Clim. Chang. Res., 6, 331-334, 2015.

Kay, A. L., Crooks, S. M., and Reynard, N. S.: Using response surfaces to estimate impacts of climate change on flood peaks:
assessment of uncertainty, Hydrol. Process., 28, 5273-5287, https://doi.org/ 10.1002/hyp.10000, 2014.

Kim,.D., Chun, J. A., and Aikins, C. M.: An hourly-scale scenario-neutral flood risk assessment in a mesoscale catchment
under climate change, Hydrol. Process., 32, 3416-3430, https://doi.org/10.1002/hyp.13273, 2018.

Kim, D., Jung, I. W., and Chun, J. A.: A comparative assessment of rainfall-runoff modelling against regional flow duration
curves for ungauged catchments, Hydrol. Earth Syst. Sci., 21, 5647-5661, https://doi.org/10.5194/hess-21-5647-2017, 2017.

Korean Meteorological Administration (KMA) Climatological normals of Korea (1981-2010). Publ. 11-1360000-000077-14,
Korea Meteorological Administration, 678 pp. [Available online at http://www.kma.go.kr/down/Climatological_2010.pdf.],
2011.

Korteling, B., Dessai, S., and Kapelan, Z.: Using information-gap decision theory for water resources planning under Severe

Uncertainty, Water Resour. Manage., 27, 1149-117, https://doi.org/10.1007/s11269-012-0164-4, 2013.

34



10

15

20

25

30

Kwon, H.-H., Lall, U., and Khalil, A. F.: Stochastic simulation model for nonstationary time series using an autoregressive

wavelet decomposition: Applications to rainfall and temperature, Water Resour. Res., 43, \W05407,
https://doi.org/10.1029/2006WR005258, 2007.
Lampert, R. J., and Groves, D. G.: Identifying and evaluating robust adaptive policy responses to climate change for water

management agencies in the American west, Technol. Forecasting Soc. Change, 77, 960-974, 2010.

Ministry of Construction and Transportation (MOCT): National Water Resources Plan (Water Vision 2020), Daejeon, South
Korea, 2000.

Ministry of Construction and Transportation (MOCT): National Water Resources Plan (2006-2020), Daejeon, South Korea,
2006.

Ministry of Land, Transport and Maritime Affairs (MLTM): National Water Resources Plan (2011-2020), Daejeon, South
Korea, 2011.

Ministry of Land, Infrastructure and Transport (MOLIT): National Water Resources Plan (2001-2020) — 3rd revision (2016-
2020), 2016.

Moursi, H., Kim, D., and Kaluarachchi, J. J.: A probabilistic assessment of agricultural waer scarcity in a semi-arid and

snowmelt-dominated river basin under climate change, Agric. Water Manage., 193, 142-152, 2017.

Oudin, L., Kay, A., Andréassian, V., and Perrin, C.: Are seemingly physically similar catchments truly hydrologically
similar?, Water Resour. Res., 46, W11558, https://doi.org/10.1029/2009WR008887., 2010.
Oudin, L., Andréassian, V., Perrin, C., Michel, C., and Le Moine, N.: Spatial proximity, physical similarity, regression and

ungaged catchments: a comparison between of regionalization approaches based on 913 French catchments, Water Resour.
Res., 44, W03413, https://doi.org/10.1029/2007WR006240, 2008.

Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow simulation, J. Hydrol.,
279, 275-289, 2003.

Perrin, C., Oudin, L., Andreassian, V., Rojas-Serna, C., Michel, C., and Mathevet, T.: Impact of limited streamflow data on

the efficiency and the parameters of rainfall-runoff models, Hydrolog. Sci. J., 52, 131-151,
https://doi.org/10.1623/hysj.52.1.131, 2010.

Poff, N. L., Brown, C. M., Grantham, T. E., Matthews, J. H., Palmer, M. A., Spence, C. M., Wilby, R. L., Haasnoot, M.,
Mendoza, G. F., Dominigue, K. C., and Baeza, A.: Sustainable water management under future uncertainty with eco-
engineering decision making, Nature Clim. Change, 6, 25-34. https://doi.org/10.1038/nclimate2765, 2016.

Prudhomme, C., Wilby, R. L., Crooks, S., Kay, A. L., and Reynard, N. S.: Scenario-neutral approach to climate change
impact studies: Application to flood risk, J. Hydrol., 390, 198-209. https://doi.org/10.1016/j.jhydrol.2010.06.043., 2010.

