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Abstract  14 

Mapping the suitability of groundwater dependent vegetation in semi-arid Mediterranean areas is 15 

fundamental for the sustainable management of groundwater resources and groundwater dependent 16 

ecosystems (GDE) under the risks of climate change scenarios. For the present study the distribution of 17 

deep-rooted woody species in southern Portugal was modeled using climatic, hydrological and 18 

topographic environmental variables. To do so, Quercus suber, Quercus ilex and Pinus pinea were used 19 

as proxy species to represent the Groundwater Dependent Vegetation (GDV). Model fitting was 20 

performed between the proxy species Kernel density and the selected environmental predictors using 1) a 21 

simple linear model and 2) a Geographically Weighted Regression (GWR), to account for auto-22 

correlation of the spatial data and residuals. When comparing the results of both models, the GWR 23 

modelling results showed improved goodness of fitting, as opposed to the simple linear model. Climatic 24 

indices were the main drivers of GDV density, followed with a much lower influence by groundwater 25 

depth, drainage density and slope. Groundwater depth did not appear to be as pertinent in the model as 26 

initially expected, accounting only for about 7% of the total variation against 88% for climate drivers 27 

The relative proportion of model predictor coefficients was used as weighting factors for multicriteria 28 

analysis, to create a suitability map to the GDV in southern Portugal showing where the vegetation most 29 

likely relies on groundwater to cope with aridity. A validation of the resulting map was performed using 30 

independent data of the Normalized Difference Water Index (NDWI) a satellite-derived vegetation index. 31 

June, July and August of 2005 NDWI anomalies, to the years 1999-2009, were calculated to assess the 32 

response of active woody species in the region after an extreme drought. The results from the NDWI 33 

anomalies provided an overall good agreement with the suitability to host GDV. The model was 34 

considered reliable to predict the distribution of the studied vegetation. 35 
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The methodology developed to map GDV’s will allow to predict the evolution of the distribution of GDV 36 

according to climate change and aid stakeholder decision-making concerning priority areas of water 37 

resources management. 38 

 39 

Keywords: Groundwater dependent vegetation, aridity, agroforestry, suitability map, Normalized 40 

Difference Water Index 41 
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1 Introduction 44 

 45 

Mediterranean forests, woodlands and shrublands, mostly growing under restricted water availability, are 46 

one of the terrestrial biomes with higher volume of groundwater used by vegetation (Evaristo and 47 

McDonnell, 2017). Future predictions of decreased precipitation (Giorgi and Lionello, 2008; Nadezhdina 48 

et al., 2015), decreased runoff (Mourato et al., 2015) and aquifer recharge (Ertürk et al., 2014; Stigter et 49 

al., 2014) in the Mediterranean region threaten the sustainability of groundwater reservoirs and the 50 

corresponding dependent ecosystems. Therefore, a sustainable management of groundwater resources and 51 

the Groundwater Dependent Ecosystems (GDE) is of crucial importance. 52 

A widely used classification of GDE was proposed by Eamus et al. (2006). This classification 53 

distinguishes three types: 1) Aquifer and cave ecosystems, which include all subterranean waters; 2) 54 

Ecosystems reliant on emerging groundwater (e.g. estuarine systems, wetlands; riverine systems) and 3) 55 

Ecosystems reliant on resident groundwater (e.g. systems where plants remain physiologically active 56 

during extended drought periods, without a visible water source). Mapping GDE constitutes a first and 57 

fundamental step to their active management. Several approaches have been proposed, from local field 58 

surveys measuring plant transpiration of stable isotopes (Antunes et al. 2018) up to larger spatial scales  59 

involving remote sensing techniques (e.g. Normalized Difference Vegetation Index – NDVI) (Barron et 60 

al., 2014; Eamus et al., 2015; Howard and Merrifield, 2010), remote-sensing combined with ground-61 

based observations (Lv et al., 2013), geographic information system (GIS) (Pérez Hoyos et al., 2016a) 62 

GIS combining field surveys (Condesso de Melo et al., 2015), or even statistical approaches (Pérez Hoyos 63 

et al., 2016b).  64 

Despite of a wide-ranging body of literature reviewing GDE’s topics (Doody et al., 2017; Dresel et al., 65 

2010; Münch and Conrad, 2007), most of regional scale studies do not include Mediterranean regions. 66 

Moreover, studies on ecosystems relying on resident groundwater frequently only focused on riparian 67 

environments (Lowry and Loheide, 2010; O’Grady et al., 2006), with few examples in Mediterranean 68 

areas (del Castillo et al., 2016; Fernandes, 2013; Hernández-Santana et al., 2008; Mendes et al., 2016). 69 

There is a clear knowledge gap on the identification of phreatophyte species reliant on resident 70 

groundwater and their associated vegetation (Robinson, 1958) in the Mediterranean region and the 71 

management actions that should be taken to decrease the adverse effects of climate change. 72 

In the driest regions of the Mediterranean basin, the persistent lack of water during the entire summer 73 

periods gave an adaptive advantage to the vegetation that could either avoid or escape drought by 74 

reaching deeper stored water up to the point of entirely relying on groundwater (Chaves et al., 2003; 75 

Canadell et al., 1996; Miller et al., 2010). This drought-avoiding strategy is often associated to the 76 

development of a dimorphic root system in woody species (Dinis 2014, David et al., 2013) or to hydraulic 77 

lift and/or hydraulic redistribution mechanisms (Orellana et al., 2012). Those mechanisms provide the 78 

ability to move water from deep soil layers, where water content is higher, to more shallow layers where 79 

water content is lower (Horton and Hart, 1998; Neumann and Cardon, 2012). Hydraulic lift and 80 

redistribution have been reported for several woody species of the Mediterranean basin (David et al., 81 
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2007; Filella and Peñuelas, 2004) and noticeably for Cork oak (Quercus suber L.) (David et al., 2013; 82 

Kurz-Besson et al., 2006; Mendes et al., 2016).  83 

Mediterranean cork oak woodlands (Montados) are agro-silvo-pastoral systems considered as semi-84 

natural ecosystems of the southwest Mediterranean basin (Joffre et al., 1999) that have already been 85 

referenced has a groundwater dependent terrestrial ecosystem (Mendes et al., 2016). Montados must be 86 

continually maintained through human management by thinning, understory use through grazing, 87 

ploughing and shrub clearing (Huntsinger and Bartolome, 1992) to maintain a good productivity, 88 

biodiversity and ecosystems service (Bugalho et al., 2009). In the ecosystems of this geographical area, 89 

the dominant tree species are the cork oak (Quercus suber L.) and the Portuguese holm oak (Quercus ilex 90 

subs rotundifolia Lam.) (Pinto-Correia et al., 2011). Additionally, stone pine (Pinus pinea L.) has become 91 

a commonly co-occurrent species in the last decades (Coelho and Campos, 2009). The use of groundwater 92 

has been frequently reported for both Pinus (Antunes et al. 2018; Filella and Peñuelas, 2004; Grossiord et 93 

al., 2016; Peñuelas and Filella, 2003) and Quercus genre (Barbeta and Peñuelas, 2017; David et al., 2007, 94 

2013, Kurz-Besson et al., 2006, 2014; Otieno et al., 2006). Furthermore, the contribution of groundwater 95 

to tree physiology has been shown to be of a greater magnitude for Quercus sp. as compared with Pinus 96 

sp. (del Castillo et al., 2016; Evaristo and McDonnell, 2017).  97 

Q. suber and Q. ilex have been associated with high resilience and adaptability to hydric and thermic 98 

stress, and to recurrent droughts in the southern Mediterranean basin (Barbero et al., 1992). In Italy and 99 

Portugal, during summer droughts Q. ilex used a mixture of rain-water and groundwater and was able to 100 

take water from very dry soils (David et al., 2007; Valentini et al., 1992). An increasing contribution of 101 

groundwater in the summer has also been shown for this species (Barbeta et al., 2015). Similarly, Q. 102 

suber showed a seasonal shift in water sources, from shallow soil water in the spring to the beginning of 103 

the dry period followed by a progressive higher use of deeper water sources throughout the drought 104 

period (Otieno et al., 2006). In addition, the species roots are known to reach depths as deep as 13m in 105 

southern Portugal (David et al., 2004). P. pinea has been recently included in the facultative phreatophyte 106 

species (Antunes et al. 2018). This species shows a very similar root system (Montero et al., 2004) as 107 

compared to cork oak (David et al., 2013), with large sinker roots reaching 5 m depth (Canadell et al., 108 

1996). Given the information available on water use strategies by the phreatophyte arboreous species of 109 

the cork oak woodlands, Q. ilex, Q. suber and P. pinea were considered as proxies for arboreous 110 

vegetation that belongs to GDE relying on resident groundwater (from here onwards designed as 111 

Groundwater Dependent Vegetation – GDV). 112 

GDV of the Mediterranean basin is often neglected in research. Indeed, still little is known about the 113 

GDV distribution, but research has already been done on the effects of climate change in specific species 114 

distribution, such as Q. suber, in the Mediterranean basin (Duque-Lazo et al., 2018; Paulo et al., 2015). 115 

While the increase in atmospheric CO2 and the rising temperature can boost tree growth (Barbeta and 116 

Peñuelas, 2017; Bussotti et al., 2013; Sardans and Peñuelas, 2004), water stress can have a counteracting 117 

effect on growth of both Quercus ilex (López et al., 1997; Sabaté et al., 2002) and P. pinaster (Kurz-118 

Besson et al., 2016). Therefore, it is of crucial importance to identify geographical areas where subsurface 119 

