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Abstract 11 

Streamflow forecasting is prone to substantial uncertainty due to errors in meteorological forecasts, 12 

hydrological model structure and parameterization, as well as in the observed rainfall and streamflow 13 

data used to calibrate the models. Statistical streamflow post-processing is an important technique 14 

available to improve the probabilistic properties of the forecasts. This study evaluates post-processing 15 

approaches based on three transformations – logarithmic (Log), log-sinh (Log-Sinh) and Box-Cox with 16 

λ = 0.2 (BC0.2) – and identifies the best performing scheme for post-processing monthly and seasonal 17 

(3-months-ahead) streamflow forecasts, such as those produced by the Australian Bureau of 18 

Meteorology. Using the Bureau’s operational dynamic streamflow forecasting system, we carry out 19 

comprehensive analysis of the three post-processing schemes across 300 Australian catchments with a 20 

wide range of hydro-climatic conditions. Forecast verification is assessed using reliability and sharpness 21 

metrics, as well as the Continuous Ranked Probability Skill Score (CRPSS). Results show that the 22 

uncorrected forecasts (i.e. without post-processing) are unreliable at half of the catchments. Post-23 

processing of forecasts substantially improves reliability, with more than 90% of forecasts classified as 24 

reliable. In terms of sharpness, the BC0.2 scheme substantially outperforms the Log and Log-Sinh 25 

schemes. Overall, the BC0.2 scheme achieves reliable and sharper-than-climatology forecasts at a larger 26 

number of catchments than the Log and Log-Sinh schemes. The improvements in forecast reliability and 27 

sharpness achieved using the BC0.2 post-processing scheme will help water managers and users of the 28 

forecasting service to make better-informed decisions in planning and management of water resources. 29 

Keywords: seasonal streamflow forecasts, post-processing, Box-Cox transformation 30 

Key points 31 

1. Uncorrected and post-processed streamflow forecasts (using three transformations, namely Log, 32 

Log-Sinh and BC0.2) are evaluated over 300 diverse Australian catchments 33 

2. Post-processing enhances streamflow forecast reliability, increasing the percentage of catchments 34 

with reliable predictions from 50% to over 90% 35 

3. The BC0.2 transformation achieves substantially better forecast sharpness than the Log-Sinh and 36 

Log transformations, particularly in dry catchments 37 

38 
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1 Introduction 39 

Hydrological forecasts provide crucial supporting information on a range of water resource management 40 

decisions, including (depending on the forecast lead-time) flood emergency response, water allocation 41 

for various uses, and drought risk management (Li et al., 2016; Turner et al., 2017). The forecasts, 42 

however, should be thoroughly verified and proved to be of sufficient quality to support decision-making 43 

and to meaningfully benefit the economy, environment and society. 44 

Sub-seasonal and seasonal streamflow forecasting systems can be broadly classified as dynamic or 45 

statistical (Crochemore et al., 2016). In dynamic modelling systems, a hydrological model is usually 46 

developed at a daily time-step and calibrated against observed streamflow using historical rainfall and 47 

potential evaporation data. Rainfall forecasts from a numerical climate model are then used as an input 48 

to produce daily streamflow forecasts, which are then aggregated to the time scale of interest and post-49 

processed using statistical models (e.g. Bennett et al., 2017; Schick et al., 2018). In statistical modelling 50 

systems, a statistical model based on relevant predictors, such as antecedent rainfall and streamflow, is 51 

developed and applied directly at the time scale of interest (Robertson and Wang, 2009, 2011; Lü et al., 52 

2016; Zhao et al., 2016). Hybrid systems that combine aspects of dynamic and statistical approaches 53 

have also been investigated (Humphrey et al., 2016; Robertson et al., 2013a)  54 

Examples of operational services based on the dynamic approach include the Australian Bureau of 55 

Meteorology’s dynamic modelling system (Laugesen et al., 2011; Tuteja et al., 2011; Lerat et al., 2015); 56 

the Hydrological Ensemble Forecast Service (HEFS) of the US National Weather Service (NWS) 57 

(Brown et al., 2014; Demargne et al., 2014); the Hydrological Outlook UK (HOUK) (Prudhomme et al., 58 

2017); and the short-term forecasting European Flood Alert System (EFAS) (Cloke et al., 2013). 59 

Examples of operational services based on a statistical approach include the Bureau of Meteorology’s 60 

Bayesian Joint Probability (BJP) forecasting system (Senlin et al., 2017). 61 

Dynamic and statistical approaches have distinct advantages and limitations. Dynamic systems can 62 

potentially provide more realistic responses in unfamiliar climate situations, as it is possible to impose 63 

physical constraints in such situations (Wood and Schaake, 2008). In comparison, statistical models have 64 

the flexibility to include features that may lead to more reliable predictions. For example, the BJP model 65 

uses climate indices (e.g. NINO3.4), which are typically not used in dynamic approaches. That said, the 66 

suitability of statistical models for the analysis of non-stationary catchment and climate conditions is 67 

questionable (Wood and Schaake, 2008).  68 

Streamflow forecasts obtained using hydrological models are affected by uncertainties in rainfall 69 

forecasts, observed rainfall and streamflow data, as well as by uncertainties in the model structure and 70 

parameters. Progress has been made towards reducing biases and characterizing the sources of 71 
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uncertainty in streamflow forecasts. These advances include improving rainfall forecasts through post-72 

processing (Robertson et al., 2013b; Crochemore et al., 2016), accounting for input, parametric and/or 73 

structural uncertainty (Kavetski et al., 2006; Kuczera et al., 2006; Renard et al., 2011; Tyralla and 74 

Schumann, 2016), and using data assimilation techniques (Dechant and Moradkhani, 2011). Although 75 

these steps may improve some aspects of the forecasting system, a predictive bias may nonetheless 76 

remain. Such bias can only be reduced via post-processing, which, if successful, will improve forecast 77 

accuracy and reliability (Madadgar et al., 2014; Lerat et al., 2015). 78 

This study focuses on improving streamflow forecasting at monthly and seasonal time-scales using 79 

dynamic approaches, more specifically, by evaluating several forecast post-processing approaches. Post-80 

processing of streamflow forecasts is intended to remove systemic biases in the mean, variability and 81 

persistence of uncorrected forecasts, which arise due to inaccuracies in the downscaled rainfall forecasts 82 

(e.g. errors in downscaling forecast rainfall from a grid with 250 km resolution to the catchment scale) 83 

and in the hydrological model (e.g. due to the effects of data errors on the model calibration and due to 84 

structural errors in the model itself). 85 

A number of post-processing approaches have been investigated in the literature, including quantile 86 

mapping (Hashino et al., 2007) and Bayesian frameworks (Pokhrel et al., 2013; Robertson et al., 2013a), 87 

as well as methods based on state-space models and wavelet transformations (Bogner and Kalas, 2008). 88 

Wood and Schaake (2008) used the correlation between forecast ensemble means and observations to 89 

generate a conditional forecast. Compared with the traditional approach of correcting individual forecast 90 

ensembles, the correlation approach improved forecast skill and reliability. In another study, Pokhrel et 91 

al. (2013) implemented a Bayesian Joint Probability (BJP) method to correct biases, update predictions 92 

and quantify uncertainty in monthly hydrological model predictions in 18 Australian catchments. The 93 

study found that the accuracy and reliability of forecasts improved. More recently, Mendoza et al. (2017) 94 

evaluated a number of seasonal streamflow forecasting approaches, including purely statistical, purely 95 

dynamical, and hybrid approaches. Based on analysis of catchments contributing to five reservoirs, the 96 

study concluded that incorporating catchment and climate information into post-processing improves 97 

forecast skill. While the above review mainly focused on post-processing at sub-seasonal and seasonal 98 

forecasts (as it is the main focus of the current study), post-processing is also commonly applied to short-99 

range forecasts (e.g. Li et al., 2016) and to long-range forecasts up to 12 months ahead (Bennett et al., 100 

