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Response to Referee #1 

General comment: This review is for Manuscript ID: hess-2018-214, entitled Evaluating Residual Error 
Approaches for Post-processing Monthly and Seasonal Streamflow Forecasts, authored by Fitsum 
Woldemeskel and coauthors. With this manuscript the authors’ aim is to evaluate different residual error 
models, including logarithmic (Log), Log-Sinh, and Box-Cox transformation schemes, for 
postprocessing monthly and seasonal streamflow forecasts. Overall, the postprocessed streamflow 
forecasts demonstrate skillful, reliable and sharper forecasts compared to the uncorrected forecasts. 
Furthermore, postprocessor employing the Box-Cox transformation scheme demonstrate the sharpest 
forecasts, without sacrificing skill and reliability. This manuscript is generally clear, however, it reads 
like a book chapter rather than a journal article. I believe the results and conclusions are of interest to 
the HESS community, as well as to the operational forecasters. Thus, this manuscript is worthy of 
publication if the issues below are addressed. 

Author response:  We thank the reviewer for the positive assessment of our manuscript as well as for 
their constructive comments and useful suggestions to improve the manuscript further. We are pleased 
that the reviewer found our manuscript suitable for the HESS research community and the community 
of operational forecasters. We provide specific responses to review comments as follows.  

 
Major Comments 
 
Referee comment 1: The introduction needs better organization. Consider removing the unnecessary 
details about the statistical modelling system and hybrid system (P4-5, L86-95), which are irrelevant in 
the context of dynamic modeling. The literature review can be focused on the usefulness of POAMA-2 
in advancing seasonal hydrological forecasting.   

 
Author response:  We agree that statistical and hybrid systems are not directly relevant in the context 
of dynamic modelling. In the revised version, we have shortened  the description of statistical and hybrid 
approaches to focus on the essentials and avoid excessive details (lines 71-75).  

 
Referee comment 2: Make a separate subsection for the study area, dataset and hydrological model. 

 
a) Study area: Provide general information on the hydroclimatic conditions, types of events across 
different seasons, basin size range, and reason for selecting the particular catchments. 
 

Author response: Thank you for this suggestion. We have now added separate subsection for study 
area (section 3.1) with additional details about the catchments studied. As we are evaluating 300 
catchments, it will be difficult to provide detailed site specific information, however, we provided 
summarised information highlighting those points suggested by the reviewer. 

 
b) Dataset: Provide detail information on rainfall forecast dataset from POAMA-2, including forecast 
lead time, total number of ensemble members, and forecast initialization time and frequency. 
POAMA-2 information (P7, L189-194) should be integrated into the “Section 3.1 Data”. 

 
Author response:  We have now provided additional information about rainfall forecast using POAMA-
2 in subsection 3.2 as well as integrated lines 189-194 (older manuscript version) in subsection 3.2.  
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c) Hydrological model: I am concerned about the details of the rainfall-runoff model GR4J used for 
the study. It is necessary that you explain better the following aspects of the model: lumped 
conceptual model or physically based model, spatial resolution of the model, and the selected 
routing method. How often is the model initialized to make the forecast runs? 

 
Author response:  Thanks for raising this issue. In the revised manuscript we have included additional 
information in section 2.2.2 to clarify some details of the GR4J model used. Please refer to response to 
comment #3 below for some related information. 

 
Referee comment 3: If the model is calibrated, then consider adding a subsection to discuss the 
simulation performance. You need to mention the calibrated parameters, model warm-up period, 
calibration period and validation period. The simulation performance can be discussed using correlation 
coefficient, percent bias and Nash-Sutcliffe efficiency between the observed and simulated streamflow. 
 
Author response:  We have included the details that the reviewer deemed necessary on how we 
calibrated the GR4J model parameters. We use 5 years model warm-up during 1975-1979 as well as 
calibration and validation during 1980-2008 in a moving 5 years leave-out cross-validation scheme. We 
have now clarified these points in the revised manuscript in sections 2.2.2 and 3.4. 
 
We considered adding a subsection to discuss simulation performance as suggested by the reviewer, 
however we choose not to do this, because (1)  the paper is focussed on  improving streamflow forecast 
performance as this is the operational goal of the Bureau of Meteorology. (2) streamflow forecast 
performance in a dynamic modelling system is a function of the combined effects of the rainfall forecasts 
and the rainfall-runoff model, and this is clearly captured in the performance evaluation of the 
“uncorrected” streamflow forecasts (3) this paper is not about attributing whether the errors in 
streamflow forecasts are due to errors in the rainfall forecasts or the errors in the hydrological model, 
nor is it about comparing multiple hydrological models to determine which is the best to be used for 
forecasting purposes. These are both valuable research topic, but outside the scope of this paper. (4) 
this paper is focussed on once we have the “uncorrected” streamflow forecasts, what is best residual 
error modelling approach to post-process this streamflow forecasts. (5) the paper is already quite long, 
with 11 Figures and 1 table – adding the simulation performance of a hydrological model for ~300 
catchments would require another at least another 1-2 Figures while providing little value for the reasons 
outlined above. In the discussion (Section 5.1) we have added some discussion on the value of trialling 
alternative hydrological models as part of future research.        

 
Referee comment 4: In order to support the operational forecasting system, the conclusions drawn 
here should be valid in the context of extreme events. Does the conclusions apply to flood events? For 
this, verification metrics can be computed by considering the flow amounts greater than that implied by 
a non-exceedance probability, in the sampled climatological probability distribution, of 0.95. 

  

Author response:  While seasonal streamflow forecasts have limited application for flood prediction 
purposes, the question is relevant for predicting drought events, where the seasonal forecasts have 
significant value. In this study we evaluated forecast performance separately for high and low flow 
months, which provides an indication of predictive ability for below-average flows (i. e., drought events). 
In addition, the results and conclusion regarding the best performing error model scheme and its 
performance apply for the extreme events. Evaluation of forecast performance for extreme events (e.g. 
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<5% of historical data) is challenging because we may only have very small sample, which will make it 
difficult to draw definitive conclusions. We have now included the following paragraph in the discussion 
(section 5.5; lines 630-640) to acknowledge this issue and recommend it for future investigations. 
 

Streamflow forecasts thus provide crucial information to water managers and users regarding 
the future availability of water, thus helping reduce uncertainty in decision making. This 
information is particularly valuable to support decision during drought events. In this study, 
forecast performance is evaluated separately for high and low flow months – providing a clearer 
indication of predictive ability for flows that are above and below average, respectively. A 
detailed evaluation of forecasts for more extreme drought events is challenging as these events 
are correspondingly rarer. Limited sample size makes it difficult to make conclusive statements: 
e.g. if we focus on the lowest 5% of historical data with a 30 year record, we may only have 
roughly 1.5 samples for each month/season. The uncertainty arising from limited sample size 
requires further development of forecast verification techniques, potentially adapting some of 
the approaches used by Hodgkins et al. (2017).  

 
 
Referee comment 5: Considering an operational forecasting situation, how feasible is it to run 166 
ensemble members using 40 GR4J parameters, and produce 6640 daily streamflow forecasts?  

 
Author response:  Yes, it is feasible to run 166 ensemble members with 40 GR4J parameters, and 
the Bureau of Meteorology has been running such a system operationally for a few years now. 
Producing 6640 forecasts this way is important to maintain reliability of forecasts. The largest 
computational expense results from calibrating hydrological models and cross-validation exercise 
rather than updating streamflow forecasts once every month using 166 ensembles members. However, 
the calibration and cross-validation exercise is typically done using a single observed rainfall time-
series. We also use high performance computing (HPC) facilities available at the Bureau of Meteorology 
and the National Computing Infrastructure (NCI) for calibrating hydrological models, which significantly 
reduces overall computation time. We have highlighted this in the revised manuscript in lines 181-182 
and 190-193.  

 
Referee comment 6: In the context of seasonal forecasting, different studies have demonstrated the 
combined ability of preprocessing meteorological forcing and postprocessing streamflow forecast to 
produce better streamflow forecasts. However, the study here only implements postprocessing. Was 
the meteorological forcing preprocessed? If not the case, it could be a topic of discussion, as a 
recommendation for future work to investigate the performance of residual error models in the context 
of preprocessing and postprocessing. 
 
Author response:  We use the analogue approach to downscale gridded POAMA-2 GCM rainfall 
forecast to catchment scale forecast, which can be considered as a form of rainfall forecast pre-
processing. We have highlighted this point in the revised manuscript (section 3.2, line 308).     
 
Minor Comments 
 
Referee comment 7: Figure 8: Mention the units in the Y-axis for streamflow. 
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Author response:  Thank you for this suggestion. We have now included units in the Y-axis in Figure 
8. 
 
Referee comment 8: Figure 8: Is there any reason for selecting Dieckmans Bridge catchment as a 
representative site for the analysis. Why is the time series plotted only for the period of 2003-2007? Is 
this a random selection? 
 
Author response:  Dieckmans Bridge catchment is selected as it is reflective of the results and 
conclusions across all catchments. That is, applying BC0.2 at this catchment resulted in better 
sharpness compared to applying Log and Log-Sinh while maintaining comparable CRPSS and reliability 
for high and low flow months. This is shown in Figure 9. The period 2003-2007 in Figure 8 is chosen as 
this period shows the difference in the forecast interval between the raw and three error models more 
clearly. We have now highlighted this point in the revised manuscript (section 4.2, lines 480-483). 
 
Referee comment 9: Figure 9a: Replace “CRPS” with “CRPSS” in the Y-axis. 
Referee comment 10: P8 L200-204: Integrate this paragraph into the introduction.  
Referee comment 11: P9 L233: Provide a reference to the statement: “the parameters are estimated 
based on the methods of moments.”  
Referee comment 12: P13 L365: Define the variable “y” in Equation 11.  
Referee comment 13: P13 L367: How do you define the Heaviside step function?  
Referee comment 14: P16 L444: Fix the typo for “Figure 45i”.  
Referee comment 15: P18 L495: Replace “unprocessed” with” uncorrected”.  
Referee comment 16: P18 L501: Define the acronyms: “NSW”, “QLD” and “NT” when used for the first 
time.  
 