GDV is present and characterize the environmental conditions this vegetation type is thriving in. This 120 
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would contribute to the understanding of how to manage these species under unfavorable future climatic 121 

conditions. 122 

The aim of this study was to address the mentioned gaps by creating a suitability map of the arboreous 123 

phreatophyte species in southern Portugal, traducing their potential dependency on groundwater. We used 124 

an integrated multidisciplinary methodology combining a geospatial modeling approach based on the 125 

Geographically Weighted Regression (GWR) and a GIS multicriteria analysis approach, both relying on 126 

forest inventory, edaphoclimatic conditions and topographic information. We expected this new 127 

integrated procedure to grant a more reliable estimation of the vegetation dependency on groundwater 128 

sources at the regional scale. 129 

The Mapping methodology was based on the occurrence of known subsurface phreatophyte species and 130 

well-known environmental conditions affecting water resources availability. Several environmental 131 

predictors were selected according to their expected impact on water use and storage and then used in 132 

GWR to model the density of Q. suber, Q. ilex and P. pinea occurrence in the Alentejo region (NUTSII) 133 

of southern Portugal. To our knowledge, very few applications of GWR have been used to model species 134 

distribution and only recently its use has spread in ecological research (Hu et al., 2017; Li et al., 2016; 135 

Mazziotta et al., 2016). The coefficients obtained from the model equation for each predictor and 136 

expressed as proportion of total sum of absolute coefficients were used as weights to build the suitability 137 

map with GIS multi-factor analysis, after reclassifying each relevant environmental driver. The resulting 138 

map was validated using the remote sensed vegetation index NDWI. 139 

Based on former knowledge gathered from field surveys conducted  in the region (Antunes et al. 2018, 140 

Condesso de Melo et al., 2015, Kurz-Besson et al. 2006 & 2014, Otieno et al. 2006, David et al. 2013, 141 

Pinto et al. 2013), on environmental conditions and the species ecophysiological needs, we hypothesized 142 

that 1) groundwater depth together with climatic conditions play one of the most important environmental 143 

roles in GDV’s distribution and 2) groundwater depth between 1.5 and 15 m associated with xeric 144 

conditions should favor a higher density of GDV and thus a larger use of groundwater by the vegetation.  145 

 146 

  147 
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2 Material and Methods 148 

 149 

2.1 Study area 150 

The administrative region of Alentejo (NUTSII) (fig01) covers an area of 31 604.9 km2, between 37.22º 151 

and 39.39º N in latitude and between 6.55º and 9.00º W in longitude. This study area is characterized by a 152 

Mediterranean temperate mesothermic climate with hot and dry summers, defined as Csa in the Köppen 153 

classification (APA, n.d.; ARH Alentejo, 2012a, 2012b). It is characterized by a sub-humid climate, 154 

which has recently quickly drifted to semi-arid conditions (Ministério da Agricultura do Mar do 155 

Ambiente e do Ordenamento do Território, 2013).  A large proportion of the area (above 40%) is covered 156 

by forestry systems (Autoridade Florestal Nacional and Ministério da Agricultura do Desenvolvimento 157 

Rural e das Pescas, 2010) providing a high economical value to the region and the country (Sarmento and 158 

Dores, 2013).  159 

 160 

2.2 Kernel Density estimation of GDV 161 

Presence datasets of Quercus suber, Quercus ilex and Pinus pinea of the last Portuguese forest inventory 162 

completed in 2010 (ICNF, 2013) were used to calculate Kernel density (commonly called heat map) as a 163 

proxy for GDV suitability. The inventory registered the occurrence of each species on a 500m mesh grid 164 

resolution, corresponding to a maximum occurrence of 4 counts per km2. Only data points with one of the 165 

three proxy species selected as primary and secondary occupation were used. The resulting Kernel density 166 

was weighted according to tree cover percentage and was calculated using a quartic biweight distribution 167 

shape, a search radius of 10 km, and an output resolution of 0.018 degrees, corresponding to a cell size of 168 

1km. This variable was computed using QGIS version 2.14.12 (QGIS Development Team, 2017). 169 

 170 

 171 

2.3 Environmental variables 172 

Species distribution is mostly affected by limiting factors controlling ecophysiological responses, 173 

disturbances and resources (Guisan and Thuiller, 2005). To characterize the study area in terms of GDV’s 174 

suitability, environmental variables expected to affect GDV’s density were selected according to their 175 

constraint on groundwater uptake and soil water storage. Within possible abiotic variables, landscape 176 

topography, geology, groundwater availability and regional climate were considered. The twelve selected 177 

variables for modeling purposes, retrieved from different data sources, are listed in Table 1. The software 178 

used in spatial analysis was ArcGIS® software version 10.4.1 by Esri and R program software version 179 

3.4.2 (R Development Core Team, 2016). 180 

 181 

2.3.1 Slope and soil characteristics 182 
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The NASA and METI ASTER GDEM product was retrieved from the online Data Pool, courtesy of the 183 

NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources 184 

Observation and Science (EROS) Center, Sioux Falls, South 185 

Dakota, https://lpdaac.usgs.gov/data_access/data_pool. Spatial Analyst Toolbox was used to calculate the 186 

slope from the digital elevation model. Slope was used as proxy for the identification of shallow soil 187 

water interaction with vegetation.  188 

The map of soil type was obtained from the Portuguese National Information System for the Environment 189 

- SNIAmb (© Agência Portuguesa do Ambiente, I.P., 2017) and uniformized to the World Reference 190 

Base with the Harmonized World Soil Database v 1.2 (FAO et al., 2009). The vector map was converted 191 

to raster using the Conversion Toolbox. To reduce the analysis complexity involving the several soil 192 

types present in the map, soil types were regrouped in three classes, according to their capacity to store or 193 

drain water (Table A1 in appendix A). The classification was based on the characteristics of each soil unit 194 

(available water storage capacity, drainage and topsoil texture) from the Harmonized World Soil 195 

Database v 1.2 (FAO et al., 2009). In the presence of dominant soil with low drainage capacity, a high 196 

clay fraction in the top soil and a high available water content, lower scores were given in association to 197 

decreased suitability for GDV by favoring non-GDV species. Otherwise, when soil characteristics 198 

suggested water storage at deeper soil depths, lower water content, drainage and sandy topsoil texture, 199 

higher scores were given. 200 

Effective soil thickness (Table 1) was also considered for representing the maximum soil depth explored 201 

by the vegetation roots. It constrains the expansion and growth of the root system, as well as the available 202 

amount of water that can be absorbed by roots.  203 

 204 

2.3.2 Groundwater availability 205 

Root access to water resources is one of the most limiting factors for GDV’s growth and survival, 206 

especially during the dry season. The map of depth to water table was interpolated from piezometric 207 

observations from the Portuguese National Information System on Water Resources (SNIRH) public data 208 

base (http://snirh.apambiente.pt, last accessed on March 31st 2017) and the Study of Groundwater 209 

Resources of Alentejo (ERHSA) (Chambel et al., 2007). Data points of large-diameter wells and 210 

piezometers were retrieved for the Alentejo region (fig02) and sorted into undifferentiated, karst or 211 

porous geological types to model groundwater depth. In the studied area, piezometers are exclusively 212 

dedicated small diameter boreholes for piezometric observations, in areas with high abstraction volumes 213 

for public water supply. Large diameter wells in this region are usually low yielding and mainly devoted 214 

to private use and irrigation. Due to the large heterogeneity of geological media, groundwater depth was 215 

calculated separately for each sub-basin. A total of 3158 data points corresponding to large wells and 216 

piezometers were used, with uneven measurements between 1979 and 2017. For each piezometer an 217 

average depth was calculated from the available observations and used as a single value. In areas with 218 

undifferentiated geological type, piezometric level and elevation were highly correlated (>0.9), thus a 219 

linear regression was applied to interpolate data. Ordinary kriging was preferred for the interpolation of 220 
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karst and porous aquifers, combining large wells and piezometric data points. The ordinary kriging was 221 

calculated using a semi-variogram in which the sill, range and nugget were optimized to create the best fit 222 

of the model to the data. To build a surface layer of the depth to water table, the interpolated surface of 223 

the groundwater level was subtracted from the digital elevation model. Geostatistical Analyst ToolBox 224 

was used for this task. 225 

Drainage density is a measure of how well the basin is drained by stream channels. It is defined as the 226 

total length of channels per unit area. Drainage density was calculated for a 10km grid size for the 227 

Alentejo region, by the division of the 10km square area (A) in km2 by the total stream length (L) in km, 228 

as in Eq. (1). 229 

𝐷 =  
𝐿

𝐴
 ,          (1) 230 

 231 

2.3.3 Regional Climate 232 

Temperature and precipitation datasets were obtained from the E-OBS 233 

(http://eca.knmi.nl/download/ensembles/ensembles.php, last accessed on March 31st 2017) public 234 

database (Haylock et al., 2008). Standardized Precipitation Evapotranspiration Index (SPEI), Aridity 235 

Index (Ai) and Ombrothermic Indexes were computed from long-term (1951-2010) monthly temperature 236 

and precipitation observations. The computation of potential evapotranspiration (PET) was performed 237 

according to Thornthwaite (1948) and was calculated using the SPEI package (Beguería and Vicente-238 

Serrano, 2013) in R program. 239 

SPEI multi-scalar drought index (Vicente-Serrano et al., 2010) was calculated over a 6 month interval to 240 

characterize drought severity in the area of study using SPEI package (Beguería and Vicente-Serrano, 241 

2013) for R program. SPEI is based on the normalization of the water balance calculated as the difference 242 

between cumulative precipitation and PET for a given period at monthly intervals. Normalized values of 243 

