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Abstract. Lakes and reservoirs are crucial elements of the hydrological and biochemical cycle and are a valuable resource 

for hydropower, domestic and industrial water use and irrigation. Although their monitoring is crucial in times of increased 10 

pressure on water resources by both climate change and human interventions, publically available datasets of lakes and 

reservoir levels and volumes are scarce. Within this study, a time series of variation in lake and reservoir volume between 

1984 and 2015 were analysed for 137 lakes over all continents by combining the JRC Global Surface Water (GSW) dataset 

and the satellite altimetry database DAHITI. The GSW dataset is a highly accurate surface water dataset at 30 m resolution 

compromising the whole L1T Landsat 5, 7 and 8 archive, which allowed for detailed lake area calculations globally over a 15 

very long time period using Google Earth Engine. Therefore, the estimates in water volume fluctuations using the GSW 

dataset are expected to improve compared to current techniques as they are not constrained by complex and computationally 

intensive classification procedures. Lake areas and water levels were combined in a regression to derive the hypsometry 

relationship (dh/dA) for all lakes. Nearly all lakes showed a linear regression, and 42 % of the lakes showed a strong linear 

relationship with an R
2
 > 0.8, an average R

2
 of 0.91 and a standard deviation of 0.05. For these lakes and for lakes with a 20 

nearly constant lake area (coefficient of variation < 0.008), volume variations were calculated. Lakes with a poor linear 

relationship were not considered. Reasons for low R
2
 values were found to be (1) a nearly constant lake area, (2) winter ice 

coverage and (3) a predominance of no data within the GSW dataset for those lakes. Lake volume estimates were validated 

for 18 lakes in the U.S., Spain, Australia and Africa using in situ volume time series, and gave an excellent Pearson 

correlation coefficient of on average 0.97 with a standard deviation of 0.041, and a normalized RMSE of 7.42 %. These 25 

results show a high potential for measuring lake volume dynamics using a pre-classified GSW dataset, which easily allows 

the method to be scaled up to an extensive global volumetric dataset. This dataset will not only provide a historical lake and 

reservoir volume variation record, but will also help to improve our understanding of the behaviour of lakes and reservoirs 

and their representation in  (large scale) hydrological models. 

 30 
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1 Introduction  

   Reservoirs and lakes cover a small part of the Earth’s land surface (~3.7%, Verpoorter et al, 2014), but are crucial elements 

in the hydrological and biochemical water cycles. Reservoirs have been constructed at a rapid pace between the 1950s and 

1980s, and the construction of new reservoirs will continue over the coming century (Chao et al., 2008; Duan and 

Bastiaanssen, 2013). Reservoirs therefore have an increasing impact on river discharges, as they are able to alter the 5 

hydrograph by storing, retaining and releasing water. They are a valuable resource for hydropower, domestic and industrial 

water use, wetlands and are the primary water resource for nearly half of the irrigation-based agricultural sector by supplying 

approximately 460 km
3
 of water per year (Biemans et al., 2011; Hanasaki et al., 2006). Moreover, they play a crucial role in 

biogeochemical activity by emitting vast amounts of CO2, triggered by CO2 saturation in lakes and wetlands worldwide  

(Balmer and Downing, 2011; Cole et al., 2007; Frey and Smith, 2005; Richey et al., 2002). 10 

   The amount of water in a reservoir results from the balance of inflow - i.e. direct precipitation, inflowing river discharge, 

discharge from riparian communities and industries, and subsurface inflow - and outflow - i.e. direct evaporation, 

withdrawals, reservoir outflow and groundwater percolation - (Duan and Bastiaanssen, 2013). A long-term imbalance can 

result in considerable reductions in water storage, as frequently observed around the globe in for example Lake Mead, Lake 

Powell, Lake Poopo and the Aral Sea (Barnett and Pierce, 2008; Micklin, 2016). Reduced water availability in the reservoirs 15 

may then result in reductions in hydropower energy production and/or irrigation water availability and lead to economic and 

societal damage. Many studies have already pointed out that population and economic growth, together with climate change 

and increasing energy and food requirements will put increasing pressure on water resources (Haddeland et al., 2014; Liu, 

2016). A proper understanding of the historical dynamics of reservoirs as a source of water for irrigation, drinking water and 

energy production, as well as a buffer for flood protection is essential to also improve the quality of future projections on 20 

global water resources. 

   While for individual river basin studies information on reservoirs may be available, especially for larger scale water 

resource studies at national, continental and global scale, almost no historical records on reservoirs are readily available to 

run, calibrate and validate hydrological models (Hanasaki et al., 2006). Moreover, in situ lake level and volume 

measurements are sparse – especially in developing countries – and have even decreased around the globe during last years 25 

(Duan and Bastiaanssen, 2013). Even if water levels or volumes are monitored, the information is rarely freely available due 

to strategic political, commercial or national legislation reasons. Therefore, only a few comprehensive global lake and 

reservoir data sets exist (e.g. Downing et al., 2006; Lehner and Döll, 2004; Meybeck, 1995; Verpoorter et al., 2014) and if 

they provide a water storage estimation, these estimates are not dynamic or do not provide data over a longer time series. 

Therefore, remotely sensed data may be a valuable alternative to monitor water volumes in lakes and reservoirs over the last 30 

few decades. 

   Monitoring lakes and reservoirs using remote sensing has gained much attention over the last few years (e.g. Avisse et al., 

2017; Crétaux et al., 2016; Duan and Bastiaanssen, 2013; Frappart et al., 2006b; Gao et al., 2012; Smith and Pavelsky, 
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2009). Most of these publications focussed on volume variations by combining altimetry water level with lake area from a 

multispectral sensor. Landsat or MODIS imagery is commonly used to estimate water surface areas, by classifying the 

satellite images capturing the water body. The classification procedure is demanding and computationally intensive if large 

areas or many images are classified, and misclassifications may occur because of the diversity of spectral signatures emitted 

by water surfaces. Therefore, calculating lake areas is often a constraining factor in lake volume calculations. They are 5 

predominantly used for the lake hypsometry relationship (dh/dA), but they normally don’t provide any temporal details and 

therefore cannot be used to calculate volume variations on their own (e.g. Duan and Bastiaanssen, 2013; Ran and Lu, 2012; 

Zhang et al., 2006). Where lakes areas have been calculated to any great extent, this has only been done for a couple of lakes 

or at a lower resolution (e.g. Smith and Pavelsky, 2009; Tong et al., 2016). Thus, measuring lake volume variations from 

space is commonly a trade-off between the number of lakes analysed, the resolution of the lake area calculation and the 10 

number of historical lake areas that can be calculated. In this study however, by using the pre-processed recently available 

Joint Research Centre (JRC) Global Surface Water (GSW) dataset with a high temporal and spatial resolution and extensive 

validation, this trade-off is no longer an issue. Here we perform volume variation estimations globally with a 30 m resolution 

from 1984 onwards, using all Landsat images available after the launch of Landsat 5. Thereby this study aims to improve on 

current monitoring techniques and to develop an automatic methodology that is relatively easy to implement at a large scale.   15 

   The paper is organized as follows. Section 2 presents the data used in this research, providing a description of the DAHITI 

altimetry database and an overview of the GSW dataset. Section 3 contains a description of the methods applied, while Sect. 

4 gives a description of the results. Section 5 presents a discussion, and finally the conclusions and recommendations are 

presented in Sect. 6. 

2. Data  20 

2.1 Satellite altimetry  

   Satellite altimetry was initially designed for observing the ocean`s surface. But for more than 10 years now, satellite 

altimetry has proven to be a suitable tool for measuring water heights of lakes and rivers. Numerous studies have already 

shown the potential of estimating water level time series over inland waters using different altimeter missions such as 

Topex/Poseidon (Birkett, 1995), Envisat (Frappart et al., 2006a), Saral (Schwatke et al., 2015b), Cryosat-2 (Villadsen et al., 25 

2015) or ICESat (Zhang et al., 2011). Water levels from satellite altimetry have also been used for hydrological applications 

such as the estimation of river discharge (Kouraev et al., 2004; Tourian et al., 2017; Zakharova et al., 2006) and lake 

volumes (Duan and Bastiaanssen, 2013; Tong et al., 2016; Zhou et al., 2016).  

