
Editor 

Dear authors, 

As you have seen, the two reviewers provided detailed comments on your manuscript. They highly 

appreciate the general research idea and direction. I fully agree with them.  

However, they both also highlight the critical need for an in-depth reflection on the choice of 

catchments for the paired analysis. Considerable doubts are expressed that adequate reference 

conditions could be established and that the selected catchments do not exhibit sufficient similarity 

to allow a meaningful analysis. I strongly encourage the authors to address these issues in detail 

together with the other comments made by the reviewers. I am looking forward to receiving a 

revised version of your manuscript 

Best regards, 

Markus Hrachowitz 

>> Dear editor, thanks very much for your positive evaluation of our research idea and manuscript. 

We have taken on board the comments of both reviewers and S Mylevaganam.  

In summary we have changed the terminology of the paper (instead of ‘natural’ we now use the 

word ‘benchmark’ catchment) to reflect the fact that we do not require an undisturbed catchment to 

compare with the human-influenced one in order to quantify the effect of the human activity we are 

interested in.  We also think that this change of terminology from ‘natural’ catchment to ‘benchmark’ 

helps to show the wider applicability of this approach in the Anthropocene. The most significant 

change to the paper is that we have changed the UK catchment pair, because we felt that it was too 

contentious to be used as a neutral example case study with the aim to show a methodology. We 

now show the application of the paired catchment analysis on different human activities with a case 

study in which human activities alleviate droughts (UK Blackwater) as well as the existing Australian 

case study, which shows an aggravation of droughts due to the human activity. We believe that this 

change strengthens the paper and alleviates the reviewers’ comments. We have also introduced a 

flow diagram (Fig.1 to replace the previous Table 1) to illustrate more clearly the selection of paired 

catchments. Finally, we have improved the general structure and writing of the manuscript following 

the reviewers’ suggestions and our own thorough re-reading of the manuscript and have re-written 

the abstract so that it matches again the revised manuscript. 

Please see below for our response to the reviewers’ comments which are given in italics and blue. 

The page and line numbers mentioned refer to the tracked-changed version of the revised 

manuscript. We also submit a cleaned version for easier reading of the revised manuscript.  

 

Reviewer #1 

>> We thank you for your review and constructive comments. We hope that you find our responses 

satisfactory to the points that you make.  

1a) If the authors are trying to determine the presence of human influences on hydrological drought, 

they should know the natural or reference influence to drought, i.e., the base hydroclimatic and 

basin characteristics. The authors do a rigorous hydroclimatic analysis in the way that their “paired” 

basins are same in size, close to each other, have same PET values, same P values. They have no 

similar geological characteristics but the authors are aware of this.  



However, even though as the authors suggest, finding completely natural basins is difficult, their 

“isolation of the human influence” is coarse and undocumented, without properly accounting for 

differences of land use and water use between basins and without considering all the land use and 

water use already existing in the “natural” catchments.  

Groundwater abstraction is not the only human effect that can influence drought characteristics. 

Just by looking in google earth at the Dun River upstream of Hungeford, UK, I see a basin that is 

completely agricultural, with barely any patch of natural vegetation. Since land cover/use is a control 

of water partitioning and runoff (Sterling et al., 2013), I don’t know how “natural” is this basin. 

Additionally, by a quick search in google earth, I see that the river is also completely regulated by 

embankments and check dams/levies from beginning to end. Since flow regulation alters the 

partitioning of water and hence runoff (Jaramillo and Destouni, 2015), your reference conditions in 

terms of intra-annual variability and quantity of flow are already altered by regulation.  

This means that your natural catchments are already affected and not eligible for a paired analysis 

for the purpose you need them. I would look harder for other basins with no water use/regulation 

and more pristine land covers to represent the “natural” condition, in the UK or abroad. Articles 

such as (Dynesius and Nilsson, 1994; Jaramillo and Destouni, 2015; Lehner et al., 2011; Nilsson et al., 

2005) could help. The Authors can also choose instead of a “paired” analysis of catchments a paired 

analysis of two groups of catchments, this would make the analysis more robust.  

>> The reviewer makes an important comment about classifying the natural catchments as fully 

natural, and it has made us to reconsider the terminology used in our work to help represent this 

better. Whilst we fully agree with the reviewers comment that finding a pristine catchment is crucial 

if one aims to quantify the OVERALL effect of all human influences on drought. However, if we want 

to use the approach to increase our understanding of how different human activities influence 

drought we need to be able to isolate a specific type of human influence. Therefore, when comparing 

a human-influenced catchment with a completely natural catchment, the combined effect of a mix of 

human activities will be found, which makes it harder to attribute the difference to one type of 

human influence. It would be extremely difficult to find completely natural catchments that are 

similar enough to the influenced catchments with only one type of human influence as the difference 

between them. There are hardly any truly pristine catchments in the UK and most other regions 

across the world, where there is no water use/regulation and pristine land cover. Any pristine 

catchments are likely to be incomparable with the ‘human’ catchments because of their different 

geology and climate and the human-influenced catchment is likely to have a mix of land-use change, 

abstraction, etc. To address this, we changed the terminology from ‘natural’ catchment to 

‘benchmark’ catchment throughout the manuscript and explained more clearly the aim of the 

approach.  

With regard to the choice of the UK catchments – The Dun is one of the UK benchmark catchments 

(Harrigan et al., 2018), therefore it is considered as a ‘natural’ catchment by the Centre for Hydrology 

and Ecology and we are confident in using it as a comparison pair. However, we agree that the 

choice of UK catchment is too contentious to be used as an example, and we have changed the UK 

example case study pair to accommodate all reviewers’ comments. As UK case study, we now 

present the pairing of the human-influenced Blackwater catchment and the Chelmer (benchmark 

catchment), both in South-East England. The Blackwater catchment has a water transfer scheme 

delivering excess water to the Essex area, helping to keep it wet during the summer in dry years 

(Robinson, 2011). Tijdeman et al. (2018) suggest pairing with a similar catchment, Chelmer, to 



represent the natural situation with very similar catchment characteristics. Chelmer is identified to 

have minor artificial influences, with the main difference being the water transfer present in 

Blackwater (see Section 3.1 in the revised manuscript).  

With regard to the choice of Australian catchments – we find that the land use in both catchments is 

similar (see new Figure 3 with a map of catchment’s land use). Both catchments have a mix of 

natural savannahs and grassland used for grazing, with some dryland cropping. According to Green 

et al. (2011) the Cox catchment land use is “a combination of grazing and dryland cropping with 

agriculture”. The benchmark catchment, Cockburn, is described as “the area is mainly used for 

grazing with some dryland cropping and horticulture” (Green et al., 2011). The only difference 

between the catchments is the heavy groundwater abstraction in the Cox (Ivkovic et al., 2014), which 

is the human influence we are aiming to quantify (see Section 3.2 in the revised manuscript). 

We have added some of these details about the catchments, their land uses and similarities into the 

revised paper to show this clearly, especially the change of terminology from ‘natural’ catchment to 

‘benchmark’ catchment. 

1b) Furthermore, the authors say that one of the basins suffers from groundwater abstractions while 
the other one doesn’t, at least, for the UK pair. There is no quantification of this, how much, where, 
since when ground water abstraction in the human affected basin? Any evidence that in the other 
basin there is no groundwater abstraction, are you sure of this? 

The authors should check this for the Australian case too.  

>> Unfortunately, we do not have long time series data of actual groundwater abstraction. This is 

precisely the reason why we are suggesting a paired-catchment approach instead of for example 

detailed physically-based modelling incorporating detailed data on human activities. Data on human 

influences in a catchment is generally not available and if it is, it often cannot be shared because it is 

protected by privacy laws. Of course, qualitative information on the human influence is, however, 

essential for a successful pairing and attribution of the differences. We have added this to the new 

Figure 1 and expanded Section 3.1 and 3.2 (of the revised manuscript) to include this qualitative 

information for our case studies. We changed the UK case study, which now focuses on the effects of 

water transfer instead of groundwater abstraction. For this water transfer, we have qualitative 

information about the starting year and purpose of the scheme from AEDA (1990). For Australia, the 

human-influenced catchment, Cox, is subject to heavy groundwater abstractions (Ivkovic et al., 

2014). Although we do not have time series of abstraction, we do know that ACTUAL annual aquifer 

abstraction rates of the Cox are 11245 ML/yr (Barrett, 2012), whereas LICENCED annual aquifer 

abstraction licenses for Cockburn are 4481 ML/yr (O’Rourke, 2010). Annual abstractions in the Cox 

catchment are therefore at least 2.5 times as much as in the Cockburn, but because O’Rourke (2010) 

reports entitlements only and for the bigger catchment in which the Cockburn is located only 20% of 

the entitlements is used (O’Rourke, 2010), our estimate is that the actual annual groundwater 

abstraction in the Cockburn is around 900 ML/yr. The Cox groundwater abstraction would then be 

more than 12 times as much as the Cockburn. 

2) Include some statistics of land use and water use in the Description of the area.  Also, improve 

Figure 2, to show more information on each catchment.  

>> We have now provided more information about land use in both paired catchments in the text 

(see new Section 3.1 and 3.2) and changed Figure 3 to visualise land use information for all 

catchments. We have also added land use as a selection criterion to Figure 1 and the text in Section 

2.1 to show that it is a consideration for catchment selection.  



3. The authors should put some statistical significance tests to support further their results.  

>> Whilst this would be a useful suggestion, unfortunately there are not enough data points in our 

analysis for statistical significance tests. We believe that quantifying the percentage change due to 

the human influence for the overall drought characteristics and showing the basic descriptive 

statistics of average, maximum and total duration and deficit volumes already provides very relevant 

information. We considered doing an event-by-event based analysis, but that proved to be 

impossible, partly because the input data is not completely similar for both catchments leading to 

small variations between events. Thus, taking a more holistic look at the average, maximum and 

total drought duration and deficit over the entire time series is the most robust, and scientifically 

acceptable, information that we can provide. To perform statistical significance tests we would need 

more (replicate) catchment pairs, which is beyond the scope of this paper but could be an interesting 

follow-up. 