Author response:  We thank the reviewer for pointing out the above editorial corrections (comments 
9-16). We have now incorporated all these corrections in the revised manuscript. 
 
Referee comment 17: It may be good idea to provide a standard name for the streamflow 
postprocessing technique implemented in the study, is it a new technique? If not, then provide a suitable 
reference to the postprocessing technique. 
 
Author response:  We thank the reviewer for this suggestion. The residual error model approach used 
in this study is not new (e.g. the Box-Cox / power transformation has been introduced by Box and Cox, 
1964; see McInerney et al., 2017 for detailed analysis), however, the application of it for post-processing 
monthly and seasonal streamflow forecasting in national forecasting system is new. This is clear from 
the presentation of Sections 2.3 and 2.4 which cite previous work and from sentences such as on lines 
131-132 where we note that we are checking if findings obtained in case studies on daily streamflow 
prediction using observed rainfall data hold in applications with seasonal streamflow prediction using 
forecast rainfall. 
 
References  
 
Box, G. E. P. and Cox, D. R.: An analysis of transformations, Journal of the Royal Statistical Society, 

Series B. 26 (2): 211–252. JSTOR 2984418. MR 0192611. 
 
Hodgkins, G. A., P. H. Whitfield, D. H. Burn, J. Hannaford, B. Renard, K. Stahl, A. K. Fleig, H. Madsen, 

L. Mediero, J. Korhonen, C. Murphy, and D. Wilson.: Climate-driven variability in the occurrence 
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of major floods across North America and Europe, J Hydrol, 552, 704-717, 
10.1016/j.jhydrol.2017.07.027. 

 
McInerney, D., Thyer, M., Kavetski, D., Lerat, J. and Kuczera, G.: Improving probabilistic prediction of 

daily streamflow by identifying Pareto optimal approaches for modeling heteroscedastic residual 
errors, Water Resour. Res., 53(3), 2199–2239, doi:10.1002/2016WR019168, 2017. 
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  Response to Referee #2 

General comment: This paper presents a comparison of three variants of a post-processing approach 
for long-range (here monthly to seasonal) streamflow forecasts in Australia. The paper is well-written 
and easy to read. The research is interesting for several reasons. First, the topic of long-range 
forecasting and especially how the skill of such forecasts can be improved is currently raising a lot of 
attention from hydrologists. There are many practical applications for which seasonal forecasts are 
required for decision-making. Second, Australia is a vast country which includes a broad range of hydro-
climatic conditions, and the authors efficiently gathered a data base of 300 catchments, to ensure that 
their findings are as generalizable as possible. The authors explicitly address the specific case of dry 
catchments and low-flow periods, which is of great practical interest in several areas on the planet. 
Indirectly, the research has implications for socio-economic issues, as the management of water-scarce 
catchments could benefit from better seasonal forecasts. The paper also fits well within the scope of 
HESS.  
 
This paper is definitely suitable for publication in HESS. However, I do have a few specific comments 
and suggestions for the authors to improve it prior to publication. In my opinion, all comments are minor.   
 
Author response:  We thank the reviewer for this very positive assessment of our manuscript and for 
recognising its practical importance. We are pleased that reviewer found our manuscript suitable for 
publication in HESS. We provide response to the review comments as follows.  
 
Specific comments/suggestions/questions: 
 
Referee comment 1:  Data assimilation/link with short-term forecasts 
 
From the paper, I am not entirely sure how GR4J’s state variables are managed (see also my next 
comment). From what I understand, there is no data assimilation at all. Perhaps this can be justified in 
the context of long-range forecasts as the effect of data assimilation would fade out quickly (probably 
before the one month horizon). 
 
I was also wondering if there is a link (operationaly at BoM) between short- and longrange forecasts. 
Surely the hydrological model is the same, but what about the meteorological forecasts? Are the short- 
and long-ranges connected in some way? Surely, in operations, there must be a certain form of data 
assimilation for short lead times.  
 
Considering the above interrogations, I would very much appreciate short comment regarding data 
assimilation in the paper.  
 
Author response: The reviewer is correct that we have not used data assimilation to update GR4J 
state variables. However, data assimilation of ocean observations has been incorporated in the climate 
model (POAMA2.0) from which the rainfall forecasts have been obtained. We agree with the reviewer 
that the benefit of data assimilation for seasonal forecasts is limited. However, Gibbs et al. (2018) 
showed that monthly streamflow forecasting could benefit from state updating when the issue of non-
stationarity is also handled. This is something to be investigated further in the future. We have now 
highlighted this issue in the manuscript (section 5.6). 
 
 
 
Regarding the link between short- and long range forecasts provided by the Bureau of Meteorology, 
the two have independent systems due to the different needs of the forecasting service stakeholders. 
Short-range forecasts require a daily update with a focus on timely delivery of forecasts to anticipate 
quickly evolving events. Long-range forecast are more connected to longer-term decision making, 
which requires monthly update and statistically reliable forecasts. In addition, the GCM inputs are 
sourced from different models: short-term streamflow forecasts use weather forecasting model with 
limited modelling of ocean dynamic, whereas long range streamflow forecasts use climate outlook 
model with strong coupling between ocean and atmospheric models. As of now, updating state 
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variables through data assimilation is also not yet implemented in short-range forecasts, but there are 
plans to incorporate this in the future.  
 
Overall, the streamflow forecast relies on data assimilation included in the climate model and of robust 
hydrologic modelling technique highlighted in the paper. It is also worth to mention that the Bureau of 
Meteorology prioritised investments in developing hydrologic modelling within a robust uncertainty 
framework, followed by streamflow and rainfall post-processing. In our view, the incremental benefits 
from data assimilation is likely to be less than these components.  
 
Referee comment 2:  Simulation and Forecast steps vs model calibration and warm-up  
 
Section 2.2 and 2.3: I am slightly puzzled by that division into "simulation step", which includes model 
calibration, and "forecast step". Reading the description of the "simulation step", one could thing that 
you re-calibrate the model several times, once before each forecasting step. Is that so? If so, why? You 
want the model parameters to be dynamic? 
 
I would tend to think that what the steps would rather be (1) calibrate the model (40 times using the 
MCMC-based method you mention) once and for all, (2) simulate streamflow over the entire period and 
save the state variables (I assume no data assimilation) and (3) launch GR4J in "forecast mode", by 
fetching the appropriate state variables for a specific date and feeding the model with meteorological 
forecasts. 
 
I would very much appreciate if you could clarify those issues in the paper. In particular, think that 
calibration should be separated from simulation. 
 
Author response:  The three steps the reviewer described are correct. However, there is an additional 
process in step 1, i.e., we estimate parameters in a moving 5 years leave-out cross-validation approach. 
This is done in order to validate forecasts with an observed data set independent from the dataset  used 
for calibration. We do not re-calibrate the hydrological model prior to each forecast.  
 
We use data from 1980-2008 for cross-validation with a model warm-up period of 5 years (i.e. 1975-
1979).  
 
We clarified these points in the paper as well as made the distinction between calibration and forecast 
clearer in section 2.2. We also briefly mentioned the simulation step in line 184. 
 
Referee comment 3:  Discussing the choice of model for dry catchments 
 
Section 5, lines 535-536, you mention that "This finding can be attributed to the challenge of capturing 
key physical processes in modeling dry and ephemeral catchments (: : :)". In my opinion, this sentence 
leads to questioning whether of not GR4J is an appropriate model for very dry catchments. I know this 
model very well and I can appreciate its many qualities. GR4J works well for a very wide variety of 
hydro-climatic conditions. In addition, I do understand the practicality of having only one (very simple) 
model for all catchments on the entire country. However, there is no soil per se in GR4J. It is a very 
simple conceptual model which cannot, for instance, model soil sealing phenomena for dry catchments. 
I don’t see how this model could ever capture the physical processes, as mentioned in your sentence.  
 
In my opinion, this issue (the choice of a very simple conceptual model) should be briefly discussed 
following lines 535-536. 
 
Author response:  We thank the reviewer for pointing out this issue. The reviewer is correct that the 
model structure of GR4J, in particular its simplifying assumptions, might be responsible for the relatively 
lower forecast skill in dry catchments as compared to wet. Another potential source of poor performance 
is the errors in the rainfall forecasts, because these dry catchments have so few rainfall events with a 
high frequency of convective events, which are challenging to forecast for the POAMA GCM with a 
250km grid size. Our general  experience is that  uncertainty of rainfall forecast is typically far larger 
than  the hydrologic uncertainty. Our intent with respect to hydrological modelling is to use a model that 
can perform as best as possible in different hydro-climatologic conditions without necessarily being 
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complicated and non-parsimonious, and GR4J has shown to perform well under a wide-range of hydro-
climatic conditions (Perrin et al., 2003; Tuteja et al., 2011).  
 
Whilst using a single simple conceptual model is attractive for a practical operational system, there may 
be gains in exploring alternative model structures for difficult catchments (e.g. Clark et al., 2008; Fenicia 
et al., 2011). We intend to explore such alternative model structures for difficult ephemeral catchments. 
We have now highlighted these issues in section 5.1 (lines 549-554).      
 
It is also worth mentioning that forecasting in dry catchments will remain an issue regardless of the 
hydrological model used due to the limited amount of information contained in streamflow records (high 
number of zero flow values) and high frequency of convective storms.  
 
