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January 18th, 2019 

Editorial Department of Hydrology and Earth System Sciences 

 

Dear Dr. Miriam Coenders-Gerrits, 

Please find enclosed the revised version of the manuscript (reference hess-2018-208) entitled “Mapping 

the suitability of groundwater dependent vegetation in a semi-arid Mediterranean area”. 

All the reviewer and editor suggestions were carefully considered and addressed accordingly. In the 

response to reviewers you will find the responses to all comments and all changes made, point by point, 

as suggested by the reviewers. In the present cover letter, you will find the response to the editor 

comments, as well as all changes made. 

We are very thankful for all the comments, which allowed an improvement of the manuscript quality. 

To facilitate the identification of changes along the manuscript, a version of the manuscript with tracked 

changes was uploaded in the journal platform. 

We kindly ask the editor to add another institutional e-mail correspondence of the first author. This e-mail 

has already been added in the submitted manuscript with tracked changes and in the final manuscript.  

All the information included in this manuscript is completely original and has been approved by all 

authors. The authors declare no conflict of interest. This manuscript has not been published previously or 

concurrently submitted for publication elsewhere. 

Thank you for considering this revised manuscript for publication. Please do not hesitate to contact me if 

you require further details.  

 

With our best regards, sincerely, 

Inês Gomes Marques (on behalf of all authors) 

 

 

 



Editor Decision: Reconsider after major revisions (further review by editor and referees) (07 Dec 2018) 

by Miriam Coenders-Gerrits 

 

Comments to the Author: 

 

Dear authors, 

As can be seen by the comments of the 2 reviewers they are rather positive. In your reply you addressed 

correctly to the comments and proposed some major improvements. Nonetheless, I think the paper can be 

improved by making it less case specific. How general are the results for other (semi)-arid regions?  

 

Answer: Due to the similar climatic conditions and physiological responses of other semi-arid 

regions, the approach presented in this study can be applied as a first approximation to model the 

phreatophyte species. However, the model coefficients are highly and spatially variable and specific, 

which reinforces the need for model calibration on other regions, even though presenting the same 

climatic conditions. This was explained in lines 611-618, 657-660 of the discussion and 695-699 of the 

conclusion, and the possible applications, based on validations results, are presented in lines 706-713. 

 

The applied regression model is highly sensitive for the input as shown by your own correction to remove 

soil type from the analysis. Hence a proper sensitivity analysis plus a more elaborated discussion on the 

limitations of regression model would benefit the manuscript. 

 

Answer: As suggested by the editor, a sensitivity analysis was performed to the model outputs. 

The applied methodology was explained in the chapter 2.8, in lines 377-390. The respective results were 

presented in the chapter 3.6 (in lines 523-535). 

 

Furthermore, I had a minor comment on the use of symbols. I highly recommend to use single characters. 

So not Dd as in equation 1, but D_d (subscript). Otherwise Dd could be confused with D*d. Please check 

this throughout the entire manuscript. Related to this, it's also better to not use words in equations. So in 

the case of equation 4, please define symbols for density, depth, soil type, etc.  

 

Answer: All symbols were changes according to the editor suggestion. Drainage density symbol 

is now D, Aridity Index is Ai, Ombrothermic index is O4, Groundwater depth is W and Slope is s. Equation 

6 (lines 436-437) was changed accordingly, as well as all figures, tables and in the text.  

 



Dear Referee1, 

Please find enclosed the revised version of the manuscript “Mapping the suitability of 

groundwater dependent vegetation in a semi-arid Mediterranean area”. 

All the suggestions were carefully considered and addressed accordingly. In the present letter, 

you will find the responses to all comments and all changes made, point by point. Particularly, 

we have clarified the comments on the methodology to calculate the map to water table and 

changes the validation method as suggested. As a result of the introduction of a new remote 

sensing for the suitability map validation we added the author Célia M. Gouveia to the authors 

list. 

We are very thankful for all the comments, which allowed a very significant improvement of the 

manuscript quality. 

To facilitate the identification of changes along the manuscript, a version of the manuscript with 

tracked changes was uploaded in the journal platform. 

All the information included in this manuscript is completely original and has been approved by 

all authors. The authors declare no conflict of interest. This manuscript has not been published 

previously or concurrently submitted for publication elsewhere. 

Thank you for considering this revised manuscript for publication. Please do not hesitate to 

contact us if you require further details.  

 

 

 

Referee Comments 1 

 

General Comments 

Gomes Marques et al. present an analysis of the spatial distribution of groundwater 

dependent vegetation across the Iberian Peninsula. While the method used is perhaps 

not as novel as suggested in the text, the paper’s main strength lies in the validation 

of the maps created against a fairly robust eternal dataset. The text is generally well 

written, although it is not as clear as it could be when discussing how the "model" 

was parameterized and validated. In general, the paper is a solid contribution to the 

literature on phreatophytes, but needs revision to enhance its clarity and address some 

lingering questions about the work. 

 

Specific Comments 

1. Throughout: What exactly is meant by a "suitability map"? Suitability for what? Or 

do you mean suitability of the terrain for hosting phreatophtyes? The concept is fine, 

but the word choice seems odd. 

 

 Answer: We appreciate the reviewer’s comment on this matter. With a suitability map 

we aim to ascertain the suitability of the arboreous phreatophyte species to the climatic and 

local conditions. To clarify this matter, this information was provided in lines 122-123 of the 

introduction. 

 

2. Line 147 - 149: How heavily managed are these forestry systems? What species 

are harvested? And with what methods? 

 



Answer:  In the Alentejo region, Cork oak, Holm oak and Stone pine represent 83% of 

the forest cover, covering about 36% of the geographical area. Cork oak covers 46% of 

the total forest area of the region, Holm oak 30%, and Stone pine only 7%, according to 

the last forest inventory. These species were already dominant species in the region and 

in Portugal two millennia after the beginning of holocene (Bugalho et al. 2009, Proença 

2009). Since the 15th century, the agro-silvopastoral systems is largely dominant and 

steady in the province of Alentejo, on flat terrain. The system has a low tree density (40 

to 80 trees/ha), trees being exploited for cork or seeds to feed cattle and the understory 

cleared of shrubs for pasture, crops (mainly wheat, barley and oats), or both. Tree 

density is determined by the need for space for pasture or cereal cultivation in the 

understory (Acacio & Holmgreen 2014) and by climate drivers, especially mean annual 

precipitation (Joffre 1999, Gouveia & Freitas 2008). Agro-silvopastoral systems are 

considered semi-natural ecosystems, which must be continually maintained through 

human management by thinning and understory use through grazing, ploughing and 

shrub clearing (Huntsinger and Bartolome 1992) to maintain a good productivity, 

biodiversity and ecosystem services. Cork oak trees are protected and cannot be 

harvested unless the tree has died, while holm oak trees are maintained with a low tree 

density (20 to 40 trees/ha) to guard against soil erosion and to provide shelter and 

shadow for cattle. Holm oaks are known to be more resilient to drought (David et al. 

2007) and are mostly distributed in the most xeric area, on the oriental part of the 

Alentejo region. Some of this information has been added to the introduction section in 

lines 83-88 and in the discussion section in lines 547-550. 
 

Bugalho M , Plieninger T, Aronson J ,  Ellatifi M, Gomes D Crespo 2009. Revista 

especializada. Cork oak woodlands on the edge. Ecology, adaptive management, and 

restoration, 1st edn. Society for Ecological Restoration International, Island Press, 

WashingtonChapter 3. Open Woodlands: A Diversity of Uses 
Proença 2009, Galicio-Portuguese oak forest of Quercus robur and Quercus 

pyrenaica: biodiversity patterns and forest response to fire. PhD Thesis, 

https://core.ac.uk/download/pdf/12421965.pdf 
Acácio V. & Holmgreen M. 2009 Pathways for resilience in Mediterranean cork oak 

land use systems. Annals of Forest Science 71:5-13. DOI: 10.1007/s13595-012- 0197-0 
Joffre R, Rambal S, Ratte PJ. 1999 The dehesa system of southern Spain and Portugal 

as a natural ecosystem mimic. Agrofor Syst 45:57–79 
Gouveia A. & Freitas H., 2008 Intraspecific competition and water use efficiency in 

Quercus suber: evidence of an optimum tree density? Trees, 22 (2008), pp. 521-530 
Huntsinger L, Bartolome JW. 1992 Ecological dynamics of Quercus dominated 

woodlands in California and southern Spain: a state transition model. Veg 99–

100:299–305 
David T.S., Henriques M. O., Kurz-Besson C., Nunes J., Valente F., Vaz M., Pereira J. 

S., Siegwolf R., Chaves M.M., Gazarini L.C. and David J.S. Water use strategies in two 

co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree 

Physiology 27(6): 793-803 

https://doi.org/10.1093/treephys/27.6.793 
 

 

3. Line 170: Cite ASTER GDEM data in the manner requested on the NASA webpage 

(https://lpdaac.usgs.gov/citing_our_data). 

 

Answer: Done. The missing citation was added in the proper place, in line 171-174. 

The acknowledgement is already properly done in the acknowledgement section.  

 

4. Line 172: What is meant by superficial water use? Shallow groundwater? Surface 

water in streams? It’s used several places but isn’t well defined. 

https://core.ac.uk/download/pdf/12421965.pdf
https://lpdaac.usgs.gov/citing_our_data


 

Answer: We substituted the expression superficial water/groundwater by shallow soil 

water, which refers to the water between 0 and 1.5 m depth, in line 175. All water below 

1.5 m depth was considered as groundwater. This was clarified in lines 306-308. 

 

5. Line 179: What were the three classes? How did soil parameters influence in 

classification? 

 

Answer: The three classes are presented in Table 4 and an additional explanation to 

clarify the conditions who led to each scoring was added to lines 182-186. After 

revision of the suitability model the predictor soil type was no longer included in model 

fitting, and therefore no further explanation on its effect on the suitability to GDV was 

added. 
 

6. Line 187-202, Figure 2: The location of piezometer data and well data are quite 

biased. What is this attributable to and how might it affect the results? It seems like 

the kriging in the south-central region could be quite problematic. Also, what is the 

distinction between a well and a piezometer here? This is also concerning because 

the most dense of the GDV species are roughly in this corridor as well. 

 

Answer: The region under study is an area with a very low population density, which 

reflected in the lack of points for piezometric level measurement, mainly in unconfined 

aquifers (~96% of the total area). Once the correlation between the piezometric level 

and the topography was successfully tested it was possible to estimate the piezometric 

level by kriging with external drift in areas where information was not enough. We 

added one reference to line 601 to support this methodology. 

In the studied area, the presence of piezometers (exclusively dedicated 

structures for piezometric observations) is mostly associated with karst aquifers and 

areas with high abstraction volumes for public water supply. Oppositely, large wells 

are mainly devoted to private use and low volume abstractions. To complement the 

information given on the groundwater level estimation the following sentence was 

added to the ms, in lines 199-202: “In the studied area, piezometers are exclusively 

dedicated small diameter boreholes for piezometric observations, in areas with high 

abstraction volumes for public water supply. Large diameter wells in this region are 

usually low yielding and mainly devoted to private use and irrigation.” 

 

 

7. Line 199 -202: I disagree with this method - the groundwater elevations should 

be determined by first determining the groundwater elevation at the piezometers and 

then interpolating that through kriging. This should introduce fewer errors and be more 

realistic. 

 

Answer: The relation between piezometric level and topography is quite high in most of 

the unconfined aquifers (Marcily, 1986). This relation allows to estimate the piezometry 

in areas with few piezometric points with enough confidence using external drift 

kriging. On the other hand, through this method the piezometric surface respects the 

orographic structures such as valleys, which is not the case with traditional 

interpolation methods. 

 

“In the aquifer, the water flows toward the outlets, which are the low points in the 

topography (springs, streams in the surface flow network).” from Ghislain de Marsily, 

1986. Quantitative Hydrogeology, Academic Press, Orlando. ISBN: 9780122089169, 

9780080917634. 
 

  



8. Line 303 - 312: The rationale for this validation method is a bit shaky and could use 

more explanation. If the presence/absence of these trees is a good indicator, why is 

the rest of the analysis necessary? Is it more expansive? Precise? Also, how is this 

not a bit autoregressive, given that it sounds like kernal density was derived from the 

tree data. It starts to make more sense as the results are discussed, but it needs more 

clarity here. What about using a remote sensing method for validation instead (e.g., Munch et al. 

2007, Barron et al. 2012, Gou et. al 2014)? How would that compare? 

 

Answer: After consulting the authors of the EPIC suitability maps (Magalhães M. and 

Mesquita S.) we understood that the latter were indeed constructed based on the last forest 

inventories. Therefore, there was indeed autoregression in our validation (see Mesquita, 

S. and Capelo, J. (2016). Aptidão Bioclimática às Espécies Arbóreas. In Magalhães, M.R. 

coord): Ordem Ecológica e Desenvolvimento - o futuro do território português. Pp. 63-

85. Centro de Estudos de Arquitectura Paisagista “Professor Caldeira Cabral”. ISA 

Press. Lisboa. ISBN: 978-972-8669-64-5). 