SPEI typically range between -3 and 3. Drought events were considered as severe when SPEI values were 244 

between -1.5 and -1.99, and as extreme with values below -2 (Mckee et al., 1993). Severe and extreme 245 

SPEI predictors were computed as the number of months with severe or extreme drought, counted along 246 

the 60 years of the climate time-series. 247 

While the SPEI index used in this study identifies geographical areas affected with more frequent extreme 248 

droughts, the Aridity index distinguishes arid geographical areas prone to annual negative water balance 249 

(with low Ai value) to more mesic areas showing positive annual water balance (with high Ai value). Ai 250 

gives information related to evapotranspiration processes and rainfall deficit for potential vegetative 251 

growth. It was calculated following Eq. (2) according to Middleton et al. (1992), where PET is the 252 

average annual potential evapotranspiration and P is the average annual precipitation, both in mm for the 253 

60 years period of the climate time-series. Dry lands are defined by their degree of aridity in 4 classes: 254 

Hyperarid (Ai<0.05); Arid (0.05<Ai<0.2); Semi-arid (0.2<Ai<0.5) and Dry Subhumid (0.5<Ai<0.65) 255 

(Middleton et al., 1992).  256 

http://eca.knmi.nl/download/ensembles/ensembles.php
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Ai= 
𝑃

 𝑃𝐸𝑇
 ,          (2) 257 

Ombrothermic Indexes were used to better characterize the bioclimatology of the study region (Rivas-258 

Martínez et al., 2011), by evaluating soil water availability for plants during the driest months of the year. 259 

Four ombrothermic indexes were calculated according to a specific section of the year stated in Table 1, 260 

and following Eq. (3), where Pp is the positive annual precipitation (accumulated monthly precipitation 261 

when the average monthly mean temperature is higher than 0°C) and Tp is the positive annual 262 

temperature (total in tenths of degrees centigrade of the average monthly temperatures higher than 0°). 263 

Ombrothermic index presenting values below 2 for the analyzed months, can be considered as 264 

Mediterranean bioclimatically. For non-Mediterranean areas, there is no dry period in which, for at least 265 

two consecutive months, the precipitation is less than or equal to twice the temperature.  266 

𝑂 =
𝑃𝑝

𝑇𝑝
 ,          (3) 267 

 268 

2.4 Selection of model predictors 269 

The full set of environmental variables was evaluated as potential predictors for the suitability of GDV 270 

(based on the Kernel density of the proxy species). A preliminary selection was carried out, first by 271 

computing Pearson’s correlation coefficients between environmental variables and second by performing 272 

a Principal Components Analysis (PCA) to detect multicollinearity. Covariates were discarded for 273 

modeling according to a sequential procedure. Whenever pairs of variables presented a correlation value 274 

above 0.4, the variable with the highest explained variance on the first axis of the PCA was selected. In 275 

addition, selected variables had to show the lowest possible correlation values between them. Variables 276 

showing low correlations and explaining a higher cumulative proportion of variability with the lowest 277 

number of PCA axis were later selected as predictors for modeling. PCA was performed using the GeoDa 278 

Software (Anselin et al., 2006) and Pearson’s correlation coefficients were computed with Spatial Analyst 279 

Tool . 280 

 281 

2.5 Model development  282 

When fitting a linear regression model based on the selected variables, the normal distribution and 283 

stationarity of the response variable and residuals must be assured.  284 

The Kernel density of the proxy GDV species, Q. suber, Q. ilex and P. pinea, showed a skewed normal 285 

distribution. Therefore, a square-root transformation of the data was applied on the response variable, 286 

before model fitting. To be able to compare the resulting model coefficients and use them as weighting 287 

factors of the multi-criteria analysis to build the suitability map, the predictor variables were normalized 288 

using the z-score function. This allows to create standardized scores for each variable, by subtracting the 289 

mean of all data points from each individual data point, then dividing those points by the standard 290 

deviation of all points, so that the mean of each z-predictor is zero and the deviation is 1.  291 
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Spatial autocorrelation and non-stationarity are common when using linear regression on spatial data. To 292 

overcome these issues, the Geographically Weighted Regression (GWR) was used. This extension of the 293 

Ordinary Least Squares (OLS) linear regression considers the spatial non stationarity in variable 294 

relationships and allows the use of spatially varying coefficients while minimizing spatial autocorrelation 295 

(Stewart Fotheringham et al., 1996). In this study, simple linear regression and GWR were both applied to 296 

the dataset and their performances compared. Models were fitted on a 5% random subsample of the entire 297 

dataset (reaching a total of 6214 selected data points), due to computational restrictions and to decrease 298 

the spatial autocorrelation effect (Kühn, 2007). This methodology has already been applied with a 299 

subsample of 10%, with points distant 10km from each other (Bertrand et al., 2016). In spite of the 300 

subsampling, the minimum and maximum distance between two random data points were, respectively, 301 

3.6 km and 16.7 km, providing a good representation of local heterogeneity, as shown in figures 05 and 302 

06. An additional analysis showing an excellent agreement between the two datasets is presented in 303 

FigA1 in appendix A. 304 

Initially the model was constructed containing all selected predictors through the PCA and Pearson’s 305 

correlation analysis. Afterwards, predictors were sequentially discarded to ascertain the model presenting 306 

lower second-order Akaike Information Criteria (AICc) and higher quasi-global R2 chosen to predict the 307 

suitability of GDV. 308 

Adaptive Kernel bandwidths for the GWR model fitting were used due to the spatial irregularity of the 309 

random subsample. Local search radius were obtained by minimizing the CrossValidation score (Bivand 310 

et al., 2008) and thus minimizing the error of the local regressions. To analyze the performance of the 311 

GWR model alone, the local and global adjusted R2were considered. To compare between the GWR 312 

model and the simple linear model, the distribution of the model residuals was used to identify clustered 313 

values as well as the AICc.  The spatial autocorrelation of the models residuals was evaluated with the 314 

Moran’s I test (Moran, 1950) calculated from the Spatial Statistics Tool, and also graphically. GWR 315 

model was fitted using the spgwr package from R program (Bivand and Yu, 2017). 316 

 317 

2.6 Suitability map building 318 

To create the suitability map all predictor layers included in the GWR model were classified, similarly to 319 

Condesso de Melo et al. (2015) and Aksoy et al. (2017) . The likelihood of an interaction between the 320 

vegetation and groundwater resources was scored from 1 to 3 for each predictor. Scores were assigned 321 

after bibliographic review and expert opinion. The higher the score, the higher the likelihood, 1 322 

corresponding to a weak likelihood and 3 indicating very high likelihood.  323 

Groundwater depth was divided in two classes, according to the accessibility to shallow soil water above 324 

1.5 m and the maximum rooting depth for Mediterranean woody species reaching 13 m, reported by 325 

Canadell et al. (1996). Throughout the manuscript water between 0 and 1.5 m depth was designated as 326 

shallow soil water, while water below 1.5 m depth was considered as groundwater. The depth class 327 

between 0 and 1.5m was based on the riparian vegetation in semi-arid Mediterranean areas which is 328 

mainly composed of shrub communities (Salinas et al., 2000) and presents a mean rooting depth of 1.5m 329 
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(Silva and Rego, 2004). The most common tree species rooting depth in riparian ecosystems is normally 330 

similar to the depth of fine sediment not reaching gravel substrates (Singer et al., 2012) and not reaching 331 

levels as deep as deep-rooted species. The minimum score was given to areas where groundwater depth 332 

was too shallow (below 1.5 m) considered to belong to emerging groundwater dependent vegetation. 333 

Areas with steep slope were considered to have superficial runoff and less recharge and influence 334 

negatively tree density (Costa et al., 2008). Those areas were treated as less suitable to GDV. Values of 335 

the Ombrothermic Index of the summer quarter and the immediately previous month (O4) were split in 3 336 

classes according to Jenks natural breaks, with higher suitability corresponding to higher aridity. The 337 

higher values of Ai, corresponding to lower aridity had a score of 1, because a higher humid environment 338 

would decrease the necessity of the arboreous species to use deep water sources. Accordingly, an increase 339 

in aridity (lower values of Ai) has already been shown to increase tree decline (Waroux and Lambin, 340 

2012) and so lower Ai values corresponded to a score of 3, leaving the score 2 to intermediate values of 341 

Ai.  Drainage density scoring was based on the drainage capability of the water through the 342 

hydrographical network of the river. A low drainage density (below 0.5) implies a high loss of water 343 

through runoff along the hydrographic network. This water lost for shallow soil horizons would be less 344 

available to the vegetation thus favoring a higher use of water from deep groundwater reservoirs 345 

(Rodrigues, 2011). 346 

A direct compilation of the predictor layers could have been performed for the multicriteria analysis. 347 

However, some predictors might have a stronger influence on GDV’s distribution and density than others. 348 

Therefore, there was a need to define weighting factors for each layer of the final GIS multicriteria 349 

analysis. Yet, due to the intricate relations between all environmental predictors and their effects on the 350 

GDV, experts and stakeholders suggested very different scoring for a same layer. Instead the relative 351 

proportion of each predictor was used locally, according to the GWR model (Eq. 4) as weighting factors. 352 

The final GIS multicriteria analysis was performed using the Spatial Analyst Tool by applying local 353 

model equations obtained for each of the 6214 coordinates of the Alentejo map (Eq.4),  354 

SGDV= Intercept + coefp1 * [reclassified value X1] + coefp2 * [reclassified value X2] + coefp3 * 355 