Referee comment 4:  Citing papers from HESS Discussion 
 
In my opinion, citing papers from HESS Discussion should be discouraged. After all, there is no real 
filtering of the papers before they can be published in discussion. The revision process takes place 
around the Discussion paper. To me, a paper that never makes it to HESS (after the Discussion) should 
be considered as rejected, even though it remains publicly accessible on the web. You wouldn’t cite a 
paper that was rejected from other "more traditional" journals for which the revision is not as public as 
for HESS. Of course you could argue that if a paper in Discussion receives excellent comments but 
never makes it to HESS, it could be a case where the authors purposefully decided not to spend time 
editing it according to the reviewer’s comments and re-submitting it. In my opinion, this practice, if it 
exists, should not be encouraged. Again, it wouldn’t be possible with the majority of other journals. 
 
Therefore, I would very strongly recommend that you remove all references to HESS Discussion. Set 
(2006) should therefore not be cited.  
 
The citation for Mendoza et al (2017) should be updated as it is now published. Same for Turner et al 
(2017). The titles have also changed in the published version. 
 
Author response: We agree with the suggestion not to cite HESS Discussion papers. Therefore, we 
will remove or modify the above references as appropriate in the revised manuscript. We will also 
update the references as suggested. 
 
Referee comment 5:  Forecasts’ value 
 
Section 5.3 lines 584-587, you briefly touch on the issue of forecasts value. I personally don’t think 
measures of skill could ever be linked to the socio-economic value of forecasts. Most studies focussing 
on forecast values in the current literature largely over-simplify the problem. For the issue of forecasts 
value to be tackles in a more realistic way, researchers from humanities and social sciences would 
inevitably have to be involved. Forecasts value involves complex issues related to human psychology, 
economic theory, communication, social studies, etc. See for instance Morss et al. (2010), Matte et al. 
(2017), Toon et al. (2017) and Solin et al (2018).  
 
In my opinion, forecasts skill is a pre-requisite for forecast value but in no way a guaranty. I don’t see 
how metrics related strictly to the skill of a forecast (as in comparing the forecast to observation) could 
be a predictor of forecasts value on their own.  
 
Morss et al (2017) Examining the use of weather forecasts in decision scenarios: results from a US 
survey with implications for uncertainty communication, METEOROLOGICAL APPLICATIONS, 17(2), 
149-162  
 
Matte et al (2017) Moving beyond the cost-loss ratio: economic assessment of streamflow forecasts for 
a risk-averse decision maker, HYDROLOGY AND EARTH SYSTEM SCIENCES, 21 (6), 2967-2986. 
 
Toon et al (2017) Integrating Household Risk Mitigation Behavior in Flood Risk Analysis: An Agent-
Based Model Approach, RISK ANALYSIS, 37 (10), 1977-1992 
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Solin et al (2018) Vulnerability assessment of households and its possible reflection in flood risk 
management: The case of the upper Myjava basin, Slovakia, INTERNATIONAL JOURNAL OF 
DISASTER RISK REDUCTION, 28, 640-652. 
 
Author response: We thank the reviewer for these insights on the value of forecasts as well as for the 
suggestion of relevant literatures. We agree with the reviewer that forecast skill is a pre-requisite but 
not a guarantee of its value. A link between skill and value is a very complex issue as mentioned by the 
reviewer. We have now highlighted this issue in section 5.3 (lines 603-608) and cited some of the above 
references. In this regard, the Bureau actively works with its stakeholders to provide evidence about 
forecast value by developing application case studies 
(http://www.bom.gov.au/water/ssf/case_studies.shtml). A recent socio-economic study conducted by 
London Economics has also highlighted the value of seasonal forecasts (Duke et al. 2016).  
  
Referee comment 6:  Typos/spelling/format/figures 
 
- Page 10 line 255: I think the word " trial" should be replaced by "tried".  
- Page 13 equation 11: The CRPS is usually computed by averaging the values over a large sample of 
forecasts-observation groups. Therefore, I think it is important that equation (11) be modified to be more 
explicit about this averaging.  
- Page 14 line 388: "lead to misleading" is a bit strange to read. I would advise rephrasing  
- Page 15 lines 413-414: there seem to be an awkward space between those two lines. 
Please verify.  
- Page 16 lines 443-444: Is "from in excess of 150%" the correct phrasing? Also, there is a typo in the 
parenthesis "(Figure 45i)".  
- Page 18 line 493: remove comma after "scheme"  
- Page 37, figure 8: please include the units for streamflow (y axis) on this figure. In addition, I am not 
entirely sure I understand the time step (x axis). Counting the points, I understand that the time step is 
one month, which would be coherent with the text, but not explicitly specified for this figure. In my 
opinion the x axis label could also be clearer. 
- Page 38 figure 9: An "S" is missing for the y axis label of the top row. It should be CRPSS and not 
CRPS. 
 
Author response:  We thank the reviewer for pointing out the above editorial corrections. We have 
now incorporated all of these corrections in the revised manuscript. 
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Abstract 

Streamflow forecasting is prone to substantial uncertainty due to errors in meteorological forecasts, 

hydrological model structure and parameterization, as well as in the observed rainfall and streamflow 

data used to calibrate the models. Statistical streamflow post-processing is an important technique 

available to improve the probabilistic properties of the forecasts. This study evaluates post-processing 

approaches based on three transformations – logarithmic (Log), log-sinh (Log-Sinh) and Box-Cox with 

λ = 0.2 (BC0.2) – and identifies the best performing scheme for post-processing monthly and seasonal 

(3-months) streamflow forecasts, such as those produced by the Australian Bureau of Meteorology. 

Using the Bureau’s operational dynamic streamflow forecasting system, we carry out comprehensive 

analysis of the three post-processing schemes across 300 Australian catchments with a wide range of 

hydro-climatic conditions. Forecast verification is assessed using reliability and sharpness metrics, as 

well as the Continuous Ranked Probability Skill Score (CRPSS). Results show that the uncorrected 

forecasts (i.e. without post-processing) are unreliable at half of the catchments. Post-processing of 

forecasts substantially improves reliability, with more than 90% of forecasts classified as reliable. In 

terms of sharpness, the BC0.2 scheme substantially outperforms the Log and Log-Sinh schemes. Overall, 

the BC0.2 scheme achieves reliable and sharper-than-climatology forecasts at a larger number of 

catchments than the Log and Log-Sinh transformations. The improvements in forecast reliability and 

sharpness achieved using the BC0.2 post-processing scheme will help water managers and users of the 

forecasting service to make better-informed decisions in planning and management of water resources. 

Keywords: seasonal streamflow forecasts, post-processing, Box-Cox transformation 
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Key points 

1. Uncorrected and post-processed streamflow forecasts (using three transformations, namely Log, 

Log-Sinh and BC0.2) are evaluated over 300 diverse Australian catchments 

2. Post-processing enhances streamflow forecast reliability, increasing the percentage of 

catchments with reliable predictions from 50% to over 90% 

3. The BC0.2 transformation achieves substantially better forecast sharpness than the Log-sinh and 

Log transformations, particularly in dry catchments 
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1 Introduction 

Hydrological forecasts provide crucial supporting information on a range of water resource management 

decisions, including (depending on the forecast lead-time) flood emergency response, water allocation 

for various uses, and drought risk management (Li et al., 2016; Turner et al., 2017). The forecasts, 

however, should be thoroughly verified and proved to be of sufficient quality to support decision-making 

and to meaningfully benefit the economy, environment and society. 

Sub-seasonal and seasonal streamflow forecasting systems can be broadly classified as dynamic or 

statistical (Crochemore et al., 2016). In dynamic modelling systems, a hydrological model is usually 

developed at a daily time-step and calibrated against observed streamflow using historical rainfall and 

potential evaporation data. Rainfall forecasts from a numerical climate model are then used as an input 

to produce daily streamflow forecasts, which are then aggregated to the time scale of interest and post-

processed using statistical models (e.g. Bennett et al., 2017; Schick et al., 2018). In statistical modelling 

systems, a statistical model based on relevant predictors, such as antecedent rainfall and streamflow, is 

developed and applied directly at the time scale of interest (Robertson and Wang, 2009, 2011; Lü et al., 

2016; Zhao et al., 2016). Hybrid systems that combine aspects of dynamic and statistical approaches 

have also been investigated (Humphrey et al., 2016; Robertson et al., 2013a)  

Examples of operational services based on the dynamic approach include the Australian Bureau of 

Meteorology’s dynamic modelling system (Laugesen et al., 2011; Tuteja et al., 2011; Lerat et al., 2015); 

the Hydrological Ensemble Forecast Service (HEFS) of the US National Weather Service (NWS) 

(Brown et al., 2014; Demargne et al., 2014); the Hydrological Outlook UK (HOUK) (Prudhomme et al., 

2017); and the short-term forecasting European Flood Alert System (EFAS) (Cloke et al., 2013). 

Examples of operational services based on a statistical approach include the Bureau of Meteorology’s 

Bayesian Joint Probability (BJP) forecasting system (Senlin et al., 2017). 

Dynamic and statistical approaches have distinct advantages and limitations. Dynamic systems can 

potentially provide more realistic responses in unfamiliar climate situations, as it is possible to impose 

physical constraints in such situations (Wood and Schaake, 2008). In comparison, statistical models have 

the flexibility to include features that may lead to more reliable predictions. For example, the BJP model 

uses climate indices (e.g. NINO3.4), which are typically not used in dynamic approaches. That said, the 

suitability of statistical models for the analysis of non-stationary catchment and climate conditions is 

questionable (Wood and Schaake, 2008).  