Rosenberg, D. E.: Blended near-optimal alternative generation, visualization, and interaction for water resources decision
making, Water Resour. Res., 51, 20472063, https://doi.org/10.1002/2013WR014667., 2015.

Schlef, K. E., Steinschneider, S., and Brown, C. M.: Spatiotemporal impacts of climate and demand on water supply in the
Apalachicola-Chattahoochee-Flint Basin, J. Water Resour. Plann. Manage., 144, 05017020, 2017.

35



10

15

20

25

30

Stainforth, D. A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame, D. J., Kettleborough, J. A., Knight, S., Martin, A.,
Murphy, J. M., Piani, C., Sexton, D., Smith, L. A., Spicer, R. A., Thorpe, A. J., and Allen, M.R.: Uncertainty in predictions
of the climate response to rising levels of greenhouse gases, Nature, 433, 403-406, 2005.

Steinschneider, S., and Brown, C: A semiparametric multivariate, multisite weather generator with low-frequency variability
for use in climate risk assessments, Water Resour. Res., 49, 7205-7220. https://doi.org/10.1002/wrcr.20528, 2013.
Steinschneider, S., and Brown, C.: Dynamic reservoir management with real-option risk hedging as a robust adaptation to
nonstationary climate, Water Resour. Res. 48, W11525. https://doi.org/10.1029/2011WR011318, 2012.

Steinschneider, S., McCrary, R., Wi, S., Mulligan, K., Mearns, L. O., and Brown, C.: Expanded decision-scaling framework

to select robust long-term water-system plans under hydroclimatic uncertainties, J. Water Resour. Plann. Manage., 141,
04015023-1, 2015a.

Steinschneider, S., Wi, S., and Brown, C.: The integrated effects of climate and hydrologic uncertainty on future flood risk
assessments, Hydrol. Process., 29, 2823-2839. https://doi.org/10.1002/hyp.10409, 2015b.

Stevens, B. and Bony, S.: What are climate models missing?, Science, 340, 1053-1054, 2013.

Turner, S. W. D., Marlow, D., Ekstrom, M., Rhodes, B. G., Kularathna, U., and Jeffrey, P. J.: Linking climate projections to

performance: A vield-based decision scaling assessment of a large urban water resources system, Water Resour. Res., 50,
3553-3567, https://doi.org/10.1002/2013WR015156, 2014.
Weaver, C. P., Lempert, R. J., Brown, C., Hall, J. A., Revell, D., and Sarewitz, D.: Improving the contribution of climate

model information to decision making: the value and demands of robust decision frameworks, WIREs Clim. Change, 4: 39—
60. https://doi.org/10.1002/wcc.202, 2013.

Whateley, S., and Brown, C.: Assessing the relative effects of emissions, climate means, and variability on large water
supply systems, Geophys. Res. Lett., 43, 11329-11338, https://doi.org/10.1002/2016GL070241, 2016

Whateley, S., Steinschneider, S., and Brown, C.: A climate change range-based method for estimating robustness for water
resources supply, Water Resour. Res. 50, 8944-8961, https://doi.org/10.1002/WR015956, 2014.

Whateley, S., Steinschneider, S., and Brown, C.: Selecting stochastic climate realizations to efficiently explore a wide range

of climate risk to water resource systems, J. Water Resour. Plann. Manage., 142, 06016002, 2016.

Wilby, R. L. and Dessai, S.: Robust adaptation to climate change, Weather, 65: 180-185, https://doi.org/10.1002/wea.543,
2010.

Wilks, D.: Multisite generalization of a daily stochastic precipitation generation model, J. Hydrol., 210, 178-191, 1998.

Woodward, M. , Kapelan, Z. and Gouldby, B.: Adaptive flood risk management under climate change uncertainty using real
options and optimization, Risk Analysis, 34, 75-92, https://doi.org/10.1111/risa.12088, 2014.

Xu, W., Zhao, J., Zhao, T., and Wang, Z: Adaptive reservoir operation model incorporating nonstationary inflow prediction,
J. Water Resour. Plann. Manage., 141, 04014099, 2015.

Yan, D., Werners, S. E., Ludwig, F., and Huang, H.Q.: Hydrological response to climate change: the Pearl River, China
under different RCP scenarios, J. Hydrol. Reg. Stud., 4, 228-245, 2015.