   Satellite altimetry has the potential to provide reliable water level time series of globally distributed inland water bodies 

over the last 20 years. Topex/Poseidon and Jason-1/-2/-3 have an identical orbit configuration with a 9.9156 days repeat 30 

cycle and a track separation of about 300 km at the Equator. ERS-1/-2, Envisat and SARAL flew on an orbit with a 35 days 

repeat cycle and a track separation of about 80 km at the Equator. The combination of different altimeter missions is 

http://onlinelibrary.wiley.com/doi/10.1029/2010JD014534/full#jgrd16655-sec-0002
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essential to increase the temporal resolution, spatial resolution and length of the water level time series. In order to combine 

altimeter data from different missions, a mission-dependent range bias resulting from a multi-mission crossover analysis has 

to be taken into account to achieve long homogenous water level time series (Bosch et al., 2014).  

   The estimation of water level time series for small lakes, reservoirs or rivers is very challenging. Due to coarse mission-

dependent ground tracks with a cross-track spacing of a few hundred kilometres, larger lakes and reservoirs have a much 5 

higher probability to be crossed by a satellite track than smaller ones. Moreover, small water bodies tend to have a relatively 

big altimeter footprint compared to their size, which will affect the resulting shape of the returning waveform. The diameter 

of the footprint is mainly influenced by the water roughness (i.e. surface waves) and surrounding topography. In reality, the 

diameter of the footprint can therefore vary between 2 km over the ocean and up to 16 km for small lakes with considerable 

surrounding terrain topography (Fu and Cazenave, 2001). These land influences and surface waves within the altimeter 10 

footprint can affect the altimeter waveforms and require an additional retracking to achieve more accurate ranges. In order to 

achieve accurate results for small water bodies, the conditions have to be ideal, meaning a low surrounding topography, low 

surface waves and perpendicular crossings of the altimeter track and water bodies shore. In these ideal cases, satellite 

altimetry has the capability to observe rivers with a width of about 100-200 m or lakes with a diameter of a few hundred 

meters. The off-nadir effect is another problem which can occur when investigating smaller water bodies. In general, satellite 15 

altimetry measures in the nadir direction, but if the investigated water body is not located in the center of the footprint, then 

the radar pulses are not reflected in the nadir direction which leads to longer corrupted ranges that must be taken into account 

(Boergens et al., 2016). 

   In this paper we use water level time series from the „Database for Hydrological Time Series over Inland Waters“ 

(DAHITI) as input data for the volume estimation. DAHITI is an altimetry database launched in 2013 by the „Deutsches 20 

Geodätisches Forschungsinstitut der Technischen Universität München“ (DGFI-TUM). The data is accessible through a 

user-friendly web service (http://dahiti.dgfi.tum.de/en/) and is currently providing water levels for more than 780 lakes, 

reservoirs, rivers and wetlands. The processing strategy of DAHITI is based on a Kalman filtering approach and an extended 

outlier detection (Schwatke et al., 2015a) which combines different altimeter missions such as Topex/POSEIDON, Jason-1, 

2 and 3, GFO, Envisat, ERS-1 and 2, Cryosat-2, and SARAL/AltiKa. DAHITI uses only high-frequency altimeter data. 25 

Depending on the measurement frequency of the altimeter, heights are measured every ~620m (10Hz), ~374m (20Hz), 

~294m (18Hz) or ~173m (40Hz) along the altimeter track. To achieve more accurate ranges over inland waters, the 

Improved Threshold Retracker (Hwang et al., 2006) is used for the reanalysis of the altimeter measurements. The DAHITI 

approach provides all water level time series error information based on formal errors of the Kalman filtering. 

   The quality of the water level time series from satellite altimetry in DAHITI has been validated with in-situ data and varies 30 

depending on the extent of the inland water body and length of the crossing altimeter track. For large lakes with ocean-like 

conditions (such as the Great Lakes), accurate measurements can potentially be achieved with a root-mean-square error 

(RMSE) as low as 4-5 cm, while for smaller lakes and rivers the RMSE could increase towards several decimeters 

(Schwatke et al., 2015a). However, no clear relationship was observed between lake size and altimetry accuracy, as the 
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quality of water level time series is not only dependent on the target size, but also on many other factors (e.g. surrounding 

topography, surface waves, winter ice coverage, the position of altimeter track crossings). 

2.2 The JRC Global Surface Water (GSW) dataset 

   The JRC Global Surface Water (GSW) dataset (Pekel et al., 2016) maps the temporal and spatial dynamics of global 

surface water over a 32-year period (from 16 March 1984 to 10 October 2015) at 30 m resolution. This dataset was produced 5 

by analysing the whole L1T Landsat 5, 7 and 8 archive. At the time of the study, it represented 3066080 images (1823 

terabytes of data) and covered 99.95% of the landmass. The analysis was performed thanks to a dedicated expert system 

classifier. The inference engine of the classifier is a procedural sequential decision tree, which used both the multispectral 

and multitemporal attributes of the Landsat archive as well as ancillary data layers. It assigned –in a consistent way in both 

space and time- each pixel to one of three target classes, either water, land or non-valid observations (snow, ice, cloud or 10 

sensor-related issues). Classification performance, measured using over 40000 reference points revealed the high accuracy of 

the classifier; less than 1 % of false water detections, and less than 5 % of omission (Pekel et al., 2016). Thanks to its 

technical characteristics, the GSW dataset constitutes a very valuable long-term surface water record. 

   The stack of classified images constitutes the long-term water history documenting the “when and where” of the water 

presence. This information is recorded in the monthly water history dataset – a set of 380 global scale maps documenting the 15 

water presence for each month of the 32-year archive. This monthly information constitutes the most comprehensive and 

detailed data set of the GSW. Eight additional information layers, documenting different facets of the surface water 

dynamics are also available within the GSW dataset: (1) water occurrence, (2) occurrence change intensity, (3) seasonality, 

(4) recurrence, (5) transitions, (6) maximum water extent, (7) monthly recurrence and (8) yearly history. In the framework of 

this study, the monthly water history and maximum water extent (MWE)- a map documenting places where water has been 20 

detected at least once over the 32 years- were used.  

   The GSW dataset was completely developed using Google Earth Engine and all of the layers are available through the 

Earth Engine catalog (Gorelick et al., 2017). Moreover, Earth Engine is used in this research to calculate the monthly lake 

area time series. Earth Engine is a cloud-based global scale platform optimized for parallel geospatial analyses and data 

management in earth sciences, using Google’s computational power (Gorelick et al., 2017). Earth Engine allowed the 25 

analysis of lakes at global scale in high detail, while maintaining a high resolution of 30 m. 

3 Methodology  

3.1 Calculating monthly lake areas                

   Monthly time series of lake areas have been calculated for 137 lakes over all continents (Figure 1). These contained nearly 

all lakes available in the DAHITI altimetry database at the time of processing. No additional criteria were set for this study, 30 

as the GSW dataset covers all lakes globally. For 380 months over the period 1984-2015 lake areas were calculated using a 
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dedicated Google Earth Engine script. For each lake, a Region of Interest (ROI) was set by a manually drawn polygon that 

was approximately equal to the MWE of the lake (Figure 2). For every month, lake areas were calculated directly from the 

GSW monthly history dataset, by counting the number of water pixels inside the polygon and multiplying this by the pixel 

area. To improve the accuracy of the area calculations, the amount of non-valid observations (no data pixels) within the 

MWE, compared to all MWE pixels within the ROI, has been expressed as the no data fraction. This no data fraction has 5 

been used to filter accurate and less accurate area observations in the regression analysis and volume calculations (see Sect. 

3.2). The white striping observed for Lake Mead in Figure 2 is an example of no data that is caused by Landsat sensor issues. 

Moreover, the coefficient of variation (CV) has been calculated from the area observations to express lake area variation 

normalized by mean lake size.  

 10 

Figure 1 Geographical distribution of the analysed lakes. 
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Figure 2 An example of the area input data for Lake Mead (U.S.) for February 2015, where the maximum water extent is marked 

as red, water as blue and no data as white pixels. 

