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Dear Dr. Miriam Coenders-Gerrits, 

 
Please find enclosed the revised version of the manuscript (reference hess-2018-208) entitled 

“Mapping the suitability of groundwater dependent vegetation in a semi-arid Mediterranean 
area”. 

 

We carefully considered and addressed each reviewer ́s comment accordingly. In our joined letter 
you will find our answers and changes made, indicating the highlighted line numbers.  

 

We are very thankful for giving us the opportunity to improve our manuscript to be accepted in 
your journal. To facilitate the identification of changes along the manuscript, a version of the 

manuscript with tracked changes was uploaded in the journal platform. 
 

We once again declare that all the information included in this manuscript is completely original 

and has been approved by all authors. The authors declare no conflict of interest. This manuscript 
has not been published previously or concurrently submitted for publication elsewhere. 

 

Thank you for considering this revised manuscript for publication. Please do not hesitate to 
contact me if you require further details. 

  
With our best regards, sincerely, 

Inês Gomes Marques (on behalf of all authors) 

 

Dear Reviewer #2, 

 

Please find enclosed the revised version of the manuscript “Mapping the suitability of 
groundwater dependent vegetation in a semi-arid Mediterranean area”. 

We are once again very grateful for your precious and pertinent revision of our manuscript. 
All yours suggestions were carefully considered and addressed. In the present letter, 

you will find our answers to your comments and changes made, with corresponding lines 

highlighted. To ease the revision, we highlighted line numbers in yellow in our answers. 
 

We are very thankful for your detailed assessment, which allowed a very significant improvement 

of the overall manuscript. To facilitate the identification of changes along the manuscript, a 
version of the manuscript with tracked changes was uploaded in the journal platform. 

 
All the information included in this manuscript has been approved by all authors. The authors 

declare no conflict of interest.  

 
Thank you for considering this revised manuscript for publication.  

Please do not hesitate to contact us if you require further details. 
 

With the authors best regards. 



 

 

________________________________________________________________________ 

Report #1, Reviewer #2 
Suggestions for revision or reasons for rejection (will be published if the paper is accepted for 

final publication) 
 

The manuscript has been quite significantly altered from its previous version, with many relevant 

and good aspects added to the model development, suitability map building, map evaluation and 
sensitivity assessment, in terms of methodology, results and discussion. It really has become an 

interesting paper to read, with very good use of references throughout. I maintain my opinion that 

the strongest part is the regression model, and that this model can be applied very well in the 
future for scenario analysis within the same study area. I continue to believe that the sustainability 

map is less interesting, because it basically uses the regression model that was already locally 
optimised using GWR to calculate a new map, but it is only applicable to the study area, precisely 

due to the local nature of the regression coefficients. Moreover, it does not fit the original 

vegetation (Kernel density) map as well as the authors claim based on their validation.  
 

Answer: It is not surprising that the final suitability map does not exactly fit the original Kernel 

density. Indeed, the proxy species (Quercus suber, Quercus Ilex and Pinus pinea) can perfectly 
grow under more mesic Mediterranean climate conditions (sub-humid), without relying as 

much on groundwater to survive as in more xeric areas (semi-arid) (Abad Vinas et al., 2016). 
Their presence/abundance is only an indication of a possible use of groundwater. This is also 

why we consider that our final map obtained after the multicriteria analysis provides a more 

reliable indication of the higher likelihood for groundwater use by facultative deep-rooted 
phreatophytes species in Alentejo. We also believe our final map also provides a better 

estimation of the relative contribution of groundwater used by plants to remain alive, than the 

information given by the model alone. A paragraph was added on 617-620 to better explain the 
benefits of the final suitability map as compared to the model alone. 

 
Please allow me to start with these two main concerns I would like to see addressed in the 

discussion. 

 
1. The calculation of R-squared of the GWR model provides very good results. Notwithstanding, 

the resulting local coefficients vary largely, from highly positive to highly negative. Moreover, 

the variations sometimes occur on very small distances. This means that the effect of Ai or 
groundwater depth on groundwater dependent vegetation can vary from highly positive to highly 

negative throughout the area and even within very short distances. This seems purely a statistical 
exercise with apparently little physical meaning and needs to be addressed in the discussion. What 

does it mean? How then is this method valid and applicable elsewhere? 

 
Answer: We agree on the fact that our modelling approach is stochastic and can be considered 

as a “statistical exercise”. We also agree on your critic regarding the weak physical meaning 

of the model coefficients due to their high spatial variability. This is another argument for us 
not to use the model alone for prediction purposes. We are conscient that the method we 

developed is only locally optimized and thus difficult to apply in other regions, even under 
similar climate conditions, unless the methodology is fitted to local conditions/predictors. We 

modified the manuscript in the discussion (lines 630-632) and in the “key limitations” section 

(lines 742-746) to address those issues. 

 

2. Given the high weight of the aridity index (Ai) in the regression map, the groundwater 
dependent vegetation (GDV) suitability map now closely follows the Ai categorized map (Fig. 

B1a), as also mentioned by the authors. The good agreement observed by the authors between the 



suitability map and the groundwater depth map, in my view is a coincidence, as the groundwater 
depth map in fact follows the aridity index map. In other words, in the more humid areas the 

groundwater level seems shallower, and vice-versa. In addition, the GDV suitability map does 

not show a good correspondence with the GDV occurrence map (Fig. 1), unlike the previous 
suitability map that was produced in the first version of the manuscript. In the former map (version 

1 of the manuscript) soil type was the most important parameter, but that parameter was now 
taken out. As a direct consequence, the highest GDV density in the central north now occurs in 

an area of very poor to poor mapped GDV suitability, whereas in the southeastern area the GDV 

density is very low in an area of very good suitability. I acknowledge that the reality is always 
more complex and that the authors already refer to this in their discussion, but please also address 

the issues I have mentioned.  

Answer:  
As explained above, the proxy species (Quercus suber, Quercus Ilex and Pinus pinea) can 

perfectly grow under more mesic Mediterranean climate conditions (sub-humid), without 
relying as much on groundwater to survive as in more xeric areas (semi-arid). Their presence 

is only an indication of a possible use of groundwater. The study provided by Pinto et al. (2013) 

have shown that Cork oak can perfectly thrive were very shallow groundwater is available while 
suffering drought stress were groundwater source is lower (although using groundwater in 

both sites). We believe this satisfactory explains the discrepancies between the GDV density and 

suitability maps you question. We addressed the mismatches between maps in the result section, 
lines 563-565 and modified a paragraph in the discussion section, in lines 643-659. 

 
Abad Viñas, R., Caudullo, G., Oliveira, S., de Rigo, D., 2016. Pinus pinea in Europe: 

distribution, habitat, usage and threats. In: San -Miguel-Ayanz, J., de Rigo, D., 

Caudullo, G., Houston Durrant, T., Mau ri, A. (Eds.), European Atlas of Forest Tree 
Species. Publ. Off. EU, Luxembourg, p. E01b4fc. 

 

Pinto C., Nadezhdina N., David J. S., Kurz-Besson C., Caldeira M.C., Henriques M.O., 
Monteiro F., Pereira J.S., David T.S. Transpiration in Quercus suber trees under shallow water 

table conditions: the role of soil and groundwater. Hydrological processes, doi: 
10.1002/hyp.10097, 2013. 

 

The fact that the suitability maps fits well with the NDWI map, could be a logical consequence 
of the fact that the latter represents moisture content in vegetation. Why would the highest stress 

be indicative for groundwater dependency? Wouldn’t you expect stress to decrease if the trees 

have access to groundwater? 
 

Answer: Figure 10 does not present NDWI values, but anomalies considering the months of 
June, July and August of the extremely dry year of 2005, in reference to the median NDWI 

value of the same months over the period 1999-2009 (lines 544-545)). In June of the extreme 

dry year 2005, GDV vegetation experienced the highest moisture stress, as observed on Figure 
10a by the negative NDWI anomaly values. GDV still contains moisture however, that 

changes/decreases with the onset of the summer period (aggravated by the dry winter-spring of 

2005), thus reaching a point in August were the GDV has a very low water content, as expected 
in the end of the drought season (~null anomaly on Figure 10c). Oppositely, the vegetation 

over areas that do not manage to cope with summer drought (bare soil, grassland, shrubs...) 
uses to have the lowest moisture content since June until August with no change (null anomaly 

indicated in green that remains green from June to August on figure 10a-c). Therefore the 

GDV shows the highest absolute NDWI anomaly (highest leaf water loss), in spite of the use of 
groundwater to survive. Further former studies by co-authors of the present work have already 

shown that groundwater uptake by trees only take place in late June after the onset of the 
drought period (Kurz-Besson et al. 2006 & 2014, Otieno et al. 2006, David et al. 2013, Pinto et 

al. 2013). Those studies have also shown that trees grew new roots in deeper soil layers only 

after trees experienced drought stress. In extreme dry years, the piezometric drawdown is 



expected to difficult GDV’s physiological performances (Antunes et al. 2018). We are confident 
that those studies are in agreement with the NDWI anomaly validation maps provided. 

Nevertheless, we re-write the paragraph 3.5 for more clarity and added the references cited 

here above in the manuscript to support our arguments (Lines 547-565). We also modified 
changed figure 10 colours and caption in order to highlight the NDVI anomaly behavior 

aiming to avoid misleading issues (lines 1241-1245, 1327-1331). 

 

Otieno, D.O., Kurz-Besson C., Liu J., Schmidt M.W.T., Lobo-do-Vale R., David T. S., Siegwolf 

R., Pereira J.S., Tenhunen J.D.  (2006) Seasonal variations in soil and plant water status in a 
Quercus suber L. stand: roots as determinants of tree productivity and survival in the 

Mediterranean-type ecosystem. Plant and Soil 283: 119-13  

 
Kurz-Besson C., Otieno D., Lobo-do-Vale R., Siegwolf R., Schmidt M.W.T., David T. S., Soares 

David J., Tenhunen J., Pereira J. S., Chaves M. (2006) Hydraulic lift in cork oak trees in a 
savannah-type Mediterranean ecosystem and its contribution to the local water balance. Plant 

and Soil 282: 361-378. 

 
Pinto C., Nadezhdina N., David J. S., Kurz-Besson C., Caldeira M.C., Henriques M.O., 

Monteiro F., Pereira J.S., David T.S. (2013) Transpiration in Quercus suber trees under 

shallow water table conditions: the role of soil and groundwater. Hydrological processes. 
 

David T.S. Pinto C.A. Nadezhdina N. Kurz-Besson C. Henriques M.O. Quilhó T. Cermak J. 
Chaves M.M. Pereira J.S., David J.S. (2013) Root functioning, tree water use and hydraulic 

redistribution in Quercus suber trees: A modeling approach based on root sap flow. Forest 

Ecology and Management 307, 136–146. 
 

Kurz-Besson C., Lobo do Vale R., Rodrigues L., Almeida P., Herd A., Grant O.M., David T.S., 

Schmidt M., Otieno D., Keenan T., Gouveia C., Mériaux C., Chaves M.M., Pereira J.S. (2014). 
Cork oak physiological responses to manipulated water availability in a Mediterranean 

woodland. Journal of Agricultural and Forest Meteorology 184, 230-242. 
 

Páscoa P. Gouveia C., Kurz-Besson C. Identificação de vegetação dependente de água 

subterrânea na península ibérica através de deteção remota. 10º Símposio de Meteorologia e 
Geofísica da APMG, Lisboa, Portugal. 2017, 

 https://drive.google.com/file/d/0B4ZF89Veh6ziZVVCbUxBZXh1MTA/view 

 

 

Some other comments are given below: 
 

The abstract is well written.  

 
The introduction provides a very good overview on the need of study, but could mention the other 

work/studies carried out so far in the field. That is currently limited to one sentence (ln 127-129), 

so that the paper does not show the added value of the implemented methodology as compared to 
existing studies, some of which are actually referred to later on in the manuscript (e.g. Barron et 

al., 2014; Condesso de Melo, 2015; Costa et al., 2008; Doody et al., 2017). Therefore, no new 
references are needed. 

Answer: 

The introduction section was slightly restructured. We rearranged the short overview of the 
studies carried out in the field (now in lines 54-78), avoiding turning the introduction any 

longer. We also added a new reference based on field surveys and showing that Pinus pinea 
relies on groundwater to cope with summer droughts. We also indicated the added value of the 



implemented methodology in lines 132-139 and further improved the end of the introduction 
section in lines 140-154. 

 

In material and methods, section 2.3.1, attributing a low GDV suitability score to soils of high 
clay content can be debated. Soils of a finer texture will have large extinction depths due to an 

increased capacity of capillary rise. I would expect coarser soils to have vegetation of lower 
groundwater dependency. Please briefly elucidate on this aspect. 

Answer: We agree with your comment and the debate in the matter. Nonetheless, in this specific 

geographical region, deep rooting species reaching deep soil layers or groundwater are 
disfavored in waterlogged soils highly favored by clay content (Garcia et al. 2017; Ignacio 

Perez-Ramos &  Marañón 2009; Dinis et al. 2014). We also believe that soils rich in clay will 

rather favor non-GDV species for providing more available water in shallow soil depths. This 
is not happening in sandy soils, therefore we gave a better score to those. We had already briefly 

justified this choice in our former version of the manuscript, (now in lines 208-212) and added 
a few more words to better justify our scoring choice. 