36



Zhang, Y., Vaze, J., Chiew, F. H. S., and Li, M.: Comparing flow duration curve and rainfall-runoff modelling for predicting
daily runoff in ungauged catchments, J. Hydrol., 525, 72-86, 2015

Zhang, Y., You, Q., Chen, C., and Ge, J.: Impacts of climate change on streamflows under RCP scenarios. A case study in
Xin River Basin, China, Atmos. Res. 178, 521-534, 2016.

37



Appendix 1. List of trformation-ef-the General Circulation Models and summary of the logistic regressionseeHected
fromthe CMHPS archive.

Table Al. List of the selected GCMs for the impact assessment under the RCP 4.5 and 8.5 scenarios.

Resolution
No. Model Name Producing Institution
(degree)

1 CMCC-CM 0.750%0.748 Centro Euro-Mediterraneo per | Cambiamenti Climatici
2 CCSM4 1.250%0.942
3 CESM1-BGC 1.250%0.942 National Center for Atmospheric Research
4 CESM1-CAM5 1.250%x0.942
5 MRI-CGCM3 1.125%x1.122 Meteorological Research Institute
6 CNRM-CM5 1.406x1.401 Centre National de Recherches Meteorologiques
7 HadGEM2-AO 1.875x1.250
8 HadGEM2-CC 1.875x1.250 Met Office Hadley Centre
9 HadGEM2-ES 1.875x1.250
10 INM-CM4 2.000x1.500 Institute for Numerical Mathematics
11 IPSL-CM5A-MR 2.500x1.268 Institut Pierre-Simon Laplace
12 MPI-ESM-LR 1.875x1.865

Max Planck Institute for Meteorology (MP1-M)
13 MPI-ESM-MR 1.875x1.865
14 FGOALS-s2 2.813x1.659 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences
15 NorESM1-M 2.500%1.895 Norwegian Climate Centre
16 GFDL-ESM2G 2.500x2.023

Geophysical Fluid Dynamics Laboratory
17 GFDL-ESM2M 2.500%2.023
18 BCC-CSM1-1 2.813x2.791

Beijing Climate Center, China Meteorological Administration
19 BCC-CSM1-1-M 1.125%x1.122
20 IPSL-CM5A-LR 3.750x1.895

Institut Pierre-Simon Laplace
21 IPSL-CM5B-LR 3.750%x1.895
22 MIROC5 1.406x1.401 Atmosphere and Ocean Research Institute, National Institute for
23 MIROC-ESM-CHEM 2.813x2.791 Environmental Studies, and Japan Agency for Marine-Earth Science and
24 MIROC-ESM 2.813x2.791 Technology
25 CanESM2 2.813x2.791 Canadian Centre for Climate Modelling and Analysis

38



Table A2. The summary of the logistic regressions. The explanatory variables were statistically significant (p-values < 10%)

for the all regression mo

dels. R? is the McFadden pseudo R

0;: Human-demand-only operation

O,: Considering the instreamflow at E

Regression coefficients R? Regression coefficients R?
m &avn (%). Ma\/q @ - m A_Pavq (%l A_Tavq @ -
3001 4.38 0.245 -0.630 0.825 3.55 0.234 -0.529 0.813
3002 14.5 0.401 -0.900 0.878 1.86 0.189 -0.883 0.752
3003 12.8 0.368 -0.776 0.869 10.3 0.312 -0.605 0.850
3004 141 0.388 -0.872 0.873 13.2 0.363 -0.760 0.865
3005 12.3 0.405 -0.724 0.887 12.9 0.426 -0.806 0.892
3006 16.8 0.430 -0.922 0.879 136 0.354 -0.812 0.858
Sub-basin 3007 8.97 0.338 -0.866 0.874 7.42 0.295 -0.812 0.858
o 3008 21.0 0.528 -1.03 0.898 18.2 0.465 -0.954 0.887
3009 103 0.302 -0.527 0.842 103 0.302 -0.527 0.842
3010 23.6 0.507 -0.654 0.894 22.5 0.470 -0.761 0.883
3011 11.2 0.383 -0.736 0.882 11.9 0.410 -0.765 0.889
3012 24.0 0.493 -0.825 0.885 225 0.458 -0.790 0.875
3013 114 0.292 -0.396 0.826 11.0 0.284 -0.384 0.821
3014 212 0.439 -0.690 0.871 21.9 0.448 -0.729 0.872
Instreamflow Cc 6.43 0.370 -1.25 0.882 6.51 0.399 -1.31 0.889
" locations D 259 0.445 -0.638 0.800 211 0.402 -0.49 0.827
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Table 1: Annual agricultural and M&I demands per demand node and the minimum instream flows from the sub-basins
corresponding to the seven locations.