So I like the idea, but a more thorough selection of catchments including land and water use 

conditions needs to be included in the study 

>> Thanks for your summary of the review. We hope that we sufficiently addressed this under items 1 

and 2. We believe that adding this information will help to provide the right level of detail for the 

reader, and the change of terminology from ‘natural’ catchment to ‘benchmark’ catchment will help 

to show how we are aiming to isolate human influence to be able to attribute differences to different 

types of human activities. 

 

Authors reply to Reviewer 2’s comments 

Please find our responses and actions to your comments below. Frequently we have placed a number 

of comments under the same section if they are related and our response covers them jointly. Figures 

and tables shown here only in this reply have the prefix R (e.g. Figure R1) to distinguish them from 

those shown in the manuscript. In our response to Reviewer 1, we have suggested that we rename 

the ‘natural’ catchment to be termed the ‘benchmark’ catchment; therefore, the new term is used 

throughout in our response here. 

There are a few major things that we changed in the manuscript in general, which we would like to 

highlight here before discussing the specific comments. We bullet point these major changes here, 

which all relate to the framing of the paper and the content: 

 Methodological framework flow diagram. As this is a methods paper, we focus on the 

methodology aspects and not the results of the case studies. We have introduced a flow 

diagram to illustrate more clearly the selection of paired catchments. 

 Demonstrating the method with case studies of different human activities, which alleviate 

and aggravate droughts. We now show the application of the paired catchment analysis on 

different human activities with a case study in which human activities alleviate droughts (UK 

Blackwater) as well as the existing Australian case study, which shows an aggravation of 

droughts due to the human activity. This changing of the UK paired catchment case study 

from the Kennet to the new case study of Blackwater addresses a number of Reviewer 2’s 

concerns about the UK pairing.  

 

Reviewer’s comments 



This is a generally well written paper on an important topic and the paper has significant potential to 

make a very worthwhile contribution to the ‘drought in the Anthropocene’ debate. It is potentially a 

very useful advance arising from a simple yet potentially very effective idea. 

>> We thank you for their overall view of the importance of the topic and paper. 

1) Major Reviewer’s comment: pairing of UK catchment 

Major Comment: impact of catchment (dis)similarity on the proposed method. The method is 

predicated on the similarity of the donor natural catchment/target influenced catchment, but in the 

UK example at least, the catchments are not similar enough, very likely leading to over-estimation of 

the anthropogenic effect.  

Catchments are different in terms of runoff response/catchment function, despite their similar 

rainfall. 

Given the more limited range of the Dun flows, my guess is the Q80 of the Dun will be somewhat 

higher, leading to inflated values for the deviations that are used to infer aggravated drought due to 

human effects. 

>> We realise that a large proportion of the Reviewer 2’s comments are addressing the pairing of the 

UK case study specifically, highlighting the issue of the (dis)similarity between the UK pair and the 

contentious nature of this catchment. The reviewer’s comments help to show the level of information 

needed for the proposed paired-catchment method, and the importance of a suitable pairing. We 

have taken on board some of the reviewer’s comments to help improve the pairing.  

As this is a methods paper and the case studies shown purely demonstrate the method, we found a 

UK pair that is more similar, as demonstrated by other studies (e.g. Tijdeman et al., 2018), and less 

contentious, and which helps to demonstrate the use of the paired catchment analysis on a different 

human activity. Therefore, we have changed our UK case study from the Kennet to the Blackwater 

catchment (Figure R1). The Blackwater catchment has a water transfer scheme delivering excess 

water to the Essex area, helping to keep it wet during the summer in dry years (Robinson, 2011). 

Tijdeman et al. (2018) suggest the pairing with a similar catchment, Chelmer, to represent the 

natural situation with very similar catchment characteristics. Chelmer is identified to have no 

artificial water input, with the main difference between the catchments the water transfer present in 

Blackwater.  

 



Figure R1: Discharge plotted (mm/month) for both catchments in new UK case study pair: 

Benchmark, Chelmer (blue) and human-influenced, Blackwater (red) 

 

While the focus of this methods paper is to use the case studies to illustrate the method rather than 

attributing differences to specific causes, we think that choosing a different and less controversial 

pairing with more similar runoff response will better highlight the advantages of the method. 

Please find the rewritten section of the new UK pair in Section 3.1 of the revised paper and updated 

Table 1, and the new case study results in Table 2 and Figure 3. By changing the UK case study, we 

hope to have answered the reviewer’s questions.  

In terms of the results, the figures quoted in Table 3 seem very large. Given the nature of the debate 

around abstraction impacts, these figures could be quite contentious, as the Kennet is something of 

a poster child in the debate around sustainable abstraction, and the authors should do more to 

ensure they are meaningful. 

>> We agree that the numbers were very large for our Kennet case study, but this might be realistic 

given the published concern over over-abstraction in the Kennet area, and recent changes to 

abstraction rates to reduce this (2014 EA issued a notice reducing the permitted abstraction from 

Axford and revoked the abstraction licence on the little River Og). Therefore it is legitimate that 

impacts seen over the previous decades could reflect this over-abstraction.  

e.g. “Thames Water accused over dry River Kennet in Wiltshire”, BBC, 27 September 2011 

(https://www.bbc.co.uk/news/uk-england-wiltshire-15076406) 

e.g.2: “For over 20 years there has been local concern that flows in the Upper Kennet above 

Marlborough have been affected by over-abstraction’ (Kennet catchment partnership). 

(http://www.kennetcatchment.org/issues/over-abstraction/)  

However, given that the focus of this paper is to introduce the method, we have changed the UK case 

study to alleviate this comment (see above). 

2) Overall reviewer’s comments: considering other approaches to bolster the method / 

convincingly demonstrate the method: 

Given these concerns, the authors could consider some approaches to bolster the method and 

provide verification – e.g., how this method performs relative to other approaches or modifications, 

e.g. detecting deviations based on rainfall (as in Tijdeman et al. 2018) and PE. 

Paired catchment analysis is a staple of experimental hydrology, but is much harder to do in ‘real 

world’ examples when it is not possible to control all variables except the main intervention of 

interest, and even the latter may be poorly understood. 

I feel major revisions are needed to convincingly demonstrate the method, through modifiying it to 

allow some tolerance in the donor/target relationship, verifying the methods using independent 

abstraction data, or benchmarking it against other methods. 

>> We argue that the paired catchment approach can be extremely beneficial if you have the right 

level of information to justify the pairing, but not enough detailed data on the human influences 

themselves (i.e. time series of abstraction rates) or to run alternative approaches. Therefore, the 

paired catchment approach can help provide insight into the human influence in the catchment from 

the observation data available and might be a first step to obtain more data to apply alternative 

https://www.bbc.co.uk/news/uk-england-wiltshire-15076406
http://www.kennetcatchment.org/issues/over-abstraction/


approaches. Exploring the use of other methods to obtain more robust results for the example case 

studies is not the purpose of the paper. In the revised manuscript, we explain that this method can be 

complementary to others (see p.2 l.20, p.4 l.14-15 and p.15 l.6-7).  

Furthermore, we have also changed the framing of the paper in terms of the case studies presented. 

We now show a case study which has a human activity aggravating hydrological droughts (e.g. 

Australia Cox – groundwater abstractions) but also a case study in which the human activity 

alleviates hydrological droughts (e.g. UK Blackwater – water transfer). We believe that this helps to 

demonstrate the method and its applicability better. 

To help illustrate the method further, we have also added a flow diagram for the pairing of 

catchments for the analysis, Figure 1. 

In general the approach could be strengthened considerably by taking a more water balance 

approach as done in the classic paired experimental catchment studies, and also in the study of 

Prosodcimi which incorporates climate variables to account for any confounding effects. 

>> In the new framing we have emphasised the use of the paired catchment approach when less 

detailed information is available to still make an assessment of the difference between the two 

catchments (p.2 l.1-2, p.3 l.18-19). The use of the same time period as a comparison between the two 

catchments means that overall climate is accounted for in the analysis, which is an advantage 

compared to methods comparing data pre- and post-disturbance.  

The water balance approach is useful, but does not focus on drought specifically and requires data 

that is not available; instead we are looking for a method which can be applied to multiple case 

studies to give an idea about the impact of human activity on drought only based on commonly 

available data (precipitation and discharge).  

3) Reviewers comment: include abstraction rates information 

verifying the method using independent abstraction data, or benchmarking it against other 

methods. 

The Kennett is very well known to experience major abstractions, which have been non-stationary 

over the series. But more could be done to follow this study up – there is anecdotal information on 

abstractions in various grey literature sources I found online (below). 

>> As mentioned, some average annual abstraction values are available for the case studies through 

grey literature. However, it is difficult to obtain actual abstraction, rather than licenced values and 

long time series of actual abstraction are impossible to obtain. The paired catchment method is 

therefore valuable when other methods cannot be applied because quantitative abstraction 

information is not available. We do agree that qualitative information is needed for the selection of a 

suitable pair and to interpret results (see new Figure 1). We have therefore added more information 

to the manuscript (see Section 3.1 and 3.2), also in response to the comments of Reviewer 1 (1-2). 

4) Reviewers comment: Impacts and abstraction data 

Finally, to really demonstrate the success of the method, it would be nice to have some independent 

verification of the suggested impacts. I appreciate access to abstraction data is not straightforward 

for the UK, but might be possible for one catchment, at least for derived data on impacts rather than 

particular abstractions.  



>> We would like to be careful not to allocate too much of the paper to the two case studies as we 

feel that this will detract away from the focus of the paper, which is the method itself. However, we 

have included more information here to give a background on the new UK pairing (see new Section 

3.1). It is also important to note that gaining the level of information we have for the UK is possible, 

but it is difficult to get similar data for many other regions of the world, including Australia.  

I would suggest some dialogue with the EA would be worthwhile, as there seem to be naturalised 

data (be decomposition and/or modelling) available for the Kennet for various part studies. 

>> We fully agree that a comparison with other methods that rely on modelling is interesting. 

However, we do not feel that the EA naturalised data can be used as a benchmark or independent 

verification to compare the paired-catchment results against. Modelling has large uncertainties and 

especially for the EA naturalisation it is not clear which processes and activities are included in the 

analysis. Additionally, naturalised data is not available for the Australian catchments.  

5) Reviewers comment: using threshold from benchmark catchment 

However, transferring a threshold directly from one catchment (reading off the Q80 flow value from 

the natural catchment and applying it to the influenced one) to another seems like a potentially 

dangerous business. This might not be a problem if one is just trying to estimate flows at an 

ungauged site, and can report uncertainties; but in the present method any biases arising from the 

data transfer could be very misleading. 