 

Garcia et al. 2017, https://ir.library.oregonstate.edu/downloads/wp988k05k;  
Ignacio Perez-Ramos &  Marañón 2009, https://www.researchgate.net/publication/222234643;  

Dinis et al. 2014 https://core.ac.uk/download/pdf/62473102.pdf, (page 60) 

 
In the model development (material and methods, section 2.5), how many data points are used 

(and what is the search radius) for the calculation of local model coefficients? 
 

Answer:  

The number of points (6214) used to fit the model was already in the previous version, (now in 
lines 311-312). We corrected the sentence for the lector to understand that ultimately 6214 

points were used to fit the model (line 311).  

Before fitting the GWR model an Adaptive Kernel was applied to the data to find a search 
radius (as explained in lines 323-324 of the manuscript) that would minimize the error of the 

localized regressions. The adapted search radius, given locally, was obtained through 
minimization of the CrossValidation score. We improved the methodological explanation in 

lines 294-295 of the manuscript.  

 
In section 2.7 of material and methods briefly explain for what purpose the NDWI anomaly map 

was calculated.  

Answer: We added a sentence to include this missing information in paragraph 2.7 on lines 
391-393.  

 
Please explain why you select slope (s) rather than soil thickness (S), if the latter has a higher 

correlation with principle component axis 2 (PC2).  

 
Answer: As explained in lines 318-321 of the manuscript, variables were selected under a 

sequential procedure. Both slope and thickness did not show correlation values higher than 0.4 

and therefore where not discarded from the initial variables selection. If predictors showed 
correlations below 4, than the ones with the lower correlation values would be chosen. 

Thickness was removed from the final variable choices because it showed higher correlations 
with the remaining variables, as opposed to slope that showed lower correlations with the 

remaining variables.  

 
What happens to R-squared when reducing the set to four or even three variables? Given the large 

weight of Ai and O4 I would expect the impact to be small. Have you considered using a reduced 
set? This would largely facilitate the application of the method in other areas. 

 

https://ir.library.oregonstate.edu/downloads/wp988k05k
https://www.researchgate.net/publication/222234643
https://core.ac.uk/download/pdf/62473102.pdf


Answer: The model performance assessed with global R2 was little affected when only 2 or 3 
predictors were used, remaining close to 0.99. Also, our modelling approach in this manuscript 

was only performed to provide weights for the GIS layers included in our final multicriteria 

analysis. On our last revision, we removed the soil type from the model equation because it 
drastically weakened its performance. The remaining predictors, however, did not affect the 

performance of the model as much, with R2 remaining between the range of 0.98 to 0.99. We 
thus choose to keep the remaining predictors in the model (especially the groundwater depth) 

because of the objective of our study, in spite of their lower contribution to the model. 

 

Other minor comments and technical corrections: 

 

Ln 17: delete the word “scenarios” 
Answer: Done, now line 38. 

 
Ln 19: delete the words “the density of” 

Answer: We improved the sentence, now line 19-20. 

 
Ln 25: “closely followed”: this is not true. The other three parameters (groundwater depth, 

drainage density and slope) follow at a large distance, i.e. they are of much lower importance in 

the regression model. 
Answer: We corrected the sentence as “Climatic indices were the main drivers of GDV density, 

followed with a much lower influence by groundwater depth, drainage density and slope”, now 
in line 25.  

 

Ln 28: “relative proportion”. Please briefly clarify what it means. Is it the local coefficient divided 
by sum of local coefficients? When negative, do you use absolute values (which would make 

sense)? This needs to be explained in detail in section 2.6 (pg 11 ln 329-341).  

Answer: This as been clarified in lines 372-373, by adding “The relative proportion of the local 
coefficient x was calculated as the ratio between the modulus of the local coefficient x and the 

sum of the modulus of all local coefficients.” 
 

Ln 60: include 

Answer: Corrected, Line 55 
 

Ln 61: “subsurface groundwater” seems a pleonasm, although I understand what you mean, when 

comparing it to “surface groundwater”. Perhaps you could consider using the terms “emerging 
groundwater” vs. “resident groundwater”. 

Answer: We totally agree with this suggestion. Therefore we modified the text accordingly 
along the manuscript (lines 56, 57, 74, 77, 120, 346). 

 

Ln 62: “a visible source” 
Answer: Done, line 58 

 

Ln 64-65: place the references after GDE 
Answer: Done, line 71 

 
Ln 74: “relying on”, perhaps use “entirely relying on” 

Answer: Done, line 83 

 
Ln 76: “root system” 

Answer: Done, line 85 
 

Ln 115: “rising temperature” 

Answer: Done, line 125 



 
Ln 129-130: rephrase “coefficients proportions”, e.g. to “coefficients as proportion of total sum 

of absolute coefficients”. 

Answer: Done, line 147-148 
 

Ln 184: “low drainage capacity”, “high clay fraction” 
Answer: Done, line 208-209 

 

Ln 325-328: lower drainage density leads to higher suitability, which is correct, but the 
explanation is incorrect, as the explanation in fact suggests the opposite, or so it seems. 

Answer: We improved the sentence, lines 355-359. 

 
Ln 342-343: I suggest using “representing” instead of the word “referred”. 

Answer: Done, line 375-376. 
 

Ln 402: and in the south? 

Answer: Done in line 439. 
 

Ln 422: the maximum value on the map seems much higher than the value indicated in the text 

(0.714). 
Answer: We thank the reviewer for noticing the mistake. Indeed this was a typo, the true 

maximum value, excluding two outliers, is 1.166. This information was corrected in line 459.  
 

Ln 488: I suggest changing to: “poor suitability to GDV, corresponding to” 

Answer: Done, line 525. 
 

Ln 572: “did not only allow” 

Answer: Done, line 625. 
 

Figure 3: What are the units in this figure? 
Answer: We add a sentence to the figure legend as “The scale unit represent the number of 

occurrences per 10km search radius (~314 km2)” lines 1224-1225, 1294-1295. Note that ICNF 

forest inventory only provided information on the presence of each dominant and secondary 
species on 500m mesh points and their corresponding cover percentage. Therefore, on an area 

of 1 km2 the maximum occurrence possible is 4, thus on our map the maximum value is 

4*314=1256. We therefore also modify the M&M section on heatmap accordingly, lines 176-
177 . 

 
Figure 4: The reference to the different maps in the figure title is incorrect. Figure 4a is aridity 

index, not soil type, etc. 

Answer: We truly apologize for this mistake. This has been now corrected, lines 1226-1227, 
1298-1301. 

 

Figure 10: I would not use green to indicate highest stress.  
Answer: Colors on Figure 10 have been modified, line 1326. 

 
Table 4: Values for slope and aridity index are incorrect in the table (the order of the scores 1-3 

is inversed, as can be seen in the maps of Fig. B1, which are correct). 

Answer: Thank you for noticing these mistakes. This has been corrected in Table 4, line 1281-
1282. 

 
Dear Reviewer #3, 

 

Please find enclosed the revised version of the manuscript “Mapping the suitability of 
groundwater dependent vegetation in a semi-arid Mediterranean area”. 



We did our best to carefully address all your concerns. In the present letter, you will find our 
responses to each comment and changes made in the manuscript. To ease the revision, we 

highlighted line numbers in yellow in our answers. 

We also attempted to provide a better evaluation of the importance of each predictor in the final 
model and improved the discussion section accordingly. 

To facilitate the identification of changes along the manuscript, a version of the manuscript with 
tracked changes was uploaded in the journal platform.  

All the information included in this manuscript is completely original and has been approved by 

all authors.  
Also, we thank you for considering this revised manuscript for publication.  

Please do not hesitate to contact us for any further needed detail.  

 
With our best regards, sincerely 

 
___________________________________________________________________________ 

 

Report #2, Reviewer #3 
Suggestions for revision or reasons for rejection (will be published if the paper is accepted for 

final publication) 

The whole paper should be condensed and restructured. The relevance of the study should first 
be established in introduction by presenting the field of vegetation suitability mapping in ecology 

(with a better review of previous research), establish the niche by indicating the gap in the present 
body of literature, and finally present the aim and the approach of the study. 

Next, the methodology should be clearly established, starting by the choice of the modeling 

method which appears to be a linear regression, improved in order to take into account spatial 
correlation of the explaining variables. 

 

Answer:  
The Geographically weighted regression (GWR) extends the ordinary least squares (OLS) 

regression by considering spatial nonstationarity in variable relationships and allowing the use 
of spatially varying coefficients in linear models while minimizing spatial autocorrelation. We 

added a few words in lines 307-309. 

The normal distribution for predictors is only recommended while using the linear OLS model 
when the model is used for statistical inference or to calculate confidence intervals . In our 

study, we only used the modeling approach to provide weighting factors for the GIS 

multicriteria analysis performed to obtain the final suitability map. We thus assumed that for 
such purpose predictors’ normality was not necessary. 

 

The data should first be plotted to illustrate their departure from Normality. In second instance, 

the choice of transformation methods should be justified. 

Answer: 
Although our dependent variable (Kernel density) did not rigorously match a normal 

distribution after root square transformation, the distribution shape was approximated to meet 

the linear model assumption (see Figure below). Also we relied on the article by Li et al. 2012, 
(https://iovs.arvojournals.org/article.aspx?articleid=2128171), which stipulates that when the 

dependent variable is not distributed normally, the linear regression remains a statistically 
sound technique in studies of large sample sizes (i.e., >3000), which can be used anyway, even 

if the normality assumption is violated. 

The square-root transformation of the response variable was already indicated in lines 297-
299. 

 



 
 

Regarding the criterium of groundwater availability in particular: 

1) Why should the soil type, aquifer permeability or aquifer transmissivity be relevant for 

the growth of groundwater dependent vegetation?  
Answer: We believe it would be relevant for the presence and permanence of more superficial 

groundwater accessible to roots. 
 

2) If groundwater levels need to be used as suitability criteria for a type of vegetation, the 

fluctuation regime need to be established (for example mean levels, 5% low and high quantile 
determine over a given time period) 

Answer: We think the reviewer is correct, however groundwater depth data retrieved from large 

diameter wells (blue triangles in figure 02) had only one single measurement. These data points 
covered most of the study area, thus there was not enough data to establish a temporal 

fluctuation regime. This weakness was already discussed in lines 660-674. 
 

3) The interpolation method needs to be better described. A suggestion is to follow the 

method used by Peterson and Barnett [2004] 
Answer: The method suggested by Peterson and Barnett [2004] (Kriging with External Drift) 

was also tried with the groundwater datasets used in this study. However, the resulting map of 

groundwater depth showed incoherent values, therefore  we proceeded with the double 
approach: Ordinary Kriging for karts and porous aquifers and linear regression for 

undifferentiated geological type. We added a further explanation of the Ordinary Kriging 
method to lines 233-235 : “The ordinary kriging was calculated using a semivariogram in 

which the sill, range and nugget were optimized to create the best fit of the model to the data.”  

 

4) Why is the drainage density relevant in the method if the water table levels are known?  

Answer: Groundwater supply at deeper levels is important for groundwater dependent 

vegetation survival, since there is no other source of water during the dry season. However, 
when a large river system is present, water will be available closer to the surface. As written in 

lines 238-239, the drainage density is a measure of how well the water in the basin is drained 
by the stream channels, thus affecting infiltration process. Therefore, this predictor provides 

insights on well the superficial soil layers will be fed by stream water. On another hand, the 

vegetation dependent on groundwater studied in this manuscript can use water from the vadose 
zone at a rooting depth reaching up to 15m. The depth to groundwater (piezometer level) 

allowed the exclusion of GDV where groundwater was deeper than 15m. 

 

 



Finally, the argumentation needs to be considerably improved. For example expressions such as 
'subsurface groundwater’ should be avoided and expressions such as 'surface groundwater' (line 

60) or ‘subsurface groundwater dependent vegetation’ are meaningless. 