3.2 Calculating lake volumes variations  

   The volume of a lake or reservoir is a function of the water area (A) and level (h), derived from the hypsometry 5 

relationship (dh/dA). Monthly lake areas were only used in the regression if the no data percentage was below 1 %, because 

only accurate areas were desired to construct the regression line. As exact dates are not provided by the GSW dataset, the 

altimetry data has first been averaged per month after which monthly water levels (hAltimetry) were coupled with monthly area 

values (AGSW). These are illustrated with red dots in Figure 3 for Lake Mead (U.S.). The water level-area pairs were assumed 

to give linear hypsometric relationships of the water bodies (Figure 3, dashed blue line):   10 

 

ℎ𝑖 = 𝑎 ∙ 𝐴𝑖 + 𝑏 +  𝜀𝑖            (1) 

 

Where Ai and hi are the area and water level respectively, a and b are the slope and intercept parameters, and εi is the error 

term or residual for time step i. The parameters a and b have been derived by minimising the residual sum of squares (RSS, 15 

i.e. ∑ 𝜀𝑖
2

𝑖 ), using an Ordinary Least Squares Regression (OLS) technique. Therefore, the resulting residuals have zero 

mean and they are assumed to have a normal distribution. The hypsometric relations can be integrated to obtain the expected 

volume of the water body:  

 

𝐸[𝑉𝑖] =
(ℎ𝑖−𝑏)∙𝐴𝑖

2
             (2) 20 
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Where Ai is the monthly calculated lake area derived from the GSW dataset, hi is the water level from altimetry and b is the 

water level of the theoretical lake bottom from the linear regression at A=0, for time step i. By substituting the regression 

equation in Eq. (2), the expected value of the water volume can be calculated using h or A only:   

 

𝐸[𝑉𝑖] =
(ℎ𝑖−𝑏)2

2𝑎
=

𝑎∙𝐴𝑖
2

2
            (3) 5 

  

Subsequently, a confidence interval (CI) was calculated around the expected value of the volumes calculated with A. The 

residual term in Eq. (1) was included in the volume calculation (Eq. 3) to estimate the residual uncertainty on the expected 

volumes calculated with A values. It is assumed that the residuals have a zero-mean Gaussian distribution 𝜀 ~ 𝑁(0, 𝜎𝜀
2), 

where 𝜎𝜀 is the standard deviation of ε. To obtain the 𝛼- probability CI around the expected volume 𝐸[𝑉𝑖], the residual term 10 

is replaced by its  
1−𝛼

2
 and 

1+𝛼

2
  quantiles:  

 

𝐶𝐼𝐸[𝑉𝑖] =
𝑎∙𝐴𝑖

2

2
± 

𝐴𝑖

2
∙ 𝜎𝜀 ∙ Φ−1(

1+𝛼

2
)           (4) 

 

Where Φ−1(
1+𝛼

2
 ) is the inverse of the cumulative density function of the standardized Gaussian distribution (mean = 0, 15 

standard deviation = 1) at probability level (
1+𝛼

2
 ) . In this research, a 95 % CI has been used. 

 

   Using these equations, absolute volumes are computed by using only the area or water level estimates, giving two different 

volumetric time series: VGSW and Valtimetry. Rather than a 1 % no data threshold in the regression analysis for lake area 

estimations, a 5 % no data threshold has been applied to area estimations used for the volume calculation. This resulted in 20 

the best trade-off between the number of observations from the GSW dataset and the accuracy of the estimates. The 

extrapolated part of the regression line, and therefore in particular the theoretical lake bottom b, should be considered with 

caution, as the hypsometry relationship may change outside the observational range. The absolute volumes from Eq. (3) are 

therefore converted to volume variations from t0 to t1 (Figure 3, purple area). Most estimated volume variations were 

calculated using h or A values inside the observed part of the regression line (i.e. inside the range of observed h-A pairs). 25 

However, some volumes were estimated with A or h values that are outside such range. These volume estimates use an 

extrapolated lake hypsometry which is not observed and therefore more uncertain. These estimates are therefore separately 

classified in the volumetric plots.  

   Not all lakes showed considerable area fluctuation, as some lakes and reservoirs are artificially bounded or have very steep 

banks. The signal-to-noise ratio (SNR) for lakes with a very small CV is likely to be low as errors due to no data, 30 

misclassifications and the lake border discretisation with 30 m pixels will mask the actual area variations. Therefore, the 
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areas of lakes with a very small CV were interpreted to be constant. Lake volumes were still calculated, but only by 

multiplying the mean area with water level variations as observed by altimetry. 

 

    

Figure 3 Volume variation calculation for Lake Mead. The observed monthly pairs of A and h (red dots) are used to estimate a 5 
linear regression (blue dashed line) that is used to calculate volumetric changes. The volumetric change from t0 to t1 is equal to the 

purple area and can be visually interpreted as a 2D lake section.  

3.3 Validation of the volume estimates  

   The validation has been carried out using the Pearsons correlation coefficient r, the root-mean-square error (RMSE) and 

the normalized RMSE (NRMSE). The Pearsons correlation coefficient r measures the linearity between in situ and estimated 10 

volume variations, while the RMSE accounts for the absolute error. The NRMSE has been calculated by normalizing the 

RMSE with the range of in situ lake volume variations:  

 

NRMSE =
RMSE

𝑂𝑏𝑠𝑚𝑎𝑥− 𝑂𝑏𝑠𝑚𝑖𝑛
∙ 100 %           (5) 

 15 

Where Obsmax and Obsmin are the maximum and minimum observed in situ volumes since 1984.  



  10  

 

4 Results 

4.1 Regression analysis 

   137 lakes and reservoirs have been analysed over all continents. The linear OLS regression analysis resulted in highly 

variable R
2 

values among the lakes and reservoirs. Low R
2
 values were observed to be caused mainly by noise rather than 

non-linear hypsometry, as only three lakes (Tawakoni, Urmia and Eagle) returned a clear non-linear hypsometry relationship 5 

(see discussion). The mean R
2
 of all 137 lakes is only 0.58, but 58 lakes showed an R

2
 > 0.8 with an average of 0.91. Lake 

Eucumbene (Australia), Lake Kariba (Zambia), Lake Powell, Lake Mead and Hubbard Creek Reservoir (U.S.) are examples 

of these lakes, with high R
2
 values and low regression residuals. The regression results for Lake Powell, Kariba, Mead and 

Nasser are showed in Figure 4, with R
2
 values of respectively 0.99, 0.96, 0.98 and 0.92.  

 10 

 

Figure 4 Area-level regressions for Lake Powell (a), Kariba (b), Mead (c) and Nasser (d), with R2 values of respectively 0.99, 0.96, 

0.98 and 0.92.  
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4.2 Division of the lakes in groups  

   Based on the R
2
 values from the regression and the area CV, the lakes have been subdivided into lakes with a constant area 

(Lc) and lakes with a variable area (Lv) where the latter (Lv) category has been further subdivided into lakes with a good 

performance (LvG; R
2
 > 0.8) and lakes with a poor performance (LvP; R

2
 < 0.8) (Figure 5). 42 lakes are categorized as Lc as 

they showed a CV < 0.008 and all these lakes returned a R
2
 < 0.6 with an average of 0.16 (black circles, Figure 5). These 5 

lakes have a very small variation in area, resulting in highly inaccurate regressions due to a low SNR. Therefore, these lakes 

were assumed to have a constant area and their volume was calculated by multiplying water level observations with the 

average of the GSW area estimates. For CV > 0.008, lakes showed considerable monthly area variations and mostly 

acceptable R
2
 values with an average of 0.76. 58 lakes where classified as LvG as they showed a R

2 
> 0.8, with an average of 

0.91 (green triangles, Figure 5). For these lakes, volumes have been calculated using accurate linear regressions. For 37 lakes 10 

with a variable area, the regression was less accurate with a R
2
 < 0.8 and a mean of 0.50 and therefore they are classified as 

LvP (red triangles, Figure 5). A table for each group, showing the most important lake properties and the R
2
 values, is given 

in appendix 1.  

    

Figure 5 Illustration of the division of the lakes into lakes with a constant area (Lc) and a variable area with a good performance 15 
(LvG) and with a poor performance (LvP), based on the R2 and CV values. 