 
We thus followed the reviewer suggestion to use remote sensing data to validate our GDV 

suitability map.  We therefore compared our GDV suitability map with NDWI anomalies 

of June 2005 (extremely dry hydrological year in Portugal) with the median June NDWI 

of year 1999-2009 with a dataset shared by Gouveia et al. (2012). We chose the 

Normalized Difference Water Index (NDWI) for being more representative of water 

content in vegetation’s leaves. This index is thus a proxy for vegetation stress, with low 

NDWI values representing less leave water content, corresponding to a higher drought 

stress. The NDWI map we present show in yellow and brown color the areas were the 

vegetation was more sensitive to the extreme drought of 2005. We obtain a very good 

agreement between maps that we commented in the results and discussion sections, in the 

section 3.5 – Map Validation, 634-639 and 641-644. The method and dataset used are 

described in the M&M section lines 349-374. 
 

 

9. Line 389-397: What soil types were the most likely to host phreatophtyes? What 

does "soil type 3" represent? 

 

 Answer: Soil type 3 represented soils with prevailing water storage at deeper soil 

depths, and therefore these soils were considered as more likely to host phreatophytes. 

 

10. Line 480-484: This paragraph seems to be saying that there must be some threshold 

by which no woody species can be supported, even if they are GDVs. These 

species get replaced by shortlived grasses and forbes, converting savanna to grassland. 

Is this correct? If so, this seems to contradict the next line about woody vegetation 

being replaced by shrublands. Wouldn’t that presume shrubs are less susceptible to 

drought than trees? Please clarify. 

 

Answer: The referenced paragraph was removed from the discussion, after the 

calculation of a new suitability map. Instead we discussed the strong relation between aridity 

and tree density and the degradation of ecosystems linked to increasing water scarcity, in lines 

608-615. 

 

11. Line 495-511: This part of the discussion is problematic, because, as the authors 

note, the factor expected to be most key is poorly mapped. Regardless, they still say 

that soil type, as opposed to groundwater depth, is the most influential and claim that 

soil type defines the capacity for "groundwater storage". This appears to be overreach. 

 

Answer: The most influential factors in the reviewed version of the manuscript are 

climate drivers. After removing soil types from the final GWR model, the contribution of 



the W variable in the model improved (now corresponding to the 3rd most relevant 

variable in the model), but still remained far less relevant than climate drivers. The part 

of the discussion was slightly modified according to new results, lines 592-598. 

 

12. Figure 7: This figure needs more color variation. It is difficult to tell moderate, good, 

and very good apart. 

 

Answer: Done. The color scale was modified to improve readability in Figure 09. 
 

Technical Corrections 

13. Line 88: Replace "genders" with genre 

 

 Answer: Done in line 93. 

 

14. Line 102: Replace "5m" with "5 m". Noticed number/unit spacing issues in several 

other locations as well. 

 

 Answer: Done in line 108. All other places where the same issue was found, were 

corrected. 

 

15. Lines 132 - 135: Replace "chapters" with "sections". But really, this whole paragraph 

isn’t necessary, as the format doesn’t deviate from standard expectations. 

 

Answer: Done. The paragraph was eliminated from the manuscript. 

 

16. Line 154: "Proxy for" not "proxy to". 

 

 Answer: Done in line 154. 

 

17. Line 175: Is the copyright symbol here a typo? 

 

Answer: No, the copyright symbol is requested to reference the database. 

 

18. Line 201: Don’t need to repeatedly cite Spatial Analyst and its version so frequently. 

Can this be converted to one mention at the beginning of the section? 

 

Answer: Done. We added the sentence “The software used in spatial analysis was 

ArcGIS® software version 10.4.1 by Esri and R program software version 3.4.2 (R 

Development Core Team, 2016).” to the ms, under the chapter 2.3 in lines 167-168. All 

mentions to R and ArcGIS software versions were removed from the text. 

 

19. Line 295: Put equation right after fist mention. 

 

Answer: We have added a general equation of the model (Eq. 4) in lines 337-338 and 

maintained the equation with the final predictors (Eq. 6) in lines 436-437 so that only in 

the results section we would present the final model equation used to calculate the 

suitability map. 

 

20. Line 306: Replace "to a" with "of a". 

 

Answer: This paragraph has been deleted from the ms, after the validation was 

performed with a different dataset. 

 

21. Line 434, Line 454: Delete first names of authors. 



Answer: The first reference has been removed from the paragraph. On lines 58, 303 

and 563 however, the name “Condesso de Melo” was right, thus remained unchanged. 
 

22. Line 450: Pinpoint is one word. 

 

Answer: Done in line 559. 

 

23. Lines 451-453: Awkward wording makes the sentence hard to parse. 

 

 Answer: The sentence was improved in lines 559-562. 

 

24. Line 466: Delete stray "s". 

 

Answer: This paragraph was completely re-structured. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Dear Referee2, 

We are very grateful for your rigorous assessment and the valuable comments and suggestions 

you provided to improve our manuscript. 

Please find enclosed the revised version of the manuscript “Mapping the suitability of 

groundwater dependent vegetation in a semi-arid Mediterranean area”. 

We believe that all your suggestions were carefully addressed. In the present letter, you will find 

our responses to each comments and changes made.  

Particularly, we have corrected the methodology to calculate drainage density. We also clarified 

the error you detected regarding a mistake in the map of Figure 7 where for a low aridity index 

(AI) we predicted a high suitability value (Figure B1b), which you attributed to the negative 

sign assigned to AI used as weighting factor. We evaluated the impact of each predictor on the 

final model and discovered that soil type actually considerably worsened the performance of the 

GWR model. We therefore decided to remove it from the final model equation selected to build 

the suitability map. 

We also attempted to provide a better evaluation of the importance of each predictor in the final 

model and improved the discussion section accordingly. 

To facilitate the identification of changes along the manuscript, a version of the manuscript with 

tracked changes was uploaded in the journal platform. All the information included in this 

manuscript is completely original and has been approved by all authors. The authors declare no 

conflict of interest. This manuscript has not been published previously or concurrently 

submitted for publication elsewhere. 

Also, we thank you for considering this revised manuscript for publication. Please do not 

hesitate to contact us for any further needed detail.  

With our best regards, sincerely 

 

Referee Comments 2 

 

General comments 

 

The current manuscript provides an interesting insight into the use of mapping and spatial 

regression to assess the occurrence of groundwater dependent vegetation (GDV). 

Such maps can subsequently be used to predict the effect of change in any of the 

explanatory variables, such as climate or groundwater depth, on the spatial distribution 

of GDV in an area. The paper is well written and structured, and is subdivided 

into two parts: the first on the building of regression models for predicting GDV occurrence 

based on actual data, and the second part where a parameter-based index is 

calculated to construct so-called “suitability maps” for GDV. While I find the first part 

strong and with high potential of publication by adding a scenario analysis, my main 

concern lies with the second part. In my opinion this part is less well developed and the 

interpretation of the results is largely straightforward, and to a certain degree incorrect. 

Interpretation is largely straightforward because of the large bias in weighting 

of the parameters, where the contribution of soil largely exceeds all other parameters, 

thus making it essentially a soil map. Additionally, interpretation is to a certain degree 

incorrect, due to an apparent mistake in the generation of the suitability map, where 

(inadvertently) a negative weighting was assigned to the aridity index, resulting in the 



inverse impact of this parameter on the soil map. I would therefore recommend focusing 

and further elaborating on the regression modelling, as I will specify in my detailed 

comments below. 

 

Specific comments 

 

Abstract 

 

Line 13-19: The first part of the abstract is more of an introduction. I suggest starting 

with what was actually done (line 20). Moreover, groundwater depletion will not occur 

merely as a result of climate change. Finally, as groundwater level seems to have such 

a low impact in the regression model, the question rises to what extent groundwater 

depletion will play a role in the spatial distribution of GDV. 

 

Answer: The first paragraph of the abstract was rearranged. The abstract was 

corrected according to new results. 

 

Line 48: When referring to climate change impact studies on recharge in Mediterranean 

areas add the paper of doi.org/10.1007/s10113-012-0377-3, where such a study is 

being reported. 

 

Answer: Done. The suggested reference has been added in the text lines 49-50 and 

reference list lines 1083-1086. 

 

PART 1: REGRESSION MODELLING 

 

Parameter selection for the regression model 

 

Soil type: the authors only use the first layer of the soil. To understand the importance 

of capillary rise feeding into the root zone, the texture of deeper soils also needs to be 

considered. The latter could further affect the role of groundwater depth in the model, 

as fine soils have a much higher capillary (and water-holding) capacity. In the model, 

soil type is subdivided into two sub-parameters (2 and 3, Equation 4 and Table 2), but this is not 

further explained. Evidently, this increases the weight of soil type in the 

regression model. 

 

Answer: The classification of soils into 3 categories was explained in lines 182-186 of 

the M&M section and in Table A1 in appendix A. This predictor was removed from the 

model fitting after revision from the authors. It has not been possible to add the texture 

of deeper horizon into our study because such information was only available on 

inaccessible printed maps. Unfortunately, no such digital data were available when the 

manuscript was prepared or revised. 

 

Groundwater depth: please comment on the reliability of the results in the empty areas 

(areas without wells or piezometers). Can wells and piezometers be used together, in other 

words, are all wells installed in unconfined aquifers? 

 

Answer: Please notice the previous answer to the reviewer 1. 

 The region under study is an area with a very low population density, which reflected 

in the lack of points for piezometric level measurement, mainly in unconfined aquifers 

(~96% of the total area). Once the correlation between the piezometric level and the 

topography was successfully tested it was possible to estimate the piezometric level by 

kriging with external drift in areas where information was not enough. We added one 

reference to line 601 to support this methodology. 



 The estimation of the groundwater depth did not consider the simultaneous use 

of large wells and piezometers, with exception of the northwestern area, due to the lack 

of large wells. 

In the studied area, the presence of piezometers (exclusively dedicated 

structures for piezometric observations) is mostly associated with karst aquifers and 

areas with high abstraction volumes for public water supply. Oppositely, large wells 

are mainly devoted to private use and irrigation. 

 

Drainage density: Drainage density was calculated for six river basins. That gives little 

variation across the area. Is it possible to map drainage density at a higher resolution, 

e.g. sub-basin scale, or a 10 km grid size? This would increase the importance of this parameter. 

 

Answer: Indeed, there was little spatial variation of the drainage density for the studied 

area, therefore, as suggested by the reviewer, we recalculated this variable considering 

a 10km resolution grid. The methodology concerning this calculation was corrected in 

the ms, in lines 212-213. Due to the creation of a new drainage density map, we 

performed a reassessment of the multicollinearity between variables and the selection of 

predictors (see section 2.4). This implied recalculating Pearson’s coefficients and 

Principal Components Analysis (PCA), presented in table A2 and figure A2 both in 

appendix A. It also affected predictors and coefficients in the model linking GDV 

density to environmental predictors). By affecting model development, model 

performance (Tables 2 and 3), suitability and coefficient maps were also affected 

(Figures 7 to 9). 

 

Climate: The authors should provide a bit more explanation on the SPEI and particularly 

the ombrothermic index calculations. Please explain how/where the latter differs 

significantly from (and is thus not correlated to) the aridity index. 

 

Answer: Done. Clear explanations on SPEI calculations were already provided in lines 

225-228. Since the SPEI predictor was excluded from modeling further explanation 

would unnecessarily extend the manuscript length. We however briefly altered 

paragraph lines 233-235, to better explain the discrepancies between SPEI and 

Ombrothermic indices, and to clarify the Ombrothermic indices calculation according 

to Table 1. 

 

 Model development 

 

It is not clear how the parameters were normalized before entering the regression 

model.  

 

Answer: The explanation of the normalization based on the z-score function was 

improved and changed to the M&M section, under the chapter 2.5 - Model 

development. Variables were standardized before entering the regression model 

through the calculation of a z-score. To clarify how the standardization was done the 

following sentence was added to lines 274-276 of the ms: “This allows to create 

standardized scores for each variable, by subtracting the mean of all data points from 

each individual data point, then divide those points by the standard deviation of all 

points, so that the mean of each z-predictor is zero and the deviation is 1.”. 
 

How was the soil parameter transformed into a quantitative variable? If all 

parameters were classified/categorized (as is often done in e.g. factorial regression 

analysis), this can explain the low influence of the groundwater depth parameter, as 

there is very little variation (in large part of the area groundwater depth is between 

1.5 and 15 m). In this case, I strongly suggest increasing the number of classes for 

groundwater depth. 



 

Answer: We greatly appreciate your comment. First, we would like to clarify that the 

main purpose of the model construction is to attribute coefficients of importance to each 

variable, so that these coefficients can be applied to classification scores given to each 

variable by expert judgement (table 4) and return a suitability map to groundwater 

dependent vegetation. This will allow the production of a suitability map where the 

coefficients of importance applied to each variable were calculated empirically. 