Answer: As suggested by both reviewers, we renamed the term “subsurface groundwater” as 
“resident groundwater” being the groundwater beneath the soil surface, as opposed to 

“emerging groundwater” being the groundwater above the soil surface. We changed the text 
accordingly throughout the manuscript (lines 56, 57, 74, 77, 120, 346). 
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Abstract.  14 

Mapping the suitability of groundwater dependent vegetation in semi-arid Mediterranean areas is 15 

fundamental for the sustainable management of groundwater resources and groundwater dependent 16 

ecosystems (GDE) under the risks of climate change scenarios. For the present study the distribution of 17 

deep-rooted woody species in southern Portugal was modeled using climatic, hydrological and 18 

topographic environmental variables; and the density of. To do so,  Quercus suber, Quercus ilex and 19 

Pinus pinea were used as proxy species of to represent the Groundwater Dependent Vegetation (GDV). 20 

Model fitting was performed between the proxy species Kernel density and the selected environmental 21 

predictors using 1) a simple linear model and 2) a Geographically Weighted Regression (GWR), to 22 

account for auto-correlation of the spatial data and residuals. When comparing the results of both models, 23 

the GWR modelling results showed improved goodness of fitting, as opposed to the simple linear model. 24 

Climatic indices were the main drivers of GDV density,  closely followed with a much lower influence by 25 

groundwater depth, drainage density and slope. Groundwater depth did not appear to be as pertinent in the 26 

model as initially expected, accounting only for about 7% of the total variation against 88% for climate 27 

drivers 28 

The relative proportion of model predictor coefficients was used as weighting factors for multicriteria 29 

analysis, to create a suitability map to the GDV in southern Portugal showing where the vegetation most 30 

likely relies on groundwater to cope with aridity. A validation of the resulting map was performed using 31 

independent data of the Normalized Difference Water Index (NDWI) a satellite-derived vegetation index. 32 

June, July and August of 2005 NDWI anomalies, to the years 1999-2009, were calculated to assess the 33 

response of active woody species in the region after an extreme drought. The results from the NDWI 34 

anomaly provided an overall good agreement with the suitability to host GDV. The model was considered 35 

reliable to predict the distribution of the studied vegetation. 36 

mailto:icgmarques@fc.ul.pt


2 
 

The methodology developed to map GDV’s will allow to predict the evolution of the distribution of GDV 37 

according to climate change scenarios and aid stakeholder decision-making concerning priority areas of 38 

water resources management. 39 

 40 

Keywords: Groundwater dependent vegetation, aridity, agroforestry, suitability map, Normalized 41 

Difference Water Index 42 

 43 

  44 
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1 Introduction 45 

 46 

Mediterranean forests, woodlands and shrublands, mostly growing under restricted water availability, are 47 

one of the terrestrial biomes with higher volume of groundwater used by vegetation (Evaristo and 48 

McDonnell, 2017). Future predictions of decreased precipitation (Giorgi and Lionello, 2008; Nadezhdina 49 

et al., 2015), decreased runoff (Mourato et al., 2015) and aquifer recharge (Ertürk et al., 2014; Stigter et 50 

al., 2014) in the Mediterranean region threaten the sustainability of groundwater reservoirs and the 51 

corresponding dependent ecosystems. Therefore, a sustainable management of groundwater resources and 52 

the Groundwater Dependent Ecosystems (GDE) is of crucial importance. 53 

A widely used classification of GDE was proposed by Eamus et al. (2006). This classification 54 

distinguishes three types: 1) Aquifer and cave ecosystems, which include all subterranean waters; 2) 55 

Ecosystems reliant on emerging groundwater (e.g. estuarine systems, wetlands; riverine systems) and 3) 56 

Ecosystems reliant on resident groundwater (e.g. systems where plants remain physiologically active 57 

during extended drought periods, without a visible water source).  58 

Mapping GDE constitutes a first and fundamental step to their active management. Several approaches 59 

have been proposed, from local field surveys measuring plant transpiration of stable isotopes (Antunes et 60 

al. 2018) up to larger spatial scales  involving including remote sensing techniques (e.g. Normalized 61 

Difference Vegetation Index – NDVI) (Barron et al., 2014; Eamus et al., 2015; Howard and Merrifield, 62 

2010), remote-sensing combined with ground-based observations (Lv et al., 2013), based on geographic 63 

information system (GIS) (Pérez Hoyos et al., 2016a) GIS combining field surveys (Condesso de Melo et 64 

al., 2015), or even statistical approaches (Pérez Hoyos et al., 2016b). An integrated multidisciplinary 65 

methodology  has also been used. A widely used classification of GDE was proposed by  that 66 

distinguishes three types: 1) Aquifer and cave ecosystems, which includes all subterranean waters; 2) 67 

Ecosystems reliant on surface groundwater (e.g. estuarine systems, wetlands; riverine systems) and 3) 68 

Ecosystems reliant on subsurface groundwater (e.g. systems where plants remain physiologically active 69 

during extended drought periods, without visible water source).  70 

Despite of a wide-ranging body of literature regarding reviewing GDE’s topics (Doody et al., 2017; 71 

Dresel et al., 2010; Münch and Conrad, 2007), most of the regional scale studies do not include 72 

Mediterranean regions (Doody et al., 2017; Dresel et al., 2010; Münch and Conrad, 2007). Moreover, 73 

studies on ecosystems relying on subsurface resident groundwater frequently only focused on riparian 74 

environments (Lowry and Loheide, 2010; O’Grady et al., 2006), with few examples in Mediterranean 75 

areas (del Castillo et al., 2016; Fernandes, 2013; Hernández-Santana et al., 2008; Mendes et al., 2016). 76 

There is a clear knowledge gap on the identification of phreatophyte species reliant on resident 77 

groundwater and theirsuch ecosystems, their phreatophyte associated vegetation (Robinson, 1958) in the 78 

Mediterranean region and the management actions that should be taken to decrease the adverse effects of 79 

climate change. 80 

In the driest regions of the Mediterranean basin, the persistent lack of water during the entire summer 81 

periods gave an adaptive advantage to the vegetation that could either avoid or escape drought by 82 
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reaching deeper stored water up to the point of entirely relying in on groundwater (Chaves et al., 2003; 83 

Canadell et al., 1996; Miller et al., 2010). This drought-avoiding strategy is often associated to the 84 

development of a dimorphic root systems in woody species (Dinis 2014, David et al., 2013) or to 85 

hydraulic lift and/or hydraulic redistribution mechanisms (Orellana et al., 2012). Those mechanisms 86 

provide the ability to move water from deep soil layers, where water content is higher, to more shallow 87 

layers where water content is lower (Horton and Hart, 1998; Neumann and Cardon, 2012). Hydraulic lift 88 

and redistribution have been reported for several woody species of the Mediterranean basin (David et al., 89 

2007; Filella and Peñuelas, 2004) and noticeably for Cork oak (Quercus suber L.) (David et al., 2013; 90 

Kurz-Besson et al., 2006; Mendes et al., 2016).  91 

Mediterranean cork oak woodlands (Montados) are agro-silvo-pastoral systems considered as semi-92 

natural ecosystems of the southwest Mediterranean basin (Joffre et al., 1999) that have already been 93 

referenced has a groundwater dependent terrestrial ecosystem (Mendes et al., 2016). Montados must be 94 

continually maintained through human management by thinning, understory use through grazing, 95 

ploughing and shrub clearing (Huntsinger and Bartolome, 1992) to maintain a good productivity, 96 

biodiversity and ecosystems service (Bugalho et al., 2009). In the ecosystems of this geographical area, 97 

the dominant tree species are the cork oak (Quercus suber L.) and the Portuguese holm oak (Quercus ilex 98 

subs rotundifolia Lam.) (Pinto-Correia et al., 2011). Additionally, stone pine (Pinus pinea L.) has become 99 

a commonly co-occurrent species in the last decades (Coelho and Campos, 2009). The use of groundwater 100 

has been frequently reported for both Pinus (Antunes et al. 2018; Filella and Peñuelas, 2004; Grossiord et 101 

al., 2016; Peñuelas and Filella, 2003) and Quercus genre (Barbeta and Peñuelas, 2017; David et al., 2007, 102 

2013, Kurz-Besson et al., 2006, 2014; Otieno et al., 2006). Furthermore, the contribution of groundwater 103 

to tree physiology has been shown to be of a greater magnitude for Quercus sp. as compared with Pinus 104 

sp. (del Castillo et al., 2016; Evaristo and McDonnell, 2017).  105 

Q. suber and Q. ilex have been associated with high resilience and adaptability to hydric and thermic 106 

stress, and to recurrent droughts in the southern Mediterranean basin (Barbero et al., 1992). In Italy and 107 

Portugal, during summer droughts Q. ilex used a mixture of rain-water and groundwater and was able to 108 

take water from very dry soils (David et al., 2007; Valentini et al., 1992). An increasing contribution of 109 

groundwater in the summer has also been shown for this species (Barbeta et al., 2015). Similarly, Q. 110 

suber showed a seasonal shift in water sources, from shallow soil water in the spring to the beginning of 111 

the dry period followed by a progressive higher use of deeper water sources throughout the drought 112 

period (Otieno et al., 2006). In addition, the species roots are known to reach depths as deep as 13m in 113 

southern Portugal (David et al., 2004). Although co-occurrent to cork and holm oaks species, there is still 114 

no evidence yet that P. pinea has been recently included in the facultative phreatophyte species (Antunes 115 

et al. 2018). Moreover, the species relies on groundwater resources during the dry season. However it 116 

shows a very similar root system (Montero et al., 2004) as compared to cork oak (David et al., 2013), 117 

with large sinker roots reaching 5 m depth (Canadell et al., 1996). Given the information available on 118 

water use strategies by the phreatophyte arboreous species of the cork oak woodlands, Q. ilex, Q. suber 119 

and P. pinea were considered as proxies for arboreous vegetation that belongs to GDE relying on resident 120 

groundwater (from here onwards designed as Groundwater Dependent Vegetation – GDV). 121 
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GDV of the Mediterranean basin is often neglected in research. Indeed, still little is known about the 122 

GDV distribution, but research has already been done on the effects of climate change in specific species 123 

distribution, such as Q. suber, in the Mediterranean basin (Duque-Lazo et al., 2018; Paulo et al., 2015). 124 

While the increase in atmospheric CO2 and the raising temperature can boost tree growth (Barbeta and 125 

Peñuelas, 2017; Bussotti et al., 2013; Sardans and Peñuelas, 2004), water stress can have a counteracting 126 

effect on growth of both Quercus ilex (López et al., 1997; Sabaté et al., 2002) and P. pinaster (Kurz-127 

Besson et al., 2016). Therefore, it is of crucial importance to identify geographical areas where subsurface 128 

GDV is present and characterize the environmental conditions this vegetation type is thriving in. This 129 

would contribute to the understanding of how to manage these species under unfavorable future climatic 130 

conditions. 131 

The aim of this study was to address the mentioned gaps by creating create a suitability map of the current 132 

distribution of the arboreous phreatophyte species considered here as GDV in southern Portugal, 133 

traducing their potential dependency on groundwater. We used an integrated multidisciplinary 134 

methodology combining a geospatial modeling approach based on the Geographically Weighted 135 

Regression (GWR) and a GIS multicriteria analysis approach, both relying on forest inventory, 136 

edaphoclimatic conditions and topographic information. We expected this new integrated procedure to 137 

grant a more reliable estimation of the vegetation dependency on groundwater sources at the regional 138 

scale. 139 

The Mapping methodology was based on the occurrence of known subsurface phreatophyte species and 140 

well-known environmental conditions affecting water resources availability. Several environmental 141 

predictors were selected according to their expected impact on water use, flux or and storage and then 142 

used in a Geographically Weighted Regression (GWR) to model the density of Q. suber, Q. ilex and P. 143 

pinea occurrence in the Alentejo region (NUTSII) of southern Portugal. So farTo our knowledge, very 144 

few applications of this methodGWR have been used to model species distribution and only recently its 145 

use has spread in ecological research (Hu et al., 2017; Li et al., 2016; Mazziotta et al., 2016). The 146 

coefficients proportions obtained from the model equation for each predictor and expressed as proportion 147 

of total sum of absolute coefficients were used as weights to build the suitability map with GIS multi-148 

factor analysis, after reclassifying each relevant environmental predictordriver. The resulting map was 149 

validated using the remote sensed vegetation index NDWI. 150 

Based on former knowledge gathered from field surveys conducted  in the region (Antunes et al. 2018, 151 

Condesso de Melo et al., 2015, Kurz-Besson et al. 2006 & 2014, Otieno et al. 2006, David et al. 2013, 152 

Pinto et al. 2013), on  the environmental conditions of the study area and the species ecophysiological 153 

needs, we hypothesized that 1) groundwater depth together with climatic conditions play one of the most 154 

important environmental roles in GDV’s distribution and 2) groundwater depth between 1.5 and 15 m 155 

associated with xeric conditions should favor a higher density of GDV and thus a larger use of 156 

groundwater by the vegetation.  157 

 158 

  159 
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2 Material and Methods 160 

 161 

2.1 Study area 162 

The administrative region of Alentejo (NUTSII) (fig01) covers an area of 31 604.9 km2, between 37.22º 163 

and 39.39º N in latitude and between 9.00º and 6.55º W in longitude. This study area is characterized by a 164 

Mediterranean temperate mesothermic climate with hot and dry summers, defined as Csa in the Köppen 165 

classification (APA, n.d.; ARH Alentejo, 2012a, 2012b). It is characterized by a sub-humid climate, 166 

which has recently quickly drifted to semi-arid conditions (Ministério da Agricultura do Mar do 167 

Ambiente e do Ordenamento do Território, 2013).  A large proportion of the area (above 40%) is covered 168 

by forestry systems (Autoridade Florestal Nacional and Ministério da Agricultura do Desenvolvimento 169 

Rural e das Pescas, 2010) providing a high economical value to the region and the country (Sarmento and 170 