Streamflow forecasts built on hydrological models are affected by uncertainty in a number of factors, 

including rainfall forecasts, observed rainfall and streamflow data, as well as the parametric and 

structural uncertainty of the hydrological model. Progress has been made towards reducing biases and 
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characterizing the sources of uncertainty in streamflow forecasting. These advances include improving 

rainfall forecasts through post-processing ( Robertson et al., 2013b; Crochemore et al., 2016), accounting 

for input, parametric and/or structural uncertainty (Kavetski et al., 2006; Kuczera et al., 2006; Renard et 

al., 2011; Tyralla and Schumann, 2016) and using data assimilation techniques (Dechant and 

Moradkhani, 2011). Although these steps may improve some aspects of the forecasting system, a 

predictive bias may nonetheless remain. Such bias can only be reduced via post-processing, which, if 

successful, will improve forecast accuracy and reliability (Madadgar et al., 2014; Lerat et al., 2015).  

This study focuses on improving streamflow forecasting using dynamic approaches, by post-processing 

approaches for improving hydrological forecasts at monthly and seasonal time-scales. Post-processing 

of streamflow forecasts is intended to remove systemic biases in the mean, variability and persistence of 

the uncorrected forecasts, which arise due to inaccuracies in the downscaled rainfall forecasts (e.g. errors 

in downscaled forecast rainfall from approximately a 250 km grid to the catchment scale) and in the 

hydrological model (e.g. due to the effects of data errors on the model calibration and due to structural 

errors in the model itself). 

A number of post-processing approaches have been investigated in the literature, including quantile 

mapping (Hashino et al., 2007), Bayesian frameworks (Pokhrel et al., 2013; Robertson et al., 2013a), as 

well as methods based on state-space models and wavelet transformations (Bogner and Kalas, 2008). 

Wood and Schaake (2008) used the correlation between forecast ensemble means and observations to 

generate a conditional forecast. Compared with the traditional approach of correcting individual forecast 

ensembles, the correlation approach improved forecast skill and reliability. In another study, Pokhrel et 

al. (2013) implemented a Bayesian Joint Probability (BJP) method to correct biases, update predictions 

and quantify uncertainty in monthly hydrological model predictions in 18 Australian catchments. The 

study found that the accuracy and reliability of forecasts improved. More recently, Mendoza et al. (2017) 

evaluated a number of seasonal streamflow forecasting approaches, including purely statistical, purely 

dynamical, and hybrid approaches. Based on analysis of catchments contributing to five reservoirs, the 

study concluded that incorporating catchment and climate information into post-processing improves 

forecast skill. While the above review mainly focused on post-processing at sub-seasonal and seasonal 

forecasts (as it is the main focus of the current study), post-processing is also commonly applied to short-

range forecasts (e.g. Li et al., 2016) and to long-range forecasts up to 12 months ahead (Bennett et al., 

2016). 

In most streamflow post-processing approaches, a residual error model is applied to quantify forecast 

uncertainty. Most residual error models are based on least squares techniques with weights and/or data 

transformations (e.g. Carpenter and Georgakakos, 2001; Li et al., 2016). In order to produce post-

processed streamflow forecasts, a daily-scale residual error model is used in the calibration of 
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hydrological model parameters, and a monthly/seasonal-scale residual error model is used as part of 

streamflow post-processing to quantify the forecast uncertainty. In a recent study, McInerney et al. 

(2017) concluded that residual error models based on Box-Cox transformations with fixed parameter 

values are particularly effective for daily scale streamflow predictions using observed rainfall, yielding 

substantial improvements in dry catchments. This study investigates whether these findings generalize 

to monthly and seasonal forecasts using forecast rainfall. 

An important aspect of this work is its focus on general findings applicable over diverse hydro-

climatological conditions. Most of the studies in the published literature use a limited number of 

catchments and case studies to test prospective methods. Dry catchments, characterised by intermittent 

flows and frequent low flows, pose the greatest challenge to hydrological models (Ye et al., 1997; 

Knoche et al., 2014). Yet the provision of good quality forecasts across a large number of catchments is 

an essential attribute of national scale operational forecasting service, especially in large countries with 

diverse climatic and catchment conditions, such as Australia. 

This paper develops streamflow post-processing approaches suitable for use in an operational 

streamflow forecasting service. We pose the following aims:  

Aim 1: Evaluate the value of streamflow forecast post-processing by comparing forecasts with no post-

processing (hereafter called ‘uncorrected’ forecasts) against post-processed forecasts; 

Aim 2: Evaluate three post-processing schemes based on residual error models with data transformations 

recommended in recent publications, namely the Log, Box-Cox (McInerney et al., 2017) and Log-Sinh 

(Wang et al., 2012) schemes, for monthly and seasonal streamflow post-processing; 

Aim 3: Evaluate the generality of results over a diverse range of hydro-climatic conditions, in order to 

ensure the recommendations are robust in the context of an operational streamflow forecasting service.  

To achieve these aims, we use the operational monthly and seasonal (3-months) dynamic streamflow 

forecasting system of the Australian Bureau of Meteorology (Lerat et al., 2015). We evaluate the post-

processing approaches across 300 catchments across Australia, with detailed analysis of dry and wet 

catchments. Forecast verification is carried out using Continuous Ranked Probability Skill Score 

(CRPSS) as well as metrics measuring reliability and sharpness, which are important aspects of a 

probabilistic forecast (Wilks, 2011). These metrics are used by the Bureau of Meteorology to describe 

streamflow forecast performance of the operational service. 

The rest of the paper is organised as follows. The forecasting methodology is described in Section 2 and 

application studies are described in Section 3. Results are presented in Section 4, followed by discussions 

and conclusions in Sections 5 and 6 respectively. 
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2 Seasonal streamflow forecasting methodology 

2.1 Overview 

The streamflow forecasting system adopted in this study is based on the Bureau of Meteorology’s 

dynamic modelling system (Figure 1). Daily rainfall forecasts are input into a daily rainfall-runoff model 

to produce “uncorrected” daily streamflow forecasts. These streamflow forecasts are then aggregated in 

time and post-processed to produce monthly and seasonal streamflow forecasts, which are issued each 

month. Two steps are involved: calibration and forecasting, discussed below. 

2.2 Uncorrected streamflow forecasts procedure 

2.2.1 Rainfall-runoff model 

The rainfall-runoff model GR4J (Perrin et al., 2003) is used as it has been proven to provide (on average) 

good performance across a large number of catchments ranging from semi-arid to temperate and tropical 

humid (Perrin et al., 2003; Tuteja et al., 2011). GR4J is a lumped conceptual model, with four calibration 

parameters: maximum capacity of the production store x1 (mm); ground water exchange coefficient x2 

(mm); one day ahead maximum capacity of the routing store x3 (mm); and time base of unit hydrograph 

x4 (days). 

2.2.2 Rainfall-runoff model calibration  

In the calibration step, the daily rainfall-runoff model is calibrated to observed daily streamflow using 

observed rainfall (Jeffrey et al., 2001) as forcing. The calibration of the parameters is based on the 

weighted least squares likelihood function, similar to that outlined in Evin et al. (2014). Markov Chain 

Monte Carlo (MCMC) analysis is used to estimate posterior parametric uncertainty (Tuteja et al., 2011). 

Following MCMC analysis, 40 random sets of GR4J parameters are retained and used in the forecast 

step. A cross-validation procedure is implemented to verify the forecasts, as described in section 3.4. 

The calibration and cross-validation is computationally intensive; therefore, we use high performance 

computing (HPC) facility at the National Computing Infrastructure (NCI). 

2.2.3 Producing uncorrected streamflow forecasts  

Prior to the forecast period, observed rainfall is used to force the rainfall-runoff model. During the 

forecast period, 166 replicates of daily downscaled rainfall forecasts from the Bureau of Meteorology’s 

global climate model, namely the Predictive Ocean Atmosphere Model for Australia, POAMA-2 are 

used (see Section 3.2 for details on POAMA-2). These rainfall forecasts are input into GR4J and 

propagated using the 40 GR4J parameter sets to obtain 6640 (166  40) daily streamflow forecasts. The 

daily streamflow forecasts generated using GR4J are then aggregated to monthly and seasonal time 

scales to produce ensembles of 6640 uncorrected monthly and seasonal forecasts. The computational 
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time required to generate 6640 streamflow forecast ensembles through this process is small compared 

with the time required to calibrate and cross-validate the hydrological model, and is easily achieved in 

an operational setting using HPC. Note that in this study the forecasting system does not use data 

assimilation technique to update the GR4J state variables. This choice is based on the limited effect of 

initial conditions after a number of days, which generally reduces the benefit of state-updating in the 

context of seasonal streamflow forecasting. 

2.3 Streamflow post-processing procedure 

2.3.1 Post-processing model   

The streamflow post-processing method used in this work consists of fitting a statistical model to the 

streamflow forecast residual errors, defined by the differences between the observed and forecast 

streamflow time series over a calibration period. Typically these errors are heteroscedastic, skewed and 

persistent. Heteroscedasticity and skew are handled using data transformations (e.g. the Box-Cox 

transformation), whereas persistence is represented using autoregressive models (e.g., the lag-one 

autoregressive model, AR(1)) (Wang et al., 2012; McInerney et al., 2017). We begin by describing the 

two major steps of the streamflow post-processing procedure (Sections 2.3.2 and 2.3.3), and then 

describe the transformations under consideration (Section 2.4). 

2.3.2 Post-processing model calibration  

The parameters of the streamflow post-processing model are calibrated as follows: 

Step 1: Compute the transformed forecast residuals for month or season t of the calibration period: 

     𝜂" = 𝑍(𝑄"') − 𝑍(𝑄"*)    (1)  

where is the normalised residual, 𝑄"'	is the observed streamflow, is the median of the uncorrected 

streamflow forecast ensemble, and is a transformation function. The transformation functions 

considered in this work are detailed in Section 2.4. 

Step 2: Compute the standardised residuals: 

   (2) 

where  and  are the monthly mean and standard deviation of the residuals in the calibration 

period for the month . 