2016). 101 

In most streamflow post-processing approaches, a residual error model is applied to quantify forecast 102 

uncertainty. Most residual error models are based on least squares techniques with weights and/or data 103 

transformations (e.g. Carpenter and Georgakakos, 2001; Li et al., 2016). In order to produce post-104 

processed streamflow forecasts, a daily-scale residual error model is used in the calibration of 105 
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hydrological model parameters, and a monthly/seasonal-scale residual error model is used as part of 106 

streamflow post-processing to quantify the forecast uncertainty. In a recent study, McInerney et al. 107 

(2017) concluded that residual error models based on Box-Cox transformations with fixed parameter 108 

values are particularly effective for daily scale streamflow predictions using observed rainfall, yielding 109 

substantial improvements in dry catchments. This study investigates whether these findings generalize 110 

to monthly and seasonal forecasts using forecast rainfall. 111 

An important aspect of this work is its focus on general findings applicable over diverse hydro-112 

climatological conditions. Most of the studies in the published literature use a limited number of 113 

catchments and case studies to test prospective methods. Dry catchments, characterised by intermittent 114 

flows and frequent low flows, pose the greatest challenge to hydrological models (Ye et al., 1997; 115 

Knoche et al., 2014). Yet the provision of good quality forecasts across a large number of catchments is 116 

an essential attribute of national scale operational forecasting services, especially in large countries with 117 

diverse climatic and catchment conditions, such as Australia. 118 

This paper develops streamflow post-processing approaches suitable for use in an operational 119 

streamflow forecasting service. We pose the following aims:  120 

Aim 1: Evaluate the value of streamflow forecast post-processing by comparing forecasts with no post-121 

processing (hereafter called ‘uncorrected’ forecasts) against post-processed forecasts; 122 

Aim 2: Evaluate three post-processing schemes based on residual error models with data transformations 123 

recommended in recent publications, namely the Log, Box-Cox (McInerney et al., 2017) and Log-Sinh 124 

(Wang et al., 2012) schemes, for monthly and seasonal streamflow post-processing; 125 

Aim 3: Evaluate the generality of results over a diverse range of hydro-climatic conditions, in order to 126 

ensure the recommendations are robust in the context of an operational streamflow forecasting service.  127 

To achieve these aims, we use the operational monthly and seasonal (3-months-ahead) dynamic 128 

streamflow forecasting system of the Australian Bureau of Meteorology (Lerat et al., 2015). We evaluate 129 

the post-processing approaches across 300 catchments across Australia, with detailed analysis of dry and 130 

wet catchments. Forecast verification is carried out using Continuous Ranked Probability Skill Score 131 

(CRPSS) as well as metrics measuring reliability and sharpness, which are important aspects of a 132 

probabilistic forecast (Wilks, 2011). These metrics are used by the Bureau of Meteorology to describe 133 

streamflow forecast performance of the operational service. 134 

The rest of the paper is organised as follows. The forecasting methodology is described in Section 2 and 135 

application studies are described in Section 3. Results are presented in Section 4, followed by discussions 136 

and conclusions in Sections 5 and 6 respectively. 137 
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2 Seasonal streamflow forecasting methodology 138 

2.1 Overview 139 

The streamflow forecasting system adopted in this study is based on the Bureau of Meteorology’s 140 

dynamic modelling system (Figure 1). Daily rainfall forecasts are input into a daily rainfall-runoff model 141 

to produce “uncorrected” daily streamflow forecasts. These streamflow forecasts are then aggregated in 142 

time and post-processed to produce monthly and seasonal streamflow forecasts, which are issued each 143 

month. Two steps are involved: calibration and forecasting, discussed below. 144 

2.2 Uncorrected streamflow forecasts procedure 145 

2.2.1 Rainfall-runoff model 146 

The rainfall-runoff model GR4J (Perrin et al., 2003) is used as it has been proven to provide (on average) 147 

good performance across a large number of catchments ranging from semi-arid to temperate and tropical 148 

humid (Perrin et al., 2003; Tuteja et al., 2011). GR4J is a lumped conceptual model with four calibration 149 

parameters: maximum capacity of the production store x1 (mm); ground water exchange coefficient x2 150 

(mm); one day ahead maximum capacity of the routing store x3 (mm); and time base of unit hydrograph 151 

x4 (days). 152 

2.2.2 Rainfall-runoff model calibration  153 

In the calibration step, the daily rainfall-runoff model is calibrated to observed daily streamflow using 154 

observed rainfall (Jeffrey et al., 2001) as forcing. The calibration of the parameters is based on the 155 

weighted least squares likelihood function, similar to that outlined in Evin et al. (2014). Markov Chain 156 

Monte Carlo (MCMC) analysis is used to estimate posterior parametric uncertainty (Tuteja et al., 2011). 157 

Following MCMC analysis, 40 random sets of GR4J parameters are retained and used in the forecast 158 

step. A cross-validation procedure is implemented to verify the forecasts, as described in Section 3.4. 159 

The calibration and cross-validation is computationally intensive; therefore, we use the High 160 

Performance Computing (HPC) facility at the National Computing Infrastructure (NCI) in Australia. 161 

2.2.3 Producing uncorrected streamflow forecasts  162 

Prior to the forecast period, observed rainfall is used to force the rainfall-runoff model. During the 163 

forecast period, 166 replicates of daily downscaled rainfall forecasts from the Bureau of Meteorology’s 164 

global climate model, namely the Predictive Ocean Atmosphere Model for Australia, POAMA-2 are 165 

used (see Section 3.2 for details on POAMA-2). These rainfall forecasts are input into GR4J and 166 

propagated using the 40 GR4J parameter sets to obtain 6640 (166   40) daily streamflow forecasts. The 167 

daily streamflow forecasts generated using GR4J are then aggregated to monthly and seasonal time 168 

scales to produce ensembles of 6640 uncorrected monthly and seasonal forecasts. The computational 169 
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time required to generate 6640 streamflow forecast ensembles through this process is small compared 170 

with the time required to calibrate and cross-validate the hydrological model, and is easily achieved in 171 

an operational setting using HPC. Note that in this study the forecasting system does not use data 172 

assimilation technique to update the GR4J state variables. This choice is based on the limited effect of 173 

initial conditions after a number of days, which generally reduces the benefit of state-updating in the 174 

context of seasonal streamflow forecasting. 175 

2.3 Streamflow post-processing procedure 176 

2.3.1 Post-processing model   177 

The streamflow post-processing method used in this work consists of fitting a statistical model to the 178 

streamflow forecast residual errors, defined by the differences between the observed and forecast 179 

streamflow time series over a calibration period. Typically these errors are heteroscedastic, skewed and 180 

persistent. Heteroscedasticity and skew are handled using data transformations (e.g. the Box-Cox 181 

transformation), whereas persistence is represented using autoregressive models (e.g., the lag-one 182 

autoregressive model, AR(1)) (Wang et al., 2012; McInerney et al., 2017). We begin by describing the 183 

two major steps of the streamflow post-processing procedure (Sections 2.3.2 and 2.3.3), and then 184 

describe the transformations under consideration (Section 2.4). 185 

2.3.2 Post-processing model calibration  186 

The parameters of the streamflow post-processing model are calibrated as follows: 187 