Mean angual Agricultural M&lI Total storage Instream flow
1D No. flow demand demand capacity requirement
(Mm® yr') (Mm® yr') (Mm® yr?) (Mm®) (Mm® month™)
3001 639.6 50.9 7.6 29.7
3002 97.3 4.0 0.4 1.0
3003 254.5 131 2.4 5.0
3004 498.6 50.5 15.8 10.1 8.9 (A)
3005 382.8 423 5.1 14.9 6.6 (B)
3006 82.6 9.2 3.3 6.8
Sub-basin 3007 384.0 74.2 6.1 22,0 7.4 (C)
node 3008 473.6 36.9 34.4 7.2
3009 465.8 315 208.5 7.0 6.7 (D)
3010 92.2 19.3 16.4 0.2 20.8 (E)
3011 1145.0 356.6 296.2 100.9
3012 1437.2 367.9 75.1 38.4 459 (F)
3013 506.1 193.2 26.4 47.4 6.4 (G)
3014 340.7 215.1 10.3 29.6
OoD1 20.6
Outside oD 2 421
demand
node oD3 5.1
oD 4 4.0
Total 6,800.0 1464.7 779.8 320.2

Natural runoff averaged over 20-year rainfall-runoff simulations with stochastic weather series containing zero climatic perturbations
(APgyq = 0%, AP, = 0%, AT, = 0%) relative to 1996-2015.
5

40



41




Daecheong on2
Dam__ ®
Wm
[T 3012 o003
: ——
B Agricultural Area [P cos
B urban area b ® O  subbasing
T Elevation (m) @  Outside demand sectors
o 5%
0 15 30km | Vv oams
1 > River links
Yellow Sea =3 River links requiring instream flows
- Artificial Links
w3 |nter-basin water transfer

Figure 12: Layout of the Geum River Basins (left) and the simplified node-and-link network for modelling water allocations (right).
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Figure 32: Scatter plots between the water supply reliability samplesfor-at the sub-basin 3001 and changes eerrespending-in (a)
Pavg: (b) Tayg, and (c) P, collected from the stress tests with-the-driven by the 343-539 sets of the-stochastically generated stress-
imposed weather series.
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Figure 43: (a) Response surface of psat the sub-basin 3011-te-changes+h-P,,and-F
probability of p > 0.95

(c) the scatter plot between p,and change in P,yq, (d) the binary

(b) logistic response surface of the < - [ Formatted: Left

is-greater than 0.95.
outcomes against the threshold of p. > 0.95 and the sigmoid functions for the probability of p, > 0.95. The empty and filled circles

[ Formatted: Not Superscript/ Subscript

overlaid on (a) and (b) are Fhered-arrows-indicate climatic-changeto-the-ensembleof
dashed lines_in (a) and (b) are the climatic bounds for the climatic threshold of p.=0.95
greater than 0.95.

46

the 50 GCM projections for 2020-2039. The
above which the expected p,

[ Formatted: Subscript

~would-be



47



40 — O O ORCP4.5
© © ORCP8.5

The entire basin
Sub-basin 3001

N
o
|

o ©®

———
M

Change in P, (%)
o
&

)
(<)
|

-40 —

I I I | |
0 1 2 3 4 ) 6
Change in T, (deg.C)

© © ©@RCP85
Mean change

20 - Sub-basin 3001

40 (5 o oRcPas ‘

Change in P, (%)
o
I %
(0]

(@]
e S a®
-20 — =—
oy — Sub-basin 3012
-40 — L

0.0 0.5 1.0 1.5 20 25
Change in T,,, (deg.C)

Figure 54: Climatic bounds for Prob[p.>0.95]=95% o =95%-for the 14 sub-basinseach-demand-node-and-the-entire-basin, on

which the 50 GCM _projections for 2020-2039 were superimposed.-Fhe-symbels-are-the-50-GCMs-projections,-and-thered-arrow
indicates climatic change to the ensemble of the GCMs for 2020-2039.
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Reliability for environmental flows
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Figure 65: Reliability against the instream flow requirements at the seven locations obtained from the 343-539 sequential
optimizations with stress-induced weather series. The blue, grey, and red lines connect the reliabilities at the seven locations under
the three representative climatic stresses.
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Water Supply at Sub-basin 3002 Instreamflow at Location E
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PROB [p, > 0.95] = 95% PROB [p, > 0.70] = 95% Mutual Zone
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