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We greatly appreciate valuable efforts of the referee 2. All the comments are sound
and constructive, and we believe that they will improve our texts and assessments in
the revision process. Specific responses are following as per comment.

General Comments: This manuscript describes a method of extending a bottom-up
climate risk assessment by using logistic regression to estimate the probability that a
water system will meet minimum performance criteria over a planning horizon based on
the values of climate variables. The method is demonstrated through a case study of
water management in the Geum River Basin in South Korea. The Geum River is host to
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two dams which are managed for water supply, flood control, and environmental flows.
The case study analyzes two alternative operating policies’ ability to meet both water
supply goals and instream flow requirements under a broad range of potential changes
in average temperature, average precipitation, and precipitation variability. It is inter-
esting to see the framework applied for multiple sub-basins within a larger system, and
important to acknowledge uncertainty that an operating policy will meet a performance
goal within specific climate scenarios. The text is poorly written and organized, with
many strangely used words that inhibit understanding. Key examples include “succes-
sive”, “sub-component”, and “risk of system failure,” which are applied in ways that are
not standard in the literature and never clearly defined. Many crucial details related to
the methods and motivation do not become clear until carefully examining the results
section. For example, I believed the logistic model was simply modeling the water sup-
ply/environmental flow reliability as a function of climate variables rather than the risk of
falling short of the reliability threshold until carefully examining the figures and results.
This was the main point of the manuscript, so it is critically important that it is imme-
diately apparent upon reading the abstract and within every part of the manuscript.
The text requires substantial rewording and re-organization to clearly summarize the
methodological contribution and motivation earlier in the text, better define scientific
notation, and ensure new words and concepts are defined clearly the first time they
are introduced. While the goal of the logistic model is a worthy one, it is not clear that
the framework has been well executed in the case study or that the novel technical con-
tribution bears sufficient relationship to the EEDS framework to be named for it. This
lack of clarity may be a symptom of the confused text. However, based on my under-
standing of the case study, the methods used to execute the case study are flawed in
several important ways. Further, the interpretation of results relies on questionable as-
sumptions related to the fitness of GCM projections for water system risk assessment.
Both the manuscript and analysis require major revisions.

–> The insufficient readability commented by the referee may be because we inad-
equately addressed the scientific meaning of the proposed combined framework in
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the introduction and methodology sections. We will more clearly address the EEDS
framework and potential challenges in stochastic uncertainty analyses. We will glob-
ally review the terminology used in our manuscript, and will improve its readability. Still,
the contribution of our work is to combine the logistic regression with the bottom-up ap-
proach (not limited to the EEDS) so that users can efficiently quantify the risk of system
failure. The value of the logistic regression in this work is to enable analyzers to effi-
ciently gauge the probability of system failure without a large number of realizations
for evaluating performance of a complex hydrologic system. We agree that internal
climatic variability over a time horizon can significantly contribute to performance of
hydrologic systems as shown in Whateley and Brown (2016). However, if we quantified
the uncertainty from climatic variability using many (or long) stochastic generations,
computational costs would not be small. When 100 random samplings are applied for
a single climatic perturbation, computational costs increase by 100 times (in our case,
it will become 343×100 tests). Although it is a simplified approach, the logistic regres-
sion makes it possible to gauge the risk of system failure in a collective manner using
a single weather series for each climatic perturbation. This is a main contribution of
our work. The bottom-right panel of Figure 4 shows the advantage of the logistic re-
gression clearly. With -25% or larger changes in Pavg approximately, the river system
is unlikely to satisfy the performance threshold (i.e., 100% of system failure). Between
-25% and 10% changes in Pavg, the system can be either satisfactory or unsatisfactory
(i.e., the risks of failure are between 100% and 0%). With +10% or greater changes in
Pavg, the system seems to perfectly satisfy the threshold (0% of system failures). The
number of failure (zero) decreases with increasing Pavg, while the number of success
(one) increases. Importantly, variations of the stochastic weathers are different from
one perturbation to another because of randomness given by the weather generator.
In other words, even under different climatic variabilities across the 343 perturbations,
it can be indicated that the risk of system failure declines with increasing Pavg. This
can be modeled by the theoretical logistic equation that draws a smooth line between
100% failure (zero) and 100% success (one). We are not arguing this simplification
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is perfect, but it can be efficient when quantifying the probability of system failures (or
success). If one uses two explanatory variables (e.g., Pavg and Tavg), he or she can
obtain the logistic surface of the probability of success such as the top-right panel of
Figure 4 without additional stress tests. This approach is theoretically similar to the
simple linear regression that approximates the variance of predicted values using the
residuals from diverse data points. A single data point has only one residual and thus
the variance of residuals cannot be obtained from it. However, a collection of residuals
from many data points enables to quantify the variance of the residuals. Likewise, one
outcome (i.e. 0 or 1) under a single climate perturbation does not allow us to quantify
the risk of failure, but a collection of outcomes under various climate conditions en-
ables it. We agree that many or long weather generations for one perturbation may
quantify the risk of failure too, but it is not the only approach for assessing associated
uncertainty. In revision, we can explain more clearly this contribution of our work. We
will address some disadvantages and challenges in a typical stochastic uncertainty
analysis and the bottom-up framework in the introduction. Then, we will describe the
EEDS more clearly and how to incorporate the logistic regression into the framework
in the methodology section. Thereafter, we will show the case study for Geum River
Basin. This reorganization may improve readability of the manuscript. And, discussion
and conclusions will be revised accordingly to highlight the scientific contribution of this
work.