>> The transferring of thresholds from the donor catchment to the influenced catchment is a basic 

principle of this application of the paired-catchment approach. Furthermore, the transferring of 

thresholds from a benchmark situation to a human-influenced situation has been used in other 

existing literature, with regards to the comparison of naturalised data and observed flow 

(observation-modelling framework, Van Loon & Van Lanen, 2013; Van Loon & Van Lanen, 2015). It is 

also used by the large-scale hydrological modelling community when analysing future droughts – use 

of pristine threshold for both the pristine and human scenarios to calculate the modelled human 

impact on hydrological droughts (e.g. Wanders & Wada, 2015).  

The main issue with using a threshold established on the human-influenced catchment discharge is 

that the effect of the human activities is then included in the threshold used to calculate droughts. 

We feel that this is even more misleading as it underestimates the effect of the human influence. For 

a fair quantification of the effect of human influence on drought we therefore adhere to using the 

same point of reference (the same threshold) for both catchments. 

6) Reviewers comment: Impact of catchment (dis)similarity on the proposed method  

Put simply, the method applied in this paper can only work if the donor’s natural flow regimes is 

near-identical to the ‘theoretical natural’ flow regime of the target site. Any deviation between 

these regimes will be interpreted as anthropogenic; when it could just be due to the variations 

between two catchments that appear quite similar but are in fact different. 

It is difficult to find suitable pairs. Even when catchments are in principle very similar (geology, 

rainfall etc), the concept of ‘uniqueness of place’ is a major obstacle.  

>> We agree that 100% proof of similarity cannot be given. Experimental hydrology (control and 

treated catchments/plots) and models are also unable to provide this. We can only reliably check the 

similarity of both catchments if we have long time series (preferably 30 years) for the donor and the 

human-influenced catchment prior to human disturbance. In practice, this will be very rare or non-



existing for catchment pairs. We now mention this aspect more clearly in the revised manuscript (e.g. 

p.1 l.17, p.6 l.18-23, p.14 l.18-26). 

As a result, I do not think the authors can claim ‘attribution’, and the claims of the paper need to be 

reconsidered.  

Note that this an important difference in the urbanisation paper (Prosdocimi et al., 2015) or in the 

classic experimental catchments, which all incorporate some data on the intervention in question 

into the analysis (e.g. the land cover data used by Prosdocimi et al.).  

>> We agree and we have rephrased our results from attribution to explanation or isolation 

throughout the manuscript. We have also covered this topic in our revised Discussion section (p.15 

l.3-7) and Conclusion (p.15 l.32). 

Specific reviewer’s comments 

A technical matter: In Figure 3, I’m surprised to see so little of the flows being below the threshold. It 

does not look like 20% of the flows are below the threshold to me – can the authors please check? 

>> We can confirm that it is correct. The total number of months in drought (Table 3) is close to 20%: 

93 months in drought out of 540 months (17%). It is not the full 20% because we have dropped minor 

droughts that were only 1 month in duration. 

P2, L21. Another approach is using deviations in the P-Q relationship, e.g. Tijdeman et al., 2018. 

>> This has been added in (p.3 l.33 – p.4 l.2). 

P2, Intro. The paper would do well to refer to the expansive literature in hydroecology which also 

tackles a similar problem of estimating ‘natural’ flows for sites, against which impacted flows can be 

compared. The classic papers of Brian Richter are a good start, and I’m fairly sure methods have 

been proposed to transfer natural flow percentiles (but using a whole FDC approach; try the DHRAM 

work by Andrew Black, Dundee as a start). Another area where this is done routinely is through the 

LowFlow software produce, a regionalisation product which estimates natural and disturbed FDCs at 

any site. Its not drought specific, but definitely has a very similar aim. 

>> We agree that literature from the hydroecology field should be brought in to show how they 

address the similar problem. We thank the reviewer for the suggestion and we have updated the 

Introduction (p.3 l.6-8, p.6 l.20-23) and the Discussion (p.14 l.23-26). 

P4, Sect. 2.3 Given the concerns raised about the UK catchments, this section needs to be 

reconsidered. 

>> This section has been changed in the revised manuscript to introduce the new case study, 

Blackwater, and update all associated sections (Section 3.1), tables (Table 1, 2) and figures (Figure 3, 

4). 

P6, L2. The 80th percentile is not what is being used here. This paper uses the 20th percentile, or, as 

is most commonly referred to in hydrology, Q80: the 80% non exceedance threshold from the flow 

duration curve. 

>> The authors agree that this needed rewording, and this has been done in the revised version of the 

manuscript (p.9 l.17-20). 



Discussion: is generally very insightful but definitely needs reconsidering in light of catchment 

selection issues, and claims about attribution needed to be moderated. 

>> We thank the reviewer for their comment and the suggestion to highlight the limitations and 

issues further. We have changed the discussion to include more about these aspects (see Section 4). 

We thank the reviewer for all their comments and suggestions, and we hope that a number of them 

have been satisfied by the change of UK catchment, and that we have strengthened the paper with 

the suggestions enhanced analysis and provided a clearer aim (i.e. a methodological paper rather 

than a case-study type of paper). 

 

Short comment by S Mylevaganam 

We thank you for your review and constructive comments. We hope that you find our responses 

satisfactory to the points that you make.  

1) As per the authors, research using the paired catchment approach to assess change in 

hydrological “droughts” due to land use and other human activities remains limited(see P-3 LN-29). 

However, as per the authors, research works using the paired catchment approach to assess “low 

flows” due to land use and other human activities are found in the literature(see P-3 LN-24:29). 

What are low flows? What are droughts? I think, the distinction between low flows and droughts 

needs to be explicitly mentioned in the manuscript to assert the authors’ statement that the 

research using the paired catchment approach to assess change in hydrological “droughts” due to 

land use and other human activities remains limited. Moreover, what is implied by “limited”? Should 

the authors include/cite the research works using the paired catchment approach to assess change 

in hydrological “droughts” due to land use and other human activities found in the literature? 

>> We thank the reviewer for pointing out this for clarification. In the original manuscript, we defined 

droughts at the end of the first paragraph (revised manuscript p.2 l.31 – p.3 l.2). However we have 

now included a definition of low flows (p.5 l.21-22) and added a brief description of how these two 

terms differ to make it clearer to the reader (p.5 l.28-29).  

By “limited” we mean that there are actually no published articles specifically assessing effects of 

human activities on hydrological droughts using paired catchments. Tijdeman et al. (2018) use the 

concept of comparing droughts occurring in two similar catchments (e.g. Supplementary figure S4). 

They do not use a specific framework as we present here, but they explicitly state the potential use 

for it: “An alternative approach is based on the principles of paired catchment analysis, a concept 

that has been a foundation of process hydrology. Typically, a paired catchment study compares the 

flow regimes of nearby catchments with similar physical characteristics. The approach has been 

applied in numerous iconic experimental studies to investigate land use impacts on river flow (e.g. 

review of Brown et al., 2005). However, the paired catchment concept can also be used to study 

human influences on streamflow, using existing gauging station networks, if appropriate “donor” 

natural catchments with similar flow regimes can be found for “target” catchments with known 

influences (as conducted in the case of urbanisation effects on floods; Prosdocimi et al., 2015).” 

(Tijdeman et al., 2018, p.1053). We have changed the statement in the manuscript to demonstrate 

that there are no published articles specifically assessing human activities on hydrological droughts 

using paired catchments (p.5 l.29-30). 

2) As per the authors, drought analysis is normally conducted on the daily or monthly time step (see 

P-5 LN-23). Therefore, the authors use “monthly” data for the paired catchment analysis, even 



though the selected catchments are provided with data on daily time step? In the current version of 

the manuscript, the authors fail to state the reason for using “monthly” data for the paired 

catchment analysis. Is it the methodology (i.e., paired catchment) that is chosen in the proposed 

approach forces the authors to use the monthly data instead of daily data? Should the authors show 

the characteristics of the droughts within a month for the selected catchments? What is the 

minimum duration (in days) of the drought observed in the selected catchments? What is the 

minimum frequency (in days) of the drought observed in the selected catchments? Would not these 

details justify the applicability of selecting the monthly time step to conduct the drought analysis? 

>> As stated in the manuscript (p.8 l.30 – p.9 l.2), drought analysis is commonly done on the monthly 

time step, therefore it is deemed justifiable. Droughts are generally long phenomena with timescales 

of weeks to years, with drought-generating processes and associated impacts going beyond a daily 

time step. 

Furthermore, monthly data was used to avoid a need for pooling of drought events, and to allow 

minor droughts of <1 month to be dropped. Ultimately as long as the same time resolution and 

threshold is used for both catchments then the comparison remains valid. 

3) The use of paired catchment in the proposed approach is very much subjective. Is it possible to 

define hydrologically similar catchments without considering the landuse pattern and spatial 

orientation of the landuse? Would it be possible to completely define hydrologically similar 

catchments using precipitation, PET, and geology? The landuse pattern than the spatial orientation 

of the landuse may dramatically alter the flow pattern even for the same precipitation, PET, and 

geology? 

>> We do consider land use (see reply to comment 2 of Reviewer 1) and land use is similar for the 

catchment pairs. We have now included this catchment characteristic into Figure 1 and 3 to show the 

importance. 

4) In Table 3, for Dun (natural catchment), how did the authors compute the total number of months 

in drought and the frequency? Since the authors have analyzed from 1973 to 2013, there are 

12*41(=492) monthly flow records. In other words, setting 80% as the threshold level yields around 

98 months in drought (see Table 3). What is the definition of frequency? Is it meant for the return 

period of the drought? What is the unit of frequency? 

>> Because minor drought events of 1 month have been dropped, it might result in slightly less 

drought events being identified than expected. However, our previous results show that the Dun has 

93 months in drought, which is extremely close to this expected 98 months, and the differences seen 

between the two numbers is purely because of the dropping of minor drought events. 

Frequency = number of drought events identified in the time period. This definition is now included in 

the revised version of the manuscript (p.9 l.31-32). There is no unit for frequency as it is just a value 

representing the number of drought events identified.  