[reclassified value X3] + …, 356 

(4) 357 

with SGDV representing the suitability to Groundwater Dependent Vegetation, brackets representing the 358 

reclassified GIS X layer corresponding to the scoring and coefx indicating the relative proportion for the 359 

predictor x calculated as the ratio between the modulus of the local coefficient x and the sum of the 360 

modulus of all local coefficients.. 361 

According to this equation, lower values indicate a lower occurrence of groundwater use representing a 362 

lower GDV suitability while higher values correspond to a higher use of groundwater representing a 363 

higher GDV suitability. To allow for an easier interpretation, the data on suitability to GDV was 364 

subsequently classified based on their distribution value, according to Jenks natural breaks. This resulted 365 

in 5 suitability classes: “Very poor”, “Poor”, “Moderate”, “Good” and “Very Good”. 366 

 367 
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2.7 Map evaluation 368 

Satellite derived remote-sensing products have been widely used to follow the impact of drought on land 369 

cover and the vegetation dynamics (Aghakouchaket al. 2015). Vegetation indexes offer excellent tools to 370 

assess and monitor plant changes and water stress (Asrar et al. 1989). The Normalized Difference Water 371 

Index (NDWI) (Gao, 1996) is a satellite-derived index that aims to estimate fuel moisture content (Maki 372 

et al., 2004) and leaf water content at canopy level, widely used for drought monitoring (Anderson et al., 373 

2010, Gu et al., 2007; Ceccato et al., 2002a). This index was chosen to be more sensitive to canopy water 374 

content and a good proxy for water stress status in plants. Moreover, NDWI has been shown to be best 375 

related to the greenness of Cork oak woodland’s canopy, expressed by the fraction of intercepted 376 

photosynthetically active radiation (Cerasoli et al., 2016). 377 

In order to validate the GDV suitability map obtained in our study, we calculated anomalies of the 378 

Normalized Difference Water Index (NDWI) (Gao, 1996) between an extreme dry year (2005) and the 379 

median value of the surrounding 10 year period (1999-2009). NDWI is computed using the near infrared 380 

(NIR) and the short-wave infrared (SWIR) reflectance, which makes it sensitive to changes in liquid 381 

water content and in vegetation canopies (Gao, 1996; Ceccato et al., 2002a, b).  The index computation 382 

(Eq. 5) was further adapted by Gond et al. (2004) to SPOT-VEGETATION instrument datasets, using 383 

NIR (0.84 µm) and MIR (1.64 µm) channels, as described by Hagolle et al. (2005). 384 

𝑁𝐷𝑊𝐼 =  
𝜌𝑁𝐼𝑅−𝜌𝑀𝐼𝑅

𝜌𝑁𝐼𝑅+𝜌𝑀𝐼𝑅
.         (5) 385 

Following Eq. (5), NDWI data was computed using B3 and MIR data acquired from VEGETATION 386 

instrument on board of SPOT4 and SPOT5 satellites. Extraction and corrections procedures applied to 387 

optimize NDWI series are fully described in Gouveia et al. (2012). 388 

The NDWI anomaly was computed as the difference between NDWI observed in June, July and August 389 

of 2005 and the median NDWI for the considered month for the period 1999 to 2009. June was selected 390 

to provide the best signal from a still fully active canopy of woody species while the herbaceous layer had 391 

usually already finished its annual cycle and dried out. The hydrological year of 2004/2005 was 392 

characterized by an extreme drought event over the Iberian Peninsula, where less than 40% of the normal 393 

precipitation was registered in the southern area (Gouveia et al., 2009). Thus, in June 2005 the vegetation 394 

of the Alentejo region was already coping with an extreme long-term drought, which was well captured 395 

by the anomaly of the NDWI index (negative values), as formerly shown by Gouveia et al. 2012. 396 

 397 

2.8 Sensitivity analysis 398 

Sensitivity analyses are conducted to identify model inputs that cause significant impact and/or 399 

uncertainty in the output.  They can be used to identify key variables that should be the focus of attention 400 

to increase mode robustness in future research or to remove redundant inputs from the model equation 401 

because they do not have significant impact on the model output. Based on bootstrapping simulations 402 

(Tian et al., 2014), a sensitivity analysis was conducted on the GWR model by perturbing one input 403 
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predictor at time while keeping the rest of the equation unperturbed. To simulate perturbations, 10000 404 

values were randomly selected within the natural range of each input variable observed in the Alentejo 405 

region. Those random values were then used to run 10000 simulations of the local equation of the GWR 406 

model for each of the 6214 coordinates of the geographical area. Local outputs corresponding to the 407 

predicted GDV density were then calculated for each perturbed input variable (Ai, O4, W, D and s). The 408 

range of output values was calculated to reflect the sensibility of the model for the perturbed input 409 

variable. The overall sensibility of the model to all input variables was estimated as the absolute 410 

difference between the minimum output value and the sum of maximum output values of all predictors, 411 

thus representing the maximum possible output range observed after perturbing all predictors. 412 

 413 

 414 

  415 
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3 Results 416 

 417 

3.1 Kernel Density 418 

Within the studied region of Portugal, the phreatophyte species Quercus suber, Quercus ilex and Pinus 419 

pinea were not distributed uniformly throughout the territory. Areas with higher Kernel density (or higher 420 

distribution likelihood) were mostly spread between the northern part of Alentejo region and the western 421 

part close to the coast, with values ranging between 900 and 1200 occurrences in 10 km search radius 422 

(fig03). Two clusters of high density also appeared below the Tagus river. The remaining study area 423 

presented mean density values, with very low densities in the area of the river Tagus and in the center 424 

south.  425 

 426 

3.2 Environmental conditions 427 

The exploratory analysis of the variables performed through the PCA and the Pearson’s correlation matrix 428 

confirmed the presence of multicollinearity. From the initial variables (Table 1), Thickness (T), number 429 

of months with severe and extreme SPEI (respectively, SPEIs and  SPEIe), Annual Ombrothermic Index 430 

(O), Ombrothermic Index of the hottest month of the summer quarter(O1) and Ombrothermic Index of the 431 

summer quarter (O3) were discarded, while the variables slope (s), drainage density (D), soil type (St), 432 

groundwater depth (W), Ai and O4 were maintained for analysis (figA2 and Table A2 in appendix). A 433 

sequential removal of one predictor from the initial modeling including six variables was performed 434 

(Table 2), after which the model was reduced to 5 variables. Therefore, out of the initial 12 variables 435 

considered (fig04) to explain the variation of the Kernel density of GDV in Alentejo, the following 436 

variables were endorsed: Ai, O4, W, D and s. 437 

In most part of the Alentejo region, slope was below 10% (fig04e) and coastal areas presented the lowest 438 

values and variability. Highest values of groundwater depth (fig04c), reaching a maximum of 255 m, 439 

were found in the Atlantic margin of the study area, mainly in Tagus and Sado river basins. Several other 440 

small and confined areas in Alentejo also showed high values, corresponding to aquifers of porous or 441 

karst geological types. Most of the remaining study area showed groundwater depths ranging between 1.5 442 

m and 15 m. Figures 04a and 04b indicate the southeast of Alentejo as the driest area, given by minimum 443 

values of Ai (0.618), and much higher potential evapotranspiration than precipitation. Besides, O4 444 

presented a maximum value (1.166) for this region (meaning that soil water availability was not 445 

compensated by the precipitation of the previous M-J-J-A months). This is also supported by the higher 446 

drainage density in the southeast which indicates a lower prevalence of shallow soil water due to higher 447 

stream length by area. 448 

Combining all variables, it was possible to distinguish two sub-regions with distinct conditions: the 449 

southeast of Alentejo and the Atlantic margin. The latter is mainly distinguished by its low slope areas, 450 

shallower groundwater and more humid climatic conditions than the southeast of Alentejo. 451 
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 452 

3.3 Regression models 453 

The best model to describe the GDV distribution was found through a sequential discard of each variable 454 

(Table 2) and corresponded to the model with a distinct lower AICc (18050.76) than the second lowest 455 

AICc (27389.74) and showed an important increase in quasi-global R2 (from 0.926 for the second best 456 

model to 0.992 for the best one). The best model fit was obtained with Ai, O4, W, D and s. This final 457 

model was then applied to the GIS layers to map the suitability of GDV in Alentejo, according to Eq. 6. 458 

SGDV = Intercept + Ai coefp * [reclassified Ai value] + O4 coefp * [reclassified O4 value] + W coefp * 459 

[reclassified W value] + D coefp * [reclassified D value] + s coefp * [reclassified s value], 460 

(6) 461 

Local adjusted R2 of the GWR model was highly variable throughout the study area, ranging from 0 to 462 

0.99 (fig05), however the local R2 values below 0.5 corresponded to only 0.3% of the data. The lower R2 463 

values were distributed throughout the Alentejo area, with no distinct pattern. The overall fit of the GWR 464 

model was high (Table 3). The adjusted regression coefficient indicated that 99% of the variation in the 465 

data was explained by the GWR model, while only 2% was explained by the simple linear model (Table 466 

3). Accordingly, GWR had a substantially lower AICc when compared with the simple linear model, 467 

indicating a much better fit. 468 

The spatial autocorrelation given by the Moran Index (Griffith, 2009; Moran 1950) retrieved from the 469 

geospatial distribution of residual values was significant for both the GWR and the linear models, 470 

indicating that observations are geospatially dependent on each other to a certain level . However, this 471 

dependence was substantially lower for the GWR model than for the linear model (z-score of 50.24 and 472 