Dores, 2013).  171 

 172 

2.2 Kernel Density estimation of GDV 173 

Presence datasets of Quercus suber, Quercus ilex and Pinus pinea of the last Portuguese forest inventory 174 

achieved in 2010 (ICNF, 2013) were used to calculate Kernel density (commonly called heat map) as a 175 

proxy for GDV suitability. The inventory registered the occurrence of each species on a 500m mesh grid 176 

resolution (corresponding to a maximum occurrence of 4 counts per km2. Only data points with one of the 177 

three proxy species selected as primary and secondary occupation were used. The resulting Kernel density 178 

was weighted according to tree cover percentage and was calculated using a quartic biweight distribution 179 

shape, a search radius of 10 km, and an output resolution of 0.018 degrees, corresponding to a cell size of 180 

1km. This variable was computed using QGIS version 2.14.12 (QGIS Development Team, 2017). 181 

 182 

 183 

2.3 Environmental variables 184 

Species distribution is mostly affected by limiting factors controlling ecophysiological responses, 185 

disturbances and resources (Guisan and Thuiller, 2005). To characterize the study area in terms of GDV’s 186 

suitability, environmental variables expected to affect GDV’s density were selected according to their 187 

constraint on groundwater uptake and soil water storage. Within possible abiotic variables, landscape 188 

topography, geology, groundwater availability and regional climate were considered to map GDV 189 

density. The twelve selected variables for modeling purposes, retrieved from different data sources, are 190 

listed in Table 1. The software used in spatial analysis was ArcGIS® software version 10.4.1 by Esri and 191 

R program software version 3.4.2 (R Development Core Team, 2016). 192 

 193 

2.3.1 Slope and soil characteristics 194 
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The NASA and METI ASTER GDEM product was retrieved from the online Data Pool, courtesy of the 195 

NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources 196 

Observation and Science (EROS) Center, Sioux Falls, South 197 

Dakota, https://lpdaac.usgs.gov/data_access/data_pool. Spatial Analyst Toolbox was used to calculate the 198 

slope from the digital elevation model. Slope was used as proxy for the identification of shallow soil 199 

water interaction with vegetation.  200 

The map of soil type was obtained from the Portuguese National Information System for the Environment 201 

- SNIAmb (© Agência Portuguesa do Ambiente, I.P., 2017) and uniformized to the World Reference 202 

Base with the Harmonized World Soil Database v 1.2 (FAO et al., 2009). The vector map was converted 203 

to raster using the Conversion Toolbox. To reduce the analysis complexity involving the several soil 204 

types present in the map, soil types were regrouped in three classes, according to their capacity to store or 205 

drain water (Table A1 in appendix A). The classification was based on the characteristics of each soil unit 206 

(available water storage capacity, drainage and topsoil texture) from the Harmonized World Soil 207 

Database v 1.2 (FAO et al., 2009). In the presence of dominant soil with little low drainage capacity, 208 

mainly topsoil a high clay fraction in the top soil and a high available water content (AWC), lower scores 209 

were given in association to decreased suitability for GDV by favoring non-GDV species. Otherwise, 210 

when soil characteristics suggested water storage at deeper soil depths, lower AWCwater content, 211 

drainage and sandy topsoil texture, higher scores were given. 212 

Effective soil thickness (Table 1) was also considered for representing the maximum soil depth explored 213 

by the vegetation roots. It constrains the expansion and growth of the root system, as well as the available 214 

amount of water that can be absorbed by roots.  215 

 216 

2.3.2 Groundwater availability 217 

Root access to water resources is one of the most limiting factors for GDV’s growth and survival, 218 

especially during the dry season. The map of depth to water table was interpolated from piezometric 219 

observations from the Portuguese National Information System on Water Resources (SNIRH) public data 220 

base (http://snirh.apambiente.pt, last accessed on March 31st 2017) and the Study of Groundwater 221 

Resources of Alentejo (ERHSA) (Chambel et al., 2007). Data points of large-diameter wells and 222 

piezometers were retrieved for the Alentejo region (fig02) and sorted into undifferentiated, karst or 223 

porous geological types to model groundwater depth (W). In the studied area, piezometers are exclusively 224 

dedicated small diameter boreholes for piezometric observations, in areas with high abstraction volumes 225 

for public water supply. Large diameter wells in this region are usually low yielding and mainly devoted 226 

to private use and irrigation. Due to the large heterogeneity of geological media, groundwater depth was 227 

calculated separately for each sub-basin. A total of 3158 data points corresponding to large wells and 228 

piezometers were used, with uneven measurements between 1979 and 2017. For each piezometer an 229 

average depth was calculated from the available observations and used as a single value. In areas with 230 

undifferentiated geological type, piezometric level and elevation were highly correlated (>0.9), thus a 231 

linear regression was applied to interpolate data. Ordinary kriging was preferred for the interpolation of 232 



8 
 

karst and porous aquifers, combining large wells and piezometric data points. The ordinary kriging was 233 

calculated using a semi-variogram in which the sill, range and nugget were optimized to create the best fit 234 

of the model to the data. To build a surface layer of the depth to water table, the interpolated surface of 235 

the groundwater level was subtracted from the digital elevation model. Geostatistical Analyst ToolBox 236 

was used for this task. 237 

Drainage density is a measure of how well the basin is drained by stream channels. It is defined as the 238 

total length of channels per unit area. Drainage density was calculated for a 10km grid size for the 239 

Alentejo region, by the division of the 10km square area (A) in km2 by the total stream length (L) in km, 240 

as in Eq. (1). 241 

𝐷 =  
𝐿

𝐴
 ,          (1) 242 

 243 

2.3.3 Regional Climate 244 

Temperature and precipitation datasets were obtained from the E-OBS 245 

(http://eca.knmi.nl/download/ensembles/ensembles.php, last accessed on March 31st 2017) public 246 

database (Haylock et al., 2008). Standardized Precipitation Evapotranspiration Index (SPEI), Aridity 247 

Index (Ai) and Ombrothermic Indexes were computed from long-term (1951-2010) monthly temperature 248 

and precipitation observations. The computation of potential evapotranspiration (PET) was performed 249 

according to Thornthwaite (1948) and was calculated using the SPEI package (Beguería and Vicente-250 

Serrano, 2013) in R program. 251 

SPEI multi-scalar drought index (Vicente-Serrano et al., 2010) was calculated over a 6 month interval to 252 

characterize drought severity in the area of study using SPEI package (Beguería and Vicente-Serrano, 253 

2013) for R program. SPEI is based on the normalization of the water balance calculated as the difference 254 

between cumulative precipitation and PET for a given period at monthly intervals. Normalized values of 255 

SPEI typically range between -3 and 3. Drought events were considered as severe when SPEI values were 256 

between -1.5 and -1.99, and as extreme with values below -2 (Mckee et al., 1993). Severe and extreme 257 

SPEI predictors were computed as the number of months with severe or extreme drought, counted along 258 

the 60 years of the climate time-series. 259 

While the SPEI index used in this study identifies geographical areas affected with more frequent extreme 260 

droughts, the Aridity index distinguishes arid geographical areas prone to annual negative water balance 261 

(with low Ai value) to more mesic areas showing positive annual water balance (with high A i value). Ai 262 

gives information related to evapotranspiration processes and rainfall deficit for potential vegetative 263 

growth. It was calculated following Eq. (2) according to Middleton et al. (1992), where PET is the 264 

average annual potential evapotranspiration and P is the average annual precipitation, both in mm for the 265 

60 years period of the climate time-series. Dry lands are defined by their degree of aridity in 4 classes: 266 

Hyperarid (Ai<0.05); Arid (0.05<Ai<0.2); Semi-arid (0.2<Ai<0.5) and Dry Subhumid (0.5<A i<0.65) 267 

(Middleton et al., 1992).  268 

http://eca.knmi.nl/download/ensembles/ensembles.php
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Ai= 
𝑃

 𝑃𝐸𝑇
 ,          (2) 269 

Ombrothermic Indexes (O) were used to better characterize the bioclimatology of the study region 270 

(Rivas-Martínez et al., 2011), by evaluating soil water availability for plants during the driest months of 271 

the year. Four ombrothermic indexes were calculated according to a specific section of the year stated in 272 

Table 1, and following Eq. (3), where Pp is the positive annual precipitation (accumulated monthly 273 

precipitation when the average monthly mean temperature is higher than 0°C) and Tp is the positive 274 

annual temperature (total in tenths of degrees centigrade of the average monthly temperatures higher than 275 

0°). Ombrothermic index presenting values below 2 for the analyzed months, can be considered as 276 

Mediterranean bioclimatically. For non-Mediterranean areas, there is no dry period in which, for at least 277 

two consecutive months, the precipitation is less than or equal to twice the temperature.  278 

𝑂 =
𝑃𝑝

𝑇𝑝
 ,          (3) 279 

 280 

2.4 Selection of model predictors 281 

The full set of environmental variables was evaluated as potential predictors for the suitability of GDV 282 

(based on the Kernel density of the proxy species). A preliminary selection was carried out, first by 283 

computing Pearson’s correlation coefficients between environmental variables and second by performing 284 

a Principal Components Analysis (PCA) to detect multicollinearity. Covariates were discarded for 285 

modeling according to a sequential procedure. Whenever pairs of variables presented a correlation value 286 

above 0.4, the variable with the highest explained variance on the first axis of the PCA was selected. In 287 

addition, selected variables had to show the lowest possible correlation values between them. Variables 288 

showing low correlations and explaining a higher cumulative proportion of variability with the lowest 289 

number of PCA axis were later selected as predictors for modeling. PCA was performed using the GeoDa 290 

Software (Anselin et al., 2006) and Pearson’s correlation coefficients were computed with Spatial Analyst 291 

Tool . 292 

 293 

2.5 Model development  294 

When fitting a linear regression model based on the selected variables, the normal distribution and 295 

stationarity of the model predictorsresponse variable and residuals must be assured.  296 

The Kernel density of the proxy GDV species, Q. suber, Q. ilex and P. pinea, showed a skewed normal 297 

distribution. Therefore, a square-root normalization transformation of the data was applied on the 298 

response variable, before model fitting. To be able to compare the resulting model coefficients and use 299 

them as weighting factors of the multi-criteria analysis to build the suitability map, the predictor variables 300 

were normalized using the z-score function. This allows to create standardized scores for each variable, 301 

by subtracting the mean of all data points from each individual data point, then dividing those points by 302 

the standard deviation of all points, so that the mean of each z-predictor is zero and the deviation is 1.  303 
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Spatial autocorrelation and non-stationarity are common when using linear regression on spatial data. To 304 

overcome these issues, the Geographically Weighted Regression (GWR) was used to allow model 305 

coefficients to adjust to each location of the dataset, based on the proximity of sampling locations 306 

(Stewart Fotheringham et al., 1996). This extension of the Ordinary Least Squares (OLS) linear 307 

regression considers the spatial non stationarity in variable relationships and allows the use of spatially 308 

varying coefficients while minimizing spatial autocorrelation (Stewart Fotheringham et al., 1996). In this 309 

study, simple linear regression and GWR were both applied to the dataset and their performances 310 

compared. Models were fitted on a 5% random subsample of the entire dataset (reaching a total of 6214 311 

selected data points), due to computational restrictions and to decrease the spatial autocorrelation effect 312 

(Kühn, 2007). This methodology has already been applied with a subsample of 10%, with points distant 313 

10km from each other (Bertrand et al., 2016). In spite of the subsampling, the mean and maximum 314 

distance between two random data points were, respectively, 3.6 km and 16.7 km, providing a good 315 

representation of local heterogeneity, as shown in figures 05 and 06. An additional analysis showing an 316 

excellent agreement between the two datasets is presented in FigA1 in appendix A. 317 

Initially the model was constructed containing all selected predictors through the PCA and Pearson’s 318 

correlation analysis. Afterwards, predictors were sequentially discarded to ascertain the model presenting 319 

lower second-order Akaike Information Criteria (AICc) and higher quasi-global R2 chosen to predict the 320 

suitability of GDV. 321 

Adaptive Kernel bandwidths for the GWR model fitting were used due to the spatial irregularity of the 322 

random subsample. Bandwidths Local search radius were obtained by minimizing the CrossValidation 323 

score (Bivand et al., 2008), thus minimizing the error of the local regressions.. To analyze the 324 

performance of the GWR model alone, the local and global adjusted R-squared were considered. To 325 

compare between the GWR model and the simple linear model, the distribution of the model residuals  326 

was used to identify clustered values as well as the AICc.  The spatial autocorrelation of the models 327 

residuals was evaluated with the Moran’s I test (Moran, 1950) using the Spatial Statistics Tool, and also 328 

graphically. GWR model was fitted using the spgwr package from R program (Bivand and Yu, 2017). 329 

 330 

2.6 Suitability map building 331 

To create the suitability map all predictor layers included in the GWR model were classified, similarly to 332 