5) In the current version of the manuscript, the authors evaluate the groundwater abstraction on the 

droughts. With groundwater abstraction, it is expected to have a depleted groundwater table. 

Consequently, as per Darcy’s law, since one of the drivers (i.e., hydraulic gradient) is changed due to 

groundwater abstraction, a possible alteration on the base flow (see the reported BFI values in UK) 

that defines the low flow conditions in most of the rivers is expected. Would it be possible for the 

authors to show the rainfall pattern (daily) in the natural catchment and human altered catchment 

for some of the drought periods in UK? 



>> Indeed groundwater abstraction leads to lower groundwater heads, decreased groundwater 

gradients, lower groundwater inflow/base flow into the rivers, and hence more extreme drought in 

streamflow. It is important to note that we do not take an event-by-event analysis though (as it is a 

challenge to pair drought events in different catchments), but look at overall averages, maximums 

and totals of drought duration and deficit over the entire time series to avoid this level of discretion.  

6) As per the authors, the paired catchment approach has been a predominant method for detecting 

the effects of disturbance on catchment scale hydrology (see P-3 LN-14). To support this statement, 

the authors cite Zégre et al., 2010. Considering the fact that the paired catchment approach has 

been used for many decades (see P-3 LN-16), starting as early as 1920 (see P-3 LN-19), would it 

possible for the authors to state the reason for citing Zégre et al., 2010 to support the statement(see 

P-3 LN-14) 

>> Thanks for this comment. In our revised version we have changed this citation to one of an earlier 

time period, that of Bates (1921), which is the first paired-catchment study (p.4 l.29-30). 

7) Should the section 2.1 be re-written? The third paragraph of section 2.1 is about the method (i.e., 

paired catchment approach). In other words, the third paragraph of section 2.1 defines the method. 

However, the first and the second paragraphs of section 2.1 briefly summarize the crux of some of 

the previous research works using the paired catchment approach found in the literature. Does it 

make sense to mention the previous research works using the paired catchment approach at first 

and then define the method? From the reader’s point of view, the third paragraph of section 2.1 

should come first and then the previous research works using the paired catchment approach found 

in the literature. 

>> This restructuring of section 2.1 is done in the revised version (see new Section 1.2). 

8) The section that is devoted for discussion (i.e., section 4.0) is structured using some of the 

limitations of the approach presented in the manuscript. What is expected in the section (i.e., 

discussion) by a reader of the manuscript is left missing in the current version of the manuscript. 

>> We believe that because the aim of the paper is to present the novel application of a simple 

framework for quantifying the human influence on hydrological droughts, this is the important 

aspect to be discussed in this section, rather than the results of the two case studies which are used 

to demonstrate the method. Discussing the limitations and the possible ways forward for future 

research with this method is useful for future research, given its scalability to be performed in other 

locations. 

9) From the reader’ point of view, the numbering of the sections is misleading. In section 2.2, the 

authors introduce the approach used in the current version of the manuscript to address the 

intended tasks (i.e., determination of drought metrics). However, in section 2.2, the authors ends 

the paragraph (see P-4 LN-17: here we outline the important elements for the “approach”) to form 

the subsections that need to be listed under section 2.2. Should the sections 2.3, 2.4, and 2.5 be 

numbered as section 2.2.1, 2.2.2, and 2.2.3? 

>> We agree that the numbering here could be improved. We have made Section 1.2 “Paired-

catchment analysis” its own section within the introduction, followed by Section 1.3 “Aim”. This 

enables Section 2 onwards to focus on the specific application of the method and the relevant 

information for the analysis. 

 



10) On P-3(see LN-22), what is meant by “see review of Brown et al., 2005”? Is it a review about 

Brown et al., 2015? On P-3(see LN-24), what is meant by “some studies included low flows”? 

>> We are referring to the published review of paired catchments written by Brown et al. (2005) 

titled ‘A review of paired catchment studies for determining changes in water yield resulting from 

alterations in vegetation’, however we have changed the phrasing of this to be clearer (p.5 l.17-19). 

Most paired catchment studies look at annual changes following treatment, and often focus on 

water yield and high flows, not on low flows or streamflow during droughts. Therefore we specifically 

point out that some look at low flows, but not the majority of the published literature. P.5 l.20-30 is 

an entire paragraph which summarises and points to the work which does use paired catchments to 

look at low flows. 

Minor Comments:  

a) The authors’ marriage to some of the words (e.g., “here” we suggest, “here” we outline, we 

“here” give, “here” we use, “here” the 80% percentile, “here” we have analyzed, “here” we present, 

“here” we have demonstrated, “here” we focused, “here” the focus was, and “here” we show) is a 

little off from what is expected in a scientific research paper.  

>> We have endeavoured to address this repetition throughout the revised version of the manuscript. 

b) In Table 1, the title of the second column (i.e., “assessment for similarity”) needs to be changed to 

reflect the cell values.  

>> Table 1 has been replaced with a new Figure 1. 

c) In Table 2, the widths of the columns (e.g., column-7) need to be adjusted to fit the content.  

>> This table has been adjusted to fit the content. 

d) In Table 2, the gage numbers for the selected catchments in Australia are missing (see Figure 2 

and Table 2).  

>> Thank you for pointing this out, these have been added to the revised version. 

e) In Figure 3, the label for the x-axis should be “year”?  

>> X axis label have been changed to Year rather than Dates in this revised version. 

f) In Figure 4, the label for the x-axis should be “year”? 

>> X axis label has been changed to Year rather than Dates in this revised version. 
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Abstract. Currently most of our understanding about the human influence on droughts at the catchment scale comes from 

modelling and typically not from observation data. Using observation data, a paired catchment comparison can be used to 15 

quantify the different between two similar catchments. Commonly used on control treatment experiments, paired catchments 

have been used recently in a more applied manner to analyse the effect of urbanization on flooding. In this study, we explore 

the paired catchment comparison approach as a possible way forward to quantify the influence of human activities on 

hydrological drought through observations. Using river discharge time series for drought analysis, the difference calculated 

in drought metrics (frequency, duration, deficit volumes) between the paired catchments is attributed to the human activity 20 

which is only present in the influenced catchment. Here we outline the methodological approach to quantifying this human 

influence on hydrological droughts and the requirements in catchment selection, as well as showcase the application using 

some example results from contrasting case studies in the UK and Australia with catchments heavily influenced by 

groundwater abstraction. Whilst the selection of the paired catchments must be done with rigorous criteria, this approach 

overcomes the impacts of climate variability in pre- and post-disturbance studies, and avoids assumptions considered when 25 

partly or fully relying on simulation modelling. We discuss important considerations for a successful analysis. This is the 

first application of this approach to quantify the human influence on hydrological droughts, demonstrating the use of this 

tool to study hydrology in our human-dominated world. Quantifying the influence of human activities, such as reservoir 

building, water abstraction, and land use change, on hydrology is crucial for sustainable future water management, especially 

during drought. Model-based methods are very time-consuming to set up and require a good understanding of human 30 

processes and time series of water abstraction, land use change and water infrastructure and management, which often are 
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not available. Therefore, observation-based methods are being developed that give an indication of the direction and 

magnitude of the human influence on hydrological drought based on limited data. We suggest adding to those methods a 

‘paired-catchment’ approach, based on the classic hydrology approach that was developed in the 1920s for assessing the 

impact of land cover treatment on water quantity and quality. When applying the paired-catchment approach to long-term 

pre-existing human influences trying to detect an influence on extreme events such as droughts, a good catchment selection 5 

is crucial. The disturbed catchment needs to be paired with a catchment that is similar in all aspects except for the human 

activity under study, in that way isolating the effect of that specific activity. In this paper, we present a framework for 

selecting suitable paired catchments for the study of the human influence on hydrological drought. Essential elements in this 

framework are the availability of qualitative information on the human activities (type, timing and magnitude), and similarity 

of climate and geology between the catchments. We show the application of the framework on two contrasting case studies, 10 

one impacted by groundwater abstraction and one with a water transfer from another region. Applying the paired-catchment 

approach showed how the groundwater abstraction aggravated streamflow drought by more than 200% for some metrics 

(total drought duration and total drought deficit) and the water transfer alleviated droughts with 25 to 80%, dependent on the 

metric. Benefits of the paired-catchment approach are that climate variability between pre- and post-disturbance periods does 

not have to be considered as the same time periods are used for analysis, and that it avoids assumptions considered when 15 

partly or fully relying on simulation modelling. Limitations of the approach are that finding a suitable catchment pair can be 

very challenging, often no pre-disturbance records are available to establish the natural difference between the catchments, 

and long time series of hydrological data are needed to robustly detect the effect of the human activities on hydrological 

drought. We suggest that the approach can be used for a first estimate of the human influence on hydrological drought, to 

steer campaigns to collect more data, and to complement and improve other existing methods (e.g. model-based approaches). 20 

. 

1 Introduction 

1.1 Background 

In our human-modified era, the Anthropocene, human activities and actions have direct and indirect effects on the 

hydrological system (UNESCO, 2009; 2012; Montanari et al., 2013; McMillan et al., 2016). It is vital to understand how our 25 

activities are affecting the hydrological system to help us improve not only our understanding of our impacts and the 

management of water resources, but also the representation of human activities in environmental modelling. One area where 

research has beenespecially during drought. Only limited, but has increased in recent years, is studies exist that focus on the 

understanding and quantification of how humans may influence hydrological droughts (Querner et al., 1997; Querner & Van 

Lanen, 2001; Van Lanen et al., 2004b) with). This has inspired recent calls for new tools and approaches to study the human 30 

influence on droughts (Van Loon et al., 2016a; 2016b). Here we use the definition ofdefine drought as a deficit in available 
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water from ‘normal’ conditions (Wilhite & Glantz, 1985; Tallaksen & Van Lanen, 2004), with a) and we focus on 

hydrological drought, which considers theis a deficit in streamflow. 