Specific Comments: Logistic regression model: (1) Limited calibration set: It is my
understanding that the logistic model was calibrated from 434 binary values that cor-
respond to either water supply reliability or environmental flow reliability meeting a
threshold under 434 unique combinations of three climate variables. If my understand-
ing is correct, this would mean that there is one response (binary performance metric)
per climate scenario (this should be clarified in the manuscript if that is incorrect). This
is a very limited data set for analyzing risk of failure resulting from internal climate
variability, especially given that each scenario-specific stochastic trace was (a) only 20
years long, and (b) initially identical to every other weather sequence in the analysis
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that had then been perturbed from the original trace to match a unique combination
of average precipitation, average temperature, and precipitation coefficient of variation
using quantile mapping. To characterize the effects of internal variability on risk of fail-
ure over a planning period, it would be preferable to use the binary reliability outcomes
from many more stochastic realizations of weather sequences within each combina-
tion of climate variables. With a single stochastic trace perturbed into many climate
scenarios, the modelled risk of failure is likely to be driven entirely by the climate sce-
nario rather than the actual risk of missing a performance target under internal climate
variability, and furthermore heavily biased across the climate response function by the
single stochastic realization used to generate all climate scenarios. This seems to be
the opposite of the intentions described in the introduction.

–> We agree that the internal variability significantly affect variation of the performance
metrics. However, we disagree that multiple weather generations for each perturbation
are required for quantifying the risk of failure. The theory of linear regressions unnec-
essarily requires many Y values for a single X value. Rather, many pairs of (X, Y) are
needed to quantify the variance of residuals and the prediction intervals. Since the
weather generator bootstraps the observed weathers for each perturbation, the 343
sets of the 20-year-long weather series contain different internal variability each other.
In other words, the risk of failure can be obtained from diverse variability of the 343
weather series in a collective manner, not from a fixed one. It is true that long or many
weather generations can quantify the internal variability of a single climatic perturba-
tion rigorously. However, it is not the only approach for quantifying the risk of failure.
Indeed, it can be time-consuming. We rather argue that there is no clear evidence to
confirm that the risk estimates from the logistic regression were biased. We did not fix
the variation of weather series for the 343 perturbations. The length of time horizon in
this work (20 years) was determined following the definition of climate change given in
the IPCC 4th assessment report. The IPCC defined it as the statistical changes dur-
ing a decadal or a longer period, and thus we set the 20 years for generating weather
series for each climatic perturbation. This length is not for capturing climatic variability
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by random weather generations. Though one weather generation has a length of 20
years, the uncertainty from internal variability may be captured by collecting the 343
sets all together. In this work, the risk of system failure did not come from a single
perturbation, but from integration of the 343 stress tests that contain different internal
variabilities.

(2) I do not see any part of the manuscript that assesses the performance of the logistic
regression model using out-of-sample data. This is critical to the manuscript’s success
because it would provide evidence that the loss of information from modelling the risk
of failing a satisficing criterion rather than evaluating the risk of failure through many
simulations at each combination of climate variables could be worth the savings in
computation time.

–> We agree. It seems necessary to validate the risk estimate from the logistic regres-
sion. A possible approach is to compare one risk estimates at a selected perturbation
from the logistic regression to the risk estimate from a number of random generations
(e.g., 100 times) for the selected perturbation. This will add this validation in revision.

(3) It is not clear whether there are separate logistic regression models for each sub-
basin, performance metric, etc. How many logistic regression models are there in
this case study? One per sub-basin, to model simultaneously meeting water supply
reliability and environmental flow requirements? Two per sub-basin, each modelling
risk of failing one of the objectives’ minimum performance criterion? One, with sub-
basins represented through dummy variables? If the model is used to predict risk of
failing mutual satisficing rather than risk of failing one performance threshold, would
the model structure work if the two objectives were in tension (as in the Poff et al. 2015
case study) rather than aligned (as they are in this case study)? This section needs
to clearly list the explanatory variables and document the dependent variables much
more clearly.