Condesso de Melo et al. (2015) and Aksoy et al. (2017) . The likelihood of an interaction between the 333 

vegetation and groundwater resources was scored from 1 to 3 for each predictor. Scores were assigned 334 

after bibliographic review and expert opinion. The higher the score, the higher the likelihood, 1 335 

corresponding to a weak likelihood and 3 indicating very high likelihood. Groundwater depth was divided 336 

in two classes, according to the accessibility to shallow soil water above 1.5 m and the maximum rooting 337 

depth for Mediterranean woody species reaching 13 m, reported by Canadell et al. (1996). Throughout the 338 

manuscript water between 0 and 1.5 m depth was designated as shallow soil water, while water below 1.5 339 

m depth was considered as groundwater. The depth class between 0 and 1.5m was based on the riparian 340 

vegetation in semi-arid Mediterranean areas which is mainly composed of shrub communities (Salinas et 341 
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al., 2000) and presents a mean rooting depth of 1.5m (Silva and Rego, 2004). The most common tree 342 

species rooting depth in riparian ecosystems is normally similar to the depth of fine sediment not reaching 343 

gravel substrates (Singer et al., 2012) and not reaching levels as deep as deep-rooted species. The 344 

minimum score was given to areas where groundwater depth was too shallow (below 1.5 m) considered to 345 

belong to surface emerging groundwater dependent vegetation. Areas with steep slope were considered to 346 

have superficial runoff and less recharge and influence negatively tree density (Costa et al., 2008). Those 347 

areas were treated as less suitable to GDV. Values of the Ombrothermic Index of the summer quarter and 348 

the immediately previous month (O4) were split in 3 classes according to Jenks natural breaks, with 349 

higher suitability corresponding to higher aridity. The higher values of Ai, corresponding to lower aridity 350 

had a score of 1, because a higher humid environment would decrease the necessity of the arboreous 351 

species to use deep water sources. Accordingly, an increase in aridity (lower values of Ai) has already 352 

been shown to increase tree decline (Waroux and Lambin, 2012) and so higher Ai values corresponded to 353 

a score of 2, leaving the score 3 to intermediate values of A i.  Drainage density scoring was based on the 354 

drainage capability of drainage of the water through the hydrographical network of the river. When A low 355 

drainage density was lower (below 0.5), ) implies a high loss of water through runoff along a higher 356 

suitability scoring was given because the water lost from runoff through the hydrographic network. This 357 

water lost for shallow soil horizons would be less available to the vegetation thus favoring a higher use of 358 

water from deep groundwater reservoirs (Rodrigues, 2011). 359 

A direct compilation of the predictor layers could have been performed for the multicriteria analysis. 360 

However, some predictors might have a stronger influence on GDV’s distribution and density than others. 361 

Therefore, there was a need to define weighting factors for each layer of the final GIS multicriteria 362 

analysis. Yet, due to the intricate relations between all environmental predictors and their effects on the 363 

GDV, experts and stakeholders suggested very different scoring for a same layer. Instead the relative 364 

proportion of each predictor was used locally, according to the GWR model (Eq. 4) as weighting factors. 365 

The final GIS multicriteria analysis was performed using the Spatial Analyst Tool by applying local 366 

model equations obtained for each of the 6214 coordinates of the Alentejo map (Eq.4),  367 

SGDV= Intercept + coefp1 * [real value X1] + coefp2 * [real value X2] + coefp3 * [real value X3] + …, 368 

(4) 369 

with SGDV representing the suitability to Groundwater Dependent Vegetation, brackets representing the 370 

reclassified GIS X layer corresponding to the scoring and coefx indicating the relative proportion for the 371 

predictor x was calculated as the ratio between the modulus of the local coefficient x and the sum of the 372 

modulus of all local coefficients.. 373 

According to this equation, lower values indicate a lower occurrence of groundwater use referred 374 

representing a lower GDV suitability while higher values correspond to a higher use of groundwater 375 

referred representing a higher GDV suitability. To allow for an easier interpretation, the data on 376 

suitability to GDV was subsequently classified based on their distribution value, according to Jenks 377 

natural breaks. This resulted in 5 suitability classes: “Very poor”, “Poor”, “Moderate”, “Good” and “Very 378 

Good”. 379 
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 380 

2.7 Map evaluation 381 

Satellite derived remote-sensing products have been widely used to follow the impact of drought on land 382 

cover and the vegetation dynamics (Aghakouchaket al. 2015). Vegetation indexes offer excellent tools to 383 

assess and monitor plant changes and water stress (Asrar et al. 1989). The Normalized Difference Water 384 

Index (NDWI) (Gao, 1996) is a satellite-derived index that aims to estimate fuel moisture content (Maki 385 

et al., 2004) and leaf water content at canopy level, widely used for drought monitoring (Anderson et al., 386 

2010, Gu et al., 2007; Ceccato et al., 2002a). This index was chosen to be more sensitive to canopy water 387 

content and a good proxy for water stress status in plants. Moreover, NDWI has been shown to be best 388 

related to the greenness of Cork oak woodland’s canopy, expressed by the fraction of intercepted 389 

photosynthetically active radiation (Cerasoli et al., 2016). 390 

In order to validate the GDV suitability map obtained in our study, we calculated anomalies of the 391 

Normalized Difference Water Index (NDWI) (Gao, 1996) between an extreme dry year (2005) and the 392 

median value of the surrounding 10 year period (1999-2009). 393 

NDWI is computed using the near infrared (NIR) and the short-wave infrared (SWIR) reflectance, which 394 

makes it sensitive to changes in liquid water content and in vegetation canopies (Gao, 1996; Ceccato et 395 

al., 2002a, b).  The index computation (Eq. 5) was further adapted by Gond et al. (2004) to SPOT-396 

VEGETATION instrument datasets, using NIR (0.84 µm) and MIR (1.64 µm) channels, as described by 397 

Hagolle et al. (2005). 398 

𝑁𝐷𝑊𝐼 =  
𝜌𝑁𝐼𝑅−𝜌𝑀𝐼𝑅

𝜌𝑁𝐼𝑅+𝜌𝑀𝐼𝑅
.         (5) 399 

Following Eq. (5), NDWI data was computed using B3 and MIR data acquired from VEGETATION 400 

instrument on board of SPOT4 and SPOT5 satellites. Extraction and corrections procedures applied to 401 

optimize NDWI series are fully described in Gouveia et al. (2012). 402 

The NDWI anomaly was computed as the difference between NDWI observed in June, July and August 403 

of 2005 and the median NDWI for the considered month for the period 1999 to 2009. June was selected 404 

to provide the best signal from a still fully active canopy of woody species while the herbaceous layer had 405 

usually already finished its annual cycle and dried out. The hydrological year of 2004/2005 was 406 

characterized by an extreme drought event over the Iberian Peninsula, where less than 40% of the normal 407 

precipitation was registered in the southern area (Gouveia et al., 2009). Thus, in June 2005 the vegetation 408 

of the Alentejo region was already coping with an extreme long-term drought, which was well captured 409 

by the anomaly of the NDWI index (negative values), as formely shown by Gouveia et al. 2012. 410 

 411 

2.8 Sensitivity analysis 412 

Sensitivity analyses are conducted to identify model inputs that cause significant impact and/or 413 

uncertainty in the output.  They can be used to identify key variables that should be the focus of attention 414 
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to increase mode robustness in future research or to remove redundant inputs from the model equation 415 

because they do not have significant impact on the model output. Based on bootstrapping simulations 416 

(Tian et al., 2014), a sensitivity analysis was conducted on the GWR model by perturbing one input 417 

predictor at time while keeping the rest of the equation unperturbed. To simulate perturbations, 10000 418 

values were randomly selected within the natural range of each input variable observed in the Alentejo 419 

region. Those random values were then used to run 10000 simulations of the local equation of the GWR 420 

model for each of the 6214 coordinates of the geographical area. Local outputs corresponding to the 421 

predicted GDV density were then calculated for each perturbed input variable (Ai, O4, W, D and s). The 422 

range of output values was calculated to reflect the sensibility of the model for the perturbed input 423 

variable. The overall sensibility of the model to all input variables was estimated as the absolute 424 

difference between the minimum output value and the sum of maximum output values of all predictors, 425 

thus representing the maximum possible output range observed after perturbing all predictors.  426 

 427 

 428 

  429 
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3 Results 430 

 431 

3.1 Kernel Density 432 

Within the studied region of Portugal, the phreatophyte species Quercus suber, Quercus ilex and the 433 

suspected phreatophyte species Pinus pinea were not distributed uniformly throughout the territory. Areas 434 

with higher Kernel density (or higher distribution likelihood) were mostly spread between the northern 435 

part of Alentejo region and the western part close to the coast, with values ranging between 900 and 1200 436 

(fig03). Two clusters of high density also appeared below the Tagus river. The remaining study area 437 

presented mean density values, with a very low density densities in the area of the river Tagus and in the 438 

center south.  439 

 440 

3.2 Environmental conditions 441 

The exploratory analysis of the variables performed through the PCA and Pearson correlation matrix 442 

confirmed the presence of multicollinearity. From the initial variables (Table 1), Thickness (T), number 443 

of months with severe and extreme SPEI (respectively, SPEIs and  SPEIe), Annual Ombrothermic Index 444 

(O), Ombrothermic Index of the hottest month of the summer quarter(O1) and Ombrothermic Index of the 445 

summer quarter (O3) were discarded, while the variables slope (s), drainage density (D), soil type (St), 446 

groundwater depth (W), Ai and O4 were maintained for analysis (figA2 and Table A2 in appendix). A 447 

sequential removal of one predictor from the initial modeling including six variables was performed 448 

(Table 2), after which the model was reduced to 5 variables, with the highest global R2 (0.99) and the 449 

lowest AICc (18050.34). Therefore, out of the initial 12 considered (fig04) were endorsed to explain the 450 

variation of the Kernel density of GDV in Alentejo the following variables: Ai, O4, W, D and s. 451 

In most part of the Alentejo region, slope was below 10% (fig04e) and coastal areas presented the lowest 452 

values and variability. Highest values of groundwater depth (fig04c), reaching a maximum of 255 m, 453 

were found in the Atlantic margin of the study area, mainly in Tagus and Sado river basins. Several other 454 

small and confined areas in Alentejo also showed high values, corresponding to aquifers of porous or 455 

karst geological types. Most of the remaining study area showed groundwater depths ranging between 1.5 456 

m and 15 m. Figures 04a and 04b indicate the southeast of Alentejo as the driest area, given by minimum 457 

values of the aridity index (0.618), and much higher potential evapotranspiration that precipitation. 458 

Besides, O4 presented a maximum value (0.7141.166) for this region (meaning that soil water availability 459 

was not compensated by the precipitation of the previous M-J-J-A months). This is also supported by the 460 

higher drainage density in the southeast which indicates a lower prevalence of shallow soil water due to 461 

higher stream length by area. 462 

Combining all variables, it was possible to distinguish two sub-regions with distinct conditions: the 463 

southeast of Alentejo and the Atlantic margin. The latter is mainly distinguished by its low slope areas, 464 

shallower groundwater and more humid climatic conditions than the southeast of Alentejo. 465 
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 466 

3.3 Regression models 467 

The best model to describe the GDV distribution was found through a sequential discard of each variable 468 

(Table 2) and corresponded to the model with a distinct lower AICc (18050.76) compared with the second 469 

lowest AICc (27389.74) and showed an important increase in quasi-global R2 (from 0.926 for the second 470 

best model to 0.992 for the best one). The best model fit was obtained with Ai, O4, W, D and s. This final 471 

model was then applied to the GIS layers to map the suitability of GDV in Alentejo, according to Eq. 6. 472 

SGDV = Intercept + Ai coefp * [reclassified Ai value] + O4 coefp * [reclassified O4 value] + W coefp * 473 

[reclassified W value] + D coefp * [reclassified D value] + s coefp * [reclassified s value], 474 

(6) 475 

Local adjusted R-squared of the GWR model was highly variable throughout the study area, ranging from 476 

0 to 0.99 (fig05). Also, the local R2 values below 0.5 corresponded to only 0.3% of the data. The lower R2 477 

values were distributed throughout the Alentejo area, with no distinct pattern. The overall fit of the GWR 478 

model was high (Table 3). The adjusted regression coefficient indicated that 99% of the variation in the 479 

data was explained by the GWR model, while only 2% was explained by the simple linear model (Table 480 

3). Accordingly, GWR had a substantially lower AICc when compared with the simple linear model, 481 

indicating a much better fit. 482 

The spatial autocorrelation given by the Moran Index (Griffith, 2009; Moran 1950) retrieved from the 483 

geospatial distribution of residual values was significant for both the GWR and the linear models, 484 

indicating that observations geospatially are dependent on each other to a certain level . However, this 485 

dependence was substantially lower for the GWR model than for the linear model (z-score of 50.24 and 486 

147.56 respectively). In the GWR model (fig06a) the positive and negative residual values were much 487 

more randomly scattered throughout the study region than in the linear model (fig06b), highlighting a 488 

much better performance of the GWR, which minimized residual autocorrelation. Indeed, in the linear 489 

model (fig06b), positive residuals were condensed in the right side of Tagus and Sado river basins, while 490 

negative values were mainly present on the left side of the Tagus river and in the center-south of Alentejo.  491 