4.3 Volumetric results  

   For a total of 100 lakes (58 variable area lakes and 42 constant area lakes), the volume variation time series have been 

calculated, using both water levels (VAltimetry) and water areas (VGSW) as inputs. Volumetric results of the variable area lakes 

Powell, Kariba, Mead and Nasser are outlined below and are shown in Figure 6. VAltimetry or VGSW estimates inside the 20 
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observational range of the regression (h-A pairs) are coloured blue and red. Some volume estimates are derived from 

observations outside the regression range; these are extrapolated estimates and are displayed with a darker colour tint. The 

red line displays the best estimate of the volume variation as calculated with observed water classifications in the GSW 

dataset (i.e. total area of surface water). The red shaded area displays the upper volume boundary on the VGSW estimates, as 

derived from the GSW dataset pixels classified as no data within the MWE (max 5 %, see section 3.2). These no data pixels 5 

could theoretically be covered with water for that month, and this would increase the estimated volume. In this case the 

volume variation estimate would be somewhere within the red shaded area. The upper limit of the red shaded area would 

thus be reached if all no data pixels within the MWE contain surface water during that particular month. Another source of 

uncertainty is the uncertainty induced by the residuals in the regression, which is represented by the grey shaded area. It 

shows the effect of the 95 % residual-based CI on the volume variation estimates as calculated with Eq. (4).  10 

   Figure 7 summarizes the volumetric results, by showing lake location, lake type (constant, variable good or variable poor 

lakes), and the average volumetric change. The volumetric change shows the magnitude of reduction (red circles) or increase 

(blue circles) of average water storage between the periods 1984-2000 and 2000-2015 for LvG, and from 2000-2008 to 

2008-2016 for Lc. Slightly more lakes showed a positive change (60) than a negative one (40). Considerable reductions of 

water storage were observed in Western U.S., due to major average volume declines in Lake Mead (10 km
3
), Powell (6 km

3
) 15 

and the Great Salt Lake (16 km
3
). Average increases were found for the Great Lakes and most of the analysed lakes in 

Southeast Africa.  

   Lake Mead was formed after the construction of the Hoover Dam during the 1930s, in the former steep V-shaped slopes 

created by the Colorado River. It is located approximately 50 km east of Las Vegas in the Black Canyon, Arizona- Nevada 

(Figure 7). With a maximum depth of 158 m and a maximum capacity of 33-35 km
3
, Lake Mead is the largest reservoir in 20 

the U.S. by capacity and the second largest (after Lake Powell) by water area (Barnett and Pierce, 2008; Holdren and Turner, 

2010). The lake showed a considerable reduction in water storage between 1984 and 2015 (Figure 6c). Between two periods 

of maximal reported capacity (1984-1988 and 1998-2000), a small decrease in capacity of around 7 km
3
 was observed. From 

its historical maximum capacity in 2000, the water level dropped 40 m between 2000 and 2010 (Cook et al., 2007; Duan and 

Bastiaanssen, 2013), mainly because of a combination of water abstractions by around 25 million people and multiple 25 

intensive droughts (Holdren and Turner, 2010). This reduction of water storage is also reported by the satellite estimates. 

According to our estimates, Lake Mead lost approximately 20 km
3
 of water from 2000 to 2015 (Figure 6c, Figure 7). Using 

the USGS in situ measurement of storage volume of 31 km
3
 in 2000, this is an almost 70 % reduction of water storage over 

the last 15 years. 

   Lake Nasser is a crucial resource for Egypt’s population, functioning as a source for irrigational water and electricity and 30 

as an important flood-control mechanism. With an estimated maximum storage capacity of 162 km
3
, Nasser is the main 

freshwater resource for approximately 85 % of the Egyptian population (Gao et al., 2012; Muala et al., 2014). The lake 

shows a strong annual cycle, with declines in water storage during the first half of the year and increases during the second 

half of the year (Figure 6d). The annual cycle amplitude varies from around 10 to 20 km
3
. Besides this yearly fluctuation, 
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Lake Nasser features an even longer inter-annual variability. From the lowest recorded volume over 1985-1993, water 

storage increased at least 40 km
3
 to record-high estimates in the period 1998-2002. From 2002, the lake shows a decreasing 

trend towards 2006, during which time it lost approximately 30 km
3
. Two peaks were observed over 2007-2009 and in 2005, 

when the lake gained 30-35 km
3
 of water and subsequently lost the same amount. The lake showed an average volume 

decrease over the whole observational period of only 1.8 km
3
, which is negligible compared to the size of the lake (Figure 7).  5 

   Lake Kariba formed after the construction of the Kariba Dam on the Zambezi River on the border of Zimbabwe and 

Zambia (Berg et al., 1996). It has an average surface area of 5364 km
2
 and with an estimated capacity of 185 km

3
 it is the 

largest reservoir in Africa by volume (LakeNet, 2003). The reservoir shows a consistent seasonal variation, with increases of 

around 10-20 km
3
 during the first five months, and decreases over the last seven months of the year (Figure 6b). Moreover, 

the lake gained at least 45 km
3
 of water from 1996 to 1999. From 2000 to 2007, the volume decreased again by 10 

approximately 30 km
3
. From 2008, the water volume increased to a maximum reported capacity in May 2010. From July 

2014, the lake shows a constantly decreasing trend towards the last year of the data (September 2015). Over the whole 

observational period, the average storage of the lake increased by 15 km
3 
(Figure 7).  

   With an area of 653 km
2
, Lake Powell is the largest lake in the U.S. by water surface area (Barnett and Pierce, 2008; 

Benenati et al., 2000). Its maximum capacity of 33.3 km
3
 is slightly less than that of Lake Mead (Benenati et al., 2000; 15 

Holdren and Turner, 2010). The lake showed two periods of maximum capacity during 1984-1988 and 1995-2000 (Figure 

6a). As observed for Lake Mead, a period of intensive drought in the years after 2000 caused a considerable reduction in 

volume. Over the period 2000-2004, water storage declined by approximately 16 km
3
. According to Cook et al. (2007), the 

volume left was only 38 % of the live capacity. The average volume decreased by 6.3 km
3
 from 1984-2000 to 2000-2015 

(Figure 7).  20 
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Figure 6 Lake volume variations for Lake Powell (a), Kariba (b), Mead (c) and Nasser (d) using VAltimetry (blue) and VGSW (red). 

The grey and red shaded areas represent the 95 % residual-based CI and the uncertainty induced by no data within the MWE, 

respectively. 

 5 
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Figure 7 Lake and reservoir types (constant (Lc), good variable (LvG) or poor variable (LvP)) with the average volume change.  

4.4 Validation of the volume estimates  

   Lake volume variations have been validated against in situ data that are based on a full bathymetric survey for 18 lakes. 

Nine of these lakes are located in the USA (Richland Chambers Reservoir, Hubbard Creek Reservoir, Lake Mead, Lake 5 

Houston, Lake Powell, O. H. Ivie Lake, Toledo Bend Reservoir, Lake Walker and Lake Berryessa), 1 in Africa (Roseires 

Reservoir), 6 in Spain (Serena Reservoir, Puente Nuevo Reservoir, Alcantara Reservoir, Lake Almanor, Yesa Reservoir and 

Encoro de Salas Reservoir) and 2 in Australia (Lake Argyle and Lake Eucumbene). U.S. lakes have been validated using 

USGS in situ lake/reservoir volumes obtained from: https://waterdata.usgs.gov/nwis/current. Lake Powell was the only U.S. 

reservoir whose data were obtained from the United States Bureau of Reclamation (USBR): 10 

https://www.usbr.gov/rsvrWater/HistoricalApp.html. Spanish validation data were gathered from the Spanish Ministry of 

Agriculture, Food and Environment via http://ceh-flumen64.cedex.es. In situ data for Roseires Reservoir were received from 

the Dams Implementation Unit of Ministry of Water Resources and Electricity, Sudan. Validation data for Lake Argyle and 

Lake Eucumbene were obtained from WaterNSW in Australia via http://realtimedata.water.nsw.gov.au/water.stm. 

   The validation analysis has been done for volumes both excluding and including extrapolation. The non-extrapolated 15 

volumes showed average Pearsons r, RMSE and NRMSE of 0.96, 0.14 km
3
 and 7.25 % respectively (Table 1). The high 

correlation indicates that the validation data showed a very high linearity. When the extrapolated volumes were included, the 

NRMSE was slightly higher (7.4 %), but still acceptable for most lakes. However, for h or A observations that are much 
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smaller or larger than the observed h-A pairs in the regression, the extrapolation errors can be much higher (e.g. Roseires 

Reservoir). In general, relatively few VGSW or VAltimetry estimates used this extrapolation.  

   Figure 8 shows the relationship between satellite and in situ volume variations for Lake Mead and illustrates the accuracy 

of the methodology. The estimates showed strong linearity with in situ data, as shown by the correlation coefficient of > 0.99 

for both VGSW as VAltimetry. Both estimates were very close to the 1:1 line and therefore had a low NRMSE of 5.43 and 1.87 5 

for VGSW and VAltimetry respectively. The NRMSE of VGSW was slightly higher, as this includes the extrapolated volume 

estimations from volume variations of 2 to -8 km
3
. These volumes were estimated using area observations outside the range 

of h-A pairs used in the regression. It is clear that the hypsometry of the lake does not hold perfectly true for these calculated 

areas.  