147.56 respectively). In the GWR model (fig06a) the positive and negative residual values were much 473 

more randomly scattered throughout the study region than in the linear model (fig06b), highlighting a 474 

much better performance of the GWR, which minimized residual autocorrelation. Indeed, in the linear 475 

model (fig06b), positive residuals were condensed in the right side of Tagus and Sado river basins, while 476 

negative values were mainly present on the left side of the Tagus river and in the center-south of Alentejo.  477 

The spatial distribution of the coefficients of GWR predictors is presented in Fig07. They were later used 478 

for the computation of the GDV suitability score for each data point (Eq.6). The coefficient variability 479 

was three times higher for the Ai as compared to O4 (fig08a), reaching 66% and 22% respectively. For W, 480 

D and s, the coefficient variation was much lower, representing only about 6.2%, 3.8% and 1.2% of the 481 

total variation observed in the coefficients, respectively. The remaining variables showed a median close 482 

to 0 and the O4 was the second with higher variability followed by the W. The coefficient median values 483 

were, respectively, -3.40, 0.29, -0.015, -0.018 and 0.022 for Ai, O4, W, D and s variables. 484 

The distributions of negative coefficients were similar for Ai and the O4 variables (fig07a and fig07b), 485 

with lower values in the southern coastal area, and in the Tagus river watershed. The highest absolute 486 

values were mostly found for Ai in the southern area of the Alentejo region and on smaller patches in the 487 

northern region. In the center and eastern areas of Alentejo, a higher weight of the groundwater depth 488 

https://www.sciencedirect.com/science/article/pii/S0034425714000212#bbb0090
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coefficient could be found (fig07c), approximately matching a higher influence of slope (fig07e). The 489 

groundwater depth seemed to have almost no influence on GDV density in the Tagus river watershed, 490 

expressed by coefficients mostly null around the riverbed (fig07c). The coefficient distribution of D and 491 

O4 shows some similarities, mostly in the center and southeast of Alentejo (fig07d). Extreme values of O4 492 

coefficients were mostly concentrated in the eastern part of the Tagus watershed and in the southern 493 

coastal area included in the Sado watershed. Slope coefficient values showed the lowest amplitude 494 

throughout the study area (fig07e), with prevailing high positive values gathered mainly in the center of 495 

the study area and in the Tagus river watershed (northwest of the study center). 496 

 497 

3.4 GDV Suitability map 498 

The classification of the 5 endorsed environmental predictors is presented in Table 4 and their respective 499 

maps in figure B1 in appendix B. Rivers Tagus and Sado had an overall large impact on GDV’s 500 

suitability for each predictor, with the exception of W. This is due to a higher water availability reflected 501 

by the values of O4, D and lower slopes due to the alluvial plains of the Tagus river (figs. B1b, d and e in 502 

appendix B). Moreover, those regions presented higher humidity conditions (through analysis of the Ai in 503 

fig B1a in appendix B) and groundwater depths outside the optimum range (Fig. B1c in appendix B), 504 

therefore less suitable for GDV. Optimal conditions for groundwater access were mainly gathered in the 505 

interior of the study region (fig. B1c in appendix B), with the exception of some confined aquifers in the 506 

northeast and southeast of the study region. Favorable slopes for GDV were mostly highlighted in the 507 

Tagus river basin area, where a good likelihood of interaction between GDV and groundwater could be 508 

identified (fig. B1e in appendix B).  509 

The final map illustrating the suitability to GDV is shown in Fig. 09. The largest classified area (8 510 

787km2) presented a very poor suitability to GDV, corresponding to approximately a quarter of the total 511 

study area (29%). This percentage was followed closely by the moderate suitability to GDV which 512 

occupied 26% (8000km2). Overall, the two less suitable classes (very poor and poor) represented 47% of 513 

the study area, whilst the two best ones and the moderate class (very good, good and moderate) 514 

represented 53%. Consequently, most of the study area showed moderate to high suitability to GDV. The 515 

very good and good suitability classes cover an arch from the most south and northeastern area of the 516 

Alentejo region, passing through the Sado and southern Guadiana river basins and close to the coastal line 517 

at 38ºN. Most of the center of the study area showed moderate to very good suitability to GDV, while the 518 

areas corresponding to the alluvial deposits of the Tagus river showed poor to very poor suitability.  519 

The suitability to GDV in the Alentejo region was mainly driven by Ai, given that the highest coefficient 520 

variability was associated to the Ai predictor in the GWR model equation. Consequently a similar 521 

distribution pattern can be observed between the suitability map and the aridity index predictor (fig04a 522 

and fig09). Areas with good or very good suitability mostly matched areas of Ai with score 3, 523 

corresponding to aridity index values above 0.75 (Fig. B1a in appendix B). On the other hand, the lowest 524 

suitability classes showed a good agreement with the lowest scores given to W (fig. B1c in appendix B), 525 

mostly in the coastal area and in the Tagus river basin.  526 
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 527 

3.5 Map evaluation 528 

To evaluate the suitability map developed in the present study, the results were compared with the NDWI 529 

anomaly considering the month of June of the dry year of 2005 in the Alentejo area (fig10). Both maps 530 

(figs 09 and 10) showed similar patterns, with higher presence of GDV satisfactorily matching areas with 531 

the lowest NDWI anomaly. From June to September in an extremely dry year, non-DGV plants can be 532 

expected to experience a severe drought stress as in any regular summer period. Thus, those plants should 533 

show almost zero anomaly. By opposition, GDV plants coping well with usual summer drought can be 534 

expected to suffer an unusual stress under an extreme dry year even having access to groundwater (Kurz-535 

Besson et al. 2006 & 2014, Otieno et al. 2006, David et al. 2013), with a negative impact of groundwater 536 

drawdown (Antunes et al., 2018). Therefore, GDV plants should show negative NDWI anomalies. 537 

The NDWI anomaly was mostly negative over the Alentejo territory indicating a lower leaf water content 538 

in June and July 2005 than usual. The loss of water attributed to the extreme drought was mostly 539 

matching geographical areas with the highest GDV suitability (fig09). Water loss was less pronounced in 540 

the central area of the Alentejo region between the Guadiana and Sado river basins, where the vegetation 541 

is less dense (fig03). Areas with null NDWI anomaly values (indicating no NDWI change) were mostly 542 

distributed on the coastal area of the Atlantic ocean or close to riverbeds, namely in the Tagus and Sado 543 

floodplains, matching areas of very poor suitability for GDV in Figure 09.  544 

Despite an overall good agreement, the adequation between the density, suitability and NDWI maps was 545 

not perfect. Indeed, some patches showing a high vegetation occurrence/density and large NDWI 546 

anomalies also matched an area of very poor suitability for GDV.  547 

 548 

3.6 Sensitivity analysis 549 

The sensitivity of the model in response to the perturbation of each one of the input variables (Ai, O4, W, 550 

D and s) is presented on Figures11a to 11e. The overall sensitivity of the model is further presented on 551 

Figure 11f. For any input variable, the model sensitivity (fig11a to 11e) was higher where absolute values 552 

of local coefficients were also higher (fig07a to 07e). The maximum impact on GDV’s density, 553 

corresponding to the maximum output range observed after perturbation (fig08b), was observed when 554 

perturbing the Ai, accounting for 66% of the total variability. The second highest impact was observed 555 

after perturbing the O4, corresponding to 22%. The variability in the model outputs observed after 556 

perturbing the remaining variables W, D and s accounted for 7%, 4% and 1% of the total accumulated 557 

variability, respectively (fig08b). The highest variability in the GWR model output was mostly observed 558 

in the central part of the southern half of the Alentejo region, as well as close to the main channels of the 559 

Guadiana and Tagus rivers (fig11f). Furthermore, areas with higher model sensitivity (fig11f) 560 

significantly matched higher model performance expressed by R2 (fig05), assessed with a Kruskall-Wallis 561 

test (p<0.0001***). 562 

  563 
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4 Discussion 564 

 565 

4.1 Modeling approach 566 

The Geographically Weighted Regression model has been used before in ecological studies (Li et al., 567 

2016; Mazziotta et al., 2016), but never for the mapping of GDV, to our knowledge. This approach 568 

considerably improved the goodness of fit when compared to the linear model, with a coefficient of 569 

regression (R2) increasing from 0.02 to 0.99 at the global level, and an obvious reduction of residual 570 

clustering. Despite those improvements, it has not been possible to completely eliminate the residual 571 

autocorrelation after fitting the GWR model.  572 

Kernel density for the study area provided a strong indication of presence and abundance of the tree 573 

species considered as GDV proxy for modeling.  The Mediterranean cork woodlands dominate about 76% 574 

of the Alentejo region (while only 7% is covered by stone pine). In those systems, tree density is known 575 

to be a tradeoff between climate drivers (Joffre 1999, Gouveia & Freitas 2008) and the need for space for 576 

pasture or cereal cultivation in the understory (Acácio & Holmgreen 2014). In our study, the 577 

anthropologic management of agroforestry systems in the Alentejo region has not been taken into 578 

account. According to a recent study of Cabon et al. (2018) where thinning played an important role in Q. 579 

ilex density in a Mediterranean climate site, anthropologic management could, at least partially, explain 580 

the non-randomness of the residual distribution after GWR model fitting as well as the mismatches 581 

between the GDV and the NDWI evaluation maps.  582 

Another explanation of the reminiscent autocorrelation after GWR fitting could be the lack of 583 

groundwater dependent species in the model. For example, Pinus pinaster Aiton was excluded due to its 584 

more humid distribution in Portugal, and due to conflicting conclusions driven from previous studies to 585 

pinpoint the species as a potential groundwater user (Bourke, 2004; Kurz-Besson et al., 2016). In 586 

addition, olive trees were also excluded although the use of groundwater by an olive orchard has been 587 

recently proved (Ferreira et al., 2018), however with a weak contribution of groundwater to the daily root 588 

flow, and thus with no significant impact of groundwater on the species physiological conditions. 589 