The standardisation process in equation (2) aims to account for seasonal variations in the distribution of 

residuals. The quantities and  are calculated independently as the sample mean and standard 
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deviation of residuals for each monthly period (for a monthly forecast) or three-monthly period (for 

seasonal forecasts). Based on equation (2), the standardised residuals vt are assumed to have a zero mean 

and unit standard deviation. 

Step 3: Assume the standardised residuals are described by a first order autoregressive (AR(1)) model 

with Gaussian innovations: 

   (3) 

    

where is the AR(1) coefficient and  𝑦"-.~	𝑁(0, 𝜎4) is the innovation.  

The parameters and	 are estimated using the method of moments (Hazelton, 2011): is estimated 

as the sample auto-correlation of the standardized residuals	 , and  is estimated as the sample 

standard deviation of the observed innovations , which in turn are calculated from the standardized 

residuals  by re-arranging equation (3). 

2.3.3 Producing post-processed streamflow forecasts  

Once the streamflow post-processing scheme is calibrated, the post-processed streamflow forecasts for 

a given period are computed. For a given ensemble member j, the following steps are applied: 

Step 1: Sample the innovation 𝑦"-.,8 ← 𝑁(0, 𝜎4). 

Step 2: Generate the standardized residuals 𝑣"-.,8 using equation (3). Here is computed using 

equation (2) and  is computed using equation (1), useing the streamflow forecasts and observations 

from the previous time step t.  

Step 3: Compute the normalized residuals 𝜂"-.,8 by “de-standardizing” 𝑣"-.,8: 

 𝜂"-.,8 = 	𝜎;
<(")𝑣"-.,8 + 𝜇;

<(")	  (4) 

Step 4: Back-transform each normalized residual 𝜂"-.,8 to obtain the post-processed streamflow forecast: 

 𝑄"-.,8?? = 	𝑍@.[𝑍(𝑄"-.* ) + 𝜂"-.,8]  (5) 

Steps 1-4 are repeated for all ensemble members (6640 in our case). 

Note that the above algorithm may occasionally generate negative streamflow predictions; such 

predictions are set to zero. This aspect is discussed in Section 5.6. 
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2.4 Transformations used in the post-processing model 

The observed streamflow and median streamflow forecast are transformed in Step 1 of streamflow post-

processing (Section 2.3.2), to account for the heteroscedasticity and skewness of the forecast residuals. 

We consider three transformations, namely the logarithmic, log-sinh and Box-Cox transformations. 

2.4.1 Logarithmic (Log) transformation 

The logarithmic (Log) transformation is 

    (6) 

The offset 	c ensures the transformed flows are defined when . Here we set c = 0.01	 × (𝑄F)GHI 

, where (𝑄F)GHI is the average observed streamflow over the calibration period. The use of a small fixed 

value for c is common in the literature for coping with zero flow events (Wang et al., 2012). 

2.4.2 Log-Sinh transformation 

The Log-Sinh transformation (Wang et al., 2012) is 

    (7) 

The parameters a and b are calibrated for each month by maximising the p-value of the Shapiro-Wilk 

test (Shapiro and Wilk, 1965) for normality of the residuals, v. This pragmatic approach is part of the 

existing Bureau’s operational dynamic streamflow forecasting system (Lerat et al., 2015). 

2.4.3 Box-Cox transformation 

The Box-Cox transformation (Box and Cox, 1964) is   

    (8) 

where λ is a power parameter and 𝑐 = 0.01	 × (𝑄F)GHI. Following the recommendations of McInerney et 

al. (2017),  the parameter λ is fixed to 0.2.  

2.4.4 Rationale for selecting transformational approaches 

The Log transformation is a simple and widely used transformation; McInerney et al. (2017) reported 

that in daily scale modelling it produced the best reliability in perennial catchments (from a set of eight 

residual error schemes, including standard least squares, weighted least squares, BC, Log-Sinh and 

reciprocal transformation). However, the Log transformation performed poorly in ephemeral 

catchments, where its precision was far worse than in perennial ones. 
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The Log-Sinh transformation is an alternative to the Log and BC transformations proposed by Wang et 

al. (2012) to improve the precision at higher flows. The Log-Sinh approach has been extensively applied 

to water forecasting problems (see for example, Del Giudice et al., 2013; Robertson et al., 2013b, Bennett 

et al., 2016). However, in daily scale streamflow modelling of perennial catchments using observed 

rainfall, the Log-Sinh scheme did not improve on the Log transformation: its parameters tend to calibrate 

to values for which the Log-Sinh transformation effectively reduces to the Log transformation 

(McInerney et al., 2017). 

Finally, the BC transformation with fixed λ = 0.2 is recommended by McInerney et al. (2017) as one of 

only two schemes (from the set of eight schemes listed earlier in this section) that achieve Pareto-optimal 

performance in terms of reliability, precision and bias, across both perennial and ephemeral catchments. 

McInerney et al. (2017) also found that calibrating λ did not generally improve predictive performance, 

due to the inferred value being dominated by the fit to the low flows at the expense of the high flows. 

2.5 Summary of key terms  

In the remainder of the paper, the term “uncorrected forecasts” refers to streamflow forecasts obtained 

using steps in Section 2.2.3, and the term “post-processed forecasts” refers to forecasts based on a 

streamflow post-processing model, which includes the standardization and AR(1) model from Section 

2.3, as well as a transformation (Log, Log-Sinh or BC0.2) from Section 2.4. As the post-processing 

schemes considered in this work differ solely in the transformation used, they will be referred to as the 

Log, Log-Sinh and BC0.2 schemes. 

3 Application 

3.1 Study catchments 

The empirical case study is carried out over a comprehensive set of 300 catchments with locations shown 

in Figure 2. The figure also shows the Koppen climate zones. These catchments are selected as 

representative of the diverse hydro-climatic conditions across Australia. The catchment areas range from 

as small as 6 km2 to as large as 23,2846 𝑘𝑚M, with 90% of the catchments having areas below 6000 

𝑘𝑚M. The seasonal streamflow forecasting service of the Bureau of Meteorology is currently evaluating 

these 300 catchments as part of an expansion of their dynamic modelling system. 

3.2 Catchment data 

In each catchment, data from 1980-2008 is used. Observed daily rainfall data was obtained from the 

Australian Water Availability Project (AWAP) (Jeffrey et al., 2001). Potential evaporation and observed 

streamflow data were obtained from the Bureau of Meteorology.  
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Daily downscaled rainfall forecast from the Bureau of Meteorology’s global climate model, namely the 

Predictive Ocean Atmosphere Model for Australia  POAMA-2 (Hudson et al., 2013), is used for rainfall 

forecasts. The atmospheric component of POAMA-2 uses a spatial scale of approximately 250  250 

km (Charles et al., 2013). To estimate catchment-scale rainfall, a statistical downscaling model based on 

an analogue approach (which could also considered as rainfall forecast post-processing) was applied 

(Timbal and McAvaney, 2001). In the analogue approach, local climate information is obtained by 

matching analogous previous situations to the predicted climate. To this end, an ensemble of 166 rainfall 

forecast time series (33 POAMA ensembles  5 replicates from downscaling + 1 ensemble mean) were 

generated. In operation, POAMA-2 forecasts are generated every week by running 33 member 

ensembles out to 270 days. In this study we use rainfall forecasts up to 3 months ahead and produce 166 

rainfall forecast ensembles through the analogue downscaling procedure described above.  

3.3 Catchment classification  

The performance of the post-processing schemes is evaluated separately in dry versus wet catchments. 

In this work, the classification of catchments into dry and wet is based on the aridity index (AI) according 

to the following equation 

   (9) 

where P is the total rainfall volume and PET is the total potential evapotranspiration volume. The aridity 

index has been used extensively to identify and classify drought and wetness conditions of hydrological 

regimes ( Zhang et al., 2009; Carrillo et al., 2011; Sawicz et al., 2014). 

Catchments with AI < 0.5 are categorised as “dry”, which corresponds to hyper-arid, arid and semi-arid 

classifications suggested by the United Nations Environment Programme (Middleton et al., 1997). 

Conversely, catchments with AI ≥ 0.5 are classified as “wet”. Overall, about 28% of catchments used in 

this work are classified as dry. 

3.4 Cross-validation procedure 

The forecast verification is carried out using a moving-window cross-validation framework, as shown 

in Figure 3. We use 5 years data (1975-1979) to warm-up the model and apply data from 1980-2008 for 

calibration in a cross-validation framework based on a 5-year moving window.  Suppose we are 

validating the streamflow forecasts in year j (e.g.,  in Figure 3). In this case the calibration is 

carried out using all years except years j, j+1, j+2, j+3 and j+4. The four-year period after year j is 

excluded to prevent the memory of the hydrological model from affecting model performance in the 

validation window period. The process is then repeated for each year during 1980-2008. Once the 
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validation has been carried out for each year, the results are concatenated together to produce a single 

“validation” time series, for which the performance metrics are calculated.  

3.5 Forecast performance (verification) metrics 

The performance of uncorrected and post-processed streamflow forecasts is evaluated using reliability 

and sharpness metrics, as well as the Continuous Ranked Probability Skill Score (CRPSS, see section 

3.5.3). Note that the Bureau of Meteorology uses Root Mean Squared Error (RMSE) and Root Mean 

Squared Error in Probability (RMSEP) scores in the operational service in addition to CRPSS, however 

these metrics have not been considered in this study.   

Forecast performance (verification) metrics are computed separately for each forecast month. To 

facilitate the comparison and evaluation of streamflow forecast performance in different streamflow 

regimes, the high and low flow months are defined  using long-term average streamflow data calculated 

for each month. The 6 months with the highest average streamflow are classified as “high flow” months, 

and the remaining 6 months are classified as “low flow” months. The performance metrics listed below 

are computed for each month separately; the indices denoting the month are excluded from Equations 

(10), (11) and (12) below to avoid cluttering the notation. 