Currently, using simulation data from hydrological modelling is one of the main ways in Recent studies quantifying the 

human influence on hydrological droughts,  use hydrological models because of itstheir ability to isolate variables and input 

data processes by generating naturalscenarios with and without human influenced dataactivities for comparison (e.g. Querner 5 

et al., 1997; Van Loon & Van Lanen, 2013; 2015; Veldkamp et al., 2015; Wada et al., 2017; Wanders et al., 2017). Also in 

other fields, such as hydroecology, modelling is used to quantify hydrologic alteration, i.e. the deviation of flows between 

actual and baseline conditions (e.g. Poff et al., 2010; Mathews and Richter, 2007). Often this “‘scenario modelling” 

approachmodelling’ is done with large-scale models (e.g. Veldkamp et al., 2015; Wada et al., 2017; Wanders et al., 2017), 

but these models have a coarse resolution and are not extensively calibrated or validated locally, and will therefore have 10 

large uncertainty. on the local scale. Furthermore, whilst the scientific community is seekingworking to add known human 

influencesactivities and decisions into hydrological models (Wada et al., 2017), the current generation of hydrological 

models dodoes not tend to include all anthropogenic processes yet (Srinivasan et al., 2017).  

To increase our understanding of these anthropogenic processes and interactions, we can explore observation data to help 

inform this progress. There are several methods used to explore the impacts of humans on hydrological droughts with more 15 

of a focus Finally, scenario modelling requires high-resolution data on observation data, such as the following three: (1) the 

observation modelling approach (here called “observed-naturalised”) (e.g. human activities influencing the hydrology of a 

catchment (e.g. land use, abstraction), which often are not available. Therefore, we need relatively simple methods that can 

estimate the influence of human activities on drought from observational data. Several methods have been developed in 

recent years:  20 

 (1) the ‘observation-modelling’ approach (e.g. Van Loon & Van Lanen, 2013) uses naturalised simulation data to compare 

tocompares human-influenced observation data. However,observed droughts with naturalised simulated droughts. 

Downsides of this method are that the simulated hydrological data also have uncertainties and a pre-disturbed period is 

needed for calibration to reduce those;  

(2) the “‘upstream-downstream”downstream’ approach (Rangecroft et al., 2016) compares hydrological droughts 25 

downstream of a disturbance with those upstream, which are assumed to be unaffected. This method uses observation data 

only and uncertainty stemscomes from the possible non-linear relationship between the upstream and downstream gauging 

stations;  

(3) Another approach using only observation data is the “the ‘pre-post-disturbance”disturbance’ approach (e.g. Liu et al., 

2016), however) compares hydrological droughts before and after a disturbance. The comparison of two different time 30 

periods makes it harder to separate the human influence from possible drought driven by climatic variability (e.g. decadal 

and multi-decadal) and non-stationarity due to climate change. (Peñas et al., 2016); 

Instead(4) and finally, the ‘large-scale screening’ approach (e.g. Tijdeman et al., 2018) uses deviations in the relationship of 

meteorological to hydrological drought between a human-influenced catchment and a range of benchmark catchments. 
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Downside of this method is the need for a large number of catchments with long time series of hydrological data and 

information about the type and degree of human influence.  

In this paper, we suggest to use add an observation-based approach that requires very little data and uses the same 

analysedtime period, but employing two different catchments to represent the natural and the human  for the analysis, 

thereby avoiding effects of climatic variability and non-stationarity. The ‘paired-catchment’ approach compares a human-5 

influenced situation, a “paired catchment” approach. An existing classic hydrological approach used to detect changes in 

catchment hydrology, the paired catchment analysiswith a benchmark catchment where the human activity of interest is not 

present. Paired-catchment analysis is a classical method in hydrology that compares the flow regime of two catchments 

which have similar physical characteristics, with the aim to identify the impact of a disturbance on the flow regime (Hewlett, 

1971; Bosch & Hewlett, 1982). The approach has been used successfully applied around the world to evaluate and quantify 10 

effects of land use change and treatment (e.g. afforestation, deforestation) on hydrology (e.g. water yields, floods and water 

quality) (Brooks et al., 2003; Brown et al., 2005; Folton et al., 2015), with fewer research ). There are some paired-

catchment studies focusing on low flows, but no applications investigating impactshuman influence on the hydrological 

phenomena of drought. We argue that this paired-catchment approach could help quantify the human influence on 

hydrological drought and complement existing approaches.  15 

Originally used with control treatment experiments, paired catchments have been more recently used in an applied manner 

by Prosdocimi et al. (2015) to analyse the effect of urbanization on flooding in the UK. In this paper, we explore the use of 

the paired catchment approach to assess the human influence on hydrological droughts. We present two case studies, from 

the UK and Australia, as example applications of this approach, generating knowledge about the human influence on 

droughts at the catchment scale from observation data. The case studies shown here both have abstraction of water in the 20 

human influenced catchment, but climate and geology are contrasting. Demonstrating the approach, we are adding to our 

tools for improved analysis and understanding of the human impact in the Anthropocene. 

2 Methods 

2.1 Paired catchment analysis 

The paired catchment approach has been a predominant method for detecting the effects of disturbance on catchment scale 25 

hydrology (Zégre et al., 2010). Originating from the study of deliberate land treatment as disturbance (e.g. afforestation, 

deforestation) on water quantity and quality, the 

1.2 Paired-catchment analysis 

The paired-catchment approach is a classic method for detecting the effects of disturbance on catchment hydrology (Bates, 

1921; Zégre et al., 2010). It originates from experimental research on the effects of intentional land cover treatment (e.g. 30 

afforestation, deforestation) on water quantity and quality. The basic concept of the method is to compare the flow regime of 

two nearby catchments with similar physical characteristics, one as a control (‘benchmark’) and the other as a disturbed 
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catchment (also known as the ‘treatment catchment’ in some of the literature). Comparing the same time periods allows for 

climatic variability to be accounted for in the analysis (Brown et al., 2005). Climate, soils and geology should be similar 

between the two catchments (Best et al., 2003; Brown et al., 2005; Folton et al., 2015), with the main difference the 

treatment in the disturbed catchment. Traditionally, this treatment often consists of deforestation or afforestation. The 

identified differences in hydrology between the disturbed and control catchments can then be attributed to the treatment 5 

(Brown et al., 2005). In most paired-catchment studies, catchments are typically adjacent, although this is not always 

possible, but they tend to be in close proximity to help with the similarity of catchment characteristics and climate. 

Relatively short time periods are used for the analysis of the effects of the treatment, typically a few months to years. For 

classic paired-catchment treatment studies, pre-disturbance periods are sometimes used for both catchments to ensure 

streamflow similarity, or to establish the pre-disturbance difference in hydrology between the catchments. 10 

The paired-catchment approach has been successfully used for many decades (Swank et al., 2001; Brooks et al., 2003; 

Brown et al., 2005; Putro et al., 2016). More recently, paired catchments have been used for studying existing disturbances 

and in long term studies over a longer time period (e.g. Prosdocimi et al., 2015).2016). Starting as early as the 1920s (Bates, 

1921), the use of paired catchments to study the impacts of forest treatments and management activities on water yields 

accelerated since the 1960s (e.g. Hewlett & Hibbert, 1961; Harris, 1977; Hornbeck et al., 1993; Robinson & Rycroft, 1999). 15 

Overall, most published studies have looked at land use change impacts on annual flow and flood peaks and assessing the 

magnitude of water yield change resulting from changes in vegetation (see the review paper of paired-catchment analysis by 

Brown et al., 2005; and other studies by Cornish, 1993; Bari et al., 1996; Best et al., 2003; Folton et al., 2015; Prosdocimi et 

al., 2015).  

In the 1990s, some studies includedstarted looking at low flows within paired-catchment analysis (e.g. Keppeler & Ziemer, 20 

1990; Scott & Smith, 1997). Low flows are defined as the “minimum flow in a river during the dry periods of the year”, 

which makes them a seasonal phenomenon and an integral component of the flow regime of a river (Smakhtin, 2001). It has 

for example been found that clearcut harvesting can lead to an increase in low flows (Keppeler & Ziemer, 1990), while land 

cover conversion from grasslands, shrublands and croplands to forests can cause a decrease of low flows (Scott & Smith, 

1997; Farley et al., 2005). PreviousPaired-catchment studies focusing on low flow worksflows also suggested that in 25 

watersheds located in dry regions streams were likely to completely dry up following afforestation, and that the streamflow 

regime in those watersheds would change from perennial to intermittent (Farley et al., 2005; Jackson et al., 2009). 

HoweverDroughts differ from low flows because they represent an anomaly from the normal seasonal cycle and can 

therefore also occur in the high flow season. There currently is no research using the paired-catchment approach to assess 

changechanges in hydrological droughts due to land use change and other human activities remains limited.  30 

The basic concept of the method is to compare the flow regime of two nearby catchments with similar physical 

characteristics, one as a control (‘natural’) and the other as a disturbed catchment (also known as the ‘treatment catchment’ 

in some of the literature). Comparing the same time periods allows for climatic variability to be accounted for in the analysis 

(Brown et al., 2005). Climate regimes, soil and geology conditions should be similar between the two catchments (Best et 
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al., 2003; Brown et al., 2005; Folton et al., 2015), with the main difference being the disturbance in the human influenced 

catchment. Therefore, the identified differences in hydrology can then be attributed to the human influences in the disturbed 

catchment (Brown et al., 2005). In most paired-catchment studies, catchments are typically adjacent, although this is not 

always possible, but they tend to be in close proximity to help with the similarity of catchment characteristics and climate. 

For classic paired catchment treatment studies, pre-disturbance periods can be used for both catchments to ensure streamflow 5 

similarity, or to establish an existing relationship between the two catchments. However, hydrological impacts due to human 

activities are not usually intentional, and often human activities (e.g. urbanization, groundwater abstractions, reservoirs, etc) 

are not planned with monitoring for hydrological change in mind. Therefore data for pre-disturbance periods might not 

always be available, and it can also be difficult to pinpoint when human activity started to occur in the catchment and have 

an effect on streamflow. Subsequently, we have to look at utilising the approach with the post-disturbance data only for 10 

analysis in the Anthropocene.  