The spatial distribution of the coefficients of GWR predictors is presented in Fig07. They were later used 492 

for the computation of the GDV suitability score for each data point (Eq.6). The coefficient variability 493 

was three times higher for the Ai as compared to O4 (fig08a), reaching 66% and 22% respectively. For W, 494 

D and s, the coefficient variation was much lower, representing only about 6.2%, 3.8% and 1.2% of the 495 

total variation observed in the coefficients, respectively. The remaining variables showed a median close 496 

to 0 and the O4 was the second with higher variability followed by the W. The coefficient median values 497 

were, respectively, -3.40, 0.29, -0.015, -0.018 and 0.022 for Ai, O4, W, D and s variables. 498 

The distributions of negative coefficients were similar for Ai and the O4 variables (fig07a and fig07b), 499 

with lower values in the southern coastal area, and in the Tagus river watershed. The highest absolute 500 

values were mostly found for Ai in the southern area of the Alentejo region and on smaller patches in the 501 

northern region. In the center and eastern areas of Alentejo, a higher weight of the groundwater depth 502 

https://www.sciencedirect.com/science/article/pii/S0034425714000212#bbb0090
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coefficient could be found (fig07c), approximately matching a higher influence of slope (fig07e). The 503 

groundwater depth seemed to have almost no influence on GDV density in the Tagus river watershed, 504 

expressed by coefficients mostly null around the riverbed (fig07c). The coefficient distribution of D and 505 

O4 shows some similarities, mostly in the center and southeast of Alentejo (fig07d). Extreme values of O4 506 

coefficients were mostly concentrated in the eastern part of the Tagus watershed and in the southern 507 

coastal area included in the Sado watershed. Slope coefficient values showed the lowest amplitude 508 

throughout the study area (fig07e), with prevailing high positive values gathered mainly in the center of 509 

the study area and in the Tagus river watershed (northwest of the study center). 510 

 511 

3.4 GDV Suitability map 512 

The classification of the 5 endorsed environmental predictors is presented in Table 4 and their respective 513 

maps in figure B1 in appendix B. Rivers Tagus and Sado had an overall large impact on GDV’s 514 

suitability for each predictor, with the exception of W. This is due to a higher water availability reflected 515 

by the values of O4, D and lower slopes due to the alluvial plains of the Tagus river (figs. B1b,,d and e in 516 

appendix B). Moreover, those regions presented higher humidity conditions (through analysis of the Ai in 517 

fig B1a in appendix B) and groundwater depths outside the optimum range (Fig. B1c in appendix B), 518 

therefore less suitable for GDV. Optimal conditions for groundwater access were mainly gathered in the 519 

interior of the study region (fig. B1c in appendix B), with the exception of some confined aquifers in the 520 

northeast and southeast of the study region. Favorable slopes for GDV were mostly highlighted in the 521 

Tagus river basin area, where a good likelihood of interaction between GDV and groundwater could be 522 

identified (fig. B1e in appendix B).  523 

The final map illustrating the suitability to GDV is shown in Fig. 09. The largest classified area (8 524 

787km2) presented a very poor suitability to GDV, corresponding  but corresponded only to 525 

approximately a quarter of the total study area (29%). This percentage was followed closely by the 526 

moderate suitability to GDV which occupied 26% (8000km2). Overall, the two less suitable classes (very 527 

poor and poor) represented 47% of the study area, whilst the two best ones and the moderate class (very 528 

good, good and moderate) represented 53%. Consequently, most of the study area showed moderate to 529 

high suitability to GDV. The very good and good suitability classes cover an arch from the most south 530 

and northeastern area of the Alentejo region, passing through the Sado and southern and northern 531 

Guadiana river basins and close to the coastal line at 38ºN. Most of the center of the study area showed 532 

moderate to very good suitability do to GDV, while the areas corresponding to the alluvial deposits of the 533 

Tagus river showed poor to very poor suitability.  534 

The suitability to GDV in the Alentejo region was mainly driven by Ai, given that the highest coefficient 535 

variability was associated to the Ai predictor in the GWR model equation. This is also supported by the 536 

similar distribution pattern observed between the suitability map and the aridity index predictor (fig04a 537 

and fig09). Areas with good or very good suitability mostly matched areas of Ai with score 3, 538 

corresponding to aridity index values above 0.75 (Fig. B1a in appendix B). On the other hand, the lowest 539 
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suitability classes showed a good agreement with the lowest scores given to W (fig. B1c in appendix B), 540 

mostly in the coastal area and in the Tagus river basin.  541 

 542 

3.5 Map evaluation 543 

To evaluate the suitability map developed in the present study, the results were compared with the NDWI 544 

anomaly considering the month of June of the dry year of 2005 in the Alentejo area (fig10). Both maps 545 

(figs 09 and 10) showed similar patterns, with higher presence of GDV satisfactorily matching areas with 546 

the lowest NDWI anomaly. From June to September in a extremely dry year, non-DGV plants can be 547 

expected to experience a severe drought stress as in any regular summer period. Thus, those plants should 548 

show almost zero anomaly. By opposition, GDV plants coping well with usual summer drought can be 549 

expected to suffer an unusual stress under an extreme dry year even having access to groundwater (Kurz-550 

Besson et al. 2006 & 2014, Otieno et al. 2006, David et al. 2013), with a negative impact of groundwater 551 

drawdown (Antunes et al., 2018). Therefore, GDV plants should show negative NDWI anomalies. 552 

The NDWI anomaly was mostly negative over the Alentejo territory indicating a lower leaf water content 553 

in June and July 2005 than usual water stress in the vegetation leaves. The loss of water attributed Water 554 

stress due to the extreme drought was maximum (green color) in geographical areas matchingwas mostly 555 

matching geographical areas with thethe highest GDV suitability (fig09). It wasWater loss was less 556 

pronounced (mostly yellowish) in the central area of the Alentejo region between the Guadiana and Sado 557 

river basins, where the vegetation presents a loweris less dense density (fig03). Areas with positive/null 558 

values of NDWI anomaly values (indicating no NDWI changecorresponding to geographical areas with a 559 

higher water availability) were mostly distributed on the coastal area of the Atlantic ocean or close to 560 

riverbeds, namely in the Tagus and Sado floodplains (brown color, fig10), matching areas of very poor 561 

suitability for GDV in Figure 09.  562 

Despite an overall good agreement, the adequation between the density, suitability and NDWI maps was 563 

not perfect. Indeed, some patches showing a high vegetation occurrence/density and large NDWI 564 

anomalies also matched an area of very poor suitability for GDV.  565 

Note that green and yellow areas in June 2005 (fig 10a) progressively turned to brown color in July and 566 

August 2005 (fig10c), suggesting that the corresponding vegetation recovered from the increasing water 567 

stress, despite the intensification of drought throughout the summer period.  568 

 569 

3.6 Sensitivity analysis 570 

The sensitivity of the model in response to the perturbation of each one of the input variables (A i, O4, W, 571 

D and s) is presented on Figure 11a to Figure11e. The overall sensitivity of the model is further presented 572 

on Figure 11f. For any input variable, the model sensitivity (fig11a to 11e) was higher where absolute 573 

values of local coefficients were also higher (fig07a to 07e). The maximum impact on GDV’s density, 574 

corresponding to the maximum output range observed after perturbation (fig08b), was observed when 575 

perturbing the Aridity index, accounting for 66% of the total variability. The second highest impact was 576 
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observed after perturbing the ombrothermic index. The variability in the model outputs observed after 577 

perturbing the remaining variables O4, W, D and s accounted for 22%, 7%, 4% and 1% of the total 578 

accumulated variability, respectively (fig08b). The highest variability in the GWR model output was 579 

mostly observed in the central part of the southern half of the Alentejo region, as well as close to the main 580 

channels of the Guadiana and Tagus rivers (fig11f). Furthermore, areas with higher model sensitivity 581 

(fig11f) significantly matched higher model performance expressed by R2 (fig05), assessed with a 582 

Kruskall-Wallis test (p<0.0001***). 583 

  584 
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4 Discussion 585 

 586 

4.1 Modeling approach 587 

The Geographically Weighted Regression model has been used before in ecological studies (Li et al., 588 

2016; Mazziotta et al., 2016), but never for the mapping of GDV, to our knowledge. This approach 589 

considerably improved the goodness of fit when compared to the linear model, with a coefficient of 590 

regression (R2) increasing from 0.02 to 0.99 at the global level, and an obvious reduction of residual 591 

clustering. Despite those improvements, it has not been possible to completely eliminate the residual 592 

autocorrelation after fitting the GWR model.  593 

Kernel density for the study area provided a strong indication of presence and abundance of the tree 594 

species considered as GDV proxy for modeling.  The Mediterranean cork woodlands dominate about 76% 595 

of the Alentejo region (while only 7% is covered by stone pine). In those systems, tree density is known 596 

to be a tradeoff between climate drivers (Joffre 1999, Gouveia & Freitas 2008) and the need for space for 597 

pasture or cereal cultivation in the understory (Acacio & Holmgreen 2014). In our study, the 598 

anthropologic management of agroforestry systems in the Alentejo region has not been taken into 599 

account. According to a recent study of Cabon et al. (2018) where thinning played an important role in Q. 600 

ilex density in a Mediterranean climate site, anthropologic management could, at least partially, explain 601 

the non-randomness of the residual distribution after GWR model fitting as well as the mismatches 602 

between the GDV and the NDWI evaluation maps.  603 

Another explanation of the reminiscent autocorrelation after GWR fitting could be the lack of 604 

groundwater dependent species in the model. For example, Pinus pinaster Aiton was excluded due to its 605 

more humid distribution in Portugal, and due to conflicting conclusions driven from previous studies to 606 

pinpoint the species as a potential groundwater user (Bourke, 2004; Kurz-Besson et al., 2016). In 607 

addition, olive trees were also excluded although the use of groundwater by an olive orchard has been 608 

recently proved (Ferreira et al., 2018), however with a weak contribution of groundwater to the daily root 609 

flow, and thus with no significant impact of groundwater on the species physiological conditions. 610 

Methods previously used by Doody et al., (2017) and Condesso de Melo et al. (2015) to map specific 611 

vegetation relied solely on expert opinion, e.g. Delphi panel, to define weighting factors of environmental 612 

information for GIS multicriteria analysis. In our study, the GWR modelling approach was used to assess 613 

weighting factors for each environmental predictor in the study area, to build a suitability map for the 614 

GDV in southern Portugal. This allowed an empirical determination of the local relevance of each 615 

environmental predictor in GDV distribution, thus avoiding the inevitable subjectivity of Delphi panels. 616 

Also, by combining the GWR and GIS approaches we believe the final suitability map provides a more 617 

reliable indication of the higher likelihood for groundwater dependency and a safer appraisal of the 618 

relative contribution of groundwater by facultative deep-rooted phreatophytes species in the Alentejo 619 

region. 620 

 621 
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Modelling of the entire study area at a regional level did not provide satisfactory results. Therefore, we 622 

developed a general model varying locally according to local predictor coefficients. The local influence of 623 

each predictor was highly variable throughout the study area, especially for climatic predictors reflecting 624 

water availability and stress conditions. The application of the GWR model did not only allowed for a 625 

localized approach, by decreasing the residual error and autocorrelation over the entire studied region, but 626 

also provided insights on how GDV’s density can be explained by the main environmental drivers locally.  627 

The GWR model appeared to be highly sensitive to coefficient fitting corresponding to a good model fit, 628 

as expected in a spatially varying model. As so, high coefficients are highly reliable in the GWR model in 629 

our study. Yet, the high spatial variability of local coefficients might reflect a weak physical meaning of 630 

the GWR model that challenges its direct application in other regions, even under similar climate 631 

conditions. Predictor coefficients showed a similar behavior in the spatial distribution of the coefficients. 632 

This was noticeable for the aridity index and the groundwater depth in the Tagus and Sado river basins. 633 

Groundwater depth had no influence on GDV’s density in these areas and similarly, the coefficient of 634 

aridity index showed a negative effect of increased humidity on GDV’s density. In addition, a cluster of 635 

low drainage density values matched these areas. Due to the lower variability and impact of the drainage 636 

density and slope on the GDV’s density, these variables might not impact significantly this vegetation 637 

density in future climatic scenarios. 638 

 639 

4.2 Suitability to Groundwater Dependent Vegetation  640 

According to our results, more than half of the study area appeared suitable for GDV. However, one 641 

quarter of the studied area showed lower suitability to GDV. The lower suitability to this vegetation in the 642 

more northern and western part of the studied area can be explained by less favorable climatic and 643 

hydrological conditions, resulting from the combination of a high aridity index and low groundwater 644 

depth scores (equivalent to high shallow soil water availability), corresponding includingto the coastal 645 

area and in the Tagus river basin. Those are the moist humid areas of the study area, where GDV is 646 

unlikely to rely on groundwater during the drought season because rainfall water stored in shallow soil 647 

horizons is mostly available.  648 

The proxy species (Cork oak, Holm oak and Stone pine) can perfectly grow under sub-humid  649 