Step 1: Compute the transformed forecast residuals for month or season t of the calibration period: 188 

     𝜂𝑡 = 𝑍(𝑄�̃�) − 𝑍(𝑄𝑡
𝐹)    (1)  189 

where t is the normalised residual, 𝑄�̃� is the observed streamflow, F

tQ is the median of the uncorrected 190 

streamflow forecast ensemble, and Z is a transformation function. The transformation functions 191 

considered in this work are detailed in Section 2.4. 192 

Step 2: Compute the standardised residuals: 193 

 
( ) ( )( ) /m t m t

t t     = −   (2) 194 

where 
( )m t

  and 
( )m t

  are the monthly mean and standard deviation of the residuals in the calibration 195 

period for the month ( )m t . 196 

The standardisation process in equation (2) aims to account for seasonal variations in the distribution of 197 

residuals. The quantities 
( )m t

 and 
( )m t

  are calculated independently as the sample mean and standard 198 
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deviation of residuals for each monthly period (for a monthly forecast) or three-monthly period (for 199 

seasonal forecasts). Based on equation (2), the standardised residuals vt are assumed to have a zero mean 200 

and unit standard deviation. 201 

Step 3: Assume the standardised residuals are described by a first order autoregressive (AR(1)) model 202 

with Gaussian innovations: 203 

 1 1t t ty + += +   (3) 204 

    205 

where  is the AR(1) coefficient and  𝑦𝑡+1~ 𝑁(0, 𝜎𝑦) is the innovation.  206 

The parameters  and y are estimated using the method of moments (Hazelton, 2011):  is estimated 207 

as the sample auto-correlation of the standardized residuals ν , and y  is estimated as the sample 208 

standard deviation of the observed innovations y , which in turn are calculated from the standardized 209 

residuals ν  by re-arranging equation (3). 210 

2.3.3 Producing post-processed streamflow forecasts  211 

Once the streamflow post-processing scheme is calibrated, the post-processed streamflow forecasts for 212 

a given period are computed. For a given ensemble member j, the following steps are applied: 213 

Step 1: Sample the innovation 𝑦𝑡+1,𝑗 ← 𝑁(0, 𝜎𝑦). 214 

Step 2: Generate the standardized residuals 𝑣𝑡+1,𝑗 using equation (3). Here ,t j is computed using 215 

equation (2) and ,t j  is computed using equation (1), using the streamflow forecasts and observations 216 

from the previous time step t.  217 

Step 3: Compute the normalized residuals 𝜂𝑡+1,𝑗 by “de-standardizing” 𝑣𝑡+1,𝑗: 218 

 𝜂𝑡+1,𝑗 =  𝜎𝜂
𝑚(𝑡)

𝑣𝑡+1,𝑗 + 𝜇𝜂
𝑚(𝑡)

   (4) 219 

Step 4: Back-transform each normalized residual 𝜂𝑡+1,𝑗 to obtain the post-processed streamflow forecast: 220 

 𝑄𝑡+1,𝑗
𝑃𝑃 =  𝑍−1[𝑍(𝑄𝑡+1

𝐹 ) + 𝜂𝑡+1,𝑗]  (5) 221 

Steps 1-4 are repeated for all ensemble members (6640 in our case). 222 

Note that the above algorithm may occasionally generate negative streamflow predictions, which we 223 

reset to zero. In addition, the algorithm can generate predictions that exceed historical maxima; such 224 
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predictions could in principle also be “adjusted” a posteriori, though we do not attempt such an 225 

adjustment in this study. These aspects are discussed further in Section 5.6.  226 

2.4 Transformations used in the post-processing model 227 

The observed streamflow and median streamflow forecast are transformed in Step 1 of streamflow post-228 

processing (Section 2.3.2), to account for the heteroscedasticity and skewness of the forecast residuals. 229 

We consider three transformations, namely the logarithmic, log-sinh and Box-Cox transformations. 230 

2.4.1 Logarithmic (Log) transformation 231 

The logarithmic (Log) transformation is 232 

  ( ) log( )Z Q Q c= +   (6) 233 

The offset  c ensures the transformed flows are defined when 0Q = . Here we set c = 0.01 × (�̃�)𝑎𝑣𝑒 234 

, where (�̃�)𝑎𝑣𝑒 is the average observed streamflow over the calibration period. The use of a small fixed 235 

value for c is common in the literature for coping with zero flow events (Wang et al., 2012). 236 

2.4.2 Log-Sinh transformation 237 

The Log-Sinh transformation (Wang et al., 2012) is 238 

   
1

( ) log sinh( )Z Q a bQ
b

= +   (7) 239 

The parameters a and b are calibrated for each month by maximising the p-value of the Shapiro-Wilk 240 

test (Shapiro and Wilk, 1965) for normality of the residuals, v. This pragmatic approach is part of the 241 

existing Bureau’s operational dynamic streamflow forecasting system (Lerat et al., 2015). 242 

2.4.3 Box-Cox transformation 243 

The Box-Cox transformation (Box and Cox, 1964) is   244 

  
( ) 1

( ; , )
Q c

Z Q c





+ −
=   (8) 245 

where λ is a power parameter and 𝑐 = 0.01 × (�̃�)𝑎𝑣𝑒. Following the recommendations of McInerney et 246 

al. (2017),  the parameter λ is fixed to 0.2.  247 

2.4.4 Rationale for selecting transformational approaches 248 

The Log transformation is a simple and widely used transformation; McInerney et al. (2017) reported 249 

that in daily scale modelling it produced the best reliability in perennial catchments (from a set of eight 250 

residual error schemes, including standard least squares, weighted least squares, BC, Log-Sinh and 251 
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reciprocal transformation). However, the Log transformation performed poorly in ephemeral 252 

catchments, where its precision was far worse than in perennial ones. 253 

The Log-Sinh transformation is an alternative to the Log and BC transformations proposed by Wang et 254 

al. (2012) to improve precision at higher flows. The Log-Sinh approach has been extensively applied to 255 

water forecasting problems (see for example, Del Giudice et al., 2013; Robertson et al., 2013b, Bennett 256 

et al., 2016). However, in daily scale streamflow modelling of perennial catchments using observed 257 

rainfall, the Log-Sinh scheme did not improve on the Log transformation: its parameters tend to calibrate 258 

to values for which the Log-Sinh transformation effectively reduces to the Log transformation 259 

(McInerney et al., 2017). 260 

Finally, the BC transformation with fixed λ = 0.2 is recommended by McInerney et al. (2017) as one of 261 

only two schemes (from the set of eight schemes listed earlier in this section) that achieve Pareto-optimal 262 

performance in terms of reliability, precision and bias, across both perennial and ephemeral catchments. 263 

McInerney et al. (2017) also found that calibrating λ did not generally improve predictive performance, 264 

due to the inferred value being dominated by the fit to the low flows at the expense of the high flows. 265 

2.5 Summary of key terms  266 

In the remainder of the paper, the term “uncorrected forecasts” refers to streamflow forecasts obtained 267 

using steps in Section 2.2.3, and the term “post-processed forecasts” refers to forecasts based on a 268 

streamflow post-processing model, which includes the standardization and AR(1) model from Section 269 

2.3, as well as a transformation (Log, Log-Sinh or BC0.2) from Section 2.4. As the post-processing 270 

schemes considered in this work differ solely in the transformation used, they will be referred to as the 271 