2.2 Approach 

Here we suggest using paired catchments Because droughts are extreme events that occur irregularly, long time series are 

needed to detect any effect of human influences on hydrological drought using a paired-catchment approach. Additionally, 

many human activities cannot be applied as intentional treatment in a small catchment just for research purposes. This is the 15 

case for example with reservoirs, groundwater abstraction and other large-scale water supply and management activities. If 

we want to study the effects of these on hydrological drought, we need to work with existing observed data. Often no 

hydrological monitoring was done before the start of the human activity, which means that pre-disturbance data is not 

available to assess catchment similarity. Despite this, the paired-catchment approach can still be used if the selection of the 

catchment pair is done carefully and qualitative data on the human activities is available. In hydroecology, a similar 20 

approach (termed ‘control-impact’) has been found to give satisfactory results for a range of hydrological variables 

compared to a baseline approach that used paired catchments that were calibrated on a pre-disturbance period (Peñas et al., 

2016). Such a long-term paired-catchment study has recently been done to assess the influence of urbanisation on flooding in 

the UK (Prosdocimi et al., 2015) and we think that there is potential also to use the paired-catchment approach in drought 

studies.  25 

 

1.3 Aim 

In this paper, we explore the use of the paired-catchment approach to assess the human influence on hydrological droughts. 

We present two case studies, from the UK and Australia, as examples of how this approach can help to generate knowledge 

on the human influence on hydrological droughts from observation data at the catchment scale. The two contrasting case 30 

studies used here have water added (via water transfer) or removed (via groundwater abstraction) in the human-influenced 

catchment. By showing the application of the paired-catchment approach to drought and discussing its limitations, we 
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demonstrate how this approach can be used as tool for improved analysis and understanding of the human influence on 

hydrological drought in the Anthropocene.  

 

2. Application of the paired-catchment approach to quantify the human influence on droughts. In this context, an 

undisturbed (natural) and a disturbed (human hydrological drought 5 

For applying the paired-catchment approach to quantify the human influence on hydrological drought, two catchments need 

to be selected, of which one is a human-influenced,  catchment (e.g. with water abstraction, urbanisation, reservoirs) 

catchment are used, and the other is as similar as possible except that it does not have the human influence we aim to 

quantify. Importantly, the benchmark catchment does not need to be completely natural to be used in a paired-catchment 

setting as long as the human influence of interest can be isolated and quantified. The analysis focuses on the effect on 10 

hydrological drought metrics (e.g. drought durationsduration and deficit volumesvolume), rather than the more typical focus 

of paired-catchment studies on water yield or low flows in general. Here. Therefore, long time series are needed to extract 

these drought metrics. In this section, we outline the important elements for the approach, such as the characteristics 

involved in the catchment selection process, the data requiredrequirements, the drought analysis, and the calculation for 

quantifying the human influence. 15 

2.31 Catchment selection 

The starting point for a paired-catchment analysis is a human activity that is expected to influence the hydrology of an area. 

Qualitative information about this human influence (such as type and timing) and long time series of hydrological data need 

to be available (Fig. 1). One of the most critical requirements for a successful paired-catchment comparison is that the 

catchment characteristics are as similar as possible, except for the human disturbance whichthat is being quantifiedanalysed. 20 

Relevant catchment characteristics could include precipitation, temperature (or potential evapotranspiration),, land use, 

catchment area, elevation, geology, and soils and. How similar these characteristics should be for a paired-catchment 

analysis will vary depending on the hydrological extreme of interest (e.g. floods, droughts) and the dominant characteristics 

that control hydrological response in that region (e.g. potential evapotranspiration may be more important in drier, hotter 

climates; Oudin et al., 2010). There is little literature on the acceptable differences between the paired catchments, so we 25 

here give some guidance on which characteristics are important for this application of the approach, and how these could be 

assessed.which makes it difficult to automatise the process. Paired catchments are therefore often chosen manually using 

expert judgement.  

In Fig. 1, we provide some guidance on which characteristics are important for this application of the paired-catchment 

approach to drought, and how these could be assessed. For drought studies, precipitation, potential evapotranspiration 30 

(PET),, soils and, geology and land use are considered to be the most important characteristics (Table 1; Van Lanen et al., 

2004a; 2013; Stoelzle et al., 2014) to ensure similar meteorological conditions and hydrological response in both catchments. 



 

8 

 

It is often quite difficult to find paired catchments with exactly the same characteristics so it is necessary to put some limits 

on what is deemed as acceptable for pairing. Consequently, In this study, catchments were considered to be suitable for 

pairing if differences in average annual precipitation and potential evapotranspiration were within ±10% and the catchments 

had the same geologygeological classification/typology (see Table (Fig. 1). It is also important to check precipitation 

variability as well as annual values, as the annual averages could be masking very different distributions of precipitation 5 

which would then result in different meteorological droughts in the catchments. This check can be done by plotting the 

precipitation values for both catchments on the annual and monthly time scale to see their similarities and differences. Case 

studies where precipitation distributionsdistribution between the catchments significantly diverted from the 1:1-line or had 

linear regression slopes and R
2
 values of less than 0.5 were excluded from the paired-catchment analysis. Geology/soils 

haveSoil type and geology are important to be checked on consider with regard to their responsiveness, i.e. flashy versus 10 

slow response to precipitation, implying that the geology and soils need to be translated based on expert knowledge. is 

needed to translate the qualitative soil and geology information. To enable the attribution of change to isolating the known 

effect of the human influenceactivity on drought, the catchment selection also requires a singular human influence if 

possible, or dominant human influencethat is different between the paired catchments. 

For our application of the paired-catchment analysis there are some catchment characteristics which are not appropriate 15 

forthat cannot be used as catchment selection criterion. For example, the catchment selection process. Base Flow Index (BFI) 

calculated from discharge records is notdata cannot be used as ain catchment selection characteristic because the BFI value 

in aof the human-influenced catchment might beis probably affected by the human activity. Similarity of BFI values can 

only be tested if reliable data from a pre-disturbance period is available. The proximity of catchments is also not a seta good 

starting point in the search for similar catchments. However, it may not be a useful catchment selection criterion because 20 

neighbouring catchments can actuallymay have very different geology or precipitation totals (e.g. due to rain shadow effect), 

however close by catchments are a good starting point in the search for similar catchments.) or because the human influence 

crosses catchment boundaries (e.g. groundwater abstraction, urbanisation).  

2.42 Data requirements 

Ideally, observation data of precipitation and discharge records forwith a minimum of 30 years should be used, with limited 25 

missing data (< 5%) so that robust statistics can be computed for hydrological extremes can be computed reliably (McKee et 

al., 1993; Rees et al., 2004). Information on catchment characteristics (in this case annual precipitation and geology) and and 

the type of human activity in the human-influenced catchment are also required. 

Although (Fig. 1). Most commonly, the paired-catchment approach is most commonly useddone with annual data, it has also 

been used withbut monthly data is also sometimes used (Bari et al., 1996; Brown et al., 2005). Droughts are generally long 30 

phenomena with timescales of weeks to years, with drought-generating processes and associated impacts going beyond a 

daily time step. Therefore drought analysis is normally conducted on the daily or monthly time step (e.g. Hisdal et al., 2004; 



 

9 

 

Fleig et al., 2006; Van Loon & Van Lanen, 2012). Therefore). Consequently, here we use monthly data for the paired-

catchment analysis.  

2.53 Drought analysis 

For each catchment, drought events and their metrics were identified with the commonly used drought analysis 

method,Drought analysis can be done with several different methods (Van Loon, 2015). For paired-catchment analysis we 5 

suggest using the threshold level method (Yevjevich, 1967; Tallaksen & Van Lanen, 2004; Van Loon, 2015). Drought event) 

to identify drought events and their metrics such as timing (start date, end date), duration (months) and deficit volumes (mm) 

were extracted from, because it allows to use the observation data time series. These metrics were then compared within each 

paired catchment, allowing the difference due to benchmark regime to compare the human influence to be estimated (Figure 

1).  10 

-influenced flow against. The threshold level method is a commonly used drought analysis method that defines drought 

events when data (streamflow) are is below a specified threshold (Yevjevich, 1967; Hisdal & Tallaksen, 2000; Hisdal et al., 

2004; Fleig et al., 2006). Here the 80
th

 percentile was used asFor quantification of the human influence, the threshold, 

meaning needs to be generated from the benchmark catchment time series (Fig. 2; Van Loon & Van Lanen, 2013), therefore 

excluding any influence of human activities on the threshold. This benchmark threshold is then applied to both catchments 15 

for the drought analysis (Fig. 2). 

Different threshold levels can be used. In the case studies described here, we used the 80% non-exceedance threshold (Q80) 

from the flow duration curve. This means that 80% of the time discharge is above thethis threshold. The 80
th

 percentileQ80 

is a commonly used threshold to identify drought events (Hisdal & Tallaksen, 2000; Tallaksen and Van Lanen, 2004; Fleig 

et al., 2006; Van Huijgevoort et al., 2012; Van Loon & Van Lanen, 2012).Heudorfer & Stahl, 2016). The threshold can be 20 

fixed or variable, but; we used the monthly variable threshold to incorporate seasonality into the threshold (Hisdal & 

Tallaksen, 2000; Hisdal et al., 2004; Fleig et al., 2006; Heudorfer & Stahl, 2016). Drought events of only 1 month have been 

excluded from the analysis process so that drought events are longer than the time step of the threshold. 

To enable quantification of the human influence, the threshold was generated from the natural catchment time series (Figure 

1; Van Loon & Van Lanen, 2013), therefore excluding any human influence on the threshold. This natural threshold was 25 

then applied to both catchments for the drought analysis (Figure 1), with the resulting differences between the pair therefore 

being attributed to the human influence (Figure 1; Prosdocimi et al., 2015).  

From the comparison between the flow and the threshold, several drought metrics can be calculated. Drought events are 

defined as consecutive periods of several months of below-threshold flow. We excluded drought events with a duration of 

only 1 month from the analysis process so that all drought events are longer than the time step of the threshold. The first 30 

drought metric used for the paired-catchment comparison is ‘occurrence of drought events’. We calculated the frequency, 

which is the total number of drought events identified in the time period. The second drought metric analysed is ‘duration of 

drought events’. We used the total number of months in drought, the average duration of all events, and the duration of the 
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maximum event. The third drought metric is ‘deficit volume of drought events’, which is defined as the cumulative 

difference between the flow and the threshold over the drought event. Again we used the total deficit over the entire time 

period, the average deficit of all events, and the deficit of the maximum event. 

2.4 Estimation of the human impact on drought characteristics 

Chronological pairing of flooding events is known to be difficult because storms do not always coincide in time, duration, 5 

intensity or spatial extents between the paired catchments (Zégre et al., 2010). Drought on the other hand does not occur on 

such a small and localisedoccurs on larger spatial scale and short temporal scale, therefore this is less of an issue. 