3.5.1 Reliability  

The reliability of forecasts is evaluated using the Probability Integral Transform (PIT) (Dawid, 1984; 

Laio and Tamea, 2007). To evaluate and compare reliability across 300 catchments, the p-value of the 

Kolmogorov-Smirnov (KS) test applied to the PIT is used. In this study, forecasts with PIT plots where 

the KS test yields a p-value ≥ 5% are classified as “reliable”. 

3.5.2 Sharpness 

The sharpness of forecasts is evaluated using the ratio of inter-quantile ranges (IQR) of streamflow 

forecasts and a historical reference (Tuteja et al., 2016). The following definition is used:  

𝐼𝑄𝑅P = 	
.
Q ∑

*S(.TT@	P)@	*S(P)
US(.TT@	P)@	US(P)

Q
VW	. 	× 100	%		     (10) 

where 𝐼𝑄𝑅P is the 𝐼𝑄𝑅 value corresponding to percentile 𝑞, and 𝐹V(𝑞) and 	𝐶V(𝑞) are, respectively, the 

qth percentiles of forecast and historical reference for year i. 

An 𝐼𝑄𝑅P	of 100% indicates a forecast with the same sharpness as the reference, an 𝐼𝑄𝑅P below 100% 

indicates forecasts that are sharper (tighter predictive limits) than the reference, and an 𝐼𝑄𝑅P above 

100% indicates forecasts that are less sharp (wider predictive limits) than the reference. We report 𝐼𝑄𝑅\\, 
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i.e., the 𝐼𝑄𝑅 at the 99 percentile, in order to detect forecasts with unreasonably long tails in their 

predictive distributions. 

3.5.3 CRPS skill score (CRPSS)  

The 𝐶𝑅𝑃𝑆 metric quantifies the difference between a forecast distribution and observations, as follows 

(Hersbach, 2000): 

𝐶𝑅𝑃𝑆 = 	 .
Q
	× ∑ ∫ [𝐹V(𝑦) − 𝐻V{𝑦 ≥ 𝑦c}]M𝑑𝑦

f
@f

Q
VW.        (11) 

where Fi  is the cumulative distribution function (cdf) of the forecast for year i. y is the forecast variable 

(here streamflow) and	𝑦c is the corresponding observed value. 𝐻V{𝑦 ≥ 𝑦c} is the Heaviside step function, 

which equals 1 when the forecast values are greater than the observed value and equals 0 otherwise. 

The 𝐶𝑅𝑃𝑆  summarises the reliability, sharpness and bias attributes of the forecast (Hersbach, 2000). A 

“perfect” forecast – namely a point prediction that matches the actual value of the predicted quantity – 

has 𝐶𝑅𝑃𝑆? = 0. In this work, we use the 𝐶𝑅𝑃𝑆 skill score, CRPSS, defined by:  

𝐶𝑅𝑃𝑆𝑆 = 	 Ug?h
i@Ug?hj

Ug?hk@Ug?hj
	× 	100%        (12) 

where 𝐶𝑅𝑃𝑆*, 𝐶𝑅𝑃𝑆U	and 𝐶𝑅𝑃𝑆?	represent the 𝐶𝑅𝑃𝑆 value for model forecast, climatology and 

“perfect” forecast respectively. A higher CRPSS indicates better performance, with a value of 0 

representing the same performance as climatology. 

3.5.4  Historical reference 

The IQR and CRPSS metrics are defined as skill scores relative to a reference forecast. In this work, we 

use the climatology as the reference forecast, as it represents the long-term climate condition. To 

construct these “climatological forecasts”, we used the same historical reference as the operational 

seasonal streamflow forecasting service of the Bureau of Meteorology. This reference is resampled from 

a Gaussian probability distribution fitted to the observed streamflow transformed using the log-sinh 

transformation (Equation 7). This approach leads to more stable and continuous historical reference 

estimates than sampling directly from the empirical distribution of historical streamflow, and can be 

computed at any percentile (which facilitates comparison with forecast percentiles). Although the choice 

of a particular reference affects the computation of skill scores, it does not affect the ranking of post-

processing models when the same reference is used, which is the main aim of this paper. 

3.5.5 Summary skill: Summarising forecast performance using multiple metrics 

When evaluating forecast performance, a focus on any single individual metric can lead to misleading 

interpretations. For example, two forecasts might have a similar sharpness, yet if one of these forecasts 
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is unreliable it can lead to an over- or under- estimation of the risk of  

an event of interest, which in turn can lead to a sub-optimal decision by forecast users (e.g. a water 

resources manager). 

Given inevitable trade-offs between individual metrics (McInerney et al., 2017), it is important to 

consider multiple metrics jointly rather than individually. Following the approach suggested by Gneiting 

et al. (2007), we consider a forecast to have “high skill” when it is reliable and sharper than climatology. 

To determine the “summary skill” of the forecasts in each catchment, we evaluate the total number of 

months (out of 12) in which forecasts are reliable (i.e., with a p-value greater than 5%) and sharper than 

the climatology (i.e., IQR99 < 100%). A catchment is classified as having high summary skill if it has a 

10-12 months with “high skill” forecasts, and is classified as having low summary skill otherwise. Note 

that CRPSS is not included in the summary skill, because it does not represent an independent measure 

of a forecast attribute (see Section 3.5.3 for more details). 

A table providing the percentage of catchments with high and low summary skills is used to summarise 

forecasts performance of a given post-processing scheme. To identify any geographic trends in the 

forecast performance, the summary skills are plotted on a map. The summary skills together with 

individual skill score values are used to evaluate the overall forecast performance, and are presented 

separately for wet and dry catchments, as well as separately for high and low flow months. 

4 Results 

Results for monthly and seasonal streamflow forecasts are now presented. Section 4.1 compares the 

uncorrected and post-processed streamflow forecast performance. Section 4.2 evaluates the performance 

of post-processed streamflow forecasts obtained using the Log, Log-Sinh and BC0.2 schemes. The 

CRPSS, reliability and sharpness metrics are presented in Figure 4 and Figure 5 for monthly and seasonal 

forecasts respectively.  

Initial inspection of results found considerable overlap in the performance metrics achieved by the error 

models. To determine whether the differences in metrics are consistent over multiple catchments, the 

Log and Log-Sinh schemes are compared to the BC0.2 scheme. This comparison is presented in Figure 

6 and Figure 7 for monthly and seasonal forecasts respectively. The BC0.2 scheme is taken as the 

baseline because inspection of Figure 4 and Figure 5 suggests that the BC0.2 scheme has better median 
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sharpness than the Log and Log-Sinh schemes, over all the catchments and for both high and low flow 

months individually.  

The streamflow forecast time-series and corresponding skill for a single representative catchment, 

Dieckmans Bridge, are presented in Figure 8 and Figure 9, respectively. 

The summary skills of the monthly and seasonal forecasts are presented in Figure 10 and Figure 11. The 

figures include a histogram of summary skills across all catchments to enable comparison between the 

uncorrected and the post-processing approaches. 

4.1 Comparison of uncorrected and post-processed streamflow forecasts: Individual 

metrics 

In terms of CRPSS, the largest improvement as a result of post-processing (using any of the 

transformations considered here) occurs in dry catchments. This finding holds for both monthly (Figure 

4c) and seasonal forecasts (Figure 5c). For example, when post-processing is implemented, the median 

CRPSS of monthly forecasts in dry catchments increases from approximately 7% (high flow months) 

and -15% (low flow months) to more than 10% (Figure 4c) for both high and low flows. Visible 

improvement is also observed in dry catchments for seasonal forecasts, however, the improvement is 

not as pronounced as for monthly forecasts (Figure 5c). 

In terms of reliability, the performance of uncorrected streamflow forecasts is poor, with about 50% of 

the catchments being characterized by unreliable forecasts at both the monthly and seasonal time scales 

(Figure 4 and Figure 5, middle row). In comparison, post-processing using the three transformation 

approaches produces much better reliability, achieving reliable forecasts in more than 90% of the 

catchments. 

In terms of sharpness, the uncorrected forecasts and the BC0.2 post-processed forecasts are generally 

sharper than forecasts generated using the other transformations (Figure 4g and Figure 5g). The use of 

post-processing achieves much better sharpness than uncorrected forecasts for low flow months, 

particularly in dry catchments. For example, for low flow months in dry catchments (Figure 4i), the 

median IQR99 is greater than 200%, while similar values range between 40-100% for post-processed 

forecasts. Similarly, for seasonal forecasts, post-processing approaches improve the median sharpness 

from 150% (uncorrected forecasts) to 50%-110% (Figure 5i). 

4.2 Comparison of post-processing schemes: Individual metrics 

In terms of CRPSS, Figure 4 (a, b, c) and Figure 5 (a, b, c) show considerable overlap in the boxplots 

corresponding to all three post-processing schemes, both in wet and dry catchments. This finding 

suggests little difference in the performance of the post-processing schemes, and is further confirmed by 
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Figure 6 (a, b, c) and Figure 7 (a, b, c), which show boxplots of the differences between the CRPSS of 

the Log and Log-Sinh schemes versus the CRPSS of the BC0.2 scheme. Across all catchments, the 

distribution of these differences is approximately symmetric with a mean close to 0. In dry catchments, 

the BC0.2 slightly outperforms the Log scheme for high flow months and the Log-Sinh scheme slightly 

outperforms the Log scheme for low flow months. Overall, these results suggest that none of the Log, 

Log-Sinh or BC0.2 schemes is consistently better in terms of CRPSS values. 

In terms of reliability, post-processing using any of the three post-processing schemes produces reliable 

forecasts at both monthly and seasonal scales, and in the majority of the catchments (Figure 4 and Figure 

5, middle row). The median p-value is approximately 60% for monthly forecasts compared with 45% 

for seasonal forecasts. This indicates that better forecast reliability is achieved at shorter lead times. 