Log, Log-Sinh and BC0.2 schemes. 272 

3 Application 273 

3.1 Study catchments 274 

The empirical case study is carried out over a comprehensive set of 300 catchments with locations shown 275 

in Figure 2. The figure also shows the Koppen climate zones. These catchments are selected as 276 

representative of the diverse hydro-climatic conditions across Australia. The catchment areas range from 277 

as small as 6 km2 to as large as 232,846 km2, with 90% of the catchments having areas below 6,000 km2. 278 

The seasonal streamflow forecasting service of the Bureau of Meteorology is currently evaluating these 279 

300 catchments as part of an expansion of their dynamic modelling system. 280 
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3.2 Catchment data 281 

In each catchment, data from 1980-2008 is used. Observed daily rainfall data was obtained from the 282 

Australian Water Availability Project (AWAP) (Jeffrey et al., 2001). Potential evaporation and observed 283 

streamflow data were obtained from the Bureau of Meteorology.  284 

Catchment-scale rainfall forecasts are estimated from daily downscaled rainfall forecasts produced by 285 

the Bureau of Meteorology’s global climate model, namely the Predictive Ocean Atmosphere Model for 286 

Australia (POAMA-2) (Hudson et al., 2013). The atmospheric component of POAMA-2 uses a spatial 287 

scale of approximately 250   250 km (Charles et al., 2013). To estimate catchment-scale rainfall, a 288 

statistical downscaling model based on an analogue approach (which could also be considered as rainfall 289 

forecast post-processing) was applied (Timbal and McAvaney, 2001). In the analogue approach, local 290 

climate information is obtained by matching analogous previous situations to the predicted climate. To 291 

this end, an ensemble of 166 rainfall forecast time series (33 POAMA ensembles   5 replicates from 292 

downscaling + 1 ensemble mean) were generated. In operation, POAMA-2 forecasts are generated every 293 

week by running 33 member ensembles out to 270 days. In this study we use rainfall forecasts up to 3 294 

months ahead and produce 166 rainfall forecast ensembles through the analogue downscaling procedure 295 

described above.  296 

3.3 Catchment classification  297 

The performance of the post-processing schemes is evaluated separately in dry versus wet catchments. 298 

In this work, the classification of catchments into dry and wet is based on the aridity index (AI) according 299 

to the following equation 300 

 
P

AI=
PET

  (9) 301 

where P is the total rainfall volume and PET is the total potential evapotranspiration volume. The aridity 302 

index has been used extensively to identify and classify drought and wetness conditions of hydrological 303 

regimes ( Zhang et al., 2009; Carrillo et al., 2011; Sawicz et al., 2014). 304 

Catchments with AI < 0.5 are categorised as “dry”, which corresponds to hyper-arid, arid and semi-arid 305 

classifications suggested by the United Nations Environment Programme (Middleton et al., 1997). 306 

Conversely, catchments with AI ≥ 0.5 are classified as “wet”. Overall, about 28% of catchments used in 307 

this work are classified as dry. 308 

3.4 Cross-validation procedure 309 

The forecast verification is carried out using a moving-window cross-validation framework, as shown 310 

in Figure 3. We use 5 years data (1975-1979) to warm-up the model and apply data from 1980-2008 for 311 
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calibration in a cross-validation framework based on a 5-year moving window. Suppose we are 312 

validating the streamflow forecasts in year j (e.g., 1990j =  in Figure 3). In this case the calibration is 313 

carried out using all years except years j, j+1, j+2, j+3 and j+4. The four-year period after year j is 314 

excluded to prevent the memory of the hydrological model from affecting model performance in the 315 

validation window period. The process is then repeated for each year during 1980-2008. Once the 316 

validation has been carried out for each year, the results are concatenated to produce a single “validation” 317 

time series, for which the performance metrics are calculated. 318 

3.5 Forecast performance (verification) metrics 319 

The performance of uncorrected and post-processed streamflow forecasts is evaluated using reliability 320 

and sharpness metrics, as well as the Continuous Ranked Probability Skill Score (CRPSS, see section 321 

3.5.3). Note that the Bureau of Meteorology uses Root Mean Squared Error (RMSE) and Root Mean 322 

Squared Error in Probability (RMSEP) scores in the operational service in addition to CRPSS, however 323 

these metrics have not been considered in this study. 324 

Forecast performance (verification) metrics are computed separately for each forecast month. To 325 

facilitate the comparison and evaluation of streamflow forecast performance in different streamflow 326 

regimes, the high and low flow months are defined using long-term average streamflow data calculated 327 

for each month. The 6 months with the highest average streamflow are classified as “high flow” months, 328 

and the remaining 6 months are classified as “low flow” months. The performance metrics listed below 329 

are computed for each month separately; the indices denoting the month are excluded from Equations 330 

(10), (11) and (12) below to avoid cluttering the notation. 331 

3.5.1 Reliability  332 

The reliability of forecasts is evaluated using the Probability Integral Transform (PIT) (Dawid, 1984; 333 

Laio and Tamea, 2007). To evaluate and compare reliability across 300 catchments, the p-value of the 334 

Kolmogorov-Smirnov (KS) test applied to the PIT is used. In this study, forecasts with PIT plots where 335 

the KS test yields a p-value ≥ 5% are classified as “reliable”. 336 

3.5.2 Sharpness 337 

The sharpness of forecasts is evaluated using the ratio of inter-quantile ranges (IQR) of streamflow 338 

forecasts and a historical reference (Tuteja et al., 2016). The following definition is used:  339 

𝐼𝑄𝑅𝑞 =  
1

𝑁
∑

𝐹𝑖(100− 𝑞)− 𝐹𝑖(𝑞)

𝐶𝑖(100− 𝑞)− 𝐶𝑖(𝑞)
𝑁
𝑖= 1  × 100 %       (10) 340 

where 𝐼𝑄𝑅𝑞 is the 𝐼𝑄𝑅 value corresponding to percentile 𝑞, and 𝐹𝑖(𝑞) and  𝐶𝑖(𝑞) are, respectively, the 341 

qth percentiles of forecast and historical reference for year i. 342 
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An 𝐼𝑄𝑅𝑞 of 100% indicates a forecast with the same sharpness as the reference, an 𝐼𝑄𝑅𝑞 below 100% 343 

indicates forecasts that are sharper (tighter predictive limits) than the reference, and an 𝐼𝑄𝑅𝑞 above 344 

100% indicates forecasts that are less sharp (wider predictive limits) than the reference. We report 𝐼𝑄𝑅99, 345 

i.e., the 𝐼𝑄𝑅 at the 99 percentile, in order to detect forecasts with unreasonably long tails in their 346 

predictive distributions. 347 

3.5.3 CRPS skill score (CRPSS)  348 

The 𝐶𝑅𝑃𝑆 metric quantifies the difference between a forecast distribution and observations, as follows 349 

(Hersbach, 2000), 350 

𝐶𝑅𝑃𝑆 =  
1

𝑁
 × ∑ ∫ [𝐹𝑖(𝑦) − 𝐻𝑖{𝑦 ≥ 𝑦𝑜}]2𝑑𝑦

∞

−∞
𝑁
𝑖=1        (11) 351 

where Fi  is the cumulative distribution function (cdf) of the forecast for year i, y is the forecast variable 352 

(here streamflow) and 𝑦𝑜 is the corresponding observed value. 𝐻𝑖{𝑦 ≥ 𝑦𝑜} is the Heaviside step function, 353 

which equals 1 when the forecast values are greater than the observed value and equals 0 otherwise. 354 

The 𝐶𝑅𝑃𝑆  summarises the reliability, sharpness and bias attributes of the forecast (Hersbach, 2000). A 355 