Therefore, the classification scores given to each variable were not applied in the model 

calculation, but rather after the local model coefficients were calculated (as a mean to 

construct the suitability map). 

The soil parameter was used has a numeric categorical variable (with the values 

given initially from 1 to 3), through the use of the function as.factor() in R. The usage of 

this function will insure that the factor is seen as nominal and not as ordinal. Because 

the remaining variables showed continuous values, only the soil type variable was 

categorized, and the remaining variables used to run the model were continuous. The 

scoring applied is presented is Table A1and the explanation in lines 182-186 of the 

methods section. 
The reviewer is correct about the groundwater depth variable and its very low 

variation above 15 m. As further explained below, it has not been possible to increase the 

number of classes for GWDepth, for the weighting factors to be correctly applied to the 

GWDepth layer in the multicriteria analysis. To overcome this situation the values of 

water depth above 15 m were replaced by a value above 15m (15.1 m), in order to 

emphasize the variation observed between 0 and 15 m depth, which matters the most to 

GDV. These values were only used for the model fitting. The species used as proxies for 

groundwater dependent vegetation are less probable to use water at depths lower than 

15m, and so all the range of values above this threshold would be considered as 

inaccessible by those species.  
 

Please provide references showing that it is common practice to fit the model on a 5% 

random subsample. Also explain more lines 264-265. 

 

Answer: The sub-sampling size was mostly dictated by computing limitation in the 

sense that the random subsample size was decreased down to 5% until the GWR model 

could be fitted. The mean distance between neighbor points using 5% of the original 

dataset was about 6 km, with a maximum distance of 15km. Nevertheless, we could find 

a few studies using a 10% random sub-sample of the data corresponding to a 10km 

resolution grid to perform GWR modeling (Bertrand R., 2017), as well as linear 

regression (Bertrand et al. 2016). The authors were using such subsampling to restrain 

autocorrelation issues according to Kühn (2007). We modified our text to include those 

references as well as the benefit for autocorrelation issues in our study, lines 281-287 

and in the reference list, lines 785-787 and 946-947 

In addition, we calculated basic statistic indicators for the totality of the data and 

compared with the random subsample. Results are presented in line 284-286 of the ms 

and in Figure A1 in appendix A. 

 

Bertrand R. Unequal contributions of species′ persistence and migration on plant 

communities′ response to climate warming throughout forests.  bioRxiv, 

doi.org/10.1101/217497, 2017. 

Bertrand R., Riofrío-Dillon G., Lenoir J., Drapier J., de Ruffray P., Gégout J.C., 

Loreau M.. Ecological constraints increase the climatic debt in forests. Nature 

Communications 7, 12643, doi: 10.1038/ncomms12643, 2016. 



Kühn, I. Incorporating spatial autocorrelation may invert observed patterns. Divers. 

Distrib. 13, 66–69 (2007). 

 

Results 

Overall section 3.2 on environmental conditions mainly consists of an explanation of 

each of the maps. To support the selection of the five parameters, the authors should 

provide all the results on correlation and PCA as supplementary material. 

 

Answer: Done. PCA results have now been provided as supplementary material in 

Table A2 in appendix A and was modified according to new results, due to the 

construction of a new map of drainage density. 

 

The results of the model suggest, as stated by the authors, a low importance of the 

groundwater depth on explaining the spatial distribution of GDV (eq. 4). However, 

nothing is said on how this varies locally within in the area. Are there regions where 

the role of groundwater is larger? Can these regions be identified? 

 

Answer: We have plotted the local coefficients of all predictors and present it in Figures 

07 and 08. In addition, we added some paragraphs with an explanation of the spatial 

variation of each predictor in the results section, in lines 455-461 and in the discussion 

section in lines 578-583. 

 

Line 343-344: This requires quite a bit more explanation, but can be easier to follow 

once the calculation of Ios4 has been better explained in the methods section. 

 

Answer: We altered lines 233-235 and 243-245 to better explain the discrepancies 

between SPEI and O and to clarify the O calculation according to Table 1. 

 

Line 362-364: Please elaborate on this outcome on the Moran index. 

 

Answer: Bibliographic references for the Moran Index were added in line 446 and the 

respective references were added to the bibliography. In addition, we extended the 

results explanation on the Moran Index and the z-score, in lines 446-450. 

 

In eq. 4 the appearance of Soil type 2 and Soil type 3 is not explained. 

 

Answer: After revising the methodology and predictors selection, the predictor soil type 

was no longer included in the model. 

 

 

The results would become more interesting with: 

1) a more local/regional analysis of the explanatory model and the importance of each 

of the parameters (in particular groundwater depth); 

 

Answer: The model equation was substituted by a local one including the proportion of 

the local coefficients from the total variability of all the coefficients for each local GWR 

model. Local relative coefficients were considered as weighting factors instead of 

median values (please see revised Equation 6 in the manuscript). We also added a 

figure corresponding to the local variation of each coefficient in Figure 07 and 

commented the variations in the result section, in lines 455-461 and in the discussion 

section, lines 578-583. The relative importance of each variable in the final model is 

now shown in Figure 08, representing the distribution of the local coefficient values in a 

box plot. 

 



2) an assessment of the use of more/less/different parameters on the final model. It 

seems the soil type and to a lesser extent the aridity index are the dominating parameters 

in the regression model. How does a model based solely on these two parameters perform? And 

what about including a deeper (2nd-3rd layer) soil parameter to account 

for water holding and capillary rise capacity? Not much can be stated on the importance 

of soil type for the groundwater storage (as mentioned in line 495) if only the first 

soil layer is assessed. 

 

 

Answer: We tested the effect of removing one of the variables on the model performance 

and found out that the model performance increased notably when soil types was removed 

(AIC divided by factor 2, Table 2). The removal of any other variable however, did not 

seem to impact the model performance as compared to the equation including all formerly 

selected variables. Therefore, we excluded soil types from the final GWR model and the 

rest of our analyses and multicriteria analysis. Data on deeper soil parameters was not 

available for the study area and therefore that information could not be included in the 

model. 

 

3) scenario analysis: what happens if one or more of the parameters (such as climate 

or groundwater level) change? You do not have to develop climate scenarios, but an 

assessment of the impact of a relative change in aridity index or groundwater level on 

the resulting map would be of high added value. 

 

Answer: The development of climate scenarios or the assessment of the impact of aridity 

change on GDV suitability was out of the scope of this manuscript, since the actual 

manuscript is quite long already. The full assessment of climate changes impacts and 

corresponding uncertainties will be the focus of our next publication.  

We calculated preliminary results of the relative change of Ai and O4 expected for the 

near future (Table a and b below). Our ongoing calculations based on scenarios RCP 4.5 

and 8.5 show that Ai and O4 climate indexes are going to decrease in the studied region 

(-14 to -33% within 2099), drifting from a mostly dry sub-humid climate (0.5<Ai<0.65) 

to a mostly semi-arid one (0.2<Ai<0.5) by 2099 in scenario RCP8.5, and according to 

the classification of Middleton et al. (1992). Ios4 is also going to suffer a huge drop (-42 

to -58% within 2099). Also, while most of the territory could be considered as non-

Mediterranean based on the ombrothermic index (O4>2) during the historical period 

1971-2000, it is becoming mostly Mediterranean by 2099 in scenario RCP8.5 and 

according to the classification of Rivas-Martínez et al. (2011).  

To include such preliminary results in the M&M, result and discussion regarding 

climate change impact would imply to considerably increase the manuscript, while 

providing an incomplete picture of the changes and associated uncertainties. We 

therefore chose not to include the suggested assessment of the impact of a relative change 

in aridity index or groundwater level on the resulting map in this manuscript.  

Nevertheless, we discussed the relative importance of each predictor in our final 

map, which give an insight of how the groundwater dependent- vegetation is expected to 

be affected according to the predicted increased aridity, lines 676-684 and 708-713. 

 

       

Table a. Mean relative changes expected for AI and IOS4 in the near future according to climate changes 

scenarios RCP 4.5 and 8.5, and respective standard deviations. Changes were computed considering 30 yr 

means obtained from an ENSEMBLE of eleven EU-CORDEX climate models. 



  

 
Table b. Evolution of percentiles 10 and 90 values of AI and IOS4 in Alentejo from the present to the near future 

according to scenarios RCP 4.5 and 8.5. ECAD are observed values for the reference period 1971-2000. Historical 

values for the reference period 1971-2000 as well as predicted values for the future were simulated by an Ensemble 

of EU-Cordex models. 

 

 

 

Discussion 

Much of the discussion on the modelling approach is more of a summary of the 

manuscript, particularly lines 425-439. I miss the interpretation of the results obtained by 

regression modelling, and the this could further be enriched by the discussion of the 

added results as proposed above. 

 

Answer: The discussion section has been considerably modified. The dominant impact 

of aridity on tree density and GDV suitability is now much more discussed, as well as 

the lower impact of groundwater depth. The relative weight of each predictor is also 

discussed and considered in the key limitations and conclusions sections. (see mostly 

lines 586-591, 676-681 and 693-702). 

 

 

PART 2: SUITABILITY MAPPING 

Suitability map building 

The authors decide to attribute the minimum score (in terms of suitability) to areas 

where groundwater depth is smaller than 1.5 m, considering that vegetation extracting 

water from shallow depths belongs to another type of GDV. This distinction between 

shallow and deep groundwater dependent vegetation, which I indeed think is useful 

(as most vegetation can use water in the first 1.5 m if present) needs to be briefly 



elaborated upon. 

 

Answer: Providing a less probable score to host the GDV to the 0-1.5m GWDepth was 

made to exclude riparian vegetation and shrubby species which primarily use the water 

from streams and the superficial soil layer. An additional explanation and references 

were added to the manuscript in lines 310-314: “The depth class between 0 and 1.5m 

was based on the riparian vegetation in semi-arid Mediterranean areas which is mainly 

composed of shrub communities (Salinas et al., 2000) and present a mean rooting depths 

between 1 and 2m (Schenk and Jackson, 2002). The most common tree species rooting 

depth in riparian ecosystems is normally similar to the depth of fine sediment not 

reaching gravel substrates (Singer et al., 2012), but not reaching levels as deep as deep-

rooted species.”. 

 

Line 284-286. I do not understand why shallow groundwater flow would be expected at 

steep slopes. Normally steeper slopes are found in mountainous areas, where groundwater 

levels are deep. 

 

Answer: The reviewer is correct, and we appreciate for noticing the error. The sentence 

was corrected in lines 316-317 and the term water flow was substituted by runoff.  

 

Results 

The main finding here is that “suitability to GDV in the Alentejo region was mainly driven 

by soil type”. That is obvious, as the weight of this parameter is by far the largest in 

the suitability index (and given by two soil type variables)! The same holds for the 

observation “The aridity index also showed a strong influence on GDV’s suitability”, as 

the weight of the aridity index is highest following that of soil type. I would strongly 

suggest analysing alternative weights for each parameter (based for instance on the 

Delphi panel) and evaluating the corresponding sensitivity of the outcome, as well as 

the degree of success in the validation procedure. 

 

Answer: Unfortunately, it has not been possible for us to perform this analysis within 

the time provided to review our manuscript. We hope that the discussion on the 

relative importance of each predictor in the model will be satisfactory enough for the 

reviewer, considering that every other request was fulfilled. 

 

Line 395-396: “high aridity values restricted GDV’s suitability in the south”. Again, in 

my view it is exactly the opposite, as a high aridity is classified as class 3, i.e. of high 

suitability. In the south in fact aridity index is lowest, indicating the highest aridity and 

therefore higher suitability for GDV. 

I think I might have detected a mistake in the resulting map of Figure 7. Where aridity 

index (AI) values are low, corresponding suitability value is high (Figure B1b), which 

means that overall suitability should also increase in those areas (towards the southeast). 

In the map of Figure 7 the values actually decrease in that area, which is contrary 

to what would be expected and could result from a negative weight being assigned to 

this parameter (as it also has a negative coefficient in the regression equation). If this 

is the case, the presentation and interpretation of the results on suitability mapping 

needs to be redone. 

 

Answer: After thoroughly verifying the model calculations (Eq. 6) and the weighting 

factors used for the final multicriteria analysis (Figure 09), we must agree with the 

reviewer that it was a mistake to apply a negative weighting to the Aridity Index layer. 

Indeed, where real values of Ai were low (indicating a more arid area), our scoring was 

high in the multicriteria analysis. To directly apply a negative weight, we should have the 

real predictor values and the predictor scores co-varying (or growing) accordingly. We 



also verified that the same logic should be applied to the other quantitative variables 

Slope, O4 and Groundwater Depth, since scoring and real values variation were opposite.  

However, in the revised manuscript we have adopted different scores for the Aridity 

Index (scores 1, 3, 2) which were not varying linearly, and it was no longer possible to 

apply a linear scoring. The same was applicable in the case of Groundwater Depth, when 

we came to a dead end because scoring was not varying linearly according to class values 

(scores 1, 3, 1). As a solution we calculated the proportion of each local coefficients from 

the total variability of all the coefficients for each local GWR model (Eq. 6) as a local 

weighting factors reflecting the relative relevance of each predictor locally. This allowed 

us to apply scores not varying linearly and still interpreting the results easily. This way, 

the weighting factor obtained in from the proportions could be directly and correctly 

applied to the Groundwater Depth and Aridity Index layers. 