However,scales, but it can still be limitingchallenging to compare one offsingle events (e.g. in the case of droughts ending by 

localised rainstorms), therefore here. Therefore, we have analysedfocus on the changes in the average and maximum drought 

metricmetrics over a longer time period rather than on specific drought events.  10 

2.6 Estimation of the human impact on drought characteristics 

The drought metrics of duration (mean and maximum), deficit volumes (mean and maximum), frequency of drought events, 

and total number of months spentmentioned in droughtSection 2.3 were obtained from the drought analysis forapplied to 

each paired catchment. To calculate the human influence and then compared between the twopaired catchments,. The 

difference between the natural catchment drought metrics andof the human-influenced catchment metrics (Figure 1) and 15 

those of the benchmark catchment (Fig. 2) was establishedcalculated using the following equation (Eq. (1): 

 

Percentage increasechange due to the human influence (%) = [(Human – NaturalBenchmark)] * 100  

  (1) 

Natural 20 

3. Application of the paired catchment approach 

Here Benchmark 

3. Case studies 

We present results from two case studies to show the application of the paired-catchment approach to quantify the human 

influence on hydrological drought metrics. We are demonstrating the approach and focusing on the discussion of its 25 

applicability. 
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3.1 Case studies  

The two case studies shown here (Figure 2) in the UK and Australia (Fig. 3) were chosen because both have groundwater 

abstraction, butof their contrasting climate and, geology., and human activity. The UK case study is impacted by a water 

transfer scheme, has a temperate maritime climate and a slowlyrelatively slow responding catchment, and the Australian 

paired catchment case study is impacted by groundwater abstraction, has a semi-arid climate and a flashier catchment.faster 5 

response times. These case studies were chosen based on the availability of data required for the assessment and analysis, 

including qualitative information on the human activities occurring in the catchments. For both human-influenced 

catchments we then applied the catchment selection scheme in Fig. 1 to find a suitable benchmark catchment.  

Table 2 outlines1 contains the main information about the two sets of paired catchments. For this application, we used 

observed discharge data (standardised by catchment area, in mm/month). Precipitation data (mm/month) was used to check 10 

the similarity of average annual precipitation (within ± 10%) and distribution of monthly precipitation (Fig. 1, Table 1 & 2). 

For the UK case study, discharge time series and geology information were sourced from the National River Flow Archive 

(NRFA, 2017) and precipitation data was obtained from CEH-GEAR (Keller et al., 2015). For the Australian case study, 

discharge and precipitation data and geology information were sourced from the Australian NSWs WaterInfo (NSW, 2017).  

 15 

3.21 UK paired catchments: KennetBlackwater and DunChelmer 

It is known that 3.1.1 Paired-catchment selection 

The Blackwater catchment receives water abstractions affect streamflowtransfers as part of the river Kennet, a catchment in 

Southern England (DunbarEly Ouse water transfer scheme for the greater London area (NRFA, 2018; Tijdeman et al., 2002). 

The Kennet is a catchment underlain2018). The scheme was introduced in 1972 by chalkthe Environment Agency to help 20 

address anticipated water stresses due to population increase and is reported to be predominately rural, with a market town 

close to outfall (NRFA, 2017). The Kennet was expansion and development in the South Essex area (AEDA, 1990). The 

Blackwater catchment was paired with a similar catchment nearby catchment (Chelmer; Fig. 3) as its natural pair, the Dun 

(Figure 2),benchmark, due to itstheir similarity in catchment characteristics (Table 2). The Dun is also a chalk dominated, 

rural catchment with an 1). Both catchments have a geology of mixed permeability superficial deposits (86-88%), a 25 

predominantly rural land use (Fig. 3) and similar annual rainfall total only 1% less than the Kennet. Importantly, abstractions 

and discharges are reported to be of minor significance at the Dun catchment (NRFA, 2017).totals (within 10%) (Table 1). 

Both catchments have very low urban extent (<3%) (Chelmer 4.9% and Blackwater 5.4%; NRFA, 2018) and the land uses 

are very similar, with arable land covering 71% - 75% in both (NRFA, 20172018; Fig. 3). The observation data available for 

both catchments ran from 19731972 to 20132015 with no missing data, covering a number of important drought events in 30 

the UK.  

3.1.2 Drought comparison results 
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The drought analysis using the paired shows that many droughts experienced in the natural catchment approach showed an 

aggravation in all drought metrics were alleviated in the human catchment due to the human activity, especiallywater transfer 

scheme (Fig, 4; Table 2). Notably, the 1976 UK drought was not as severe in the Blackwater catchment as its benchmark 

pair. A number of other major drought events occurred in Chelmer in the 1990s and 2003 were not seen in Blackwater, 

therefore showing that they were alleviated due to the elevated flows from the water transfer scheme (Fig. 4). The largest 5 

alleviation is seen in the total number of months spent in drought, and the maximum droughttotal deficit over the time series 

(Table 2), while the average duration and deficit volumes, and the average deficit volumes (Figure 3; Table 3). Both 

catchments clearly show the main drought events of the UK, including the 1976, the 1991-1992 and 2011-12 droughts, but 

these drought events were worsened decreased less due to the water transfer. This shows that the water transfer mainly 

reduced the number of droughts in the human-influenced catchment (Figure 3). Also, a number of human-induced droughts 10 

occurred in periods when the natural system did not experience similar hydrological droughts (Figure 3).. 

3.32 Australian paired catchments: Cox and Cockburn 

3.2.1 Paired-catchment selection 

The Cox catchment in south-eastern Australia has heavy groundwater abstraction for irrigation (Ivkovic et al., 2014). For the 

paired-catchment analysis, the naturalbenchmark catchment, Cockburn, was chosen based on its similarity in precipitation 15 

and geology (Table 21) and its proximity (Figure 2Fig. 3). BFI for the naturalbenchmark catchment is much lower than that 

of the UK naturalbenchmark catchment, showing that the Australian catchments are responding faster to precipitation (Table 

21). Observation data was available from 1982 – 2013, with no missing data.  

The land use in both catchments is similar (see Fig. 3). Both catchments have a mix of natural savannahs and grassland used 

for grazing (Cox: 59%, Cockburn: 53%), with natural land cover composed of woody savannah (Cox: 32%, Cockburn: 28%) 20 

and forest (Cox: 6%, Cockburn: 13%). According to Green et al. (2011) the Cox catchment land use is “a combination of 

grazing and dryland cropping with agriculture”. The benchmark catchment, Cockburn, is described as “the area is mainly 

used for grazing with some dryland cropping and horticulture” (Green et al., 2011). The only difference between the 

catchments is the heavy groundwater abstraction in the Cox (Ivkovic et al., 2014), which is the human influence we are 

aiming to quantify. 25 

3.2.2 Drought comparison results 

Results also showed an overall aggravation of drought metrics due to the groundwater abstraction in the human-influenced 

catchment, especially for the total number of months spent in drought and the averagetotal deficit (Figure 4Fig. 5, Table 4). 

However, it does not seem to affect the maximum drought event characteristics (Table 4) because during these rare events 

the flow is zero in both cases. 3). The well-documented Millennium Drought in Australia (2001 – 2009; Van Dijk et al., 30 

2013) is shownshows clearly as a series of hydrological drought events in the human-influenced catchment, whereas it was 

not as persistent in the natural catchment (Figure 4).benchmark catchment (Fig. 5). Like the water transfer in the UK case 

study, the water abstraction in Australia mainly results in more frequent drought events, not so much in more severe drought 
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events. The maximum drought event characteristics are probably not affected (Table 3) because during these rare events the 

flow is zero in both cases.  

4. Discussion 

As a scientific community we need to improve our understanding of the effect of human processes on hydrology and 

quantify the two-way interactions to be able to characterise, model and manage them (Srinivasan et al., 2017). These 5 

processes can only be fully explored through observations. Here we have demonstrated that a paired-catchment approach is a 

suitable tool using observation data to assess and quantify the human influence on hydrological droughts. using observation 

data. There are limitations to this approach, as any observation- and/or modelling model-based approach has uncertainties. 

ModellingModel-based methods for quantifying the human influence have uncertainties associated to input data, parameters 

and model structure, which often does not include human processes (Wagener et al., 2004; Kreibich et al., 2017; Srinivasan 10 

et al. 2017), and observation-based methods have uncertainties with regards to temporal or spatial resolution and data quality 

(McMillan et al, 2012; Coxon et al, 2015). Also, isolation of one type of human-influence is often more difficult in 

observation data. 

As discussed in this paper, for an effective paired-catchment analysis it is important for the catchment properties to be as 

similar as possible, enabling isolation of the human influence. In this study, we selected the catchment pairs based on three 15 

different metrics: characteristics: climate (precipitation, potential evapotranspiration), geology, and PET (Tableland use (Fig. 

1). Paired catchments in this study were chosen manually using expert judgement; however, recent advances in catchment 

classification and similarity frameworks (see Hrachowitz et al, 2013) could be an alternative because these might provide a 

more objective and automated method to select paired catchments. Nevertheless, currently local knowledge is still a highly 

valuable part of catchment selection. 20 

Here We focused on geology and precipitation as these two characteristics have been found elsewhere to be the largest 

constraints on successful analysis ofmost important drivers of hydrological droughts (Van Lanen et al., 2004a; 2013; 

Haslinger et al., 2014; Stoelzle et al., 2014; Van Loon & Laaha, 2015).  In particular, we argue that differences in geology 

are more important forin the analysis of low flow studiesflows and droughts than for floods and annual flow analysis, 

because of the importance of catchment storage in the catchment response to precipitation and the drought propagation 25 

process (Van Lanen et al., 2013; Van Loon & Laaha, 2015; Barker et al., 2016). Differences in geology affect storage and 

response of catchments, and therefore response to meteorological drought events in one geology type could be very different 

to another, making it difficult to distinguish the effect of human influence from the effects of geological differences.  

With regards to precipitation, Similarity in precipitation is important as it is the driving meteorological factor. for drought 

development. Both precipitation variability and annual averages should be similar for the paired catchments (TableFig. 1). 30 

Firstly, it is important that the total precipitation inputs are similar for both catchments because of the cross use of the 

naturalbenchmark catchment threshold. (Fig. 2). Significantly higher or lower precipitation in the naturalbenchmark 
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catchment results in higher or lower discharge, which reduces the transferability of the threshold to the human-influenced 

catchment. We suggest a maximum difference of 10%. Precipitation distribution may be very different even if total average 

values are similar, meaning that meteorological drought events experienced by the two catchments could be different. 