“perfect” forecast – namely a point prediction that matches the actual value of the predicted quantity – 356 

has 𝐶𝑅𝑃𝑆𝑃 = 0. In this work, we use the 𝐶𝑅𝑃𝑆 skill score, CRPSS, defined by 357 

𝐶𝑅𝑃𝑆𝑆 =  
𝐶𝑅𝑃𝑆𝐹−𝐶𝑅𝑃𝑆𝐶

𝐶𝑅𝑃𝑆𝑃−𝐶𝑅𝑃𝑆𝐶  ×  100%        (12) 358 

where 𝐶𝑅𝑃𝑆𝐹, 𝐶𝑅𝑃𝑆𝐶  and 𝐶𝑅𝑃𝑆𝑃 represent the 𝐶𝑅𝑃𝑆 value for model forecast, climatology and 359 

“perfect” forecast respectively. A higher CRPSS indicates better performance, with a value of 0 360 

representing the same performance as climatology. 361 

3.5.4  Historical reference 362 

The IQR and CRPSS metrics are defined as skill scores relative to a reference forecast. In this work, we 363 

use the climatology as the reference forecast, as it represents the long-term climate condition. To 364 

construct these “climatological forecasts”, we used the same historical reference as the operational 365 

seasonal streamflow forecasting service of the Bureau of Meteorology. This reference is resampled from 366 

a Gaussian probability distribution fitted to the observed streamflow transformed using the Log-Sinh 367 

transformation (Equation 7). This approach leads to more stable and continuous historical reference 368 

estimates than sampling directly from the empirical distribution of historical streamflow, and can be 369 

computed at any percentile (which facilitates comparison with forecast percentiles). Although the choice 370 

of a particular reference affects the computation of skill scores, it does not affect the ranking of post-371 

processing models when the same reference is used, which is the main aim of this paper. 372 
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3.5.5 Summary skill: Summarising forecast performance using multiple metrics 373 

When evaluating forecast performance, a focus on any single individual metric can lead to misleading 374 

interpretations. For example, two forecasts might have a similar sharpness, yet if one of these forecasts 375 

is unreliable it can lead to an over- or under- estimation of the risk of  376 

an event of interest, which in turn can lead to a sub-optimal decision by forecast users (e.g. a water 377 

resources manager). 378 

Given inevitable trade-offs between individual metrics (McInerney et al., 2017), it is important to 379 

consider multiple metrics jointly rather than individually. Following the approach suggested by Gneiting 380 

et al. (2007), we consider a forecast to have “high skill” when it is reliable and sharper than climatology. 381 

To determine the “summary skill” of the forecasts in each catchment, we evaluate the total number of 382 

months (out of 12) in which forecasts are reliable (i.e., with a p-value greater than 5%) and sharper than 383 

the climatology (i.e., IQR99 < 100%). A catchment is classified as having high summary skill if “high 384 

skill” forecasts are obtained  10-12 months per year (on average), and is classified as having low 385 

summary skill otherwise. Note that CRPSS is not included in the summary skill, because it does not 386 

represent an independent measure of a forecast attribute (see Section 3.5.3 for more details). 387 

A table providing the percentage of catchments with high and low summary skills is used to summarise 388 

forecasts performance of a given post-processing scheme. To identify any geographic trends in the 389 

forecast performance, the summary skills are plotted on a map. The summary skills together with 390 

individual skill score values are used to evaluate the overall forecast performance, and are presented 391 

separately for wet and dry catchments, as well as separately for high and low flow months. 392 

4 Results 393 

Results for monthly and seasonal streamflow forecasts are now presented. Section 4.1 compares the 394 

uncorrected and post-processed streamflow forecast performance. Section 4.2 evaluates the performance 395 

of post-processed streamflow forecasts obtained using the Log, Log-Sinh and BC0.2 schemes. The 396 

CRPSS, reliability and sharpness metrics are presented in Figure 4 and Figure 5 for monthly and seasonal 397 

forecasts respectively.  398 

Initial inspection of results found considerable overlap in the performance metrics achieved by the error 399 

models. To determine whether the differences in metrics are consistent over multiple catchments, the 400 

Log and Log-Sinh schemes are compared to the BC0.2 scheme. This comparison is presented in Figure 401 

6 and Figure 7 for monthly and seasonal forecasts respectively. The BC0.2 scheme is taken as the 402 

baseline because inspection of Figure 4 and Figure 5 suggests that the BC0.2 scheme has better median 403 
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sharpness than the Log and Log-Sinh schemes, over all the catchments and for both high and low flow 404 

months individually.  405 

The streamflow forecast time-series and corresponding skill for a single representative catchment, 406 

Dieckmans Bridge, are presented in Figure 8 and Figure 9, respectively. 407 

The summary skills of the monthly and seasonal forecasts are presented in Figure 10 and Figure 11. The 408 

figures include a histogram of summary skills across all catchments to enable comparison between the 409 

uncorrected and the post-processing approaches. 410 

4.1 Comparison of uncorrected and post-processed streamflow forecasts: Individual 411 

metrics 412 

In terms of CRPSS, the largest improvement as a result of post-processing (using any of the 413 

transformations considered here) occurs in dry catchments. This finding holds for both monthly (Figure 414 

4c) and seasonal forecasts (Figure 5c). For example, when post-processing is implemented, the median 415 

CRPSS of monthly forecasts in dry catchments increases from approximately 7% (high flow months) 416 

and -15% (low flow months) to more than 10% (Figure 4c) for both high and low flows. Visible 417 

improvement is also observed in dry catchments for seasonal forecasts, however, the improvement is 418 

not as pronounced as for monthly forecasts (Figure 5c). 419 

In terms of reliability, the performance of uncorrected streamflow forecasts is poor, with about 50% of 420 

the catchments being characterized by unreliable forecasts at both the monthly and seasonal time scales 421 

(Figure 4 and Figure 5, middle row). In comparison, post-processing using the three transformation 422 

approaches produces much better reliability, achieving reliable forecasts in more than 90% of the 423 

catchments. 424 

In terms of sharpness, the uncorrected forecasts and the BC0.2 post-processed forecasts are generally 425 

sharper than forecasts generated using the other transformations (Figure 4g and Figure 5g). The use of 426 

post-processing achieves much better sharpness than uncorrected forecasts for low flow months, 427 

particularly in dry catchments. For example, for low flow months in dry catchments (Figure 4i), the 428 

median IQR99 is greater than 200%, while similar values range between 40-100% for post-processed 429 

forecasts. Similarly, for seasonal forecasts, post-processing approaches improve the median sharpness 430 

from 150% (uncorrected forecasts) to 50%-110% (Figure 5i). 431 

4.2 Comparison of post-processing schemes: Individual metrics 432 

In terms of CRPSS, Figure 4 (a, b, c) and Figure 5 (a, b, c) show considerable overlap in the boxplots 433 

corresponding to all three post-processing schemes, both in wet and dry catchments. This finding 434 

suggests little difference in the performance of the post-processing schemes, and is further confirmed by 435 



Page 15 of 41 

Figure 6 (a, b, c) and Figure 7 (a, b, c), which show boxplots of the differences between the CRPSS of 436 

the Log and Log-Sinh schemes versus the CRPSS of the BC0.2 scheme. Across all catchments, the 437 

distribution of these differences is approximately symmetric with a mean close to 0. In dry catchments, 438 

the BC0.2 slightly outperforms the Log scheme for high flow months and the Log-Sinh scheme slightly 439 

outperforms the Log scheme for low flow months. Overall, these results suggest that none of the Log, 440 