 

One example of this wrong interpretation is in lines 376-378, where the authors state 

that the positive impact of the rivers on the GDV suitability “is due to a higher water 

availability reflected by the values of omborthermic and aridity indexes. In my view 

it should be the contrary, i.e. due to a lower water availability, indicating a higher 

suitability for GDV. Moreover, the positive impact is not visible in the map of Figure 

7. And why is there a higher groundwater depth near the river? You would expect 

groundwater levels to be shallowest near the river.  

Another example of this is in discussion section, where the authors state that “The 

lower suitability to this vegetation in the eastern part of the studied area can be explained 

by less favorable climatic and geological conditions, resulting from the combination 

of a high aridity index and low water retention at deep soil layers”. It is again the 

contrary, as the ariditiy index in this (south)eastern area is lower, indicating a higher 

suitability and therefore higher values on the map of Figure 7. Moreover, it is not clear 

why the “deep soil” layer is mentioned here now, if only the first soil layer has been 

analysed. 

 

 

Answer: We appreciate the referee comment and agree with it. Indeed, groundwater 

levels are expected to be higher near the river, mainly in alluvial aquifers (associated 

with gentle slopes). However, the opposite also occurs in areas where the rivers are 

associated with hard rock aquifers (generally associated with steep slopes) and where 

the relation surface/groundwater is more heterogeneous. The slope predictor, also 

considered in the presented methodology, distinguishes these occurrences. 

 

 

In Figure 7 please indicate how the values were calculated. 

 

Answer: A thorough explanation was added in the methods section, in lines 335-341. 

The explanation in the methods section in the ms reads: “The final GIS multicriteria 

analysis was performed using the Spatial Analyst Tool by applying local model 

equations obtained for each of the 6214 coordinates of the Alentejo map (Eq.4),  

Suitability = Intercept + coef1 * [real value X1] + coef2 * [real value X2] + coef3 * [real value 

X3] + …, 

(4) 

with brackets representing the reclassified GIS X layer corresponding to the scoring and coefpx 

indicating the relative proportion for the predictor x.”. 

The final equation used for the calculation of the suitability map is presented in the results 

section, in lines 436-437, and is presented in the Equation 1 below. 



SGDV = Intercept + Ai coefp * [reclassified Ai value] + O4 coefp * [reclassified O4 value] + W coefp * 

[reclassified W value] + D coefp * [reclassified D value] + s coefp * [reclassified s value], 

(1) 

If the authors decide to do the analysis per river basin, they should indicate the river 

basin boundaries in Figure 1. 

 

Answer: As suggested by reviewer 1, we decided to use a 10 km grid mesh instead. The 

methodology was corrected in lines 212-213. 

 

Line 382-383: “this high likelihood was hindered by the type of soil present in that área In terms 

of soil type in the Tagus basin”. That is not true, as the suitability is mostly 

class 3 in the Tagus river basin. 

 

Answer: The sentence was deleted according to the new results of the revised 

manuscript. 

 

Line 416-419 belongs to the discussion section, not the results section. 

 

Answer: The paragraph was deleted according to the new validation performed in the 

revised manuscript. 

 

Technical corrections 

Overall the text is well written and structured, the main comments above concern the 

content of the manuscript. 

Line 47: decreased precipitation 

 

 Answer: Done in line 48. 

 

Line 56: An integrated multidisciplinary methodology 

 

Answer: Done in lines 57-58. 

 

Line 63: do not include 

 

Answer: Done in line 64. 

 

Line 167: listed in Table 1 

 

Answer: Done in line 167. 

 

Line 169: 2.3.1 Slope and soil characteristics 

 

Answer: Done in line 170. 

 

Line 205: division of the basin area by the total stream length 

 

Answer: Done in line 213. 

 

Line 244: was evaluated 

 

Answer: Done in line 255. 

 



Line 256: based on the selected variables 

 

Answer: Done in line 268. 

 

Line 277: score from 1 to 3 

 

Answer: Done in line 304. 

 

Line 367: In the GWR model 

 

Answer: Done in line 450. 

 

Line 380: with the exception of 

 

Answer: Done in line 478. 

 

Line 948: Table 2: Groundwater Depth 

 

Answer: This table was eliminated from the revised manuscript. The variable 

Groundwater Depth was, from now on, referenced as W. 

 

Line 956: suitable areas for GDV 

 

Answer: Done in line 1190, in Table 4. 

 

Figure 1: add catchment limits 

 

Answer: Done in the new version of fig01. 

 

Figure 4: change soil colours, or combine 

 

 Answer: The map of soil type was removed form Figure 04. 

 

Line 990: what kind of residuals? 

 

Answer: This was clarified in lines 1213-1214. 

 

Figure 7: consider changing the colour coding 

 

Answer: A new suitability map was calculated, with new colors by classes, and was 

added as Figure09. 

 

Figure B1: present the maps in the same order as in Figure 4. 

 

 Answer: Done in Figure B1. 
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Abstract. The forecasted groundwater resource depletion under future climatic conditions will greatly 14 

influence groundwater dependent ecosystems and their associated vegetation. In the Mediterranean region 15 

this will create harsh conditions for the maintenance of agroforestry systems dependent on groundwater, 16 

such as cork oak woodlands. The threat of increasing aridity conditions will affect their productivity and 17 

eventually induce a shift in their geographical distribution. Thus, characterizing and modelling the 18 

relationship between environmental conditions and groundwater dependent vegetation (GDV) will allow 19 

to identify the main drivers controlling its distribution and predict future impacts of climate change. 20 

Mapping the suitability of groundwater dependent vegetation in semi-arid Mediterranean areas is 21 

fundamental for the sustainable management of groundwater resources and groundwater dependent 22 

ecosystems (GDE) under the risks of climate change scenarios. For the presentIn this study, we built a 23 

model that explains the distribution of deep-rooted woody species in southern Portugal was modeled from 24 

using climatic, hydrological and topographic environmental variables; and the . To achieve this, we relied 25 

on the density of Quercus suber, Quercus ilex and Pinus pinea were used as proxy species of 26 

Groundwater Dependent Vegetation (GDV). Model fitting was performed between the proxy species 27 

Kernel density and the selected environmental predictors using 1) a simple linear model and 2) a 28 

Geographically Weighted Regression (GWR), to account for auto-correlation of the spatial data and 29 

residuals. When comparing the results of both models, the GWR modelling results showed improved 30 

goodness of fitting, as opposed to the simple linear model. Soil typeClimatic indices waswere the main 31 

drivers of GDV density closely followed by groundwater depth, drainage density and slopethe aridity 32 

index. Groundwater depth did not appear to be as pertinent in the model as initially expected, accounting 33 

only for about 7% of the total variation against 88% for climate drivers.  34 

The relative proportion of mModel predictor coefficients were was used as weighting factors for 35 

multicriteria analysis, to create a suitability map to the GDV in southern Portugal showing where the 36 

vegetation most likely relies on groundwater to cope with aridity. A validation of the resulting map was 37 
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performed using independent data of the Normalized Difference Water Index (NDWI) a satellite-derived 38 

vegetation index. June, July and August of 2005 NDWI anomalies, to the years 1999-2009, were 39 

calculated to assess the response of active woody species in the region after an extreme drought. The 40 

results from the NDWI anomalyintegrated potential distribution of each proxy tree species in the region 41 

provided an overall good agreementand overall, there was a good accordance between areas of good  with 42 

the suitability to host GDV. The model was considered reliable to predict the distribution of the studied 43 

vegetation., however, lack of data quality and information was shown to be the main cause for suitability 44 

discrepancies between maps. 45 

Our newThe methodology developedon to mapping of GDV’s will allow to predict the evolution of the 46 

distribution of GDV according to climate change scenarios and aid stakeholder decision-making 47 

concerning priority areas of water resources management. 48 

 49 

Keywords: Groundwater dependent ecosystemsvegetation, aridity, agroforestry, suitability map, 50 

Normalized Difference Water Index 51 

 52 
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1 Introduction 54 

 55 

Groundwater is the largest subsurface water reservoir and supports valuable ecosystems (Eamus et al., 56 

2006). Mediterranean forests, woodlands and shrublands, mostly growing under restricted water 57 

availability, are one of the terrestrial biomes with higher volume of groundwater used by vegetation 58 

(Evaristo and McDonnell, 2017). Future predictions of decreased precipitation (Giorgi and Lionello, 59 

2008; Nadezhdina et al., 2015), decreased runoff (Mourato et al., 2015) and aquifer recharge (Ertürk et 60 

al., 2014; Stigter et al., 2014) in the Mediterranean region threaten the sustainability of groundwater 61 

reservoirs and the corresponding dependent ecosystems. Therefore, a sustainable management of 62 

groundwater resources and the Groundwater Dependent Ecosystems (GDE) is of crucial importance. 63 

Mapping GDE constitutes a first and fundamental step to their active management. Several approaches 64 

have been proposed, including remote sensing techniques (e.g. Normalized Difference Vegetation Index – 65 

NDVI) (Barron et al., 2014; Eamus et al., 2015; Howard and Merrifield, 2010), remote-sensing combined 66 

with ground-based observations (Lv et al., 2013), based on geographic information system (GIS) (Pérez 67 

Hoyos et al., 2016a) or statistical approaches (Pérez Hoyos et al., 2016b). An iIntegrated multidisciplinary 68 

methodology (Condesso de Melo et al., 2015) has also been used. A widely used classification of GDE 69 

was proposed by Eamus et al. (2006) that . This classification distinguishes between three types: 1) 70 

Aquifer and cave ecosystems, which includes all subterranean waters; 2) Ecosystems reliant on surface 71 

groundwater (e.g. estuarine systems, wetlands; riverine systems) and 3) Ecosystems reliant on subsurface 72 

groundwater (e.g. systems where plants remain physiologically active during extended drought periods, 73 

without visible water source).  74 

Despite of a wide-ranging body of literature regarding GDE, most of the studies doid not included 75 

Mediterranean regions (Doody et al., 2017; Dresel et al., 2010; Münch and Conrad, 2007). Moreover, 76 

studies on ecosystems relying on subsurface groundwater frequently only focused on riparian 77 

environments (Lowry and Loheide, 2010; O’Grady et al., 2006), with few examples in Mediterranean 78 

areas (del Castillo et al., 2016; Fernandes, 2013; Hernández-Santana et al., 2008; Mendes et al., 2016). 79 

There is a clear knowledge gap onconcerning the identification of such ecosystems, their phreatophyte 80 

associated vegetation (Robinson, 1958) in the Mediterranean region and the management actions that 81 

should be taken to decrease the adverse effects of climate change. 82 

In the driest regions of the Mediterranean basin, the persistent lack of water during the entire summer 83 

periods gave an adaptive advantage to the vegetation selected  that could either avoid or escape drought 84 

by reaching deeper stored water up to the point of relying in groundwater (Chaves et al., 2003;plants with 85 

drought-avoiding strategies, like those that reach deeper stored water up to the point of relying on 86 

groundwater (Canadell et al., 1996; Miller et al., 2010). This drought-avoiding strategyGroundwater 87 

access by deep rooting species is often associated to the development of a dimorphic root systems in 88 

woody species (Dinis 2014, David et al., 2013) or to hydraulic lift and/or hydraulic redistribution 89 

mechanisms (Orellana et al., 2012). Those mechanisms provide the ability to move water from deep soil 90 

layers, where water content is higher, to more shallow layers where water content is lower (Horton and 91 

Hart, 1998; Neumann and Cardon, 2012). Hydraulic lift and redistribution have been reported for several 92 



4 
 

woody species of the Mediterranean basin (David et al., 2007; Filella and Peñuelas, 2004) and noticeably 93 

for Cork oak (Quercus suber L.) (David et al., 2013; Kurz-Besson et al., 2006; Mendes et al., 2016).  94 

MediterraneanC cork oak woodlands (Montados) are agro-silvo-pastoral systems considered as semi-95 

natural ecosystems of the southwest Mediterranean basin (Joffre et al., 1999) thatwho have already been 96 

referenced has a groundwater dependent terrestrial ecosystem (Mendes et al., 2016). Montados must be 97 

continually maintained through human management by thinning, understory use through grazing, 98 

ploughing and shrub clearing (Huntsinger and Bartolome, 1992) to maintain a good productivity, 99 

biodiversity and ecosystems service (Bugalho et al., 2009). In the ecosystems of this geographical area, 100 

the dominant tree species are the cork oak (Quercus suber L.) and the Portuguese holm oak (Quercus ilex 101 

subs rotundifolia Lam.) (Pinto-Correia et al., 2011). Additionally, stone pine (Pinus pinea L.) has become 102 

a commonly co-occurrent species in the last decades (Coelho and Campos, 2009). The use of groundwater 103 

has been frequently reported for both Pinus (Filella and Peñuelas, 2004; Grossiord et al., 2016; Peñuelas 104 

and Filella, 2003) and Quercus genre (Barbeta and Peñuelas, 2017; David et al., 2007, 2013, Kurz-Besson 105 

et al., 2006, 2014; Otieno et al., 2006) genders. Furthermore, the contribution of groundwater to tree 106 

physiology has been shown to be of a greater magnitude for Quercus sp. as compared with Pinus sp. (del 107 