Median reliability is somewhat reduced when using the BC0.2 scheme compared to the Log and Log-

Sinh schemes in wet catchments (Figure 6e), but not so much in dry catchments (Figure 6f). 

Nevertheless, the monthly and seasonal forecasts are reliable in 96% and 91% of the catchments, 

respectively. The corresponding percentages for the Log scheme are 97% and 94%, and for Log-Sinh 

they are 95% and 90%. 

In terms of sharpness, the BC0.2 scheme outperforms the Log and Log-Sinh schemes. This finding holds 

in all cases (i.e., high/low flow months and wet/dry catchments), both for monthly and seasonal forecasts 

(Figure 4 and Figure 5, bottom row). The plot of differences in the sharpness metric (Figure 6 and Figure 

7, bottom row) highlights this improvement. In half of the catchments, during both high and low flow 

months, the BC0.2 scheme improves the IQR99 by 30% (or more) compared to the Log and Log-Sinh 

schemes. In dry catchments, the improvements are larger than in wet catchments. For example, in dry 

catchments during high flow months, the BC0.2 scheme improves on the IQR99 of Log and Log-Sinh 

by 40-60% in over a half of the catchments, and by as much as 170%-190% in a quarter of the 

catchments. 

To illustrate these results, a streamflow forecast time-series at Dieckmans Bridge catchment (site id: 

145010A) is shown in Figure 8 and performance metrics calculated over six high flow months and six 

low flow months are shown in Figure 9. This catchment is selected as it is broadly representative of 

typical results obtained across the wide range of case study catchments. The period in Figure 8 (2003-

2007) is chosen because it highlights the difference in forecast interval between the uncorrected and 

post-processing approaches. The figure indicates that in terms of reliability, the uncorrected forecast has 

a number of observed data points outside the 99% predictive range (Figure 8a). This is an indication that 

the forecast is unreliable. This finding can be confirmed from the corresponding p-value in Figure 9, 

which shows that the forecast is below the reliability threshold during most of the high flow months and 
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during some low flow months. In terms of sharpness, Log and Log-Sinh schemes produce a wider 99% 

predictive range than the BC0.2 scheme (Figure 8 and Figure 9). 

4.3 Comparison of summary skill between uncorrected and post-processing approaches 

Figure 10 and Figure 11 show the geographic distribution of the summary skill of the uncorrected and 

post-processing approaches for monthly and seasonal forecasts respectively. Recall that the summary 

skill represents the number of months with streamflow forecasts that are both reliable and sharper  than 

climatology. Table 1 provides a summary of the percentage of catchments with high and low summary 

skill for the uncorrected and post-processing approaches for monthly and seasonal forecasts (see Section 

3.5.5).  

The findings for forecasts at monthly scale are as follows (Figure 10 and Table 1): 

• Uncorrected forecasts perform worse than post-processing techniques in the sense that they have 

low summary skill in the largest percentage of catchments (16%). The percentage of catchments 

where high summary skill is achieved by uncorrected forecasts is 40%. 

• Post-processing forecasts with the Log and Log Sinh scheme reduces the percentage of 

catchments with low summary skills from 16% to 2% and 7% respectively. However, the 

percentage of catchments with high summary skill also decreases (in comparison to uncorrected 

forecasts), from 40% to 33% for both the Log and Log-Sinh schemes. 

Post-processing with the BC0.2 scheme provides the best performance, with the smallest 
percentage of catchments with low summary skills (<1%) and the largest percentage of 
catchments with high summary skills (84%). As seen in Figure 10 

• Figure 10, the improvement achieved by the BC0.2 scheme (compared to the Log/Log Sinh 

schemes) is most pronounced in New South Wales (NSW) and in the tropical catchments in 

Queensland (QLD) and Northern Territory (NT). The few catchments where the BC0.2 scheme 

does not achieve a high summary skill are located in the north and north-west of Australia. 

The findings for forecasts at the seasonal scale are as follows (Figure 11 and Table 1): 

• Log scheme has the largest percentage (19%) of catchments with low summary skill and a 

relatively small percentage (9%) of catchments with high summary skill.  

• Post-processing forecasts with the Log and Log-Sinh schemes reduces the percentages of 

catchments with low summary skill from 19% to 18% and 17% respectively. The percentage of 

catchments with high summary skill increases from 9% to 12% and 22% respectively.  

• Post-processing with the BC0.2 scheme once again provides the best performance: it produces 

forecasts with low summary skill in only 2% of the catchments, and achieves high summary skill 
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in 54% of the catchments. As seen in Figure 11, similar to the case of monthly forecasts, the 

biggest improvements for seasonal forecasts occur in the NSW and Queensland regions of 

Australia.  

Overall, Table 1 shows that, across all schemes, BC0.2 results in a larger percentage of catchments with 

low summary skill and a larger percentage of catchments with high summary skill. It can also be seen 

that the summary skills of post-processing approaches are lower for seasonal forecasts than for monthly 

forecasts. 

4.4 Summary of empirical findings 

Sections 4.1-4.3 show that post-processing achieves major improvements in reliability, as well as in 

CRPSS and sharpness, particularly in dry catchments. Although all three post-processing schemes under 

consideration provide improvements in some of the performance metrics, the BC0.2 scheme consistently 

produces better sharpness than the Log and Log-Sinh schemes, while maintaining similar reliability and 

CRPSS. This finding holds for both monthly and, to a less degree, seasonal forecasts. Of the three post-

processing schemes, the BC0.2 scheme improves by the largest margin the percentage of catchments 

and the number of months where the post-processed forecasts are reliable and sharper than climatology. 

5 Discussion 

5.1 Benefits of forecast post-processing  

A comparison of uncorrected and post-processed streamflow forecasts was provided in Section 4.1. 

Uncorrected forecasts have reasonable sharpness (except for in dry catchments), but suffer from low 

reliability: uncorrected forecasts are unreliable at approximately 50% of the catchments. In wet 

catchments, poor reliability is due to overconfident forecasts, which appears a common concern in 

dynamic forecasting approaches (Wood and Schaake, 2008). In dry catchments, uncorrected forecasts 

are both unreliable and exhibit poor sharpness. Post-processing is thus particularly important to correct 

for these shortcomings and improve forecast skill. In this study, all post-processing models provide a 

clear improvement in reliability and sharpness, especially in dry catchments. The value of post-

processing is more pronounced in dry catchments than in wet catchments (Figure 4 and Figure 5). This 

finding can be attributed to the challenge of capturing key physical processes in dry and ephemeral 

catchments (Ye et al., 1997), as well as the challenge of achieving accurate rainfall forecasts in arid 

areas. In addition, the simplifications inherent in any hydrological model, including the conceptual 

model GR4J used in this work, might also be responsible for the forecast skill being relatively lower in 

dry catchments than in wet catchments. Whilst using a single conceptual model is attractive for practical 

operational system, there may be gains in exploring alternative structures for ephemeral catchments (e.g. 

Clark et al., 2008; Fenicia et al., 2011). We intend to explore such alternative model structures for 
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difficult ephemeral catchments. In such dry catchments, the hydrological model forecasts are particularly 

poor and leave a lot of room for improvement: post-processing can hence make a big difference on the 

quality of results. 

5.2 Interpretation of differences between post-processing schemes 

We now discuss the large differences in sharpness between the BC0.2 scheme versus the Log and Log-

Sinh schemes. The Log-Sinh transformation was designed by Wang et al. (2012) to improve the 

reliability and sharpness of predictions, particularly for high flows, and has worked well as part of the 

statistical modelling system for operational streamflow forecasts by the Bureau of Meteorology. The 

Log-Sinh transformation has a variance stabilizing function that (for certain parameter values) tapers off 

for high flows. In theory, this feature can prevent the explosive growth of predictions for high flows that 

can occur with the Log and Box-Cox transformations (especially when ). 

McInerney et al. (2017) found that, when modelling perennial catchments at the daily scale, the Log-

Sinh scheme did not achieve better sharpness than the Log scheme. Instead, the parameters for the Log 

scheme tended to converge to values for which the tapering off of the Log-Sinh transformation function 

occurs well outside the range of simulated flows, effectively reducing the Log-Sinh scheme to the Log 

scheme. In contrast, the Box-Cox transformation function with a fixed  gradually flattens as 

streamflow increases, and exhibits the “desired” tapering-off behaviour within the range of simulated 

flows. This behaviour leads to the Box-Cox scheme achieving, on average, more favourable variance-

stabilizing characteristics than the Log-Sinh scheme. 

Our findings in this study confirm the insights of McInerney et al. (2017) – namely that the Log-Sinh 

scheme produces comparable sharpness to the Log scheme – across a larger number of catchments. This 

finding indicates that insights from modelling residual errors at the daily scale apply at least to some 

extent to streamflow forecast post-processing at the monthly and seasonal scales. Note the minor 

difference in the treatment of the offset parameter c in equation (6): in the Log scheme used in McInerney 

et al. (2017) this parameter is inferred, whereas in this study it is fixed a priori. This minor difference 

does not impact on the qualitative behaviour of the error models described earlier in this section. Overall, 

when used for post-processing seasonal and monthly forecasts in a dynamic modelling system, the 

BC0.2 scheme provides an opportunity to improve forecast performance further than is possible using 

the Log and Log-Sinh schemes. 

5.3 Importance of using multiple metrics to assess forecast performance 

The goal of the forecasting exercise is to maximise sharpness without sacrificing reliability (Gneiting et 

al., 2005; Wilks, 2011; Bourdin et al., 2014). The study results show that relying on a single metric for 

evaluating forecast performance can lead to sub-optimal conclusions. For example, if one considers the 
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CRPSS metric alone, all post-processing schemes yield comparable performance and there is no basis 

for favouring any single one of them. However, once sharpness is taken into consideration explicitly, 

the BC0.2 scheme can be recommended due to substantially better sharpness than the Log and Log-Sinh 

schemes.  