Log-Sinh or BC0.2 schemes is consistently better in terms of CRPSS values. 441 

In terms of reliability, post-processing using any of the three post-processing schemes produces reliable 442 

forecasts at both monthly and seasonal scales, and in the majority of the catchments (Figure 4 and Figure 443 

5, middle row). The median p-value is approximately 60% for monthly forecasts compared with 45% 444 

for seasonal forecasts. This indicates that better forecast reliability is achieved at shorter lead times. 445 

Median reliability is somewhat reduced when using the BC0.2 scheme compared to the Log and Log-446 

Sinh schemes in wet catchments (Figure 6e), but not so much in dry catchments (Figure 6f). 447 

Nevertheless, the monthly and seasonal forecasts are reliable in 96% and 91% of the catchments, 448 

respectively. The corresponding percentages for the Log scheme are 97% and 94%, and for Log-Sinh 449 

they are 95% and 90%. 450 

In terms of sharpness, the BC0.2 scheme outperforms the Log and Log-Sinh schemes. This finding holds 451 

in all cases (i.e., high/low flow months and wet/dry catchments), both for monthly and seasonal forecasts 452 

(Figure 4 and Figure 5, bottom row). The plot of differences in the sharpness metric (Figure 6 and Figure 453 

7, bottom row) highlights this improvement. In half of the catchments, during both high and low flow 454 

months, the BC0.2 scheme improves the IQR99 by 30% (or more) compared to the Log and Log-Sinh 455 

schemes. In dry catchments, the improvements are larger than in wet catchments. For example, in dry 456 

catchments during high flow months, the BC0.2 scheme improves on the IQR99 of Log and Log-Sinh 457 

by 40-60% in over a half of the catchments, and by as much as 170%-190% in a quarter of the 458 

catchments. 459 

To illustrate these results, a streamflow forecast time-series at Dieckmans Bridge catchment (site id: 460 

145010A) is shown in Figure 8 and performance metrics calculated over six high flow months and six 461 

low flow months are shown in Figure 9. This catchment is selected as it is broadly representative of 462 

typical results obtained across the wide range of case study catchments. The period in Figure 8 (2003-463 

2007) is chosen because it highlights the difference in forecast interval between the uncorrected and 464 

post-processing approaches. The figure indicates that in terms of reliability, the uncorrected forecast has 465 

a number of observed data points outside the 99% predictive range (Figure 8a). This is an indication that 466 

the forecast is unreliable. This finding can be confirmed from the corresponding p-value in Figure 9, 467 

which shows that the forecast is below the reliability threshold during most of the high flow months and 468 
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during some low flow months. In terms of sharpness, Log and Log-Sinh schemes produce a wider 99% 469 

predictive range than the BC0.2 scheme (Figure 8 and Figure 9). 470 

4.3 Comparison of summary skill between uncorrected and post-processing approaches 471 

Figure 10 and Figure 11 show the geographic distribution of the summary skill of the uncorrected and 472 

post-processing approaches for monthly and seasonal forecasts respectively. Recall that the summary 473 

skill represents the number of months with streamflow forecasts that are both reliable and sharper than 474 

climatology. Table 1 provides a summary of the percentage of catchments with high and low summary 475 

skill for the uncorrected and post-processing approaches for monthly and seasonal forecasts (see Section 476 

3.5.5).  477 

The findings for forecasts at monthly scale are as follows (Figure 10 and Table 1): 478 

• Uncorrected forecasts perform worse than post-processing techniques in the sense that they have 479 

low summary skill in the largest percentage of catchments (16%). The percentage of catchments 480 

where high summary skill is achieved by uncorrected forecasts is 40%. 481 

• Post-processing forecasts with the Log and Log-Sinh scheme reduces the percentage of 482 

catchments with low summary skills from 16% to 2% and 7% respectively. However, the 483 

percentage of catchments with high summary skill also decreases (in comparison to uncorrected 484 

forecasts), from 40% to 33% for both the Log and Log-Sinh schemes. 485 

Post-processing with the BC0.2 scheme provides the best performance, with the smallest percentage of 486 

catchments with low summary skills (<1%) and the largest percentage of catchments with high summary 487 

skills (84%). As seen in Figure 10 488 

• Figure 10, the improvement achieved by the BC0.2 scheme (compared to the Log/Log-Sinh 489 

schemes) is most pronounced in New South Wales (NSW) and in the tropical catchments in 490 

Queensland (QLD) and the Northern Territory (NT). The few catchments where the BC0.2 491 

scheme does not achieve a high summary skill are located in the north and north-west of 492 

Australia. 493 

The findings for forecasts at the seasonal scale are as follows (Figure 11 and Table 1): 494 

• Log scheme has the largest percentage (19%) of catchments with low summary skill and a 495 

relatively small percentage (9%) of catchments with high summary skill.  496 

• Post-processing forecasts with the Log and Log-Sinh schemes reduces the percentages of 497 

catchments with low summary skill from 19% to 18% and 17% respectively. The percentage of 498 

catchments with high summary skill increases from 9% to 12% and 22% respectively.  499 

• Post-processing with the BC0.2 scheme once again provides the best performance: it produces 500 

forecasts with low summary skill in only 2% of the catchments, and achieves high summary skill 501 
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in 54% of the catchments. As seen in Figure 11, similar to the case of monthly forecasts, the 502 

biggest improvements for seasonal forecasts occur in the NSW and Queensland regions of 503 

Australia.  504 

Overall, Table 1 shows that, across all schemes, BC0.2 results in a larger percentage of catchments with 505 

low summary skill and a larger percentage of catchments with high summary skill. It can also be seen 506 

that the summary skills of post-processing approaches are lower for seasonal forecasts than for monthly 507 

forecasts. 508 

4.4 Summary of empirical findings 509 

Sections 4.1-4.3 show that post-processing achieves major improvements in reliability, as well as in 510 

CRPSS and sharpness, particularly in dry catchments. Although all three post-processing schemes under 511 

consideration provide improvements in some of the performance metrics, the BC0.2 scheme consistently 512 

produces better sharpness than the Log and Log-Sinh schemes, while maintaining similar reliability and 513 

CRPSS. This finding holds for both monthly and, to a less degree, seasonal forecasts. Of the three post-514 

processing schemes, the BC0.2 scheme improves by the largest margin the percentage of catchments 515 

and the number of months where the post-processed forecasts are reliable and sharper than climatology. 516 

5 Discussion 517 

5.1 Benefits of forecast post-processing  518 

A comparison of uncorrected and post-processed streamflow forecasts was provided in Section 4.1. 519 

Uncorrected forecasts have reasonable sharpness (except for in dry catchments), but suffer from low 520 

reliability: uncorrected forecasts are unreliable at approximately 50% of the catchments. In wet 521 

catchments, poor reliability is due to overconfident forecasts, which appears a common concern in 522 

dynamic forecasting approaches (Wood and Schaake, 2008). In dry catchments, uncorrected forecasts 523 

are both unreliable and exhibit poor sharpness. Post-processing is thus particularly important to correct 524 

for these shortcomings and improve forecast skill. In this study, all post-processing models provide a 525 

clear improvement in reliability and sharpness, especially in dry catchments. The value of post-526 

processing is more pronounced in dry catchments than in wet catchments (Figure 4 and Figure 5). This 527 

finding can be attributed to the challenge of capturing key physical processes in dry and ephemeral 528 

catchments (Ye et al., 1997), as well as the challenge of achieving accurate rainfall forecasts in arid 529 

areas. In addition, the simplifications inherent in any hydrological model, including the conceptual 530 

model GR4J used in this work, might also be responsible for the forecast skill being relatively lower in 531 

dry catchments than in wet catchments. Whilst using a single conceptual model is attractive for practical 532 

operational system, there may be gains in exploring alternative structures for ephemeral catchments (e.g. 533 