–> Figure 5 shows the climatic bounds for 95% probability of success for each demand

C6



node. So, the number of lines is same as the number of demand nodes. Figure 7
shows the climatic bounds for 95% of success for each instream flows location (seven
in total). The logistic regression applied for each node and each instreamflow location.
And, the highest bound for water supply and that for instreamflow were combined. In
other words, if the most vulnerable demand node and the most vulnerable instreamflow
location can have 95% probability of success under a certain climate stress, the other
nodes and locations will have 95% or more probabilities automatically. The mutual
zone made by the two highest bounds is the key information. We will explain more
clearly in revision.

Water system modelling framework: (1) Synthetic weather generator and streamflow
temporal resolution: A daily weather generator is used to generate perturbed weather
sequences and run them through a runoff model to generate streamflow. After sim-
ulating climate-changed streamflow using the runoff model, daily streamflows are ag-
gregated to monthly flow. Why aggregate ex post rather than using a computation-
ally cheaper weather generator and/or runoff model that is designed to operate at the
monthly temporal resolution?

–> This is due to validity of the hydrologic model. We needed a method for ungauged
basins for each sub-basin, and already had a validated model. GR4J was validated by
the LOOCV across South Korea by Kim et al. (2017). Though it is true that a monthly
model is computationally efficient than daily models, another validation for ungauged
basins will be required. Aggregating daily simulations was not very time-consuming,
but the main computational cost in this work was the time required for 20-year-long
sequential optimizations.

(2) Temporal aggregation and precipitation coefficient of variation (cv): Perhaps the
monthly streamflow resolution is the reason precipitation coefficient of variation was
not a strong predictor of performance metrics? The authors should consider this possi-
bility and potentially discard precipitation cv from their analysis, which might be better
served by more stochastic realizations in each climate scenario rather than more cli-
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mate variables.

–> It is unlikely. Even with the temporal aggregation from daily to monthly values,
the monthly flows were affected by Pcv. A higher Pcv resulted in larger streamflow,
because precipitated water would reside in the soil for a shorter length due to more
frequent high-intensity rainfall events, leading to less evapotranspiration. We found
that Pcv was one of significant factors that explains the variation of total streamflow.
However, it was not significant to explain the variation of the water supply reliability
given by the 343 perturbations. We believe that the storage capacities of the sub-basin
and the dams are likely factors that nullified the influence of Pcv on water availability.
We will explain this more clearly in revision.

(3) Climate response surface: The sampling of average precipitation and precipitation
coefficient of variation (cv) is coarse (20% increments). I suggest sampling these fac-
tors at tighter increments. (4) The computational expense of conducting bottom-up
climate risk assessment is mentioned several times in the text. How computationally
intense is the Geum water system model to evaluate?

–> Even with the interval we applied, changes in water supply performance seems
to be sufficiently captured as shown in Figure 3a. However, in revision, the range
and interval may be adjusted to zoom in the range between 500 and 1500 mm of Pavg
(e.g., -60% to +60% at a 10% interval), because 1500+ mm of Pavg in Figure 3a mostly
resulted in the maximum reliability (i.e., 1). We guess one week will be adequate to
update the stress tests with the two scenarios, because all the models were readily
available now. We believe that this would be possible during the revision process, and
will improve this work.

Role of GCM projections in the case study: (1) GCMs are limited in their ability to simu-
late land/ocean/atmospheric mechanisms, especially those that take place at sub-grid
scale resolution. This limits the information that can be credibly derived from projec-
tions for water resources planning. Precipitation coefficient of variation (CV), one of
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the climate variables used in the case study, is not well represented in GCMs so it is
questionable to infer precipitation CV from GCM projections. This is why GCM projec-
tions are not shown on some of the response surfaces in Poff et al. 2015 (in response
to page 3, Line 18-19 of this manuscript).

–> We agree that the GCMs have limitations, and it is true that all the projections can be
subject to significant uncertainty. It is not limited to Pcv. Pavg and Tavg may not be well
captured by GCMs either. However, because of that reason, the bottom-up frameworks
emerged by employing the stochastic tests imposing arbitrary climatic stresses on the
hydrologic systems. And, overlaying GCMs projections on the response surfaces is
a common approach to gauge climate change risks in most bottom-up assessments.
Should we neglect Pcv values from GCMs because of the limitations in GCMs, even
though the bottom-up framework was intended to consider the uncertainty in GCMs for
practical decision makings (e.g., Brown et al., 2012)? We disagree that Pcv should not
be overlaid on the response surfaces due to that uncertainty. Rather, we believe that
Pcv values need to be overlaid as many as possible to combine the knowledge from the
stress tests (i.e., response surface) and the climate sciences (i.e. GCMs). Without any
reference points, the response surfaces can provide information of system sensitivity to
climate stresses only. What if future climatic stresses are out of the range in which we
can withstand? Poff et al. (2016) is a very innovative approach that allows quantifying
multi-faceted system robustness to climate change. However, if any predictions are not
combined with it, its usability may be limited in practice.