Similarly, comparisons based solely on CRPSS might suggest reasonable performance of the 

uncorrected forecasts: 55%-80% of months have CRPSS > 0 (with some variability across high/low flow 

months and monthly/seasonal forecasts. Yet once reliability is considered explicitly, it is found that 

uncorrected forecasts are unreliable at approximately 50% of the catchments. Note that performance 

metrics based on the CRPSS reflect an implicitly weighted combination of reliability, sharpness and bias 

characteristics of the forecasts (Hersbach, 2000). In contrast, the reliability and sharpness metrics are 

specifically designed to quantify reliability and sharpness attributes individually. These findings 

highlight the value of multiple independent performance metrics and diagnostics that evaluate specific 

(targeted) attributes of the forecasts, and highlight important limitations of aggregate measures of 

performance (Clark et al., 2011).  

A number of challenges and questions remain in regards to selecting the performance verification metrics 

for specific forecasting systems and applications. An important question is how to include user needs 

into a forecast verification protocol. This could be accomplished by tailoring the evaluation metrics to 

the requirements of users. Another key question is to what extent do measures of forecast skill correlate 

to the economic and/or social value of the forecast? This challenging question was investigated by 

Murphy and Ehrendorfer (1987) and Wandishin and Brooks (2002), who found the relationship between 

quality and value of a forecast to be essentially nonlinear: an increase in forecast quality may not 

necessarily lead to a proportional increase in its value. This question requires further multi-disciplinary 

research, including human psychology, economic theory, communication and social studies (e.g. Matte 

et al., 2017; Morss et al., 2010). 

5.4 Importance of performance evaluation over large numbers of catchments 

When designing an operational forecast service for locations with streamflow regimes as diverse and 

variable as in Australia (Taschetto and England, 2009), it is essential to thoroughly evaluate multiple 

modelling methods over multiple locations to ensure the findings are sufficiently robust and general. 

This was the major reason for considering the large set of 300 catchments in our study. This setup also 

yields valuable insights into spatial patterns in forecast performance. For example, the Log and Log-

Sinh schemes perform relatively well in catchments in South-Eastern Australia, and relatively worse in 

catchments in Northern and North-Eastern Australia (Figure 10 and Figure 11). In contrast, the BC0.2 

scheme performs well across the majority of the catchments in all regions included in the evaluation. 

The evaluation over a large number of catchments in different hydro-climatic regions is clearly beneficial 
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to establish the robustness of post-processing methods. Restricting the analysis to a smaller number of 

catchments would have led to less conclusive findings. 

5.5 Implication of results for water resource management 

The empirical results clearly show that the BC0.2 post-processing scheme improves forecast sharpness 

(precision) while maintaining forecast accuracy and reliability.  As discussed below, this improvement 

in forecast quality offers an opportunity to improve operational planning and management of water 

resources. 

The management of water resources, for example, deciding which water source to use for a particular 

purpose or allocating environmental flows, requires an understanding of the current and future 

availability of water. For water resources systems with long hydrological records, water managers have 

devised techniques to evaluate current water availability, water demand and losses. However, one of the 

main unknowns is the volume of future system inflows. Streamflow forecasts thus 

provide crucial information to water managers and users regarding the future availability of water, thus 

helping reduce uncertainty in decision making. This information is particularly valuable to support 

decision during drought events. In this study, forecast performance is evaluated separately for high and 

low flow months – providing a clearer indication of predictive ability for flows that are above and below 

average, respectively. A detailed evaluation of forecasts for more extreme drought events is challenging 

as these events are correspondingly rarer. Limited sample size makes it difficult to make conclusive 

statements: e.g. if we focus on the lowest 5% of historical data with a 30 year record, we may only have 

roughly 1.5 samples for each month/season. The uncertainty arising from limited sample size requires 

further development of forecast verification techniques, potentially adapting some of the approaches 

used by Hodgkins et al. (2017).  

5.6 Opportunities for further improvement in forecast performance 

There are several opportunities to further improve the seasonal streamflow forecasting system. This 

section describes two such avenues, namely specialised treatment of zero flows and the use of data 

assimilation. 

The post-processing approaches used in this work do not make special provision for zero flows in the 

observed data. Robust handling of zero flows in statistical models, especially in arid and semi-arid 

catchments, is an active research area (Wang and Robertson, 2011; Smith et al., 2015), and advances in 

this area are certainly relevant to seasonal streamflow forecasting. 

The forecasting system used in this study does not implement state updating in the GR4J hydrological 

model, Gibbs et al. (2018) showed that monthly streamflow forecasting could benefit from state updating 
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in catchments which exhibited non-stationarity in rainfall-runoff response. Note that data assimilation 

of ocean observations has been implemented in the climate model (POAMA2) used for the rainfall 

forecast (Yin et al., 2011) (see Section 3.2 for additional details). 

6 Conclusions 

This study focused on developing robust streamflow forecast post-processing schemes for an operational 

forecasting service at the monthly and seasonal time scales. For such forecasts to be useful to water 

managers and decision-makers, they should be reliable and exhibit sharpness that is better than 

climatology. 

We investigated streamflow forecast post-processing schemes based on residual error models employing 

three data transformations, namely the logarithmic (Log), log-sinh (Log-Sinh) and Box-Cox with λ = 0.2 

(BC0.2). The Australian Bureau of Meteorology’s dynamic modelling system was used as the platform 

for the empirical analysis, which was carried out over 300 Australian catchments with diverse hydro-

climatic conditions. 

The following empirical findings are obtained: 

1. Uncorrected forecasts (no post-processing) perform poorly in terms of reliability, resulting in a 

mis-characterization of forecast uncertainties.  

2. All three post-processing schemes substantially improve the reliability of streamflow forecasts, 

both in terms of the dedicated reliability metric and in terms of the summary skill given by the 

CRPSS; 

3. From the post-processing schemes considered in this work, the BC0.2 scheme is found best 

suited for operational application. The BC0.2 scheme provides the sharpest forecasts without 

sacrificing reliability, as measured by the reliability and CRPSS metrics. In particular, the BC0.2 

scheme produces forecasts that are both reliable and sharper than climatology at substantially 

more catchments than the alternative Log and Log-Sinh schemes.    

A major practical outcome of this study is the development of a robust streamflow forecast post-

processing scheme that achieves forecasts that are consistently reliable and sharper than climatology. 

This scheme is well suited for operational application, and offers the opportunity to improve decision 

support, especially in catchments where climatology is presently used to guide operational decisions. 

7 Data availability  

The data underlying this research can be accessed from the following links: Observed rainfall data 

(http://www.bom.gov.au/climate/); POAMA rainfall forecast (http://poama.bom.gov.au/); and observed 

streamflow data (http://www.bom.gov.au/waterdata/). 
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Tables 

 

Table 1. Performance of post-processing schemes, expressed as the percentage of catchments with high 

and low summary skill. Results shown for monthly and seasonal forecasts. A catchment with “high 

summary skill” is defined as a catchment where “high skill” forecasts are achieved in 10-12 months out 

of the year; “high skill” forecasts are defined as forecasts that are reliable and sharper than climatology. 

 Post-processing scheme 

 Uncorrected 

forecasts 

Log Log-Sinh BC0.2 

Monthly Forecasts 

High Summary Skill 40% 33% 33% 84% 

Low Summary Skill 16% 2% 7% <1% 

Seasonal Forecasts 

High Summary Skill 46% 9% 20% 54% 

Low Summary Skill 14% 19% 17% 2% 
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Figures 

 

 
 
Figure 1: Schematic of the dynamic streamflow forecasting system used in this study. A similar 
approach is used by the Australian Bureau of Meteorology for its monthly and seasonal streamflow 
forecasting service. 

 
  



Page 44 of 53 

 

 
Figure 2: Locations of the 300 catchments used in this study. The catchments are classified as dry or wet 
based on the aridity index. The Koppen climate classification for Australia are shown. The Dieckmans 
Bridge catchment (site id: 145010A), used as a representative catchment in Figure 8, is indicated by the 
red circle. 
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Figure 3: Schematic of the cross-validation framework used for forecast verification, applied with the 5-
year validation period window beginning in year 1990 (after Tuteja et al., 2016). 
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Figure 4: Performance of monthly forecasts in terms of CRPSS, reliability (PIT p-value) and sharpness 
(IQR99 ratio). 
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Figure 5: Performance of seasonal forecasts in terms of CRPSS, reliability (PIT p-value) and sharpness 
(IQR99 ratio). 
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Figure 6: Distributions of differences in the monthly forecast performance metrics of the Log and Log-
Sinh schemes compared to the BC0.2 scheme. 
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Figure 7: Distributions of differences in the seasonal forecast performance metrics of the Log and Log-
Sinh schemes compared to the BC0.2 scheme. 
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Figure 8: Seasonal streamflow forecast time series (blue line) and observations (red dots) at Dieckmans 
Bridge catchment (site id: 145010A). The shaded area shows the 99% prediction limits. 
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Figure 9: Seasonal streamflow forecast skill scores at Dieckmans Bridge catchment, computed from the 
time series shown in Figure 8 for six high flow months and six low flow months. 
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Figure 10: Summary skill of monthly forecasts obtained using the Log, Log-Sinh and BC0.2 schemes 
across 300 Australian catchments. The performance of uncorrected forecasts is also shown. The 
summary skill is defined as the number of months where high skill forecasts (i.e., forecasts that are 
reliable and sharper than climatology) are obtained. The inset histogram shows the percentage of 
catchments in each performance category and also serves as the color legend. 
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Figure 11: Summary skill of seasonal forecasts obtained using the Log, Log-Sinh and BC0.2 schemes 

across 300 Australian catchments. See  

Figure 10 for details. 
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