Mediterranean climate conditions, without relying as much on groundwater to survive as in more xeric 650 

semi-arid areas (Abad Vinas et al., 2016). As facultative phreatophyte species, their presence/abundance 651 

is only an indication of a possible use of groundwater. The study provided by Pinto et al. (2013) have 652 

shown that Cork oak for example can perfectly thrive were very shallow groundwater is available while 653 

suffering drought stress were groundwater source is lower but still extracted by trees. Also, former studies 654 

have shown that in the extreme dry year of 2005, Cork oak experienced a severe drought stress, close to 655 

the cavitation threshold, although its main water source was groundwater (David et al. 2013, Kurz-Besson 656 

et al. 2006, 2014). These findings can explain that part of the maximum density (Fig. 04) matches the area 657 

of very poor suitability for GDV (Fig. 09). Elsewhere, the better agreement between the two maps reflects 658 

the dominance of the aridity index on the vegetation’s occurrence. 659 
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Groundwater depth appeared to have a lower influence on GDV density than climate drivers, as reflected 660 

by the relative low magnitude of the W coefficient and outputs of our model outcomes. This surprisingly 661 

disagrees with our initial hypothesis because groundwater represents a notable proportion of the 662 

transpired water of deep-rooting phreatophytes, reaching up to 86% of absorbed water during drought 663 

periods and representing about 30.5% of the annual water absorbed by trees (David et al. 2013, Kurz-664 

Besson et al. 2014). Nonetheless, this disagreement should be regarded cautiously due to the poor quality 665 

data used and the complexity required for modelling the water table depths. Besides, the linear 666 

relationship between water depth and topography applied to areas of undifferentiated geological type can 667 

be weakened by a complex non-linear interaction between topography, aridity and subsurface 668 

conductivity (Condon and Maxell, 2015). Moreover, the high variability in geological media, topography 669 

and vegetation cover at the regional scale did not allow to account for small changes in groundwater 670 

depth (<15 m deep), which has a huge impact on GDV suitability (Canadell et al., 1996; Stone and 671 

Kalisz, 1991). Indeed, a high spatial resolution of hydrological database is essential to rigorously 672 

characterize the spatial dynamics of groundwater depth between hydrographic basins (Lorenzo-Lacruz et 673 

al., 2017). Unfortunately, such resolution was not available for our study area.  674 

The aridity and ombrothermic indexes were the most important predictors of GDV density in the Alentejo 675 

region, according to our model outcomes. Our results agree with previous findings linking tree cover 676 

density and rooting depth to climate drivers such as aridity, at a global scale (Zomer et al., 2009; Schenk 677 

and Jackson, 2002) and specifically for the Mediterranean oak woodland (Gouveia and Freitas 2008, 678 

Joffre et al. 1999). Through previous studies showing the similarities in vegetation strategies to cope with 679 

water scarcity in the Mediterranean basin (Vicente-Serrano et al., 2013) or the relationship between 680 

rooting depth and water table depth increased with aridity at a global scale (Fan et al., 2017) we can admit 681 

that the most relevant climate drivers in this study are similarly important to map GDV in other semi-arid 682 

regions. In this study, the most important environmental variables that define GDV’s density in a semi-683 

arid region were identified, helping to fill the gap of knowledge for modelling this type of vegetation. 684 

However, the coefficients to be applied when modelling each variable need to be calculated locally, due 685 

to their high spatial variability. 686 

Temporal data would further help discriminate areas of optimal suitability to GDV, either during the wet 687 

and the dry seasons, because the seasonal trends in groundwater depth are essential under Mediterranean 688 

conditions. Investigations efforts should be invested to fill the gap either by improving the Portuguese 689 

piezometric monitoring network, or by assimilating observations with remote sensing products focused on 690 

soil moisture or groundwater monitoring. This has already been performed for large regional scale such as 691 

GRACE satellite surveys, based on changes of Earth’s gravitational field. So far, these technologies are 692 

not applicable to Portugal’s scale, since the coarse spatial resolution of GRACE data only allows the 693 

monitoring of large reservoirs (Xiao et al. 2015). 694 

 695 

4.3 Validation of the results 696 
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The understory of woodlands and the herbaceous layer of grasslands areas in southern Portugal usually 697 

ends their annual life cycles in June (Paço et al. 2007), while the canopy of woody species is still fully 698 

active with maximum transpiration rates and photosynthetic activities (Kurz-Besson et al. 2014, David et 699 

al. 2007, Awada et al. 2003). This is an ideal period of the year to spot differential response of the canopy 700 

of woody species to extreme droughts events using satellite derived vegetation indexes (Gouveia 2012).   701 

The spatial patterns of NDWI anomaly in June 2005 seem to indicate that the woody canopy showed a 702 

strong loss of canopy water in the areas were tree density and GDV suitability were higher (figs03, 09 and 703 

10). This occurred although trees minimized the loss of water in leaves with a strong stomatal limitation 704 

in response to drought (Kurz-Besson et al. 2014, Grant et al. 2010). In the most arid area of the region 705 

were Holm oak is dominant but tree density is much lower, the NDWI anomaly was generally less 706 

negative thus showing a lower water stress or higher canopy water content.  Holm oak (Quercus ilex spp 707 

rotundifolia) is well known to be the most resilient species to dry and hot conditions in Portugal, due to 708 

its capacity to use groundwater,  and associated to a higher water use efficiency (David et al. 2007). 709 

Furthermore, the dynamics of NDWI anomaly spatial patterns over the summer period (fig10a, b and c) 710 

pointed out that the lower water stress status on the map is progressively spreading from the most arid 711 

areas to the milder ones from June to August 2005, despite the intensification of drought conditions. This 712 

endorses the idea that trees manage to cope with drought by relying on deeper water sources in response 713 

to drought, replenishing leaf water content despite the progression and intensification of drought 714 

conditions. Former studies support this statement by showing that groundwater uptake and hydraulic lift 715 

were progressively taking place after the onset of drought by promoting the formation of new roots 716 

reaching deeper soil layers and water sources, typically in from July onwards, for cork oak in the Alentejo 717 

region (Kurz-Besson et al., 2006, 2014). Root elongation following a declining water table has also been 718 

reported in a review on the effect of groundwater fluctuations on phreatophyte vegetation (Naumburg et 719 

al. 2005). 720 

Our results and the dynamics of NDWI over summer 2005 tend to corroborate the studies of Schenk and 721 

Jackson (2002) and Fan et al. (2017), by suggesting a larger/longer dependency of GDV on groundwater 722 

with higher aridity. Further investigation needs to be carried on across aridity gradients in Portugal and 723 

the Iberian Peninsula to fully validate this statement, though. 724 

Overall, the map of suitability to GDV showed an excellent good agreement with the NDWI validation 725 

maps. The main areas showing good GDV suitability  and highest NDWI anomalies are mostly matching 726 

in both maps. The good agreement between our GDV suitability maps, and NDWI dynamic maps opens 727 

the possibility to apply and extend the methodology to larger geographical areas such as the Iberian 728 

Peninsula, or and to the simulation of the impact of climate changes on the distribution of groundwater 729 

dependent species in the Mediterranean basin.  730 

Simulations of future climate conditions based on RCP4.5 and RCP8.5 emission scenarios (Soares et al., 731 

2015, 2017) predict a significant decrease of precipitation for the Guadiana basin and overall decrease for 732 

the southern region of Portugal within 2100. Agroforestry systems relying on groundwater resources, 733 

such as cork oak woodlands, may show a decrease in productivity and ecosystem services or even face 734 

sustainability failure. Many studies carried out on oak woodlands in Italy and Spain identified drought as 735 
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the main driving factor of tree die-back and as the main climate warning threatening oak stands 736 

sustainability in the Mediterranean basin (Gentilesca et al. 2017). An increase in aridity and drought 737 

frequency for the Mediterranean (Spinoni et al., 2017) will most probably induce a geographical shift of 738 

GDV vegetation toward milder/wetter climates (Lloret et al., 2004; Gonçalez P., 2001).  739 

 740 

4.4 Key limitations 741 

The GWR modelling approach used to estimate weighting factors is mostly stochastic. Consequently, the 742 

large spatial variability and symmetrical fluctuations around zero (Fig 08b) denote a weak physical 743 

meaning of the estimated coefficients, at least at the resolution chosen for the study. Also, the local nature 744 

of the regression coefficients makes the model difficult to directly apply in other regions, even with 745 

similar climate conditions, unless the methodology is properly fitted to local conditions/predictors. 746 

With the methodology applied in this study, weighting factors can be easily evaluated solely from local 747 

and regional observations of the studied area. Nonetheless, the computation of model coefficients or 748 

expert opinion to assess weighting factors, require recurrent amendments, associated with updated 749 

environmental data, species distribution and revised expert knowledge (Doody et al., 2017).  750 

The evolution of groundwater depth in response to climate change is difficult to model on a large scale 751 

based on piezometric observations because it requires an excellent knowledge of the components and 752 

dynamics of water catchments. Therefore, a reliable estimation of the impact of climate change on GDV 753 

suitability in southern Portugal could only been performed on small scale studies. However, the GWR 754 

model appeared to be much more sensitive to climate drivers than the other predictors, given that 88% of 755 

the model outputs variability was covered by climate indexes Ai and O4. Nevertheless, changes in climate 756 

conditions only represent part of the water resources shortage issue in the future. Global-scale changes in 757 

human populations and economic progresses also rules water demand and supply, especially in arid and 758 

semi-arid regions (Vörösmarty et al., 2000). A decrease in useful water resources for human supply can 759 

induce an even higher pressure on groundwater resources (Döll, 2009), aggravating the water table 760 

drawdown caused by climate change (Ertürk et al., 2014). Therefore, additional updates of the model 761 

should include human consumption of groundwater resources, identifying areas of higher population 762 

density or intensive farming. Future model updates should also account for the interaction of deep rooting 763 

species with the surrounding understory species. In particular, shrubs surviving the drought period, which 764 

can benefit from the redistribution of groundwater by deep rooted species (Dawson, 1993; Zou et al., 765 

2005).  766 
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5 Conclusions 767 

Our results show a highly dominant contribution of water scarcity of the last 30 years (Aridity and 768 

Ombrothermic indexes) on the density and suitability of deep-rooted groundwater dependent species in 769 

southern Portugal. Therefore, in geographical regions of the world with similar semi-arid climate 770 

conditions (Csa according to Köppen-Geigen classification, Peel et al. 2007) and similar physiological 771 

responses of the groundwater dependent vegetation (Vicente-Serrano et al., 2013), the use of the aridity 772 

and ombrothermic indexes could be used as first approximation to model and map deep rooted 773 

phreatophyte species and the evolution of their distribution in response to climate changes. The 774 

contribution of groundwater depth was lower than initially expected, however, this might be 775 

underestimated due to the poor quality of the piezometric network, especially in the central area of the 776 

studied region.  777 

The current pressure applied by human consumption of water sources has reinforced the concern on the 778 

future of economic activities dependent on groundwater resources. To address this issue, several countries 779 

have developed national strategies for the adaptation of water sources for Agriculture and Forests against 780 

Climate Change, including Portugal (FAO, 2007). In addition, local drought management as long-term 781 

adaptation strategy has been one of the proposals by Iglesias et al. (2007) to reduce the climate change 782 

impact on groundwater resources in the Mediterranean. The preservation of Mediterranean agroforestry 783 

systems, such as cork oak woodlands and the recently associated P. pinea species, is of great importance 784 

due to their high socioeconomic value and their supply of valuable ecosystem services (Bugalho et al., 785 

2011). Management policies on the long-term should account for groundwater resources monitoring, 786 

accompanied by defensive measures to ensure agroforestry systems sustainability and economical income 787 

from these Mediterranean ecosystems are not greatly and irreversibly threatened. 788 

Our present study, and novel methodology, provides an important tool to help delineating priority areas of 789 

action for species and groundwater management, at regional level, to avoid the decline of productivity 790 

and cover density of the agroforestry systems of southern Portugal. This is important to guarantee the 791 

sustainability of the economical income for stakeholders linked to the agroforestry sector in that area. 792 

Furthermore, mapping vulnerable areas at a small scale (e.g.by hydrological basin), where reliable 793 

groundwater depth information is available, should provide further insights for stakeholder to promote 794 

local actions to mitigate climate change impact on GDV.  795 

Based on the methodology applied in this work, future predictions on GDV suitability, according to the 796 

RCP4.5 and RCP8.5 emission scenarios will be shortly introduced, providing guidelines for future 797 

management of these ecosystems in the allocation of water resources. 798 

  799 
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Figure and Table Legends 1203 

 1204 

Table 1: Environmental variables for characterization of the suitability of GDV in the study area. 1205 

Table 2: Effect of variable removal in the performance of GWR model linking the Kernel density of Quercus suber, 1206 

Quercus ilex and Pinus pinea (SGDV) to predictors Aridity Index (Ai); Ombrothermic Index of the summer quarter 1207 

and the immediately previous month (O4); Slope (s); Drainage density (D); Groundwater Depth (W) and Soil type 1208 