Castillo et al., 2016; Evaristo and McDonnell, 2017).  108 

Q. suber and Q. ilex have been associated with high resilience and adaptability to hydric and thermic 109 

stress, and to recurrent droughts in the southern Mediterranean basin (Barbero et al., 1992). In Italy and 110 

Portugal, during summer droughts Q. ilex used a mixture of rain-water and groundwater and was able to 111 

take water from very dry soils (David et al., 2007; Valentini et al., 1992). An increasing contribution of 112 

groundwater in the summer has also been shown for this species (Barbeta et al., 2015). Similarly, Q. 113 

suber showed a seasonal shift in water sources, from shallow soil water in the spring to the beginning of 114 

the dry period followed by a progressive higher use of deeper water sources throughout the drought 115 

period (Otieno et al., 2006). In addition, the species roots are known to reach depths as deep as 13m in 116 

southern Portugal (David et al., 2004). Although co-occurrent to cork and holm oaks species, there is still 117 

no evidence yet that P. pinea relies on groundwater resources during the dry season. However it shows a 118 

very similar root system (Montero et al., 2004) as compared to cork oak (David et al., 2013), with large 119 

sinker roots reaching 5 m depth (Canadell et al., 1996). Given the information available on water use 120 

strategies by the phreatophyte arboreous species of the cork oak woodlands, we considered Q. ilex, Q. 121 

suber and P. pinea were considered as proxies for arboreous vegetation that belongs to GDE relying on 122 

subsurface groundwater (from here onwards designed as Groundwater Dependent Vegetation – GDV). 123 

GDV of the Mediterranean basin is often neglected in research. Indeed, still little is known about the 124 

GDV distribution, but research has already been done on the effects of climate change in specific species 125 

distribution, such as Q. suber, in the Mediterranean basin (Duque-Lazo et al., 2018; Paulo et al., 2015). 126 

While the increase in atmospheric CO2 and the raising temperature can boost tree growth (Barbeta and 127 

Peñuelas, 2017; Bussotti et al., 2013; Sardans and Peñuelas, 2004), water stress can have a counteracting 128 

effect on growth of both Quercus ilex (López et al., 1997; Sabaté et al., 2002) and P. pinaster (Kurz-129 

Besson et al., 2016). Therefore, it is of crucial importance to identify geographical areas where subsurface 130 

GDV is present and characterize the environmental conditions this vegetation type is thriving in. This 131 
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would contribute to the understanding of how to manage these species under unfavorable future climatic 132 

conditions. 133 

The aim of this study was to create a suitability map of the current distribution of the arboreous 134 

phreatophyte species considered here as GDV in southern Portugal, based on the occurrence of known 135 

and foreseen subsurface phreatophyte species and well-known environmental conditions affecting 136 

groundwater storagewater resources availability. Several environmental predictors were selected 137 

according to their impact on groundwater use and storage and then used in a Geographically Weighted 138 

Regression (GWR) to model the density of Q. suber, Q. ilex and P. pinea occurrence in the Alentejo 139 

region (NUTSII) of southern Portugal. So far, very few applications of this method have been used to 140 

model species distribution and only recently its use has spread in ecological research (Hu et al., 2017; Li 141 

et al., 2016; Mazziotta et al., 2016). The coefficients proportions obtained from the model equation for 142 

each predictor were used as weights to build the suitability map with GIS multi-factor analysis, after 143 

reclassifying each environmental predictor. 144 

Based on the environmental conditions of the study area and the species needs, we hypothesized that 1) 145 

groundwater depth together with climatic conditions play one of the most important environmental roles 146 

in GDV’s distribution and 2) a more superficial access to groundwater depth between 1.5 and 15 m 147 

associated with xericand less arid conditions should favorallow a higher density of GDV and thus a larger 148 

use of groundwater by the vegetation. Therefore, a higher suitability should be expected under such 149 

conditions. 150 

We start by presenting the methodology used to create the environmental variables for the study area of 151 

Alentejo, followed by an explanation of how the model was constructed and lead to the GDV suitability 152 

map and subsequent validation. In the result section in chapter 3, we display the maps for the 153 

environmental variables and parameters from the model fitting, the final suitability map and respective 154 

validation. The results are discussed in the fourth chapter and the conclusions are presented in the fifth 155 

chapter. 156 

 157 

  158 
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2 Material and Methods 159 

 160 

2.1 Study area 161 

The administrative region of Alentejo (NUTSII) (fig01) covers an area of 31 604.9 km2, between the 162 

latitude 37.22º andto 39.39º N in latitude and betweenlongitude 9.00º andto 6.55º W in longitude. This 163 

study area is characterized by a Mediterranean temperate mesothermic climate with hot and dry summers, 164 

defined as Csa in the Köppen classification (APA, n.d.; ARH Alentejo, 2012a, 2012b). It is characterized 165 

by a sub-humid climate, which has recently quickly drifted to semi-arid conditions (Ministério da 166 

Agricultura do Mar do Ambiente e do Ordenamento do Território, 2013).  A large proportion of the area 167 

(above 40%) is covered by forestry systems  (Autoridade Florestal Nacional and Ministério da 168 

Agricultura do Desenvolvimento Rural e das Pescas, 2010) providing a high economical value to the 169 

region and the country (Sarmento and Dores, 2013).  170 

 171 

2.2 Kernel Density estimation of GDV 172 

Presence datasets of Quercus suber, Quercus ilex and Pinus pinea of the last Portuguese forest inventory 173 

achieved in 2010 (ICNF, 2013) were used to calculate Kernel density (commonly called heat map) as a 174 

proxy forto GDV suitability. Only data points with one of the three proxy species selected as primary and 175 

secondary occupation were used. The resulting Kernel density was weighted according to tree cover 176 

percentage and was calculated using a quartic biweight distribution shape, a search radius of 10 km, and 177 

an output resolution of 0.018 degrees, corresponding to a cell size of 1 km. This variable was computed 178 

using QGIS version 2.14.12 (QGIS Development Team, 2017). 179 

 180 

2.3 Environmental variables 181 

Species distribution is mostly affected by limiting factors (controlling ecophysiological responses), 182 

disturbances and resources (Guisan and Thuiller, 2005). To characterize the study area in terms of GDV’s 183 

suitability, environmental variables expected to affect GDV’s density were selected according to their 184 

constraint on groundwater uptake and soil water storage. Within possible abiotic variables, landscape 185 

topography, geology, groundwater availability and regional climate were considered to map GDV density 186 

in the study area. The twelve selected variables for modeling purposes, retrieved from different data 187 

sources, are listed oin Table 1. The software used in spatial analysis was ArcGIS® software version 188 

10.4.1 by Esri and R program software version 3.4.2 (R Development Core Team, 2016). 189 

 190 

2.3.1 Topography and GeologySlope and soil characteristics 191 

The NASA and METI ASTER GDEM product (https://lpdaac.usgs.gov) was retrieved from the online 192 

Data Pool, courtesy of the NASA Land Processes Distributed Active Archive Center (LP DAAC), 193 
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USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South 194 

Dakota, https://lpdaac.usgs.gov/data_access/data_pool.. Spatial Analyst Toolbox from ArcGIS® software  195 

version 10.4.1 by Esri was used to calculate the slope from the digital elevation model. Slope was used as 196 

proxy for the identification of superficial shallow soil water interaction with vegetation.  197 

The map of soil type was obtained from the Portuguese National Information System for the Environment 198 

- SNIAmb (© Agência Portuguesa do Ambiente, I.P., 2017) and uniformized to the World Reference 199 

Base with the Harmonized World Soil Database v 1.2 (FAO et al., 2009). The vector map was converted 200 

to raster using the Conversion Toolbox from ArcGIS® software version 10.4.1 by Esri. To reduce the 201 

analysis complexity involving the several soil types present in the map, soil types were regrouped in three 202 

classes, according to their capacity to store or drain water (Table A1 in appendix A). The classification 203 

was based on the characteristics of each soil unit (available water storage capacity, drainage and topsoil 204 

texture) from the Harmonized World Soil Database v 1.2 (FAO et al., 2009). In the presence of dominant 205 

soil with little drainage capacity, mainly topsoil clay fraction and high available water content (AWC), 206 

lower scores were given in association to decreased suitability for GDV. Otherwise, when soil 207 

characteristics suggested water storage at deeper soil depths, lower AWC, drainage and sandy topsoil 208 

texture, higher scores were given. 209 

Effective soil thickness (Table 1) was also considered for representings the maximum soil depth explored 210 

by the vegetation roots. It constrains the expansion and growth of the root system, as well as the available 211 

amount of water that can be absorbed by roots.  212 

 213 

2.3.2 Groundwater availability 214 

Root access to groundwater resources is one of the most limiting factors for GDV’s growth and survival, 215 

especially during the dry season. The map of depth to water table was interpolated from piezometric 216 

observations from the Portuguese National Information System on Water Resources (SNIRH) public data 217 

base (http://snirh.apambiente.pt, last accessed on March 31st 2017) and the Study of Groundwater 218 

Resources of Alentejo (ERHSA) (Chambel et al., 2007). Data points of large-diameter wells and 219 

piezometers were retrieved for the Alentejo region (fig02) and sorted into undifferentiated, karst or 220 

porous geological types to model groundwater depth (W). In the studied area, piezometers are exclusively 221 

dedicated small diameter boreholes for piezometric observations, in areas with high abstraction volumes 222 

for public water supply. Large diameter wells in this region are usually low yielding and mainly devoted 223 

to private use and irrigation. Due to the large heterogeneity of geological media, groundwater depth was 224 

calculated separately for each sub-basin. A total of 3158 data points corresponding to large wells and 225 

piezometers were used, with uneven measurements between 1979 and 2017. For each piezometer an 226 

average depth was calculated from the available observations and used as a single value. In areas with 227 

undifferentiated geological type, piezometric level and elevation were highly correlated (>0.9), thus a 228 

linear regression was applied to interpolate data. Ordinary kriging was preferred for the interpolation of 229 

karst and porous aquifers, combining large wells and piezometric data points. To build a surface layer of 230 

the depth to water table, the interpolated surface of the groundwater level was subtracted from the digital 231 

https://lpdaac.usgs.gov/data_access/data_pool
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elevation model. Geostatistical Analyst ToolBox from ArcGIS® software version 10.4.1 by Esr  was used 232 

for this task. 233 

Drainage density is a measure of how well the basin is drained by stream channels. It is defined as the 234 

total length of channels per unit area. Drainage density was calculated for a 10km grid size each of the six 235 

hydrographic basins offor the Alentejo region, by the division of the 10km square area (A) in km2 236 

bybetween  the total stream length (L) in km and the basin area (A) in km2, as in Eq. (1). 237 

𝐷𝐷𝑑 =  
𝐿

𝐴
 ,         238 

 (1) 239 

 240 

2.3.3 Regional Climate 241 

Temperature and precipitation datasets were obtained from the E-OBS 242 

(http://eca.knmi.nl/download/ensembles/ensembles.php, last accessed on March 31st 2017) public 243 

database (Haylock et al., 2008). Standardized Precipitation Evapotranspiration Index (SPEI), Aridity 244 

Index (Ai) (AI) and Ombrothermic Indexes were computed from long-term (1951-2010) monthly 245 

temperature and precipitation observations. The computation of potential evapotranspiration (PET) was 246 

performed according to Thornthwaite (1948) and was calculatedassessed using the SPEI package 247 

(Beguería and Vicente-Serrano, 2013) in R program in R program software version 3.4.2 (R Development 248 

Core Team, 2016). 249 

SPEI multi-scalar drought index (Vicente-Serrano et al., 2010) was calculated over a 6 month interval to 250 

characterize drought severity in the area of study using SPEI package (Beguería and Vicente-Serrano, 251 

2013) for R program. SPEI is based on the normalization of the water balance calculated as the difference 252 

between cumulative precipitation and PET for a given period at monthly intervals. Normalized values of 253 

SPEI typically range between -3 and 3. Drought events were considered as severe when SPEI values were 254 

between -1.5 and -1.99, and as extreme with values below -2 (Mckee et al., 1993). Severe and extreme 255 

SPEI predictors were computed as the number of months with severe or extreme drought, counted along 256 

the 60 years of the climate time-series. 257 

While the SPEI index used in this study identifies geographical areas affected with more frequent extreme 258 

droughts, the Aridity index distinguishes arid geographical areas prone to annual negative water balance 259 

(with low Ai value) to more mesic areas showing positive annual water balance (with high Ai value). Ai 260 

gives information related to evapotranspiration processes and rainfall deficit for potential vegetative 261 

growth. It was calculated following Eq. (2) according to Middleton et al. (1992), where PET is the 262 

average annual potential evapotranspiration and P is the average annual precipitation, both in mm for the 263 