 10 

 

Figure 8 Relationship in volume variation between satellite estimated and in situ observations for Lake Mead, with a Pearsons r > 

0.99 and a NRMSE of 5.43 % (VGSW) and 1.87 % (VAltimetry). 
 

   Figure 9 and Figure 10 show the validation volume time series against the satellite estimated volumes for Lake Mead and 

Lake Powell respectively. The time series showed that both the timing and magnitude of the estimated volume fluctuations 15 

were accurate for these lakes. For the non-extrapolated part of Lake Mead (2002-2016), estimated volumes were almost 

equal to the validation data. The extrapolated part (before 2002) was slightly overestimated. However, the dynamics over 

this period were still well captured. Lake Powell also showed accurate results, for both the seasonal and inter-annual 

fluctuations in water storage. Noteworthy for both lakes is the density of area observations due to a low amount of no data in 

the GSW dataset. For Lake Powell, the VGSW even correctly captured seasonal fluctuations, which is not always the case (see 20 
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discussion). The high accuracy was expressed in a low NRMSE of 4.52 and 2.96 % for VGSW and VAltimetry respectively. Note 

that almost no extrapolated volume estimates were required for the volume time series of Lake Powell.  

 

Figure 9 Validation time series plotted with estimated reservoir volumes for Lake Mead. The black triangle line represents the 

validation storage as measured using the full lake bathymetry. The grey and red shaded areas represent the 95 % residual-based 5 
CI and the uncertainty induced by the no data within MWE, respectively. 

 

Figure 10 Validation time series plotted with estimated reservoir volumes for Lake Powell. The black triangle line represents the 

validation storage as measured using the full lake bathymetry. The grey and red shaded areas represent the 95 % residual-based 

CI and the uncertainty induced by the no data within MWE, respectively. 10 
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5. Discussion  

   This study presented a new methodology to estimate lake and reservoir volumes using remote sensing alone. The 

validation showed that the method can produce water storage change estimates for many lakes, thus highlighting the 

potential of combining satellite altimetry and the GSW dataset to develop a global lake and reservoir volume variation 

dataset. The GSW dataset global coverage, 30 m resolution, high accuracy and monthly surface water observations over a 5 

32-year period increases the number of analysed lakes and the accuracy, quantity and temporal range of lake area 

calculations. Therefore, volume variations can now also be calculated using GSW lake areas as input independent from 

altimetry data, which allows for volume calculations further back in time to 1984.  

   The lake and reservoir volume dataset developed here will help to better understand the behaviour and operations of lakes 

and reservoirs. As the number of reservoirs is still increasing because of growing energy demands, it is crucial to include 10 

their effects in (continental and global scale) hydrological models. Zajac et al. (2017) found that the exclusion of lakes and 

reservoirs often leads to inaccurate downstream discharge estimates. Furthermore, lake or reservoir storage change combined 

with modelled or observed inflow allows for a better estimation of the outflow (e.g. Muala et al., 2014). These outflow 

estimates can be used to calibrate hydrological models or estimate hydropower production in areas where in situ 

observations are lacking. However, due to a lack of storage observations and their availability – often because of commercial 15 

reasons -, the parametrization and the representation of lakes and reservoirs in many hydrological models – if at all present - 

is still highly simplified. Our global lake and reservoir volume dataset over 32 years will be very beneficial to calibrate and 

validate their parameterisation to mimic their operational behaviour. This will improve our current understanding of lakes 

and reservoirs, improve their simulations and consequently the simulations in the rest of the river basin. In addition, a better 

understanding of reservoirs will also likely improve water and energy production projections of the influence of these 20 

reservoirs under climate change, or under different management scenarios (e.g. changing downstream water requirements, 

flow legislation, changing inflow due to other activities upstream). Moreover, the area time series developed in this study 

can be included in models to improve on (often fixed) current area estimates and can furthermore improve estimates of open 

water evaporation. 

   The methodology used in this study has a couple of limitations. They arise mainly from limitations in the input data (GSW 25 

and DAHITI altimetry dataset) and the volume calculation methodology.  

5.1 Satellite altimetry limitations    

   The altimeter footprint can be up to 16 m over land and land influences inside this footprint can alter the water level 

accuracy by disturbing the altimeter waveforms (Fu and Cazenave, 2001). Water level estimations of very small lakes or 

reservoirs can therefore have a RMSE of several decimeters or larger (Schwatke et al., 2015a). We analysed many small 30 

lakes in Europe that did not show accurate regressions when they were relatively small (e.g. Thülsfelder Talsperre, 1.7 km
2
, 

Hainer See, 4 km
2
, Lake Resia, 6.6 km

2
 and Altmuehl See, 4.5 km

2
).  However, many other factors than the size of the water 



  19  

 

body determine the accuracy of the measurement; also surrounding topography, surface waves, winter ice coverage, the 

shape of the water body and the position of the altimeter track determine the measurement error. This could explain why no 

clear relationship between lake size and regression accuracy (R
2
) was observed. Although most lakes with an area < 10 km

2
 

showed poor regression results, some of these small lakes still returned an accurate regression (e.g. Barragem do Caia and 

Encoro de Salas). Water level estimations are only possible if the water body is located along mission-dependent ground 5 

tracks. Larger lakes and reservoirs were more frequently captured by a combination of satellite tracks and therefore showed 

more frequent observations than smaller ones.  

5.2 The influence of no data in lake area calculations    

   The classifier of the GSW dataset has been shown to be very accurate, with less than 1 % of false water detections, and less 

than 5 % omission (Pekel et al., 2016). Therefore, the influence of classification errors in the volume estimations was very 10 

limited.  

   In this methodology, no data classifications in the GSW dataset play a much more important role. These are caused by 

snow, ice, cloud or sensor-related issues (e.g. white striping in Figure 2) and are likely to give an underestimation of the 

actual lake area if they are inside the MWE. Therefore, their influence has been reduced with strict no data thresholds 

applied to each monthly calculation. The 1% no data threshold for the regression and 5 % for the volume calculation resulted 15 

in the best trade-off between the number of observations from the GSW dataset and the accuracy of the estimates. Higher no 

data thresholds introduced too much variability in the volume estimates, as (1) regression lines became much noisier and (2) 

the area of monthly no data exceeded the actual lake area variation. Locations with frequent cloud cover, lake ice coverage 

or sensor-related image failures will often return no data amounts that exceed the threshold, resulting in a sparse VGSW time 

series. Although they are sparse, these area volume estimates can still show an acceptable accuracy, as was observed for the 20 

Puente Nuevo Reservoir in Spain (Figure 11). For locations in the high or low latitudes, winter months are masked due to 

low solar zenith angles that cause considerable shadowing. Moreover, a short period of daylight or ice and snow coverage on 

the water surface can further increase the amount of no data in these regions.   

   Besides the varying image quality, the whole stack of historical Landsat imagery has an unequal global spatial distribution. 

The U.S. and Australia are well covered, while other regions, like Africa and Southwestern Europe, have much less Landsat 25 

observations (Pekel et al., 2016; Wulder et al., 2016). The volumetric plots of U.S. lakes therefore typically show a highly 

dense VGSW, while lakes in Africa and other less monitored regions typically have more years of no observations, especially 

before 2000. This can clearly be observed by comparing Lake Mead and Powell (U.S.) with Lake Nasser and Kariba (Africa) 

in Figure 6. However, for lakes with sparse VGSW estimates, VAltimetry estimates still provide a valuable volume variation 

record. 30 

   Many layers in the GSW dataset could be used to reduce the amount of no data pixels. This would considerably increase 

the capabilities of the methodology, especially in the regions mentioned above. No data pixels that are located in the middle 

of the lake and are surrounded by water pixels (e.g. Figure 2) have a high probability of being water. Furthermore, the large 
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temporal range (1984-2015) of the GSW dataset could be used to further decrease the amount of no data. For example, no 

data pixels that are classified as water over nearly all the 380 months could be assigned to the water class with high 

confidence. The GSW seasonality layer could also be used to find permanent water pixels, which can be converted to water 

if they are not observed during a specific month.  

 5 

Figure 11 Time series of satellite estimated volume variations compared to validation storages for Puente Nuevo Reservoir.  

5.3 Uncertainties and limitations in the volume calculation technique   

   Only three out of 137 lakes (Tawakoni, Urmia and Eagle) showed a clear non-linear area-level relation. For these lakes, 

volume variations were not estimated. Their regressions could be explained by a second- or third-order polynomial, as 

shown for Lake Urmia in Figure 12. This non-linearity is caused by a considerable change in slope, which will mostly be 10 

observed for lakes with extremely low water levels (e.g. Lake Urmia) or during floods.  