Clark et al., 2008; Fenicia et al., 2011). We intend to explore such alternative model structures for 534 
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difficult ephemeral catchments. In such dry catchments, the hydrological model forecasts are particularly 535 

poor and leave a lot of room for improvement: post-processing can hence make a big difference on the 536 

quality of results. 537 

5.2 Interpretation of differences between post-processing schemes 538 

We now discuss the large differences in sharpness between the BC0.2 scheme versus the Log and Log-539 

Sinh schemes. The Log-Sinh transformation was designed by Wang et al. (2012) to improve the 540 

reliability and sharpness of predictions, particularly for high flows, and has worked well as part of the 541 

statistical modelling system for operational streamflow forecasts by the Bureau of Meteorology. The 542 

Log-Sinh transformation has a variance stabilizing function that (for certain parameter values) tapers off 543 

for high flows. In theory, this feature can prevent the explosive growth of predictions for high flows that 544 

can occur with the Log and Box-Cox transformations (especially when 0  ). 545 

McInerney et al. (2017) found that, when modelling perennial catchments at the daily scale, the Log-546 

Sinh scheme did not achieve better sharpness than the Log scheme. Instead, the parameters for the Log 547 

scheme tended to converge to values for which the tapering off of the Log-Sinh transformation function 548 

occurs well outside the range of simulated flows, effectively reducing the Log-Sinh scheme to the Log 549 

scheme. In contrast, the Box-Cox transformation function with a fixed 0   gradually flattens as 550 

streamflow increases, and exhibits the “desired” tapering-off behaviour within the range of simulated 551 

flows. This behaviour leads to the Box-Cox scheme achieving, on average, more favourable variance-552 

stabilizing characteristics than the Log-Sinh scheme. 553 

Our findings in this study confirm the insights of McInerney et al. (2017) – namely that the Log-Sinh 554 

scheme produces comparable sharpness to the Log scheme – across a wider range of catchments. This 555 

finding indicates that insights from modelling residual errors at the daily scale apply at least to some 556 

extent to streamflow forecast post-processing at the monthly and seasonal scales. Note the minor 557 

difference in the treatment of the offset parameter c in equation (6): in the Log scheme used in McInerney 558 

et al. (2017) this parameter is inferred, whereas in this study it is fixed a priori. This minor difference 559 

does not impact on the qualitative behaviour of the error models described earlier in this section. Overall, 560 

when used for post-processing seasonal and monthly forecasts in a dynamic modelling system, the 561 

BC0.2 scheme provides an opportunity to improve forecast performance further than is possible using 562 

the Log and Log-Sinh schemes. 563 

5.3 Importance of using multiple metrics to assess forecast performance 564 

The goal of the forecasting exercise is to maximise sharpness without sacrificing reliability (Gneiting et 565 

al., 2005; Wilks, 2011; Bourdin et al., 2014). The study results show that relying on a single metric for 566 

evaluating forecast performance can lead to sub-optimal conclusions. For example, if one considers the 567 
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CRPSS metric alone, all post-processing schemes yield comparable performance and there is no basis 568 

for favouring any single one of them. However, once sharpness is taken into consideration explicitly, 569 

the BC0.2 scheme can be recommended due to substantially better sharpness than the Log and Log-Sinh 570 

schemes.  571 

Similarly, comparisons based solely on CRPSS might suggest reasonable performance of the 572 

uncorrected forecasts: 55%-80% of months have CRPSS > 0 (with some variability across high/low flow 573 

months and monthly/seasonal forecasts). Yet once reliability is considered explicitly, it is found that 574 

uncorrected forecasts are unreliable at approximately 50% of the catchments. Note that performance 575 

metrics based on the CRPSS reflect an implicitly weighted combination of reliability, sharpness and bias 576 

characteristics of the forecasts (Hersbach, 2000). In contrast, the reliability and sharpness metrics are 577 

specifically designed to quantify reliability and sharpness attributes individually. These findings 578 

highlight the value of multiple independent performance metrics and diagnostics that evaluate specific 579 

(targeted) attributes of the forecasts, and highlight important limitations of aggregate measures of 580 

performance (Clark et al., 2011).  581 

A number of challenges and questions remain in regards to selecting the performance verification metrics 582 

for specific forecasting systems and applications. An important question is how to include user needs 583 

into a forecast verification protocol. This could be accomplished by tailoring the evaluation metrics to 584 

the requirements of users. Another key question is to what extent do measures of forecast skill correlate 585 

to the economic and/or social value of the forecast? This challenging question was investigated by 586 

Murphy and Ehrendorfer (1987) and Wandishin and Brooks (2002), who found the relationship between 587 

quality and value of a forecast to be essentially nonlinear: an increase in forecast quality may not 588 

necessarily lead to a proportional increase in its value. This question requires further multi-disciplinary 589 

research, including human psychology, economic theory, communication and social studies (e.g. Matte 590 

et al., 2017; Morss et al., 2010). 591 

5.4 Importance of performance evaluation over large numbers of catchments 592 

When designing an operational forecast service for locations with streamflow regimes as diverse and 593 

variable as in Australia (Taschetto and England, 2009), it is essential to thoroughly evaluate multiple 594 

modelling methods over multiple locations to ensure the findings are sufficiently robust and general. 595 

This was the major reason for considering the large set of 300 catchments in our study. This setup also 596 

yields valuable insights into spatial patterns in forecast performance. For example, the Log and Log-597 

Sinh schemes perform relatively well in catchments in South-Eastern Australia, and relatively worse in 598 

catchments in Northern and North-Eastern Australia (Figure 10 and Figure 11). In contrast, the BC0.2 599 

scheme performs well across the majority of the catchments in all regions included in the evaluation. 600 

The evaluation over a large number of catchments in different hydro-climatic regions is clearly beneficial 601 
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to establish the robustness of post-processing methods. Restricting the analysis to a smaller number of 602 

catchments would have led to less conclusive findings. 603 

5.5 Implication of results for water resource management 604 

The empirical results clearly show that the BC0.2 post-processing scheme improves forecast sharpness 605 

(precision) while maintaining forecast accuracy and reliability. As discussed below, this improvement 606 

in forecast quality offers an opportunity to improve operational planning and management of water 607 

resources. 608 

The management of water resources, for example, deciding which water source to use for a particular 609 

purpose or allocating environmental flows, requires an understanding of the current and future 610 

availability of water. For water resources systems with long hydrological records, water managers have 611 

devised techniques to evaluate current water availability, water demand and losses. However, one of the 612 

main unknowns is the volume of future system inflows. Streamflow 613 

forecasts  provide crucial information to water managers and users regarding the future availability of 614 

water, thus helping reduce uncertainty in decision making. This information is particularly valuable to 615 

support decision during drought events. In this study, forecast performance is evaluated separately for 616 

high and low flow months – providing a clearer indication of predictive ability for flows that are above 617 

and below average, respectively. A detailed evaluation of forecasts for more extreme drought events is 618 

challenging as these events are correspondingly rarer. Limited sample size makes it difficult to make 619 

conclusive statements: e.g. if we focus on the lowest 5% of historical data with a 30 year record, we may 620 

only have roughly 1.5 samples for each month/season. The uncertainty arising from limited sample size 621 

requires further development of forecast verification techniques, potentially adapting some of the 622 

approaches used by Hodgkins et al. (2017).  623 

5.6 Opportunities for further improvement in forecast performance 624 

There are several opportunities to further improve the seasonal streamflow forecasting system. This 625 

section describes avenues related to specialised treatment of zero flows and high flow forecasts, 626 

uncertainty analysis of post-processing model parameters, and the use of data assimilation (state 627 

updating). 628 

The post-processing approaches used in this work do not make special provision for zero flows in the 629 

observed data. Robust handling of zero flows in statistical models, especially in arid and semi-arid 630 

catchments, is an active research area (Wang and Robertson, 2011; Smith et al., 2015), and advances in 631 

this area are certainly relevant to seasonal streamflow forecasting.  632 
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A similar challenge is associated with the forecasting of high flows, as the post-processing approaches 633 

used in this work can produce streamflow predictions that exceed historical maxima. The IQR ratio used 634 

to assess forecast sharpness will detect unreasonably long tails (i.e. extremes) in the predictive 635 

distributions and hence can hence indirectly identify instances of unreasonably high flow forecasts. 636 