Ideally, the monthly and annual precipitation records of both catchments are also similar, which can be checked with the 

linear regression coefficient and R
2
 values. Catchment pairing where precipitation distributions with linear regression slopes 5 

and R
2
 values are less than 0.5 should be excluded from the paired catchment analysis. 

Moreover, it is important to make sure that there are not multiple human activities influencing streamflow in the human-

influenced catchment. Attribution of differences between the paired catchments and If we want to increase our understanding 

of the effect of different human activities can be done best when isolatingon drought, we need to isolate the human influence 

under study. Here the focus was on the human activity ofactivities of adding water via water transfer and removing water via 10 

groundwater abstraction, but other human influences can be analysed using the paired-catchment approach, such as land use 

change, water addition, or water infrastructure.  

DesignedTraditional paired-catchment experiments usually include a specific pre-disturbance period for calibration and to 

assess the similarity of the catchments before treatment. Even when the catchments are subject to the same climatic 

variability, their hydrological response to an event may differ due to natural differences between the pairscatchments (Folton 15 

et al., 2015), therefore a pre-disturbance period can possibly offer a quantification of theirthese differences, e.g. through a 

regression equation (Hornbeck et al., 1993; Bari et al., 1996). However, generally this does assumeassumes a linear 

relationship between the pairscatchments, which is a very crude assumption. Furthermore, a pre-disturbance period might not 

be available for paired catchments when they are not planned treatments, for example it was not possible with the 

applications in this study. Furthermore, changes in groundwater and river regimes that are not anticipated may not have a 20 

monitored undisturbed period. Therefore we need to test the applicability of paired catchments without a pre-disturbance 

period to expand assessment beyond planned treatments and the human activity started before the hydrological 

measurements (Peñas et al., 2016). Peñas et al. (2016) tested the paired-catchment approach without pre-disturbance period 

to that with pre-disturbance period and found that over 80% of the impacted hydrological variables were identified correctly 

by the approach without pre-disturbance period and, therefore, suggest to use this approach when no pre-disturbance data are 25 

available.  

There are some challenges which remain specific to the paired-catchment analysis. Firstly, it can be very difficult to find a 

natural pair for a human benchmark catchment, which is identical to the human-influenced catchment whereexcept for the 

human influence is the only differenceactivity. Keeping a close proximity between the pairs can often help to reduce 

differences in geology and precipitation, however groundwater abstractions are known to impact the surrounding areas, 30 

beyond the catchment boundary, therefore neighbouring catchments might not be regarded as naturalundisturbed by the 

human activity under study and should then not be used in a paired-catchment analysis of the effect of groundwater 

abstraction.. Instead, we suggest to compromise on another selection criterion (TableFig. 1), such as precipitation, to locate a 

suitable naturalbenchmark catchment. 
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A second challenge, which is relevant for all observation-based methods, is data availability. Data availability and quality 

can severely affect the success of a catchment pairing or analysis. There is also thea need for information on the type and 

extent of human disturbance within the data, which may not always be available or known.  (Fig. 1). Differences in drought 

between the catchments cannot fully be attributed to the human influence, as there will always be a remaining uncertainty in 

the catchment pairing. However, the approach can be used for a first estimate of the human influence on drought, to steer 5 

campaigns to collect more data, and to complement other existing methods (e.g. model-based and observation-modelling 

approaches). 

The application in this paper is the first use of paired catchments to quantify the human influence on hydrological droughts, 

but it shows the potential of the method as a standalone approach, or to compliment other existing methods (e.g. simulation 

and observation-modelling approaches).. One possible way forward from this could be to use data from published paired 10 

catchments-catchment studies, but to focus the analysis on droughts rather than annual hydrological regime to assess how 

treatments of land cover change (e.g. deforestation, afforestation) have impacted hydrological droughts. These existing 

datasets have pre-disturbed time periods, and catchment selection has already been done rigorously. Another wayoption 

would be to analyse other direct human activities such as urbanisation and the building of reservoirs. 

5. Concluding remarks 15 

In our human-dominated world we need to find ways to use our tools and methods to study the human influence on 

hydrology. HereIn this study, we show the first application of the paired-catchment approach to quantify the human 

influence on hydrological droughts. We discussed how the selection of the paired catchments must be done with rigorous 

criteria (e.g. similar precipitation/climate, and geology), and identified the advantages and limitations of the approach. The 

main advantage of the approach is that it comparesautomatically the same time periods are compared, therefore allowing 20 

climatic variability to be accounted for in the analysis. Furthermore, the approach uses catchment-scale observation data, 

allowing us to gain information on the catchment level, with all of the catchment processes included. The other advantage 

toof using an observation-only approach is that human actions and feedbacks are represented in the data, whereas most 

hydrological models currently do not include all anthropogenic processes yet. Whilst there are some uncertainties with 

regardsregard to input data and catchment similaritiessimilarity, it is important to note that these uncertainties are similar to 25 

existingother methods used to quantifying the human influence on hydrological drought.  

Here we showed how the paired-catchments approach, originally developed for treatment studies, and usually used for 

quantifying the impact of land use change on average discharge, could be used to look specifically at thepre-existing and 

long-term human impact on hydrological droughts. We have used the method to analyse the impact of water transfer and 

groundwater abstraction in contrasting climate and geology settings. The example case studies analysed ofin the UK and 30 

Australia clearly show an alleviation and aggravation of drought, respectively, due to the human activity compared to the 

naturalbenchmark catchment. However uncertainties remain in attributing these differences into the human influence 
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between the two case studies are seenunder study, highlighting the importance of further analysis into how humans influence 

hydrological droughts. Paired catchments could be used to further investigate the impact of other human activities on 

hydrological droughts using observation data. Through an increased understanding of how human activities influence 

hydrological droughts, this knowledge can then be used for water resource management and for improving hydrological 

modelling. 5 
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Table 1: Important catchment characteristics for paired catchment selection. 

 

Catchment characteristic Assessment for similarity 

Precipitation Annual averages (±10%), annual totals, 

monthly totals, monthly distribution 

Potential evapotranspiration Annual averages (±10%) 

Geology and soils Classifications/typology (similar response) 
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Table 2: Catchment data about eachof the paired catchmentcatchments of both case study.studies 

 

 

 5 

  

Case 

study 

Human activity Catchment 

status 

River/ 

Station 

Catchme

nt area 

(km2) 

Geology Average 

annual 

precipitatio

n (mm) 

Averag

e 

annual 

flow 

(mm) 

BFI 

UK  
Ground water 

abstraction for 

public water 

supply and 

agricultureWat

er transfer 

scheme 

NaturalBenchma

rk  

Dun (39028 

Hungerford 

station)Chelmer  

(37011 

Churchend) 

101.372.6 MainlyLondo

n clay and 

chalk based 

(some clay-, 

overlain with-

flints) 

Boulder Clay 

829591 21891 0.954

3 

Human Kennet (39037 

Malborough 

station)Blackwat

er (37017 Stisted) 

142139.2 Chalk 

dominated 

(someLondon 

clay- and 

chalk, 

overlain with-

flints) 

Boulder Clay 

838579 196194 0.945 

Australi

a 

Ground water 

abstraction for 

irrigation 

Natural 

Benchmark 

Cockburn 

(419016 Mulla 

Xing station) 

907 Alluvial 

overlying  

fractured rock 

(granite and 

sedimentary) 

665 64 0.24 

Human Cox ( 

(419033 Tambar 

Springs station) 

1450 Bedrock-

contained 

alluvial valley 

732 21 0.21 
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Table 32: Paired-catchment analysis results for UK, KennetBlackwater (Human) and Dun (NaturalChelmer (Benchmark). 

 

 Occurrence  Duration (months) Deficit (mm)  

 Frequency Total no. 

of months 

in 

droughtdur

ation 

Average 

duration 

(months) 

Maximum 

duration 

(months) 

Total 

deficit 

(mm) 

Average 

deficit 

(mm) 

Maximum 

deficit 

(mm) 

Natural 

Benchmark 

1522 9386 5.83.9 1310 224.3163

.8 

127.4 4729.6 

Human 317 24316 7.82.3 304 1210.939

.3 

39.15.6 186.216 

% 

increasediffere

nce due to the 

human 

influence 

+107 

-68% 

+161 

-81% 

+35 

-42% 

+131 

-60% 

+440 

-76% 

+179 

-25% 

+291 

-46% 
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Table 43: Paired-catchment results for Australia, Cox (Human) and Cockburn (NaturalBenchmark). 

 

 Occurrence Duration (months) Deficit (mm) 

 Frequency Total no. 

of months 

in 

droughtdur

ation 

Average 

duration 

(months) 

Maximum 

duration 

(months) 

Total 

deficit 

(mm) 

Average 

deficit 

(mm) 

Maximum 

deficit 

(mm) 

Natural 

Benchmark 

14 52 3.7 10 14.3 1.0 3.4 

Human 39 165 4.2 10 47.3 1.2 3.3 

% 

increasedifferen

ce due to the 

human influence 

+179% +217% +14% 0% +231% +19% -3% 
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Figure 1

 

 
Figure 1: Flow diagram for choosing paired catchments for analysis of the human influence on hydrological drought. 
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Figure 2: Diagram of the drought analysis method and quantification of the human influence on the hydrological drought metrics. 
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Figure 23: Paired-catchment case studies in the UK (top) and Australia (bottom).), including the location of the gauging station and land 

use. 5 
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Figure 34: Drought analysis results for the UK pair, KennetBlackwater (human) and Dun (natural) (1973 – 2013).Chelmer (benchmark) 

(1972 – 2015). Black solid line represents streamflow, dashed black line represents 80%Q80 variable threshold, and red areas are 

identified drought events. 5 
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Figure 45: Drought analysis for the Australian pair, Cox (Human) and Cockburn (NaturalBenchmark) (1982 – 2013). Flow higher than 

5 mm/month is not shown. Black solid line represents streamflow, dashed black line represents 80% variable threshold, and red areas are 

identified drought events. 
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