   To reduce data size, the monthly GSW dataset does not include exact dates of the Landsat observations. This causes more 

uncertainty in the regression, as the level and area observations may refer to different dates (maximum difference of one 

month) and therefore to slightly different lake conditions. For lakes with a highly variable level within a month, this 

uncertainty therefore increases. The outliers in the regression of Lake Nasser (Figure 4d) are expected to be largely induced 15 

by this uncertainty. For both outliers, the altimeter measurements were taken in the beginning of the month (2th and 6th 

day), and the water level changed considerably towards the next month. The Landsat observation therefore likely measured 

different lake conditions than the satellite altimeter. 

   For 37 lakes with lower performance, the regression showed relatively low R
2
 values with an average of 0.50. The most 

important reasons for these bad regressions were found to be winter ice or snow coverage, cloud coverage, Landsat sensor 20 
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issues and multiple individual lake compartments. Winter ice coverage influences both the altimetry accuracy and the 

accuracy in the GSW water classification (e.g. Lake Ulungur, Rybinsk Reservoir, Reindeer Lake and Lake Ilmen). The 

current methodology needs to be refined to include lakes that split into multiple lakes during extreme drying (e.g. Aral Sea). 

As the different compartments can have different water level dynamics, individual regressions would need to be assigned to 

each compartment to calculate volume fluctuations of each compartment individually. Further research on water losses in the 5 

Aral Sea using this technique could be very promising.  

 

Figure 12 Relationship between AGSW and hAltimetry for Lake Urmia. Only 3 out of the 135 lakes showed a clear non-linear 

relationship.  

   The calculated extrapolated volumes are more uncertain than the non-extrapolated ones, depending on whether the 10 

hypsometry relationship holds true or changes for the observed h or A value outside the regression range. For lakes formed in 

V-shaped river valleys with deep and straight slopes (e.g. Lake Mead), the hypsometry relationship is likely to hold for 

extremely low or high water levels. However, if the altimetry measurement period is short, the range of values captured by 

the regression line is likely to be small and the volume extrapolation using extreme level or area observations is expected to 

be inaccurate. This was observed for the Roseires Reservoir. However, including extrapolated volumes hardly changed the 15 

overall validation results, because the amount of total extrapolated volumes compared to non-extrapolated volumes is very 

small.  
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6. Conclusions and perspectives  

   This study successfully combined the JRC Global Surface Water (GSW) dataset and the DAHITI satellite altimetry dataset 

to estimate lake and reservoir volume fluctuations over all continents. The GSW dataset records surface water over a 32-year 

period, containing 3066080 monthly images that cover 99.95 % of the landmass. The extensive size and high accuracy of 

this surface water dataset allowed for detailed volume variation estimations over a very long time period (1984-2015), 5 

without being constrained by complex and computationally intensive classification procedures. 

   Lake areas from the GSW dataset and water levels from the DAHITI altimetry dataset have been combined in a regression 

to explain the lake hypsometry of 137 lakes globally. Nearly all lakes showed a linear regression. 58 of these lakes showed a 

highly accurate regression with R
2 
> 0.8, with an average of 0.91. Lake volumes were calculated for all these lakes and for 42 

other lakes with a nearly constant lake area. For 37 lakes, regressions were less accurate with an average R
2
 of 0.50. Winter 10 

ice coverage and no data in the GSW dataset were found to be most important reasons for low R
2
 values.  

   For 100 lakes (58 variable area and 42 nearly constant area) volume variations were calculated by integrating the 

hypsometric relationships, using both area and water level observations separately. Decreases in water storage were found in 

Western U.S., where Lake Mead, Powell and the Great Salt Lake lost respectively 10 km
3
, 6 km

3
 and 16 km

3
 of average 

volume between 1984-2000 and 2000-2015. According to our estimates, Lake Mead lost approximately 20 km
3
 of water 15 

from 2000 to 2015. Using the USGS in situ measured storage volume of 31 km
3
 in 2000, this is an almost 70 % reduction of 

water storage over last 15 years. Lake volume variation estimates have been validated for 18 lakes in the U.S., Spain, 

Australia and Africa using in situ lake volume time series. The estimated volume variations showed the method to be very 

accurate, expressed in an average Pearson correlation coefficient of 0.97, and a normalized RMSE of 7.42 %.  

   The low number of adequate Landsat lake area observations for some regions like Africa and Southwestern Europe still 20 

remains a limitation. Therefore, it would be highly beneficial for the purpose of this research to include surface water data 

from other satellites in the GSW dataset and to develop techniques to decrease the amount of no data in the current dataset. 

Future plans are to include Sentinel-1 and Sentinel-2 in the GSW dataset. The DAHITI database is continuously growing by 

analysing new water bodies, and newly available altimetry data will be processed to expand the volumetric dataset.  

   This lake and reservoir volume dataset will help to improve our current understanding of the behaviour of lakes and 25 

reservoirs, their representation in hydrological models and consequently the simulations of the river basin. This will 

moreover improve projections of the river basin under climate change or under different management scenarios and improve 

hydropower and open water evaporation estimations.  

   This study constitutes a proof of concept paving the way for increasing the number of lakes and reservoirs analysed, which 

could potentially be included as an a priori water storage dataset for the Surface Water and Ocean Topography (SWOT) 30 

hydrology and oceanography satellite mission. Launched in 2020, this mission will combine water body contours and 

accurate water level estimations to estimate storage changes in lakes and reservoirs with an average accuracy of 20 cm 
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(Biancamaria et al., 2016; Crétaux et al., 2015). The SWOT satellite will be unique due to its accuracy and capabilities on 

smaller water bodies with a size of at least 250 x 250 m.  

 

Data availability. Research outcomes (i.e. lake and reservoir volumes) are not publicly accessible. However, they may 

become publicly available in a later stage through the DAHITI web service (http://dahiti.dgfi.tum.de/en/). The access to 5 

remote sensing data used in this study is explained in Sect. 2.   
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Appendix 1  

Constant area lakes (Lc) overview 

Lake/ Reservoir 

name 

Latitude Longitude min area 

(km2) 

max 

area 

(km2) 

CV 

area 

min water 

level (m) 

max water 

level (m) 

R2 

regression 

Average 

volume 

change 

between 2000-

2008 and 

2008-2015 

(km3) 