Further research is needed to develop techniques to evaluate the realism of forecasts that exceed 637 

historical maxima. 638 

Another area for further investigation is the identifiability of parameters 
( )m t

  and 
( )m t

  of the monthly 639 

post-processing model. These parameters are estimated using monthly data (see Section 2.3.2), and 640 

hence could be subject to substantial uncertainty and/or over-fitting to the calibration period. In this 641 

study, 29 years of data were employed in the calibration, making these problems unlikely. Importantly, 642 

the use of a cross-validation procedure (Section 3.4) is expected to detect potential overfitting. That said, 643 

as many sites of potential application may lack the data length available in this work, the sensitivity of 644 

forecast performance to the length of calibration period warrants further investigation. 645 

Finally, the forecasting system used in this study does not employ data assimilation to update the states 646 

of the GR4J hydrological model. Gibbs et al. (2018) showed that monthly streamflow forecasting 647 

benefits from state updating in catchments that exhibit non-stationarity in their rainfall-runoff dynamics. 648 

Note that data assimilation of ocean observations has been implemented in the climate model 649 

(POAMA2) used for the rainfall forecast (Yin et al., 2011) (see Section 3.2 for additional details). 650 

6 Conclusions 651 

This study focused on developing robust streamflow forecast post-processing schemes for an operational 652 

forecasting service at the monthly and seasonal time scales. For such forecasts to be useful to water 653 

managers and decision-makers, they should be reliable and exhibit sharpness that is better than 654 

climatology. 655 

We investigated streamflow forecast post-processing schemes based on residual error models employing 656 

three data transformations, namely the logarithmic (Log), log-sinh (Log-Sinh) and Box-Cox with λ = 0.2 657 

(BC0.2). The Australian Bureau of Meteorology’s dynamic modelling system was used as the platform 658 

for the empirical analysis, which was carried out over 300 Australian catchments with diverse hydro-659 

climatic conditions. 660 

The following empirical findings are obtained: 661 

1. Uncorrected forecasts (no post-processing) perform poorly in terms of reliability, resulting in a 662 

mischaracterization of forecast uncertainties; 663 
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2. All three post-processing schemes substantially improve the reliability of streamflow forecasts, 664 

both in terms of the dedicated reliability metric and in terms of the summary skill given by the 665 

CRPSS; 666 

3. From the post-processing schemes considered in this work, the BC0.2 scheme is found best 667 

suited for operational application. The BC0.2 scheme provides the sharpest forecasts without 668 

sacrificing reliability, as measured by the reliability and CRPSS metrics. In particular, the BC0.2 669 

scheme produces forecasts that are both reliable and sharper than climatology at substantially 670 

more catchments than the alternative Log and Log-Sinh schemes.    671 

A major practical outcome of this study is the development of a robust streamflow forecast post-672 

processing scheme that achieves forecasts that are consistently reliable and sharper than climatology. 673 

This scheme is well suited for operational application, and offers the opportunity to improve decision 674 

support, especially in catchments where climatology is presently used to guide operational decisions. 675 

7 Data availability  676 
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streamflow data (http://www.bom.gov.au/waterdata). 679 
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 907 

Tables 908 

 909 

Table 1. Performance of post-processing schemes, expressed as the percentage of catchments with high 910 

and low summary skill. Results shown for monthly and seasonal forecasts. A catchment with “high 911 

summary skill” is defined as a catchment where “high skill” forecasts are achieved in 10-12 months out 912 

of the year; “high skill” forecasts are defined as forecasts that are reliable and sharper than climatology. 913 

 Post-processing scheme 

 Uncorrected 

forecasts 

Log Log-Sinh BC0.2 

Monthly Forecasts 

High Summary Skill 40% 33% 33% 84% 

Low Summary Skill 16% 2% 7% <1% 

Seasonal Forecasts 

High Summary Skill 46% 9% 20% 54% 

Low Summary Skill 14% 19% 17% 2% 

 914 

 915 

 916 
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Figures 918 

 

 

 

Figure 1: Schematic of the dynamic streamflow forecasting system used in this study. A similar 

approach is used by the Australian Bureau of Meteorology for its monthly and seasonal streamflow 

forecasting service. 

 919 
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 921 

 922 

Figure 2: Locations of the 300 catchments used in this study. The catchments are classified as dry or wet 923 

based on the aridity index. The Koppen climate classification for Australia are shown. The Dieckmans 924 

Bridge catchment (site id: 145010A), used as a representative catchment in Figure 8, is indicated by the 925 

red circle. 926 
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 939 

  940 

Figure 3: Schematic of the cross-validation framework used for forecast verification, applied with the 5-941 

year validation period window beginning in year 1990 (after Tuteja et al., 2016). 942 
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 954 

Figure 4: Performance of monthly forecasts in terms of CRPSS, reliability (PIT p-value) and sharpness 955 

(IQR99 ratio). 956 

 957 
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 959 

Figure 5: Performance of seasonal forecasts in terms of CRPSS, reliability (PIT p-value) and sharpness 960 

(IQR99 ratio). 961 
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 965 
 966 

Figure 6: Distributions of differences in the monthly forecast performance metrics of the Log and Log-967 

Sinh schemes compared to the BC0.2 scheme. 968 
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 974 

Figure 7: Distributions of differences in the seasonal forecast performance metrics of the Log and Log-975 

Sinh schemes compared to the BC0.2 scheme. 976 
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 979 

 980 
 981 

Figure 8: Seasonal streamflow forecast time series (blue line) and observations (red dots) at Dieckmans 982 

Bridge catchment (site id: 145010A). The shaded area shows the 99% prediction limits. 983 
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 984 

 985 

Figure 9: Seasonal streamflow forecast skill scores at Dieckmans Bridge catchment, computed from the 986 

time series shown in Figure 8 for six high flow months and six low flow months. 987 
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 992 

 993 

 994 

Figure 10: Summary skill of monthly forecasts obtained using the Log, Log-Sinh and BC0.2 schemes 995 

across 300 Australian catchments. The performance of uncorrected forecasts is also shown. The 996 

summary skill is defined as the number of months where high skill forecasts (i.e., forecasts that are 997 

reliable and sharper than climatology) are obtained. The inset histogram shows the percentage of 998 

catchments in each performance category and also serves as the color legend. 999 
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 1001 
 1002 

Figure 11: Summary skill of seasonal forecasts obtained using the Log, Log-Sinh and BC0.2 schemes 1003 

across 300 Australian catchments. See  1004 

Figure 10 caption for details. 1005 