Methods previously used by Doody et al., (2017) and Condesso de Melo et al. (2015) to map specific 590 

vegetation relied solely on expert opinion, e.g. Delphi panel, to define weighting factors of environmental 591 

information for GIS multicriteria analysis. In our study, the GWR modelling approach was used to assess 592 

weighting factors for each environmental predictor in the study area, to build a suitability map for the 593 

GDV in southern Portugal. This allowed an empirical determination of the local relevance of each 594 

environmental predictor in GDV distribution, thus avoiding the inevitable subjectivity of Delphi panels. 595 

Also, by combining the GWR and GIS approaches we believe the final suitability map provides a more 596 

reliable indication of the higher likelihood for groundwater dependency and a safer appraisal of the 597 

relative contribution of groundwater by facultative deep-rooted phreatophytes species in the Alentejo 598 

region. 599 

 600 
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Modelling of the entire study area at a regional level did not provide satisfactory results. Therefore, we 601 

developed a general model varying locally according to local predictor coefficients. The local influence of 602 

each predictor was highly variable throughout the study area, especially for climatic predictors reflecting 603 

water availability and stress conditions. The application of the GWR model did not only allow for a 604 

localized approach, by decreasing the residual error and autocorrelation over the entire studied region, but 605 

also provided insights on how GDV’s density can be explained by the main environmental drivers locally.  606 

The GWR model appeared to be highly sensitive to coefficient fitting corresponding to a good model fit, 607 

as expected in a spatially varying model. As so, high coefficients are highly reliable in the GWR model in 608 

our study. Yet, the high spatial variability of local coefficients might reflect a weak physical meaning of 609 

the GWR model that challenges its direct application in other regions, even under similar climate 610 

conditions. Predictor coefficients showed a similar behavior in the spatial distribution of the coefficients. 611 

This was noticeable for the aridity index and the groundwater depth in the Tagus and Sado river basins. 612 

Groundwater depth had no influence on GDV’s density in these areas and similarly, the coefficient of 613 

aridity index showed a negative effect of increased humidity on GDV’s density. In addition, a cluster of 614 

low drainage density values matched these areas. Due to the lower variability and impact of the drainage 615 

density and slope on the GDV’s density, these variables might not impact significantly this vegetation 616 

density in future climatic scenarios. 617 

 618 

4.2 Suitability to Groundwater Dependent Vegetation  619 

According to our results, more than half of the study area appeared suitable for GDV. However, one 620 

quarter of the studied area showed lower suitability to GDV. The lower suitability to this vegetation in the 621 

more northern and western part of the studied area included the coastal area and the Tagus river basin. 622 

Those are the moist humid areas of the study area, where GDV is unlikely to rely on groundwater during 623 

the drought season because rainfall water stored in shallow soil horizons is mostly available.  624 

The proxy species (Cork oak, Holm oak and Stone pine) can perfectly grow under sub-humid 625 

Mediterranean climate conditions, without relying as much on groundwater to survive as in more xeric 626 

semi-arid areas (Abad Vinas et al., 2016). As facultative phreatophyte species, their presence/abundance 627 

is only an indication of a possible use of groundwater. The study provided by Pinto et al. (2013) have 628 

shown that Cork oak, for example, can perfectly thrive were very shallow groundwater is available while 629 

suffering drought stress were groundwater source is lower but still extracted by trees. Also, former studies 630 

have shown that in the extreme dry year of 2005, Cork oak experienced a severe drought stress, close to 631 

the cavitation threshold, although its main water source was groundwater (David et al. 2013, Kurz-Besson 632 

et al. 2006, 2014). These findings can explain that part of the maximum density (Fig. 04) matches the area 633 

of very poor suitability for GDV (Fig. 09). Elsewhere, the better agreement between the two maps reflects 634 

the dominance of the aridity index on the vegetation’s occurrence. Groundwater depth appeared to have a 635 

lower influence on GDV density than climate drivers, as reflected by the relative low magnitude of the W 636 

coefficient and outputs of our model outcomes. This surprisingly disagrees with our initial hypothesis 637 

because groundwater represents a notable proportion of the transpired water of deep-rooting 638 



20 
 

phreatophytes, reaching up to 86% of absorbed water during drought periods and representing about 639 

30.5% of the annual water absorbed by trees (David et al. 2013, Kurz-Besson et al. 2014). Nonetheless, 640 

this disagreement should be regarded cautiously due to the poor quality of piezometric data used and the 641 

complexity required for modelling the water table depths. Besides, the linear relationship between water 642 

depth and topography applied to areas of undifferentiated geological type can be weakened by a complex 643 

non-linear interaction between topography, aridity and subsurface conductivity (Condon and Maxell, 644 

2015). Moreover, the high variability in geological media, topography and vegetation cover at the 645 

regional scale did not allow to account for small changes in groundwater depth (<15 m deep), which has a 646 

huge impact on GDV suitability (Canadell et al., 1996; Stone and Kalisz, 1991). Indeed, a high spatial 647 

resolution of hydrological database is essential to rigorously characterize the spatial dynamics of 648 

groundwater depth between hydrographic basins (Lorenzo-Lacruz et al., 2017). Unfortunately, such 649 

resolution was not available for our study area.  650 

The aridity and ombrothermic indexes were the most important predictors of GDV density in the Alentejo 651 

region, according to our model outcomes. Our results agree with previous findings linking tree cover 652 

density and rooting depth to climate drivers such as aridity, at a global scale (Zomer et al., 2009; Schenk 653 

and Jackson, 2002) and specifically for the Mediterranean oak woodland (Gouveia and Freitas 2008, 654 

Joffre et al. 1999). Through previous studies showing the similarities in vegetation strategies to cope with 655 

water scarcity in the Mediterranean basin (Vicente-Serrano et al., 2013) or the relationship between 656 

rooting depth and water table depth increased with aridity at a global scale (Fan et al., 2017) we can admit 657 

that the most relevant climate drivers pinpointed here are similarly important to map GDV in other semi-658 

arid regions. In this study, the most important environmental variables that define GDV’s density in a 659 

semi-arid region were identified, helping to fill the gap of knowledge for modelling this type of 660 

vegetation. However, the coefficients to be applied when modelling each variable need to be calculated 661 

locally, due to their high spatial variability. 662 

Temporal piezometric data would further help discriminate areas of optimal suitability to GDV, either 663 

during the wet and the dry seasons, because the seasonal trends in groundwater depth are essential under 664 

Mediterranean conditions. Investigations efforts should be invested to fill the gap either by improving the 665 

Portuguese piezometric monitoring network, or by assimilating observations with remote sensing 666 

products focused on soil moisture or groundwater monitoring. This has already been performed for large 667 

regional scale such as GRACE satellite surveys, based on changes of Earth’s gravitational field. So far, 668 

these technologies are not applicable to Portugal’s scale, since the coarse spatial resolution of GRACE 669 

data only allows the monitoring of large reservoirs (Xiao et al. 2015). 670 

 671 

4.3 Validation of the results 672 

The understory of woodlands and the herbaceous layer of grasslands areas in southern Portugal usually 673 

ends their annual life cycles in June (Paço et al. 2009), while the canopy of woody species is still fully 674 

active with maximum transpiration rates and photosynthetic activities (Kurz-Besson et al. 2014, David et 675 
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al. 2007, Awada et al. 2003). This is an ideal period of the year to spot differential response of the canopy 676 

of woody species to extreme droughts events using satellite derived vegetation indexes (Gouveia 2012).   677 

The spatial patterns of NDWI anomaly in June 2005 seem to indicate that the woody canopy showed a 678 

strong loss of canopy water in the areas were tree density and GDV suitability were higher (figs03, 09 and 679 

10). This occurred although trees minimized the loss of water in leaves with a strong stomatal limitation 680 

in response to drought (Kurz-Besson et al. 2014, Grant et al. 2010). In the most arid area of the region 681 

were Holm oak is dominant but tree density is much lower, the NDWI anomaly was generally less 682 

negative thus showing a lower water stress or higher canopy water content.  Holm oak (Quercus ilex spp 683 

rotundifolia) is well known to be the most resilient species to dry and hot conditions in Portugal, due to 684 

its capacity to use groundwater, associated to a higher water use efficiency (David et al. 2007). 685 

Furthermore, the dynamics of NDWI anomaly over the summer period (fig10a, b and c) pointed out that 686 

the lower water stress status on the map is progressively spreading from the most arid areas to the milder 687 

ones from June to August 2005, despite the intensification of drought conditions. This endorses the idea 688 

that trees manage to cope with drought by relying on deeper water sources in response to drought, 689 

replenishing leaf water content despite the progression and intensification of drought conditions. Former 690 

studies support this statement by showing that groundwater uptake and hydraulic lift were progressively 691 

taking place after the onset of drought by promoting the formation of new roots reaching deeper soil 692 

layers and water sources, typically from July onwards, for cork oak in the Alentejo region (Kurz-Besson 693 

et al., 2006, 2014). Root elongation following a declining water table has also been reported in a review 694 

on the effect of groundwater fluctuations on phreatophyte vegetation (Naumburg et al. 2005). 695 

Our results and the dynamics of NDWI over summer 2005 tend to corroborate the studies of Schenk and 696 