Albert 1.63 30.91 5354.80 5412.16 0.003 620.71 622.55 0.01 -3.49 

Argentino -50.24 -72.84 1546.95 1555.79 0.004 177.04 180.78 0.01 0.40 

Athabasca 59.19 -109.28 7528.69 7723.01 0.005 208.71 211.31 0.53 -0.59 

Baikal 53.36 107.57 31572.61 31963.98 0.003 455.00 455.95 0.00 2.54 

Baker 64.16 -95.28 1697.53 1723.77 0.004 0.62 2.14 0.45 0.44 

Balaton 46.86 17.75 573.48 582.15 0.003 103.98 105.24 0.03 - 

Buenos Aires -46.55 -71.97 1832.01 1862.79 0.003 205.25 207.13 0.23 0.13 

Chiemsee 47.88 12.45 74.89 76.50 0.005 517.86 519.55 0.27 -0.01 

Constance 47.61 9.42 466.60 469.81 0.002 394.09 396.01 0.22 0.12 

Dore 54.77 -107.31 621.17 632.80 0.004 458.79 459.94 0.49 0.28 

Edward -0.36 29.59 2209.06 2235.13 0.003 913.98 915.54 0.37 0.52 

Erie 42.14 -81.29 25488.04 25789.63 0.003 173.55 174.87 0.00 2.36 

Flathead 47.88 -114.14 480.89 494.76 0.006 878.96 882.12 0.40 -0.13 

Great Bear 66.00 -120.97 30266.01 30555.78 0.003 156.95 157.75 0.17 4.49 

Huron 45.01 -82.29 58972.33 59664.21 0.003 175.32 176.97 0.10 8.16 

Issyk-Kul 42.44 77.27 6165.81 6220.68 0.002 1605.55 1606.32 0.04 0.16 

Keller 63.93 -121.58 389.56 393.02 0.002 239.69 240.77 0.07 0.06 

Khuvsgul 51.06 100.47 2758.95 2788.74 0.002 1646.49 1647.39 0.03 0.56 

Kivu -2.04 29.10 2368.70 2395.02 0.003 1460.74 1462.34 0.00 0.56 

Kremenchuk 49.30 32.68 1828.27 1914.02 0.006 76.70 81.57 0.32 0.35 

Ladoga 60.84 31.47 17330.63 17601.68 0.003 2.27 5.11 0.03 8.10 

Llanquihue -41.14 -72.82 855.85 864.19 0.002 50.00 51.00 0.00 -0.08 

Malawi -12.02 34.53 29195.33 29550.33 0.003 472.15 475.22 0.03 -4.18 

Michigan 44.02 -86.76 57283.26 57856.91 0.002 175.25 176.91 0.00 7.59 

Mweru -9.02 28.72 4963.59 5104.84 0.006 923.20 926.72 0.01 2.24 

Nicaragua 11.53 -85.41 7749.76 7815.10 0.003 30.05 32.56 0.02 1.22 

Nipigon 49.81 -88.52 4462.91 4515.99 0.003 259.49 260.91 0.00 1.24 

Novosibirsk 54.54 82.37 976.27 998.96 0.005 111.69 114.47 0.00 -0.02 

Ontario 43.64 -77.81 18529.57 18741.92 0.003 73.97 75.37 0.04 0.37 

Peipus 58.54 27.55 3465.82 3556.71 0.005 28.78 31.13 0.18 0.62 

Porisvatn 64.27 -18.86 84.49 85.26 0.003 570.71 580.61 0.60 -0.06 
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Ranco -40.24 -72.40 424.58 429.46 0.003 63.10 65.96 0.00 0.00 

Saint Jean 48.59 -72.04 1063.55 1086.20 0.004 97.74 101.87 0.07 0.06 

Shala 7.47 38.51 299.65 308.01 0.006 1553.45 1555.58 0.38 -0.14 

Superior 47.55 -87.78 81320.65 82151.16 0.003 182.32 183.43 0.02 5.31 

Tanganyika -6.22 29.89 32400.06 32685.75 0.003 768.43 770.94 0.03 14.04 

Uvs 50.32 92.75 3486.72 3628.63 0.008 761.81 763.25 0.57 -1.26 

Vanern 58.90 13.27 5300.96 5414.91 0.005 44.22 45.33 0.12 0.95 

Victoria -1.12 32.90 66123.35 66765.69 0.004 1133.55 1135.95 0.07 11.55 

Wollaston 58.23 -103.29 2192.42 2227.67 0.004 395.51 396.90 0.03 0.01 

Yellowstone 44.43 -110.37 338.88 343.35 0.003 2357.03 2358.79 0.45 0.10 

Zhari Namco 30.92 85.62 977.33 1007.46 0.007 4610.14 4613.18 0.56 0.97 

 

Variable area lakes (LvG) overview 

 
Lake/reservoir 

name 

Latitude Longitude min area 

(km2) 

max 

area 

(km2) 

CV area min water 

level (m) 

max water 

level (m) 

R2 

regression 

Average 

volume 

change 

between 1984-

2000 and 

2000-2016 

(km3) 

Alcantara 39.77 -6.67 43.22 63.72 0.098 187.83 216.33 0.88 0.43 

Almanor 40.25 -121.14 87.07 100.89 0.028 1367.71 1373.24 0.85 0.03 

Alvaro Obregon 27.96 -109.86 34.71 177.09 0.394 64.51 93.03 0.91 -0.29 

Angostura 16.12 -92.64 265.26 562.21 0.143 496.84 527.92 0.98 -1.71 

Argyle -16.34 128.75 346.54 1187.54 0.195 88.66 95.83 0.89 3.30 

Assad 36.00 38.26 518.94 643.55 0.044 297.60 304.36 0.85 0.52 

Bagre 11.56 -0.68 0.00 195.02 0.555 227.12 236.06 0.98 0.44 

Balbina -1.44 -59.89 23.36 2421.59 0.315 42.12 49.09 0.92 5.51 

Barragem do Caia 39.03 -7.19 5.54 15.72 0.197 222.06 233.22 0.97 0.01 

Berryessa 38.58 -122.22 45.30 72.77 0.101 120.67 134.76 0.95 0.28 

Boston 41.97 87.06 901.79 1063.23 0.052 1045.34 1049.88 0.98 0.31 

Brahmamsagar 14.78 78.89 0.09 21.30 0.930 186.79 209.36 0.99 0.13 

Bratsk 55.87 102.34 2908.56 3126.58 0.019 395.21 402.24 0.88 - 

Cahora Bassa -15.68 31.67 1629.92 2481.94 0.128 318.20 327.01 0.94 19.38 

Chapala 20.24 -103.02 717.29 1102.63 0.107 1517.52 1522.95 0.82 -0.08 

Chiquita -30.54 -62.66 2866.43 6763.70 0.204 67.41 72.51 0.84 -0.48 

Encoro de Salas 41.92 -7.93 1.06 3.75 0.191 815.95 828.93 0.95 0.01 

Eucumbene -36.08 148.70 53.47 131.58 0.210 1117.82 1155.38 0.97 -1.35 

Great Salt Lake 41.18 -112.53 3228.40 6205.50 0.182 1278.83 1283.74 0.93 -15.72 

Guri 7.40 -62.86 2914.13 3507.38 0.076 243.73 271.17 0.99 -7.26 
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Houston 29.98 -95.14 31.19 38.24 0.031 11.34 13.70 0.87 0.00 

Hubbard Creek 32.79 -99.01 15.28 58.58 0.281 351.42 360.75 0.98 -0.14 

Hulun 48.95 117.40 1782.96 2122.60 0.050 540.45 544.01 0.97 -3.01 

Kainji 10.32 4.56 724.06 1134.86 0.075 128.60 139.71 0.93 -0.48 

Kajaki 32.33 65.19 23.08 38.44 0.088 998.19 1021.17 0.88 -0.03 

Kapchagay 43.82 77.61 1119.35 1242.98 0.021 475.34 479.41 0.94 0.17 

Karakaya Baraji 38.53 38.47 21.41 236.14 0.141 673.61 692.12 0.97 0.81 

Kariba -16.99 28.04 4571.10 5323.91 0.041 475.54 487.09 0.96 15.28 

Khyargas Nuur 49.18 93.32 1364.23 1397.40 0.008 1027.99 1032.76 0.97 1.49 

Manitoba 50.98 -98.70 4700.32 5022.90 0.012 246.51 248.63 0.82 0.47 

Manso -14.95 -55.66 0.24 339.87 0.847 283.03 287.27 0.83 4.72 

Massinger 

Barragen 

-23.89 32.04 16.25 128.93 0.342 100.50 123.66 0.93 1.10 

Mead 36.19 -114.41 327.92 580.50 0.181 328.69 353.61 0.98 -10.75 

Nasser 22.88 32.33 3156.39 5770.06 0.128 166.85 181.08 0.92 -1.79 

Netzahualcoyotl 17.14 -93.63 228.21 281.65 0.053 151.88 177.34 0.94 -1.12 

O. H. Ivie 31.55 -99.72 0.10 70.45 0.642 458.64 469.13 0.97 -0.15 

Powell 37.24 -110.96 311.38 555.09 0.169 1086.86 1126.50 0.99 -6.35 

Puente Nuevo 38.13 -4.97 3.44 17.87 0.401 437.24 444.78 0.91 0.10 

Qarun 29.47 30.63 226.46 255.33 0.032 -42.59 -41.40 0.86 0.12 

Qinghai 36.89 100.20 4217.58 4369.47 0.012 3193.29 3194.35 0.83 -0.36 

Richland 

Chambers 

31.99 -96.26 1.32 174.31 0.372 93.08 96.64 0.92 0.27 

Roseires 11.60 34.46 88.65 578.54 0.436 471.70 487.74 0.84 2.06 

Rukwa -7.96 32.21 5388.63 6057.51 0.039 799.90 804.28 0.88 -13.01 

Sam Rayburn 31.22 -94.24 290.73 429.91 0.067 46.35 53.02 0.88 0.00 

Sarygamysh 41.93 57.41 3086.11 3967.24 0.065 0.53 8.49 0.99 20.50 

Serena 38.89 -5.18 3.18 125.32 0.386 330.93 349.84 0.96 1.69 

Siling Co 31.80 88.99 2324.93 2401.16 0.01 4537.72 4543.97 0.89 17.56 

Sobradinho -9.67 -41.62 1501.04 3446.70 0.216 384.92 394.58 0.86 -2.20 

Tengiz 50.44 69.08 861.36 1632.89 0.168 304.32 306.60 0.95 -1.25 

Tharthar 34.01 43.26 1593.83 2286.33 0.119 42.76 63.60 0.94 -16.29 

Titicaca -15.90 -69.33 7513.44 8361.62 0.023 3809.10 3811.66 0.81 -2.60 

Toktogul 41.79 72.90 195.07 289.14 0.117 856.13 898.94 0.91 -0.73 

Toledo Bend 31.47 -93.72 472.87 630.83 0.056 48.86 52.65 0.81 0.01 

Volta 7.44 -0.18 4645.90 6885.92 0.124 74.54 84.85 0.96 -14.51 

Walker 38.68 -118.71 111.70 154.99 0.081 1191.20 1205.93 0.98 -0.96 

Williston 56.08 -123.66 1495.12 1715.51 0.031 656.92 671.72 0.84 2.72 

Winnipegosis 52.55 -100.15 5027.12 5257.38 0.008 252.43 254.72 0.87 2.78 

 