(2) This manuscript repeatedly mentions GCM counts as though GCM count in the
feasible region on the climate response surface could be a decision criterion (e.g. page
3 line 19), and perhaps to some stakeholders it would be. However, this could also
imply an attempt to quantify risk across the entire sampled climate space. Uncertainty
quantification via ensembles of GCM projections is a challenging research question in
its own right and would not be well treated by simply counting GCM projections from an
arbitrary ensemble. Indeed, the point of bottom-up decision frameworks for climate risk
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management is avoiding this type of reliance on GCM projections with little scientific
basis. Since this manuscript is designed to build on a bottom-up risk assessment
framework, it is strange that so much emphasis is put on understanding performance
under GCM projections in the text and figures. Titling the framework: As mentioned
above, it is not clear whether the logistic model is designed to model the risk of failing
to mutually satisfice the eco-engineering performance thresholds or the risk of failing
to meet one performance threshold. If the latter, the main technical contribution seems
as appropriate for any single-objective climate response surface type risk assessment
as for multi-objective climate response surface analyses, though it is applied here in a
multi-objective climate response surface analysis. I would suggest the authors re-frame
the analysis and revise the title to put the focus on the manuscript’s main technical
contribution, which is analyzing and communicating probabilistic information through a
climate response surface (with an eco-engineering case study) rather than presenting
a novel decision framework.

–> Perhaps, we put too much emphasis on the GCM counts in the text, though it seems
to be intended by the original decision scaling framework (Brown et al., 2012). We will
tone down in revision. Our point is that while the response surfaces of system perfor-
mance is developed to consider risks (or uncertainty) associated with climate change,
there is no quantified risk estimates in there interestingly. How do we get lessons from
a response surface and climate projections? One of implications is where the locations
of climate projections are on the response surface. It is natural for potential users to
check if the projections are beyond the performance threshold or not. Thus, it was
strange to us that there were no projections on the response surfaces in Poff et al.
(2016). So, we guessed some GCMs projections might be located out of acceptable
ranges in Poff et al. (2016). By its nature, a multi-purpose response surface should
have a narrower acceptable range than a single-purpose one. For better indications
from the multi-purpose response surfaces, we just suggest to convert them to the lo-
gistic surfaces directly indicating the risk of system failure and then overlay climate
projections. In revision, we will better frame the manuscript and retitle it to improve
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readability, as responded earlier.

Technical corrections (typing errors, etc.) Word choice: The meaning of the terms “suc-
cessive”, “risk of system failure”, and “sub-components” in the context of this analysis
is not clear from the text.

–> We will provide clear definitions for them.

Page 2, line 31: Whatley et al. 2014 should be Whateley et al. 2014

–> We will globally check mistypos.

Page 3, section 5: “However, all assessments using the response surfaces have fo-
cused on the “expected performance” rather than risk of system failure” Is this true? I
thought many decision scaling papers evaluated reliability, which is risk of failure.

–> We will tone down. However, to our knowledge, many studies have usually devel-
oped the response surfaces in terms of the expected performance rather than the risk
of failures even in the case that assessing uncertainty was a main objective (e.g., Kay
et al., 2014).

Figure 9: Labels on X axis would be clearer in words. Also, isolating the results of the
analysis to GCM projections is totally counter-intuitive here. The point of bottom-up
climate response surface analyses is to avoid relying on GCMs in climate risk manage-
ment.

–> We will describe the label more clearly. However, we disagree that the risk esti-
mates from the GCMs are counter-intuitive. Then, how can we assess future climatic
risks in practice? The response surface itself does not have predictions. If GCMs are
discarded, only information from the response surfaces is system robustness. The
probability of successive outcomes estimated from GCMs can be important informa-
tion for decision-makers. Figure 9 shows the trade-off in future risks of system failures
when changing the human-demand-only management policy.
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Figure 2: It is not clear where and how the logistic model comes into this framework
based on Figure 2. Figures: None of the response surface figures include precipita-
tion CV as one of the axes, though this is one of the sampled climate variables. The
reasoning behind this should be clarified in the text.

–> We will improve relevance of this figure to bring a better implication.
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