Jackson (2002) and Fan et al. (2017), by suggesting a larger/longer dependency of GDV on groundwater 697 

with higher aridity. Further investigation needs to be carried on across aridity gradients in Portugal and 698 

the Iberian Peninsula to fully validate this statement, though. 699 

Overall, the map of suitability to GDV showed a good agreement with the NDWI validation maps. The 700 

main areas showing good GDV suitability and highest NDWI anomalies are mostly matching in both 701 

maps. The good agreement between our GDV suitability maps, and NDWI dynamic maps opens the 702 

possibility to apply and extend the methodology to larger geographical areas such as the Iberian Peninsula 703 

and to the simulation of the impact of climate changes on the distribution of groundwater dependent 704 

species in the Mediterranean basin.  705 

Simulations of future climate conditions based on RCP4.5 and RCP8.5 emission scenarios (Soares et al., 706 

2015, 2017) predict a significant decrease of precipitation for the Guadiana basin and overall decrease for 707 

the southern region of Portugal within 2100. Agroforestry systems relying on groundwater resources, 708 

such as cork oak woodlands, may show a decrease in productivity and ecosystem services or even face 709 

sustainability failure. Many studies carried out on oak woodlands in Italy and Spain identified drought as 710 

the main driving factor of tree die-back and as the main climate warning threatening oak stands 711 

sustainability in the Mediterranean basin (Gentilesca et al. 2017). An increase in aridity and drought 712 

frequency for the Mediterranean (Spinoni et al., 2017) will most probably induce a geographical shift of 713 

GDV vegetation toward milder/wetter climates (Lloret et al., 2004; Gonzalez P., 2001).  714 



22 
 

 715 

4.4 Key limitations 716 

The GWR modelling approach used to estimate weighting factors is mostly stochastic. Consequently, the 717 

large spatial variability and symmetrical fluctuations around zero (Fig 08b) denote a weak physical 718 

meaning of the estimated coefficients, at least at the resolution chosen for the study. Also, the local nature 719 

of the regression coefficients makes the model difficult to directly apply in other regions, even with 720 

similar climate conditions, unless the methodology is properly fitted to local conditions/predictors. 721 

With the methodology applied in this study, weighting factors can be easily evaluated solely from local 722 

and regional observations of the studied area. Nonetheless, the computation of model coefficients or 723 

expert opinion to assess weighting factors, require recurrent amendments, associated with updated 724 

environmental data, species distribution and revised expert knowledge (Doody et al., 2017).  725 

The evolution of groundwater depth in response to climate change is difficult to model on a large scale 726 

based on piezometric observations because it requires an excellent knowledge of the components and 727 

dynamics of water catchments. Therefore, a reliable estimation of the impact of climate change on GDV 728 

suitability in southern Portugal could only been performed on small scale studies. However, the GWR 729 

model appeared to be much more sensitive to climate drivers than the other predictors, given that 88% of 730 

the model outputs variability was covered by climate indexes Ai and O4. Nevertheless, changes in climate 731 

conditions only represent part of the water resources shortage issue in the future. Global-scale changes in 732 

human populations and economic progresses also rule water demand and supply, especially in arid and 733 

semi-arid regions (Vörösmarty et al., 2000). A decrease in useful water resources for human supply can 734 

induce an even higher pressure on groundwater resources (Döll, 2009), aggravating the water table 735 

drawdown caused by climate change (Ertürk et al., 2014). Therefore, additional updates of the model 736 

should include human consumption of groundwater resources, identifying areas of higher population 737 

density or intensive farming. Future model updates should also account for the interaction of deep rooting 738 

species with the surrounding understory species. In particular, shrubs surviving the drought period, which 739 

can benefit from the redistribution of groundwater by deep rooted species (Dawson, 1993; Zou et al., 740 

2005).  741 
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5 Conclusions 742 

Our results show a highly dominant contribution of water scarcity of the last 30 years (Aridity and 743 

Ombrothermic indexes) on the density and suitability of deep-rooted groundwater dependent species in 744 

southern Portugal. Therefore, in geographical regions of the world with similar semi-arid climate 745 

conditions (Csa according to Köppen-Geigen classification, Peel et al. 2007) and similar physiological 746 

responses of the groundwater dependent vegetation (Vicente-Serrano et al., 2013), the use of the aridity 747 

and ombrothermic indexes could be used as first approximation to model and map deep rooted 748 

phreatophyte species and the evolution of their distribution in response to climate changes. The 749 

contribution of groundwater depth was lower than initially expected; however, this might be 750 

underestimated due to the poor quality of the piezometric network, especially in the central area of the 751 

studied region.  752 

The current pressure applied by human consumption of water sources has reinforced the concern on the 753 

future of economic activities dependent on groundwater resources. To address this issue, several countries 754 

have developed national strategies for the adaptation of water sources for Agriculture and Forests against 755 

Climate Change, including Portugal (FAO, 2007). In addition, local drought management as long-term 756 

adaptation strategy has been one of the proposals by Iglesias et al. (2007) to reduce the climate change 757 

impact on groundwater resources in the Mediterranean. The preservation of Mediterranean agroforestry 758 

systems, such as cork oak woodlands and the recently associated P. pinea species, is of great importance 759 

due to their high socioeconomic value and their supply of valuable ecosystem services (Bugalho et al., 760 

2011). Management policies on the long-term should account for groundwater resources monitoring, 761 

accompanied by defensive measures to ensure agroforestry systems sustainability and economical income 762 

from these Mediterranean ecosystems are not greatly and irreversibly threatened. 763 

Our present study, and novel methodology, provides an important tool to help delineating priority areas of 764 

action for species and groundwater management, at regional level, to avoid the decline of productivity 765 

and cover density of the agroforestry systems of southern Portugal. This is important to guarantee the 766 

sustainability of the economical income for stakeholders linked to the agroforestry sector in that area. 767 

Furthermore, mapping vulnerable areas at a small scale (e.g.by hydrological basin), where reliable 768 

groundwater depth information is available, should provide further insights for stakeholder to promote 769 

local actions to mitigate climate change impact on GDV.  770 

Based on the methodology applied in this work, future predictions on GDV suitability, according to the 771 

RCP4.5 and RCP8.5 emission scenarios will be shortly introduced, providing guidelines for future 772 

management of these ecosystems in the allocation of water resources. 773 
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Figure and Table Legends 1178 

 1179 

Table 1: Environmental variables for the characterization of the suitability of GDV in the study area. 1180 

Table 2: Effect of variable removal in the performance of GWR model linking the Kernel density of Quercus suber, 1181 

Quercus ilex and Pinus pinea (SGDV) to predictors Aridity Index (Ai); Ombrothermic Index of the summer quarter 1182 

and the immediately previous month (O4); Slope (s); Drainage density (D); Groundwater Depth (W) and Soil type 1183 

(St). The model with all predictors is highlighted in grey and the final model used in this study is in bold.  1184 

Table 3: Comparison of Adjusted R2 and second-order Akaike Information Criterion (AICc) between the simple 1185 

regression and the GWR models. 1186 

Table 4: Classification scores for each predictor. A score of 3 was given to highly suitable areas and 1 to less suitable 1187 
areas for GDV. 1188 

Table A1: Classification scores for soil type predictor.  1189 

Table A2: Correlations between predictor variables and principal component axis. The most important predictors for 1190 

each axis (when squared correlation is above 0.3) are showed in bold. The cumulative proportion of variance 1191 

explained by each principal component axis is shown at the bottom of the table. s is slope; Ai is Aridity Index; O, O1, 1192 

O3, O4 are ombrothemic indices of, respectively, the year, the hottest month of the summer quarter, the summer 1193 

quarter and the summer quarter and the immediately previous month; SPEIs and SPEIe are, respectively, the number 1194 

of months with severe and extreme Standardized Precipitation Evapotranspiration Index; W is Groundwater Depth; D 1195 

is the Drainage density; St refers to soil type and T is thickness. 1196 

 1197 

Figure 01: Study area. On the left the location of Alentejo in the Iberian Peninsula; on the right, the elevation 1198 

characterization of the study area with the main river courses from Tagus, Sado and Guadiana basins (white lines). 1199 

Names of the main rivers are indicated near to their location in the map. 1200 

Figure 02: Large well and piezometer data points used for groundwater depth calculation. Squares represent 1201 

piezometers data points and triangle represent large well data points.  1202 

Figure 03: Map of Kernel Density weighted by cover percentage of Q. suber, Q. ilex and P. pinea. The scale unit 1203 

represent the number of occurrences per 10 km search radius (~314 km2). 1204 

Figure 04: Map of environmental layers used in model fitting. (a) – Aridity Index; (b) – Ombrothermic Index of the 1205 

summer quarter and the immediately previous month; (c) – Groundwater Depth; (d) –Drainage density; (e) –Slope. 1206 

Figure 05: Spatial distribution of local R2 from the fitting of the Geographically Weighted Regression. 1207 

Figure 06: Spatial distribution of model residuals from the fitting of the Geographically Weighted Regression (a) and 1208 

the Simple Linear model (b). 1209 

Figure 07: Map of local model coefficients for each variable. (a) – Aridity Index; (b) - Ombrothermic Index of the 1210 

summer quarter and the immediately previous month; (c) – Groundwater Depth; (d) – Drainage density and (e) - Slope. 1211 

Figure 08: Boxplot of GWR model coefficient values for each predictor (a) and boxplot of the GWR model outputs, 1212 

corresponding to GDV’s density after each of the predictors was disturbed for the sensitivity analysis (b). Ai stands for 1213 

Aridity Index; O4 for the ombrothemic index of the hottest month of the summer quarter and the immediately previous 1214 
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month; W for the groundwater depth; D for the drainage density and s for the slope. Error bars represent the 25th and 1215 