Yesa 42.61 -1.11 11.50 17.42 0.086 459.12 486.80 0.86 0.02 
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Less performant variable area lakes (LvP) overview 

Lake/reservoir 

name 

Latitude Longitude min area 

(km2) 

max area 

(km2) 

CV area min water 

level (m) 

max water 

level (m) 

R2 

regression 

Altmuhl 49.13 10.72 3.28 3.44 0.012 414.00 416.01 0.19 

Aydar 40.87 66.91 1661.19 3228.23 0.174 244.61 248.04 0.71 

Bardwell 32.28 -96.66 10.72 14.48 0.046 127.03 131.91 0.55 

Beysehir 37.78 31.51 611.43 669.54 0.020 1120.43 1124.22 0.73 

Caddabassa 8.87 39.87 30.15 48.89 0.141 560.51 563.13 0.11 

Caddo 32.71 -94.02 40.75 63.30 0.125 50.59 52.87 0.44 

Cedar 53.34 -100.17 2358.60 2709.49 0.025 252.59 256.56 0.45 

Chad 13.04 14.49 1241.46 1459.73 0.044 279.96 282.13 0.30 

Chamo 5.85 37.55 292.56 330.97 0.030 1105.26 1108.24 0.66 

Churumuco 18.56 -101.86 156.26 309.69 0.157 137.28 161.38 0.51 

Claire 58.59 -112.09 1231.20 1416.09 0.036 209.60 210.73 0.21 

Danau Tang 0.63 112.47 2.81 6.50 0.170 17.77 24.78 0.62 

Eagle 40.65 -120.73 51.08 102.63 0.093 1551.70 1556.77 0.75 

Fairfield 31.79 -96.06 6.12 8.03 0.059 92.84 95.17 0.26 

Hainer 51.17 12.46 0.00 3.70 0.586 123.52 127.82 0.00 

Ilmen 58.25 31.38 941.97 1306.72 0.112 15.84 21.45 0.62 

Kusai 35.73 92.87 263.91 332.97 0.087 4475.46 4484.40 0.13 

Kuybyshev 54.60 49.17 4529.53 4839.51 0.012 47.73 53.17 0.61 

Lesser Slave 55.44 -115.40 1120.94 1182.22 0.009 576.09 578.14 0.60 

Mosul Dam 36.74 42.75 12.90 331.67 0.224 303.70 329.06 0.73 

Musters -45.40 -69.20 422.71 465.35 0.025 268.54 271.00 0.78 

Nam Co 30.74 90.61 1948.79 2024.41 0.011 4721.94 4724.39 0.55 

Poopo -18.76 -67.09 10.62 3104.92 0.583 3685.50 3686.24 0.21 

Reindeer 57.28 -102.38 5201.41 5422.67 0.010 335.58 337.42 0.67 

Resia 46.80 10.53 5.77 6.12 0.015 1476.00 1496.18 0.76 

Rybinsk 58.52 38.28 3590.26 3778.11 0.012 97.96 101.16 0.53 

Tai Hu 31.20 120.23 2216.78 2359.42 0.016 1.36 2.67 0.00 

Tana 11.99 37.31 2986.63 3107.77 0.008 1784.94 1788.29 0.74 

Tangra Yumco 31.06 86.60 831.89 860.39 0.008 4531.35 4536.80 0.56 

Tawakoni 32.89 -96.00 106.85 150.45 0.070 131.01 134.08 0.76 

Thulsfelder 52.93 7.93 0.42 1.18 0.162 21.61 23.03 0.63 

Tsimlyansk 47.96 42.79 1988.14 2366.59 0.031 31.70 36.38 0.80 

Turkana 3.51 36.20 7033.64 7501.42 0.015 360.37 365.18 0.71 

Ulungur 47.25 87.29 852.58 887.48 0.009 482.36 484.04 0.24 
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Urmia 37.64 45.50 917.87 5790.55 0.372 1270.11 1278.01 0.70 

Zama 58.79 -119.03 65.19 288.52 0.443 325.88 328.81 0.28 

Zaysan 48.01 83.89 2829.26 3253.41 0.032 388.60 394.87 0.56 
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Table 1 Overview of the validation results, excluding and including extrapolated volumes. 

 Extrapolated volumes excluded Extrapolated volumes included 

Lake/reservoir   

name: 

 

Pearsons r RMSE (km3) NRMSE (%) Pearsons r RMSE (km3) NRMSE (%) 

Alcantara GSW dataset:  0.941 0.229 12.750 0.941 0.229 12.750 

 Altimetry: 0.986 0.151 8.427 0.987 0.153 8.265 

Almanor GSW dataset:  0.902 0.060 11.340 0.908 0.071 11.122 

 Altimetry: 0.990 0.019 3.676 0.989 0.020 3.874 

Argyle GSW dataset:  0.954 0.471 7.924 0.954 0.471 7.924 

 Altimetry: 0.995 0.147 2.474 0.995 0.147 2.474 

Berryessa GSW dataset:  0.961 0.063 7.448 0.989 0.076 5.311 

 Altimetry: 0.978 0.043 5.575 0.978 0.043 5.575 

Encoro de Salas GSW dataset:  0.966 0.004 8.358 0.966 0.004 7.455 

 Altimetry: 0.985 0.002 7.323 0.992 0.003 6.145 

Eucumbene GSW dataset:  0.933 0.114 11.802 0.933 0.114 11.802 

 Altimetry: 0.964 0.084 8.419 0.964 0.084 8.419 

Houston GSW dataset: 0.904 0.008 10.235 0.904 0.008 10.235 

 Altimetry: 0.938 0.005 5.666 0.938 0.005 5.436 

Hubbard Creek GSW dataset:  0.985 0.017 5.173 0.988 0.018 5.372 

 Altimetry: 0.998 0.006 1.924 0.999 0.007 2.118 

Mead GSW dataset:  0.985 0.449 4.685 0.997 1.045 5.434 

 Altimetry: 0.998 0.179 1.865 0.998 0.179 1.865 

O. H. Ivie GSW dataset:  0.985 0.019 4.924 0.993 0.030 4.950 

 Altimetry: 0.999 0.006 1.784 0.999 0.006 1.784 

Powell GSW dataset:  0.993 0.913 4.947 0.994 0.923 4.524 

 Altimetry: 0.997 0.552 3.074 0.998 0.554 2.964 

Puente Nuevo GSW dataset:  0.961 0.011 9.182 0.991 0.013 5.329 

 Altimetry: 0.993 0.006 4.972 0.994 0.006 4.954 

Richland Chambers GSW dataset:  0.954 0.046 9.161 0.954 0.046 9.161 

 Altimetry: 0.989 0.023 4.224 0.990 0.022 4.196 

Roseires GSW dataset:  0.805 0.295 18.872 0.971 2.434 41.455 

 Altimetry: 0.925 0.214 12.443 0.962 0.214 11.473 

Serena GSW dataset:  0.989 0.092 4.907 0.989 0.122 3.767 

 Altimetry: 0.990 0.077 4.294 0.990 0.077 4.294 

Toledo Bend GSW dataset:  0.765 0.351 14.376 0.777 0.345 14.135 

 Altimetry: 0.988 0.122 5.015 0.988 0.121 4.974 

Walker GSW dataset:  0.936 0.071 10.798 0.971 0.072 8.180 

 Altimetry: 0.988 0.032 4.882 0.990 0.041 4.499 
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Yesa reservoir GSW dataset:  0.919 0.030 11.863 0.960 0.029 8.071 

 Altimetry: 0.983 0.015 6.228 0.979 0.024 6.971 

Average  0.959 0.137 7.250 0.970 0.215 7.424 

 

 