60 years period of the climate time-series. Dry lands are defined by their degree of aridity in 4 classes: 264 

Hyperarid (AiI<0.05); Arid (0.05<AiI<0.2); Semi-arid (0.2<AiI<0.5) and Dry Subhumid (0.5<AiI<0.65) 265 

(Middleton et al., 1992).  266 

AiI= 
𝑃

 𝑃𝐸𝑇
 ,          (2) 267 

http://eca.knmi.nl/download/ensembles/ensembles.php
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Ombrothermic Indexes (O) were used to better characterize the bioclimatology of the study region 268 

(Rivas-Martínez et al., 2011), by evaluating soil water availability for plants during the driest months of 269 

the year. Four ombrothermic indexes were calculated according to a specific section of the year stated in 270 

Table 1, and following Eq. (3), where Pp is the positive annual precipitation (accumulated monthly 271 

precipitation when the average monthly mean temperature is higher than 0°C) and Tp is the positive 272 

annual temperature (total in tenths of degrees centigrade of the average monthly temperatures higher than 273 

0°). If the oOmbrothermic index presentings values belowabove 2 for the analyzed months, the area 274 

cannot be considered as Mediterranean bioclimatically. For non-Mediterranean areas, there is no dry 275 

period in which, for at least two consecutive months, the precipitation is less than or equal to twice the 276 

temperature. Each ombrothermic index differed in the examined period of the year (Table1).  277 

𝑂𝐼𝑜 =
𝑃𝑝

𝑇𝑝
 ,          (3) 278 

 279 

2.4 Selection of model pPredictors selection 280 

The full set of environmental variables wasere evaluated as potential predictors for the suitability of GDV 281 

(based on the Kernel density of the proxy species). A preliminary selection was carried out, first by 282 

computing Pearson’s correlation coefficients between environmental variables and second by performing 283 

a Principal Components Analysis (PCA) to detect multicollinearity. Covariates were discarded for 284 

modeling according to a sequential procedure. Whenever pairs of variables presented a correlation value 285 

above 0.4, the variable with the highest explained variance on the first axis of the PCA was selected. In 286 

addition, selected variables had to show the lowest possible correlation values between them. Variables 287 

showing low correlations and explaining a higher cumulative proportion of variability with the lowest 288 

number of PCA axis were later selected as predictors for modeling. PCA was performed using the GeoDa 289 

Software (Anselin et al., 2006) and Pearson’s correlation coefficients were computed with Spatial Analyst 290 

Tool from ArcGIS ® software version 10.4.1 by Esri. 291 

 292 

2.5 Model development  293 

When fitting a linear regression model based onto the selected variables, we must assure athe normal 294 

distribution and stationarity of the model predictors and residuals must be assured.  295 

The Kernel density of the proxy GDV species, Q. suber, Q. ilex and P. pinea, showed a skewed normal 296 

distribution. Therefore, a square-root normalization of the data was applied on the response variable, 297 

before model fitting. To be able to compare the resulting model coefficients and use them as weighting 298 

factors of the multi-criteria analysis to build the suitability map, the predictor variables were normalized 299 

using the z-score function. This allows to create standardized scores for each variable, by subtracting the 300 

mean of all data points from each individual data point, then dividing those points by the standard 301 

deviation of all points, so that the mean of each z-predictor is zero and the deviation is 1.  302 
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However, sSpatial autocorrelation and non-stationarity are common when using linear regression on 303 

spatial data. To overcome these issues, Geographically Weighted Regression (GWR) was used to allow 304 

model coefficients to adjust to each location of the dataset, based on the proximity of sampling locations 305 

(Stewart Fotheringham et al., 1996). In this study, simple linear regression and GWR were both applied to 306 

the dataset and their performances compared. Models were fitted on a 5% random subsample of the entire 307 

dataset (621442 data points), due to computational restrictions and to decrease the spatial autocorrelation 308 

effect (Kühn, 2007). This methodology has already been applied with a subsample of 10%, with points 309 

distant 10km from each other (Bertrand et al., 2016). In spite of the subsampling, the mean and maximum 310 

distance between two random data points were, respectively, 3.6 km and 16.7 km, providing a good 311 

representation of local heterogeneity, as shown in figures 05 and 06. An additional analysis showing an 312 

excellent agreement between the two datasets is presented in FigA1 in appendix A. 313 

Initially the model was constructed containing all selected predictors through the PCA and Pearson’s 314 

correlation analysis. Afterwards, predictors were sequentially discarded to ascertain the model presenting 315 

lower second-order Akaike Information Criteria (AICc) and higher quasi-global R2 chosen to predict the 316 

suitability of GDV. 317 

Adaptive Kernel bandwidths for the GWR model fitting were used due to the spatial irregularity of the 318 

random subsample. Bandwidths were obtained by minimizing the CrossValidation score (Bivand et al., 319 

2008). To analyze the performance of the GWR model alone, the local and global adjusted R-squared 320 

were considered. To compare between the GWR model and the simple linear model, we considered the 321 

distribution of the model residuals was used, e.g. whether there were visible to identify clustered values as 322 

well as the. The second-order Akaike Information Criterion (AICc. ) was also contemplated. The spatial 323 

autocorrelation of the models residuals was evaluated with the Moran’s I test (Moran, 1950) using the 324 

Spatial Statistics Tool from ArcGIS ® software version 10.4.1 by Esri, and also graphically. GWR model 325 

was fitted using the spgwr package from R program version 3.4.2 (Bivand and Yu, 2017). 326 

 327 

2.6 Suitability map building 328 

To create the suitability map we proceeded with the classification of all predictor layers included in the 329 

GWR model were classified, similarly to Condesso de Melo et al. (2015) and Aksoy et al. (2017) . The 330 

likelihood of an interaction between the vegetation and groundwater resources was scored from 10 to 3 331 

for each predictor. Scores were assigned after bibliographic review and expert opinion. The higher the 332 

score, the higher the likelihood, 1 corresponding to a weak likelihood and 3 indicating very high 333 

likelihood. Groundwater depth was divided in two classes, according to the accessibility to shallow soil 334 

superficial water above 1.5 m and the maximum rooting depth for Mediterranean woody species reaching 335 

13 m, reported by Canadell et al. (1996). Throughout the manuscript water between 0 and 1.5 m depth 336 

was designated as shallow soil water, while water below 1.5 m depth was considered as groundwater. The 337 

depth class between 0 and 1.5m was based on the riparian vegetation in semi-arid Mediterranean areas 338 

which is mainly composed of shrub communities (Salinas et al., 2000) and presents a mean rooting depth 339 

of 1.5m (Silva and Rego, 2004). The most common tree species rooting depth in riparian ecosystems is 340 
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normally similar to the depth of fine sediment not reaching gravel substrates (Singer et al., 2012) and not 341 

reaching levels as deep as deep-rooted species. The minimum score was given to areas where 342 

groundwater depth was too shallow (below 1.5 m).  This allowed to identify species dependent on more 343 

superficial groundwater which were considered to belong to other types ofsurface groundwater dependent 344 

vegetation. Areas with steep slope were considered to have superficial water flowrunoff and less recharge 345 

(e.g. areas with permanent water table close to the surface due to proximity to permanent streams) and 346 

influence negatively tree density (Costa et al., 2008). Those areas were treated as less suitable to GDV. 347 

Aridity Index andValues of the Ombrothermic Index of the summer quarter and the immediately previous 348 

month (OIos4) values were split in 3 classes according to Jenks natural breaks, with higher suitability 349 

scores corresponding to higher aridity. The higher values of Ai, corresponding to lower aridity had a score 350 

of 1, because a higher humid environment would decrease the necessity of the arboreous species to use 351 

deep water sources. Accordingly, an increase in aridity (lower values of Ai) has already been shown to 352 

increase tree decline (Waroux and Lambin, 2012) and so higher Ai values corresponded to a score of 2, 353 

leaving the score 3 to intermediate values of Ai.  Drainage density scoring was based on the capability of 354 

drainage of the water through the hydrographical network of the river. When drainage density was lower 355 

(below 0.5), a higher suitability scoring was given because the water lost from runoff through the 356 

hydrographic network would be less available to the vegetation thus favoring a higher use of water from 357 

groundwater reservoirs (Rodrigues, 2011). 358 

A direct compilation of the predictor layers could have been performed for the multicriteria analysis., 359 

Hhowever, somenot all predictors might have a stronger influence in the same measure on the GDV’s  360 

distribution and density than othersof this type of vegetation. Therefore, there was a need to define 361 

weighting factors for each layer of the final GIS multicriteria analysis. Yet, due to the intricate relations 362 

between all environmental predictors and their effects on the GDV, experts and stakeholders 363 

suggestedprovided very different scoring for a same layer. Subsequently, we iInstead chose to use the 364 

relative proportion of each predictor was used coefficients locally, according to theof the GWR model 365 

(Eq. 4) as weighting factors. The final GIS multicriteria analysis was performed using the Spatial Analyst 366 

Tool ArcGIS® software version 10.4.1 by Esri,  by applying local model equations obtained for each of 367 

the 621442 coordinates of the Alentejo map (Eq.4), resulting in the final suitability map.  368 

SGDV= Intercept + coefp1 * [real value X1] + coefp2 * [real value X2] + coefp3 * [real value X3] + …, 369 

(4) 370 

with SGDV representing the suitability to Groundwater Dependent Vegetation, brackets representing the 371 

reclassified GIS X layer corresponding to the scoring and coefx indicating the relative proportion for the 372 

predictor x. 373 

According to this equation,In the latter, lower values indicate a lower probability occurrence of 374 

groundwater use referred a lower GDV suitabilityoccurrence while higher values correspond to a higher 375 

use of groundwater referred a higher GDV suitability. To allow for an easier interpretation, the data on 376 

suitability to GDV was subsequently classified based on their distribution value, according to Jenks 377 
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natural breaks. This resulted in 5 suitability classes: “Very poor”, “Poor”, “Moderate”, “Good” and “Very 378 

Good”. 379 

 380 

2.7 Map evaliduation 381 

To assess the quality of the suitability map obtained in the present study, independent maps of integrated 382 

suitability to Q. suber, Q. ilex and P. Pinea were retrieved from the EPIC WebGIS Portugal 383 

(http://epic.webgis-portugal.isa.ulisboa.pt/) (Magalhães et al., 2015a, 2015b, 2015c). Those distribution 384 

maps represent the suitability to a tree species according to bioclimatic, soil morphological conditions and 385 

best silvicultural practices (Magalhães et al., 2015a). By overlapping the maps of the three species in 386 

ArcGIS, we obtained a synthetic independent map where it was possible to identify suitable areas to none, 387 

one, two or three of the tree species, considered good proxies of GDV (fig. C1). Artificialized areas, 388 

rocky outcrops, rivers and humid areas were eliminated from the evaluation and validated maps before 389 

performing an analytical comparison using the Analysis Tool ArcGIS® software version 10.4.1 by Esri. 390 

Satellite derived remote-sensing products have been widely used to follow the impact of drought on land 391 

cover and the vegetation dynamics (Aghakouchaket al. 2015). Vegetation indexes offer excellent tools to 392 

assess and monitor plant changes and water stress (Asrar et al. 1989). The Normalized Difference Water 393 

Index (NDWI) (Gao, 1996) is a satellite-derived index that aims to estimate fuel moisture content (Maki 394 

et al., 2004) and leaf water content at canopy level, widely used for drought monitoring (Anderson et al., 395 

2010, Gu et al., 2007; Ceccato et al., 2002a). This index was chosen to be more sensitive to canopy water 396 

content and a good proxy for water stress status in plants. Moreover, NDWI has been shown to be best 397 

related to the greenness of Cork oak woodland’s canopy, expressed by the fraction of intercepted 398 

photosynthetically active radiation (Cerasoli et al., 2016). 399 

NDWI is computed using the near infrared (NIR) and the short-wave infrared (SWIR) reflectance, which 400 

makes it sensitive to changes in liquid water content and in vegetation canopies (Gao, 1996; Ceccato et 401 

al., 2002a, b).  The index computation (Eq. 5) was further adapted by Gond et al. (2004) to SPOT-402 

VEGETATION instrument datasets, using NIR (0.84 µm) and MIR (1.64 µm) channels, as described by 403 

Hagolle et al. (2005). 404 

𝑁𝐷𝑊𝐼 =  
𝜌𝑁𝐼𝑅−𝜌𝑀𝐼𝑅

𝜌𝑁𝐼𝑅+𝜌𝑀𝐼𝑅
.         (5) 405 

Following Eq. (5), NDWI data was computed using B3 and MIR data acquired from VEGETATION 406 

instrument on board of SPOT4 and SPOT5 satellites. Extraction and corrections procedures applied to 407 

optimize NDWI series are fully described in Gouveia et al. (2012). 408 

The NDWI anomaly was computed as the difference between NDWI observed in June, July and August 409 

of 2005 and the median NDWI for the considered month for the period 1999 to 2009. June was selected 410 

to provide the best signal from a still fully active canopy of woody species while the herbaceous layer had 411 

usually already finished its annual cycle and dried out. The hydrological year of 2004/2005 was 412 

characterized by an extreme drought event over the Iberian Peninsula, where less than 40% of the normal 413 
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precipitation was registered in the southern area (Gouveia et al., 2009). Thus, in June 2005 the vegetation 414 

of the Alentejo region was already coping with an extreme long-term drought, which was well captured 415 

by the anomaly of the NDWI index (negative values), as shown by Gouveia et al. 2012. 416 