(St). The model with all predictors is highlighted in grey and the final model used in this study is in bold.  1209 

Table 3: Comparison of Adjusted R-squared and second-order Akaike Information Criterion (AICc) between the simple 1210 

regression and the GWR models. 1211 

Table 4: Classification scores for each predictor. A score of 3 to highly suitable areas and 1 to highly less suitable for 1212 
GDV. 1213 

Table A1: Classification scores for soil type predictor.  1214 

Table A2: Correlations between predictor variables and principal component axis. The most important predictors for 1215 

each axis (when squared correlation is above 0.3) are showed in bold. The cumulative proportion of variance 1216 

explained by each principal component axis is shown at the bottom of the table. 1217 

 1218 

Figure 01: Study area. On the left the location of Alentejo in the Iberian Peninsula; on the right, the elevation 1219 

characterization of the study area with the main river courses from Tagus, Sado and Guadiana basins. Names of the 1220 

main rivers are indicated near to their location in the map. 1221 

Figure 02: Large well and piezometer data points used for groundwater depth calculation. Squares represent 1222 

piezometers data points and triangle represent large well data points.  1223 

Figure 03: Map of Kernel Density weighted by cover percentage of Q. suber, Q. ilex and P. pinea. The scale unit 1224 

represent the number of occurrences per 10 km search radius (~314 km2). 1225 

Figure 04: Map of environmental layers used in model fitting. ((a) – Aridity Index; (b) – Ombrothermic Index of the 1226 
summer quarter and the immediately previous month; (c) – Groundwater Depth; (d) –Drainage density; (e) –Slopea) – 1227 
Soil type; (b) – Slope; (c) – Groundwater Depth; (d) – Ombrothermic Index of the summer quarter and the immediately 1228 
previous month and (e) – Aridity Index. 1229 

Figure 05: Spatial distribution of local R2 from the fitting of the Geographically Weighted Regression. 1230 

Figure 06: Spatial distribution of model residuals from the fitting of the Simple Linear model (a) and Geographically 1231 
Weighted Regression (b). 1232 

Figure 07: Map of local model coefficients for each variable. (a) – Aridity Index; (b) - Ombrothermic Index of the 1233 
summer quarter and the immediately previous month; (c) – Groundwater Depth; (d) – Drainage density and (e) - Slope. 1234 

Figure 08: Boxplot of GWR model coefficient values for each predictor (a) and boxplot of the GWR model outputs, 1235 
corresponding to GDV’s density after each of the predictors was disturbed for the sensitivity analysis (b). Ai stands for 1236 
Aridity Index; O4 for the ombrothemic index of the hottest month of the summer quarter and the immediately previous 1237 
month; W for the groundwater depth; D for the drainage density and s for the slope. Error bars represent the 25th and 1238 
75th percentile while crosses indicate the 95th percentile. 1239 

Figure 09: Suitability map for Groundwater Dependent Vegetation. 1240 

Figure 10: Spatial patterns of NDWI anomaly values considering the months of June, July and August of the extremely 1241 
dry year of 2005, in reference to the same months of the period 1999-2009, in the Alentejo region. Dark brown colors 1242 
(corresponding to extreme negative NDWI anomaly values) indicate the vegetation that experienced the highest loss of 1243 
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water in leaves in summer 2005 as compared to the reference period 1999-2009, while light brown colors show NDWI 1244 
anomaly values very close to the usual vegetation moisture condition of the considered month. NDWI anomaly 1245 
considering the months of June, July and August  of the extremely dry year of 2005, in reference to the same months 1246 
of the period 1999-2009, in the Alentejo region. Green colors (corresponding to low NDWI values) indicates vegetation 1247 
canopy undergoing a higher water stress than the average reference period 1999-2009.  1248 

Figure 11: Sensitivity analysis performed on the GWR model by perturbing one of the predictors, while remaining 1249 

the rest of the model equation constant. Graphics present the output range of GDV’s density when the aridity index 1250 

(a), the ombrothermic index (b), the groundwater depth (c), the drainage density (d) or the slope variable (e) was 1251 

perturbed; and the maximum possible range combining all predictors (f). The 95th percentile was used for the 1252 

maximum value of the color bar for a better statistical representation of the spatial variability.  1253 

 1254 

Figure A1: Boxplot of the main predictors used for the Geographically Weighted Regression model fitting (top) and 1255 

the response variable (below), for the total data (left) and for the 5% subsample (right). 1256 

Figure A2: Correlation plot between all environmental variables expected to affect the presence of the Groundwater 1257 

Dependent Vegetation. O1, O3 and O4 are ombrothermic indices of, respectively, the hottest month of the summer 1258 

quarter, the summer quarter and the summer quarter and the immediately previous month; O is the annual 1259 

ombrothermic index, SPEIe and SPEIs are, respectively, the number of months with extreme and severe Standardized 1260 

Precipitation Evapotranspiration Index; Ai is Aridity index; W is groundwater depth; D is the Drainage density; T is 1261 

thickness and St refers to soil type. 1262 

Figure B1 – Predictors maps after score classification. (a) – Aridity Index; (b) – Ombrothermic Index of the summer 1263 

quarter and the immediately previous month; (c) – Groundwater Depth; (d) – Drainage density and (e) – Slope. 1264 

 1265 

  1266 
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Table 1: Environmental variables for the characterization of the suitability of GDV in the study area. 1267 

Variable code Variable type Source Resolution and Spatial extent 

s Slope (%) This work 0.000256 degrees (25m) raster resolution 

St Soil type in the first soil layer 

SNIAmb (© Agência 

Portuguesa do Ambiente, 

I.P., 2017) 

Converted from vectorial to 0.000256 

degrees (25m) resolution raster 

T Soil thickness (cm) 
EPIC WebGIS Portugal 

(Barata et al., 2015) 

Converted from vectorial to 0.000256 

degrees (25m) resolution raster 

W Groundwater Depth (m) This work 0.000256 degrees (25m) raster resolution 

D Drainage Density This work 0.000256 degrees (25m) raster resolution 

SPEIs 
Number of months with severe 

SPEI 
This work 

0.000256 degrees (25m) raster resolution 

Time coverage 1950-2010 

SPEIe 
Number of months with extreme 

SPEI 
This work 

0.000256 degrees (25m) raster resolution 

Time coverage 1950-2010 

Ai Aridity Index This work 
0.000256 degrees (25m) raster resolution 

Time coverage 1950-2010 

O 

Annual Ombrothermic Index 

Annual average (January to 

December) 

This work 
0.000256 degrees (25m) raster resolution 

Time coverage 1950-2010 

O1 

Ombrothermic Index of the 

hottest month of the summer 

quarter (J, J and A) 

This work 
0.000256 degrees (25m) raster resolution 

Time coverage 1950-2010 

O3 
Ombrothermic Index of the 

summer quarter (J, J and A) 
This work 

0.000256 degrees (25m) raster resolution 

Time coverage 1950-2010 

O4 

Ombrothermic Index of the 

summer quarter and the 

immediately previous month 

(M, J, J and A) 

This work 
0.000256 degrees (25m) raster resolution 

Time coverage 1950-2010 

 1268 

  1269 



41 
 

Table 2: Effect of variable removal in the performance of GWR model linking the Kernel density of Quercus 1270 

suber, Quercus ilex and Pinus pinea (SGDV) to predictors Aridity Index (Ai); Ombrothermic Index of the 1271 

summer quarter and the immediately previous month (O4); Slope (s); Drainage density (D); Groundwater 1272 

Depth (W); and Soil type (St). The model with all predictors is highlighted in grey and the final model used in 1273 

this study is in bold. 1274 

Type Model Discarded predictor AICc Quasi-global R2 

GWR SGDV~ O4 + Ai + s + D + W + St 
 

27389.74 0.926481 

GWR SGDV ~ O4 + s + D + W + St Ai 28695.14 0.9085754 

GWR SGDV ~ Ai + s + D + W + St O4 28626.88 0.9095033 

GWR SGDV ~ O4 + Ai + s+ W + St D 27909.86 0.9184337 

GWR SGDV ~ O4 + Ai + D + W + St s 27429.55 0.924176 

GWR SGDV ~ O4 + Ai + s + D + St W 27742.67 0.9208344 

GWR SGDV ~ O4 + Ai + s + D + W St 18050.76 0.9916192 

 1275 

Table 3:  Comparison of Adjusted R-squared and second-order Akaike Information Criterion (AICc) between 1276 

the simple linear regression and the GWR model. 1277 

Model R2 AICc p-value 

OLS 0.02 42720 <0.001 

GWR 0.99 * 18851 - 

*Quasi-global R2 1278 

 1279 

Table 4: Classification scores for each predictor. A score of 3 was given to highly suitable areas and 1 to highly 1280 
less suitable areas for GDV. 1281 

Predictor Class Score 

Slope 

0%-5% 13 

5%-10% 2 

>10% 31 

Groundwater Depth 

>15 m 1 

1.5m-15m 3 

≤1.5m 1 

Aridity Index 

0.6-0.68 13 

0.68-0.75 2 

≥0.75 31 

Ombrothermic Index of the summer quarter and the immediately 

previous month 

<0.28 1 

0.28-0.64 2 

≥0.64 3 

Drainage Density 
≤0.5 3 

>0.5 1 

 1282 
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 1283 

 1284 

Figure 01: Study area. On the left the location of Alentejo in the Iberian Peninsula; on the right, the elevation 1285 

characterization of the study area with the main river courses from Tagus, Sado and Guadiana basins (white 1286 

line) . Names of the main rivers are indicated near to their location in the map. 1287 

 1288 

 1289 

Figure 02: Large well and piezometer data points used for groundwater depth calculation. Squares represent 1290 

piezometers data points and triangle represent large well data points.  1291 

 1292 
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 1293 

Figure 03: Map of Kernel Density weighted by cover percentage of Q. suber, Q. ilex and P. pinea.. The scale unit 1294 

represent the number of occurrences per 10 km search radius (~314 km2). 1295 

 1296 
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1297 
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Figure 04: Map of environmental layers used in model fitting. (a) – Aridity Index; (b) – Ombrothermic Index of 1298 
the summer quarter and the immediately previous month; (c) – Groundwater Depth; (d) –Drainage density; (e) 1299 
–Slope.) – Soil type; (b) – Slope; (c) – Groundwater Depth; (d) – Ombrothermic Index of the summer quarter 1300 
and the immediately previous month; (e) – Aridity Index. 1301 

 1302 

 1303 

Figure 05: Spatial distribution of local R2 from the fitting of the Geographically Weighted Regression. 1304 

 1305 

Figure 06: Spatial distribution of model residuals from the fitting of the Geographically Weighted Regression 1306 
(a) and Simple Linear model (b). 1307 

 1308 

 1309 
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Figure 07: Map of local model coefficients for each variable. (a) – Aridity Index; (b) - Ombrothermic Index of 1311 
the summer quarter and the immediately previous month; (c) – Groundwater Depth; (d) – Drainage density and 1312 
(e) – Slope. 1313 

 1314 

Figure 08 – Boxplot of GWR model coefficient values for each predictor (a) and boxplot of the GWR model 1315 
outputs, corresponding to GDV’s density after each of the predictors was disturbed for the sensitivity analysis 1316 
(b). Ai stands for Aridity Index; O4 for the ombrothemic index of the hottest month of the summer quarter and 1317 
the immediately previous month; W for the groundwater depth, D for the drainage density and s for the slope. 1318 
Error bars represent the 25th and 75th percentile while crosses indicate the 95th percentile. 1319 

 1320 

 1321 

Figure 09: Suitability map for Groundwater Dependent Vegetation. 1322 

 1323 

 1324 
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 1325 

 1326 

Figure 10:  Spatial patterns of NDWI anomaly values considering the months of June, July and August of the extremely 1327 

dry year of 2005, in reference to the same months of the period 1999-2009, in the Alentejo region. Dark brown colors 1328 

(corresponding to extreme negative NDWI anomaly values) indicate the vegetation that experienced the highest loss of 1329 

water in leaves in summer 2005 as compared to the reference period 1999-2009, while light brown colors show NDWI 1330 

anomaly values very close to the usual vegetation moisture condition of the considered month NDWI anomaly 1331 

considering the months of June, July and August of the extremely dry year of 2005, in reference to the same 1332 

months of the period 1999-2009, in the Alentejo region. Green colors (corresponding to low NDWI values) 1333 

indicates vegetation canopy undergoing a higher water stress than the average reference period 1999-2009.   1334 

 1335 
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 1336 

Figure 11: Sensitivity analysis performed on the GWR model by perturbing one of the predictors, while 1337 
remaining the rest of the model equation constant. Graphics present the output range of GDV’s density when 1338 
the aridity index (a), the ombrothermic index (b), the groundwater depth (c), the drainage density (d) or the 1339 
slope variable (e) was perturbed; and the maximum possible range combining all predictors (f). The 95th 1340 
percentile was used for the maximum value of the color bar for a better statistical representation of the spatial 1341 
variability.  1342 