75th percentile while crosses indicate the 95th percentile. 1216 

Figure 09: Suitability map for Groundwater Dependent Vegetation. 1217 

Figure 10: Spatial patterns of NDWI anomaly values considering the months of June, July and August of the extremely 1218 

dry year of 2005, in reference to the same months of the period 1999-2009, in the Alentejo region. Dark brown colors 1219 

(corresponding to extreme negative NDWI anomaly values) indicate the vegetation that experienced the highest loss of 1220 

water in leaves in summer 2005 as compared to the reference period 1999-2009, while light brown colors show NDWI 1221 

anomaly values very close to the usual vegetation moisture condition of the considered month.  1222 

Figure 11: Sensitivity analysis performed on the GWR model by perturbing one of the predictors, while remaining 1223 

the rest of the model equation constant. Graphics present the output range of GDV’s density when the aridity index 1224 

(a), the ombrothermic index (b), the groundwater depth (c), the drainage density (d) or the slope variable (e) was 1225 

perturbed; and the maximum possible range combining all predictors (f). The 95th percentile was used for the 1226 

maximum value of the color bar for a better statistical representation of the spatial variability.  1227 

 1228 

Figure A1: Boxplot of the main predictors used for the Geographically Weighted Regression model fitting (top) and 1229 

the response variable (below), for the total data (left) and for the 5% subsample (right). 1230 

Figure A2: Correlation plot between all environmental variables expected to affect the presence of the Groundwater 1231 

Dependent Vegetation. O1, O3 and O4 are ombrothermic indices of, respectively, the hottest month of the summer 1232 

quarter, the summer quarter and the summer quarter and the immediately previous month; O is the annual 1233 

ombrothermic index, SPEIe and SPEIs are, respectively, the number of months with extreme and severe Standardized 1234 

Precipitation Evapotranspiration Index; Ai is Aridity index; W is groundwater depth; D is the Drainage density; T is 1235 

thickness and St refers to soil type. 1236 

Figure B1 – Predictors maps after score classification. (a) – Aridity Index; (b) – Ombrothermic Index of the summer 1237 

quarter and the immediately previous month; (c) – Groundwater Depth; (d) – Drainage density and (e) – Slope. 1238 

 1239 

  1240 
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Table 1: Environmental variables for the characterization of the suitability of GDV in the study area.  1241 

Variable code Variable type Source Resolution and Spatial extent 

s Slope (%) This work 0.000256 degrees (25m) raster resolution 

St Soil type in the first soil layer 

SNIAmb (© Agência 

Portuguesa do Ambiente, 

I.P., 2017) 

Converted from vectorial to 0.000256 

degrees (25m) resolution raster 

T Soil thickness (cm) 
EPIC WebGIS Portugal 

(Barata et al., 2015) 

Converted from vectorial to 0.000256 

degrees (25m) resolution raster 

W Groundwater Depth (m) This work 0.000256 degrees (25m) raster resolution 

D Drainage Density This work 0.000256 degrees (25m) raster resolution 

SPEIs 
Number of months with severe 

SPEI 
This work 

0.000256 degrees (25m) raster resolution 

Time coverage 1950-2010 

SPEIe 
Number of months with extreme 

SPEI 
This work 

0.000256 degrees (25m) raster resolution 

Time coverage 1950-2010 

Ai Aridity Index This work 
0.000256 degrees (25m) raster resolution 

Time coverage 1950-2010 

O 

Annual Ombrothermic Index 

Annual average (January to 

December) 

This work 
0.000256 degrees (25m) raster resolution 

Time coverage 1950-2010 

O1 

Ombrothermic Index of the 

hottest month of the summer 

quarter (J, J and A) 

This work 
0.000256 degrees (25m) raster resolution 

Time coverage 1950-2010 

O3 
Ombrothermic Index of the 

summer quarter (J, J and A) 
This work 

0.000256 degrees (25m) raster resolution 

Time coverage 1950-2010 

O4 

Ombrothermic Index of the 

summer quarter and the 

immediately previous month 

(M, J, J and A) 

This work 
0.000256 degrees (25m) raster resolution 

Time coverage 1950-2010 

 1242 

  1243 
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Table 2: Effect of variable removal in the performance of GWR model linking the Kernel density of Quercus 1244 

suber, Quercus ilex and Pinus pinea (SGDV) to predictors Aridity Index (Ai); Ombrothermic Index of the 1245 

summer quarter and the immediately previous month (O4); Slope (s); Drainage density (D); Groundwater 1246 

Depth (W); and Soil type (St). The model with all predictors is highlighted in grey and the final model used in 1247 

this study is in bold. 1248 

Type Model Discarded predictor AICc Quasi-global R2 

GWR SGDV~ O4 + Ai + s + D + W + St 
 

27389.74 0.926481 

GWR SGDV ~ O4 + s + D + W + St Ai 28695.14 0.9085754 

GWR SGDV ~ Ai + s + D + W + St O4 28626.88 0.9095033 

GWR SGDV ~ O4 + Ai + s+ W + St D 27909.86 0.9184337 

GWR SGDV ~ O4 + Ai + D + W + St s 27429.55 0.924176 

GWR SGDV ~ O4 + Ai + s + D + St W 27742.67 0.9208344 

GWR SGDV ~ O4 + Ai + s + D + W St 18050.76 0.9916192 

 1249 

Table 3:  Comparison of Adjusted R2 and second-order Akaike Information Criterion (AICc) between the simple 1250 

linear regression and the GWR model. 1251 

Model R2 AICc p-value 

OLS 0.02 42720 <0.001 

GWR 0.99 * 18851 - 

*Quasi-global R2 1252 

 1253 

Table 4: Classification scores for each predictor. A score of 3 was given to highly suitable areas and 1 to less 1254 
suitable areas for GDV. 1255 

Predictor Class Score 

Slope 

0%-5% 3 

5%-10% 2 

>10% 1 

Groundwater Depth 

>15 m 1 

1.5m-15m 3 

≤1.5m 1 

Aridity Index 

0.6-0.68 3 

0.68-0.75 2 

≥0.75 1 

Ombrothermic Index of the summer quarter and the immediately 

previous month 

<0.28 1 

0.28-0.64 2 

≥0.64 3 

Drainage Density 
≤0.5 3 

>0.5 1 

 1256 
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 1257 

 1258 

Figure 01: Study area. On the left the location of Alentejo in the Iberian Peninsula; on the right, the elevation 1259 

characterization of the study area with the main river courses from Tagus, Sado and Guadiana basins (white 1260 

lines). Names of the main rivers are indicated near to their location in the map. 1261 

 1262 

 1263 

 1264 

Figure 02: Large well and piezometer data points used for groundwater depth calculation. Squares represent 1265 

piezometers data points and triangle represent large well data points.  1266 

 1267 
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 1268 

Figure 03: Map of Kernel Density weighted by cover percentage of Q. suber, Q. ilex and P. pinea. The scale unit 1269 

represent the number of occurrences per 10 km search radius (~314 km2). 1270 

 1271 

 1272 
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Figure 04: Map of environmental layers used in model fitting. (a) – Aridity Index; (b) – Ombrothermic Index of 1274 
the summer quarter and the immediately previous month; (c) – Groundwater Depth; (d) –Drainage density; (e) 1275 
–Slope. 1276 

 1277 

 1278 

Figure 05: Spatial distribution of local R2 from the fitting of the Geographically Weighted Regression. 1279 

 1280 

Figure 06: Spatial distribution of model residuals from the fitting of the Geographically Weighted Regression 1281 
(a) and Simple Linear model (b). 1282 

 1283 

 1284 

 1285 
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Figure 07: Map of local model coefficients for each variable. (a) – Aridity Index; (b) - Ombrothermic Index of 1287 
the summer quarter and the immediately previous month; (c) – Groundwater Depth; (d) – Drainage density and 1288 
(e) – Slope. 1289 

 1290 

 1291 

Figure 08: Boxplot of GWR model coefficient values for each predictor (a) and boxplot of the GWR model 1292 
outputs, corresponding to GDV’s density after each of the predictors was disturbed for the sensitivity analysis 1293 
(b). Ai stands for Aridity Index; O4 for the ombrothemic index of the hottest month of the summer quarter and 1294 
the immediately previous month; W for the groundwater depth, D for the drainage density and s for the slope. 1295 
Error bars represent the 25th and 75th percentile while crosses indicate the 95th percentile. 1296 

 1297 

 1298 

 1299 

Figure 09: Suitability map for Groundwater Dependent Vegetation. 1300 
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 1301 

Figure 10: Spatial patterns of NDWI anomaly values considering the months of June, July and August of the 1302 

extremely dry year of 2005, in reference to the same months of the period 1999-2009, in the Alentejo region. 1303 

Dark brown colors (corresponding to extreme negative NDWI anomaly values) indicate the vegetation that 1304 

experienced the highest loss of water in leaves in summer 2005 as compared to the reference period 1999-2009, 1305 

while light brown colors show NDWI anomaly values very close to the usual vegetation moisture condition of 1306 

the considered month.  1307 

 1308 

 1309 

 1310 
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 1311 

Figure 11: Sensitivity analysis performed on the GWR model by perturbing one of the predictors, while 1312 
remaining the rest of the model equation constant. Graphics present the output range of GDV’s density when 1313 
the aridity index (a), the ombrothermic index (b), the groundwater depth (c), the drainage density (d) or the 1314 
slope variable (e) was perturbed; and the maximum possible range combining all predictors (f). The 95th 1315 
percentile was used for the maximum value of the color bar for a better statistical representation of the spatial 1316 
variability.  1317 