 417 

2.8 Sensitivity analysis 418 

 419 

Sensitivity analyses are conducted to identify model inputs that cause significant impact and/or 420 

uncertainty in the output.  They can be used to identify key variables that should be the focus of attention 421 

to increase mode robustness in future research or to remove redundant inputs from the model equation 422 

because they do not have significant impact on the model output. Based on bootstrapping simulations 423 

(Tian et al., 2014), a sensitivity analysis was conducted on the GWR model by perturbing one input 424 

predictor at time while keeping the rest of the equation unperturbed. To simulate perturbations, 10000 425 

values were randomly selected within the natural range of each input variable observed in the Alentejo 426 

region. Those random values were then used to run 10000 simulations of the local equation of the GWR 427 

model for each of the 6214 coordinates of the geographical area. Local outputs corresponding to the 428 

predicted GDV density were then calculated for each perturbed input variable (Ai, O4, W, D and s). The 429 

range of output values was calculated to reflect the sensibility of the model for the perturbed input 430 

variable. The overall sensibility of the model to all input variables was estimated as the absolute 431 

difference between the minimum output value and the sum of maximum output values of all predictors, 432 

thus representing the maximum possible output range observed after perturbing all predictors. 433 

 434 

 435 

  436 
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3 Results 437 

 438 

3.1 Kernel Density 439 

Within the studied region of Portugal, the phreatophyte species Quercus suber, Quercus ilex and the 440 

suspected phreatophyte species Pinus pinea were not distributed uniformly throughout the territory. Areas 441 

with higher Kernel density (or higher distribution likelihood) were mostly spread between the northern 442 

part of Alentejo region and the western part close to the coast, with values ranging between 900 and 1200 443 

(fig03). Two clusters of high density also appeared below the Tagus river. The remaining study area 444 

presented mean density values, with a very low density in the area of the river Tagus.  445 

 446 

3.2 Environmental conditions 447 

The exploratory analysis of the variables, performed through the PCA and Pearson correlation matrix 448 

confirmed the presence of multicollinearity. From the initial variables (Table 1), Thickness (T), Drainage 449 

Density, number of months with severe and extreme SPEI (respectively, SPEIs andpei_severe,  450 

SPEIe)Spei_extreme, Annual Ombrothermic Index (OIo), Ombrothermic Index of the hottest month of the 451 

summer quarter(OIos1) and Ombrothermic Index of the summer quarter (IosO3) were discarded, while the 452 

variables slope (s), drainage density (D), soil type (St), groundwater depth (W), AiI and IosO4 were 453 

maintained for analysis (fig. A21 and Table A21 in appendix). A sequential removal of one predictor 454 

from the initial modeling including six variables was performed (Table 2), after which the model was 455 

reduced to 5 variables, with the highest global R2 (0.99) and the lowest AICc (18050.34). Therefore, five 456 

environmental variables out of the initial 12 considered (fig04) were endorsed to explain the variation of 457 

the Kernel density of GDV in Alentejo the following variables: Ai,soil type, ombrothermic index of the 458 

summer quarter and the immediately previous month (iosO4), W, D and slope, aridity index and 459 

groundwater depth. 460 

The Alentejo region showed high heterogeneity of soil types, with 27 different categories (fig04a). In 461 

most part of the Alentejo region, slope was below 10% (fig04eb) and,  coastal areas presenteding the 462 

lowest values and variability. Highest values of groundwater depth (fig04c), reaching a maximum of 255 463 

m, were found in the Atlantic margin of the study area, mainly in Tagus and Sado river basins. Several 464 

other small and confined areas in Alentejo also showed high values, corresponding to aquifers of porous 465 

or karst geological types. Most of the remaining study area showed groundwater depths ranging between 466 

1.5 m and 15 m. Figures 04ad and 04be indicate the southeast of Alentejo as the driest area, given by 467 

minimum values of the aridity index (0.618), and much higher potential evapotranspiration much higher 468 

that precipitation. Besides, OIos4 presented a maximum value (0.714) for this region (meaning that soil 469 

water availability in the soil was not compensated by the precipitation of the previous M-J-J-A months).  470 

This is also supported by the higher drainage density in the southeast which indicates a lower prevalence 471 

of shallow soil water due to higher stream length by area. 472 
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Combining all variables, it was possible to distinguish two sub-regions with distinct conditions: the 473 

southeast of Alentejo and the Atlantic margin. The latter is mainly distinguished by its composed of 474 

podzols and regosols, low slope areas, shallower groundwater and more humid climatic conditions than 475 

the southeast of Alentejo. 476 

 477 

3.3 Regression models 478 

The Kernel density of the proxy GDV species, Q. suber, Q. ilex and P. pinea, showed a skewed normal 479 

distribution. Therefore, a square-root normalization of the data was applied on this response variable, 480 

before model fitting. To be able to compare the resulting model coefficients and use them as weighting 481 

factors of the multi-criteria analysis to build the suitability map, the predictor variables were normalized 482 

using the z-score function. The equation resulting from the GWR model fitting, featuring the predictor 483 

coefficients (Table 2) used later for the computation of the GDV suitability map corresponds to Eq. 484 

(4).The best model to describe the GDV distribution was found through a sequential discard of each 485 

variable (Table 2) and corresponded to the model with a distinct lower AICc (18050.76) compared with 486 

the second lowest AICc (27389.74) and showed an important increase in quasi-global R2 (from 0.926 for 487 

the second best model to 0.992 for the best one). The best model fit was obtained with Ai, O4, W, D and s. 488 

This final model was then applied to the GIS layers to map the suitability of GDV in Alentejo, according 489 

to Eq. 6. 490 

SGDV = Intercept + Ai coefp * [reclassified Ai value] + O4 coefp * [reclassified O4 value] + W coefp * 491 

[reclassified W value] + D coefp * [reclassified D value] + s coefp * [reclassified s value], 492 

(6) 493 

Local adjusted R-squared of the GWR model was highly variable throughout the study area, ranging from 494 

0.25 to 0.995 (fig05). Also, the local R2 values below 0.5 corresponded to only 0.3% of the data. The 495 

lLower R2 values were distributed throughout the Alentejo area, with no distinct pattern.clustered, near 496 

the Tagus river basin and in central and northern Alentejo. The overall fit of the GWR model was high 497 

(Table 3). The adjusted regression coefficient indicated that 992% of the variation in the data was 498 

explained by the GWR model, while only 211% was explained by the simple linear model (Table 3). 499 

Accordingly, GWR had a substantially lower AICc when compared with the simple linear model, 500 

indicating a much better fit. 501 

The analysis ofThe spatial autocorrelation, given by the Moran Index (Griffith, 2009; Moran 1950) 502 

retrieved from the geospatial distribution of residual values, wasshowed significant for both the GWR and 503 

the linear models, indicating that observations geospatially are dependent on each other to a certain level . 504 

However, this dependence was substantially lower for the GWR model than for the linear model (a Z-z-505 

score of 107.7950.24 for the GWR modeland 147.56 respectively). , with a considerable reduction of the 506 

Moran Index between models, from 0.94 in the simple linear regression model to 0.67 in the GWR model. 507 

From figures 06a and 06b there is an evident decrease in clustered residual values from the simple linear 508 

model to GWR. In the GWR model (fig06a) the positive and negative residual values were much more 509 

https://www.sciencedirect.com/science/article/pii/S0034425714000212#bbb0090
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randomly scattered throughout the study region than in the linear model (fig06b), highlighting a much 510 

better performance of the GWR, which minimized residual autocorrelation. Indeed, iIn the linear model 511 

(fig06ba), positive residuals were condensed in the right side of Tagus and Sado river basins, while 512 

negative values were mainly present on the left side of the Tagus river and in the center-south of Alentejo. 513 

In GWR model (fig06b) the condensed positive and negative residual values were much more scattered 514 

throughout the study region, highlighting a much better performance of the GWR, which minimized 515 

residual autocorrelation.  516 

The spatial distribution of the coefficients of GWR predictors is presented in Fig07. They were later used 517 

for the computation of the GDV suitability score for each data point (Eq.6). The coefficient variability 518 

was three times higher for the Ai as compared to O4 (fig08a), reaching 66% and 22% respectively. For W, 519 

D and s, the coefficient variation was much lower, representing only about 6.2%, 3.8% and 1.2% of the 520 

total variation observed in the coefficients, respectively. The remaining variables showed a median close 521 

to 0 and the O4 was the second with higher variability followed by the W. The coefficient median values 522 

were, respectively, -3.40, 0.29, -0.015, -0.018 and 0.022 for Ai, O4, W, D and s variables. 523 

The distributions of negative coefficients were similar for Ai and the O4 variables (fig07a and fig07b), 524 

with lower values in the southern coastal area, and in the Tagus river watershed. The highest absolute 525 

values were mostly found for Ai in the southern area of the Alentejo region and on smaller patches in the 526 

northern region. In the center and eastern areas of Alentejo, a higher weight of the groundwater depth 527 

coefficient could be found (fig07c), approximately matching a higher influence of slope (fig07e). The 528 

groundwater depth seemed to have almost no influence on GDV density in the Tagus river watershed, 529 

expressed by coefficients mostly null around the riverbed (fig07c). The coefficient distribution of D and 530 

O4 shows some similarities, mostly in the center and southeast of Alentejo (fig07d). Extreme values of O4 531 

coefficients were mostly concentrated in the eastern part of the Tagus watershed and in the southern 532 

coastal area included in the Sado watershed. Slope coefficient values showed the lowest amplitude 533 

throughout the study area (fig07e), with prevailing high positive values gathered mainly in the center of 534 

the study area and in the Tagus river watershed (northwest of the study center). 535 

 536 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  23.88 + 0.22 𝐼𝑜𝑠4 − 1.61 𝐴𝐼 + 0.06 𝐷𝑒𝑝𝑡ℎ + 1.33 𝑆𝑜𝑖𝑙 𝑡𝑦𝑝𝑒 2 + 2.46 𝑆𝑜𝑖𝑙 𝑡𝑦𝑝𝑒 3 +537 
0.14 𝑆𝑙𝑜𝑝𝑒 ,           (4) 538 

3.4 GDV Suitability map 539 

The classification of the 5 endorsed environmental predictors is presented in Table 4 and their respective 540 

maps in figure B1 in appendix B. Rivers Tagus and Sado had an overall largepositive impact on GDV’s 541 

suitability forto each predictor, with the exception of W. This is due to a higher water availability 542 

reflected by the values of omborthermicO4, D and lower slopes due to the alluvial plains of the Tagus 543 

river and aridity indexes (figs. B1b,a, and B1d and eb in appendix B) and a higher groundwater depth in 544 

the surroundings of the rivers (fig. B1c in appendix). Moreover, those regions presented higher humidity 545 

conditions (through analysis of the Ai in fig B1a in appendix B) and groundwater depths outside the 546 

optimum range (Fig. B1c in appendix B), therefore less suitable for GDV. Optimal conditions for 547 
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groundwater access were mainly gathered in the interior of the study region (fig. B1c in appendix B07), 548 

with the exception offor some confined aquifers in the northeast and southeast of the study region. 549 

Favorable slopes for GDV were mostly highlighted in the Tagus river basin area, where a good likelihood 550 

of interaction between GDV and groundwater could  be identified (fig. B1ed in appendix B). However, 551 

this high likelihood was hindered by the type of soil present in that area (fig. B1e in appendix). 552 

The final map illustrating the suitability to GDV is shown in Fig. 097. The The largest classified area (8 553 

787km2) presented a very poor suitability to GDV but corresponded only to approximately a quarter of 554 

the total study area (29%). This percentage was followed closely by the moderate suitability to GDV 555 

which occupied 26% (8000km2). Overall, the two less suitable classes (very poor and poor) represented 556 

47% of the study area, whilst the two best ones and the moderate class (very good, good and moderate) 557 

represented 53%. Consequently, most of the study area showed moderate to high suitability to GDV. The 558 

very good and good suitability classes cover an arch from the most south and northeastern area of the 559 

Alentejo region, passing through the Sado and southern and northern Guadiana river basins and close to 560 

the coastal line at 38ºN. Most of the center of the study area showed moderate to very good suitability do 561 

GDV, while the areas corresponding to the alluvial deposits of the Tagus river showed poor to very poor 562 

suitability. largest part of the study area (17 538 km2), representing more than half of the total area 563 

(55.8%) showed a very good suitability to the occurrence of GDV. The rest of the territory showed a 564 

“Moderate” to “Poor” suitability, representing 5 037 km2 and 4 313 km2, respectively. Altogether, 1/3 of 565 

the total area showed “Very poor” to “Moderate” suitability to GDV, corresponding to the most southern 566 

and eastern part of the study region. 567 

The suitability to GDV in the Alentejo region was mainly driven by soil typeAi, given thatby the highest 568 

coefficient variability was associated to the Ai predictor in the GWR model equation. This is also 569 

supported by the similar distribution pattern observed between the suitability map and the aridity index 570 

predictor (fig04a and fig09). Areas with good or very good suitability mostly matched areas of Ai with 571 

score 3, corresponding to aridity index values above 0.75 (Fig. B1a in appendix B). On the other hand, the 572 

lowest suitability classes showed a good agreement with the lowest scores given to W (fig. B1c in 573 

appendix B), mostly in the coastal area and in the Tagus river basin. similar distribution pattern between 574 

the suitability map and the soil type predictor (fig04a and fig07). This was also confirmed by the high 575 

coefficient obtained for the soil type predictor in the GWR model equation. The aridity index also showed 576 

a strong influence on GDV’s suitability, mostly for the intermediate and good classes. Areas with high 577 

suitability classes corresponded to the most northern and coastal areas of Alentejo region. Areas with 578 

intermediate class in the north of the study region mostly matched with soil type polygons, with score 1 579 

and 2 (figB1e in appendix), while high aridity values restricted GDV’s suitability in the south. Areas with 580 

a good suitability mostly coincided with polygons of soil type 3 and with lower values of aridity index in 581 

the northern region of Alentejo. 582 

 583 

3.5 Map evaluidation 584 
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To evaluateassess the quality of the suitability map developed in the present study, thewe compared our 585 

results were compared with the NDWI anomaly considering the month of June of the dry year of 2005 in 586 

the Alentejo area (fig10). Both maps (figs 09 and 10) showed similar patterns, with higher presence of 587 

GDV satisfactorily matching areas with the lowest NDWI anomaly. The NDWI anomaly was mostly 588 

negative over the Alentejo territory indicating water stress in the vegetation leaves. Water stress due to 589 

the extreme drought was maximum (green color) in geographical areas matching the highest GDV 590 

suitability (fig09). It was less pronounced (mostly yellowish) in the central area of the Alentejo region 591 

between the Guadiana and Sado river basins where the vegetation presents a lower density (fig03). Areas 592 

with positive/null values of NDWI anomaly (corresponding to geographical areas with a higher water 593 

availability) were mostly distributed on the coastal area of the Atlantic ocean or close to riverbeds, 594 

namely in the Tagus and Sado floodplains (brown color, fig10), matching areas of poor suitability for 595 

GDV in Figure 09. Note that green and yellow areas in June 2005 (fig 10a) progressively turned to brown 596 

color in July and August 2005 (fig10c), suggesting that the corresponding vegetation recovered from the 597 

increasing water stress, despite the intensification of drought throughout the summer period. integrated 598 

suitability maps, from different data sources than those used in this study, for each of the previously 599 

considered proxy species. The integrated suitability maps of each proxy species were aggregated into one 600 

validation map. 601 

Both the result and validation maps were highly coincident, especially with respect to areas with lower 602 

and moderate suitability to GDV (Table 5). Areas with very poor GDV suitability corresponded to almost 603 

76% of the non-suitable areas for proxy species in the validation map. Accordingly, poor suitability areas 604 

for GDV matched 36.65% of the non-suitable areas for proxy species and 45.27% of areas suitable to 605 

only one of the proxy species. Besides, areas with moderate GDV suitability matched almost half of the 606 

suitable areas for two of the proxy specie in the validation map. Classes with higher GDV suitability did 607 

not show a good agreement with the validation map.  608 

When juxtaposing both maps (fig07 and fig08), there was an overall correspondence between areas with 609 

higher suitability to the proxy species. In both maps the northern and coastal area of the Alentejo region, 610 

south of the Tagus river basin, showed a matching higher suitability to the proxy species and the GDV. 611 

The Sado region was a common area of high suitability in both maps as well. The largest mismatches 612 

between maps were found in the center and southeast of the study region.  613 

Temporary irrigated areas matched non-suitable areas for proxy species in the validation map (fig C1 in 614 

appendix). This could explain some of the mismatches highlighted before, particularly where a large 615 

percentage of good and very good GDV suitability (28 and 41% respectively) corresponds to a non-616 

suitable area for each of the proxy species in the validation map (Table5). 617 

 618 

3.6 Sensitivity analysis 619 

The sensitivity of the model in response to the perturbation of each one of the input variables (Ai, O4, W, 620 

D and s) is presented on Figure 11a to Figure11e. The overall sensitivity of the model is further presented 621 

on Figure 11f. For any input variable, the model sensitivity (fig11a to 11e) was higher where absolute 622 
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values of local coefficients were also higher (fig07a to 07e). The maximum impact on GDV’s density, 623 

corresponding to the maximum output range observed after perturbation (fig08b), was observed when 624 

perturbing the Aridity index, accounting for 66% of the total variability. The second highest impact was 625 

observed after perturbing the ombrothermic index. The variability in the model outputs observed after 626 

perturbing the remaining variables O4, W, D and s accounted for 22, 7, 4 and 1% of the total accumulated 627 

variability, respectively (fig08b). The highest variability in the GWR model output was mostly observed 628 

in the central part of the southern half of the Alentejo region, as well as close to the main channels of the 629 

Guadiana and Tagus rivers (fig11f). Furthermore, areas with higher model sensitivity (fig11f) 630 

significantly matched higher model performance expressed by R2 (fig05), assessed with a Kruskall-Wallis 631 

test (p<0.0001***). 632 

 633 

 634 

  635 
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4 Discussion 636 

 637 

4.1 Modeling approach 638 

Mapping the suitability of regional Groundwater Dependent Vegetation in southern Portugal proved to be 639 

a challenge because of the intricate relations between topographical, hydrological and biotic conditions in 640 

this specific area of the Mediterranean basin. Only 50% of the initial predictors were assigned for model 641 

fitting, due to a high collinearity between variables of the same type (e.g. aridity index and SPEI 642 

variables). Nevertheless, the small number of elected predictors for modeling will provide a higher 643 

reliability of the forecast of GDV suitability under future predicted environmental conditions. 644 

Despite the exclusion of redundant predictors, the spatial distribution of residues after fitting the simple 645 

linear model still showed a significant clustered pattern, which violated the basic assumption of 646 

independence between samples. Therefore, a Geographically Weighted Regression model has been was 647 

used according to Stewart Fotheringham et al. (1996). This spatial variation of the linear model has been 648 

used before in ecological studies (Li et al., 2016; Mazziotta et al., 2016), but never for the mapping of 649 

GDV, to our knowledge. This approach considerably improved the goodness of fit when compared to the 650 

linear model, with a coefficient of regression (R2) increasing from 0.0211 to 0.992 at the global level, and 651 

an obvious reduction of residual clustering. Despite those improvements, it has not been possible to 652 

completely eliminate the residual autocorrelation after fitting the GWR model.  653 

Kernel density for the study area provided a strong indication of presence and abundance of the tree 654 

species considered as GDV proxy for modeling. Mediterranean cork woodlands are very particular 655 

agroforestry systems present in a confined area of the Mediterranean basin, where sparse tree distributions 656 

dominate, because of silvicultural management to increase cork and acorn production, while providing a 657 

large grassland area for cattle (Bugalho et al., 2009).  The Mediterranean cork woodlands dominate about 658 

76% of the Alentejo region (while only 7% is covered by stone pine). In those systems, tree density is 659 

known to be a tradeoff between climate drivers (Joffre 1999, Gouveia & Freitas 2008) and the need for 660 

space for pasture or cereal cultivation in the understory (Acacio & Holmgreen 2014). In our study, 661 

However,the anthropologic management of agroforestry systems in the Alentejois region has not been 662 

taken into accountconsidered in the model. According to a recent study of Cabon et al. (2018) where 663 

thinning played an important role in Q. ilex density in a Mediterranean climate site, anthropologic 664 

managementThis could, at least partially, explain the non-randomness of the residual distribution after 665 

GWR model fitting as well as the mismatches between the GDV and the NDWI evaluation maps.  666 

Another explanation of the reminiscent autocorrelation after GWR fitting could be the lack of  667 

groundwater dependent species in the model. For example, we decided to exclude Pinus pinaster Aiton 668 

was excluded due to its more humid distribution in Portugal, and due to conflicting conclusions driven 669 

from previous studies to pin point the species as a potential groundwater user (Bourke, 2004; Kurz-670 

Besson et al., 2016). In addition, olive trees were also excluded although only recently the use of 671 

groundwater by an olive orchard has been recently proved (Ferreira et al., 2018), however with a weak 672 
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contribution of little groundwater flow amount ofto the daily root flow, and thusso with no significant 673 

impact of groundwater on for the species physiological conditions. 674 

Methods previously used by Doody et al., (2017) and Condesso de Melo et al. (2015) to map specific 675 

vegetation relied solely on expert opinion, e.g. Delphi panel, to define weighting factors of environmental 676 

information for GIS multicriteria analysis. In our study, we used the GWR modelling approach was used 677 

to assess weighting factors for each environmental predictor in the study area, to build a suitability map 678 

for the GDV in southern Portugal. This allowed an empirical determination of the local relevance of each 679 

environmental predictor in  GDV distribution, thus avoiding the inevitable subjectivity of Delphi panels. 680 

Modelling of the entire study area at a regional level did not provide satisfactory results. Therefore, we 681 

developed a general model varying locally according to local predictor coefficients. The local influence of 682 

each predictor was highly variable throughout the study area, especially for climatic predictors reflecting 683 

water availability and stress conditions. The application of the GWR model did not only allowed for a 684 

localized approach, by decreasing the residual error and autocorrelation over the entire studied region, but 685 

also provided insights on how GDV’s density can be explained by the main environmental drivers locally. 686 

The GWR model appeared to be highly sensitive to coefficient fitting corresponding to a good model fit, 687 

as expected in a spatially varying model. As so, high coefficients are highly reliable in the GWR model in 688 

our study. Predictor coefficients showed a similar behavior in the spatial distribution of the coefficients. 689 

This was noticeable for the aridity index and the groundwater depth in the Tagus and Sado river basins. 690 

Groundwater depth had no influence on GDV’s density in these areas and similarly, the coefficient of 691 

aridity index showed a negative effect of increased humidity on GDV’s density. In addition, a cluster of 692 

low drainage density values matched these areas. Due to the lower variability and impact of the drainage 693 

density and slope on the GDV’s density, these variables might not impact significantly this vegetation 694 

density in future climatic scenarios. 695 

 696 

4.2 Suitability to Groundwater Dependent Vegetation  697 

As shown by the simulations of future climate conditions based on RCP4.5 and RCP8.5 emission 698 

scenarios (Soares et al., 2015, 2017), a significant decrease of precipitation for the Guadiana basin and 699 

overall decrease for the southern region of Portugal are expected. Agroforestry systems relying on 700 

groundwater resources, such as cork oak woodlands, may show a decrease in productivity and ecosystem 701 

services or even face sustainability failure. Therefore, linking s GDV to key environmental drivers and 702 

especially climate, will allow to forecast ecological changes under future climatic conditions and spot 703 

priority areas for adaptation and stakeholder decision. 704 

According to our results, more than half of the study area appeareds suitable for GDV. However, one 705 

quarterthird of the studied area showed the lowestlower suitability to GDV. The lower suitability to this 706 

vegetation in the eastern  more northern and western part of the studied area can be explained by less 707 

favorable climatic and hydrological conditionsgeological conditions, resulting from the combination of a 708 

high aridity index and low water retention at deep soil layerslow groundwater depth scores (equivalent to 709 
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high shallow soil water availability), corresponding to the coastal area and in the Tagus river basin. Soils 710 

with lower water capacity further lowered GDV suitability in the most southeastern region of the studied 711 

area.  712 

Groundwater depth appeared to have a lower influence on GDV density than climate drivers, as reflected 713 

by the relative low magnitude of the W coefficient and outputs of our model outcomes. This surprisingly 714 

disagrees with our initial hypothesis because groundwater represents a notable proportion of the 715 

transpired water of deep-rooting phreatophytes, reaching up to 86% of absorbed water during drought 716 

periods and representing about 30.5% of the annual water absorbed by trees (David et al. 2013, Kurz-717 

Besson et al. 2014). Nonetheless, this disagreement should be regarded cautiously due to the poor quality 718 

data used and the complexity required for modelling the water table depths. Besides, the linear 719 

relationship between water depth and topography applied to areas of undifferentiated geological type can 720 

be weakened by a complex non-linear interaction between topography, aridity and subsurface 721 

conductivity (Condon and Maxell, 2015). Moreover, the high variability in geological media, topography 722 

and vegetation cover at the regional scale did not allow to account for small changes in groundwater 723 

depth (<15 m deep), which has a huge impact on GDV suitability (Canadell et al., 1996; Stone and 724 

Kalisz, 1991). Indeed, a high spatial resolution of hydrological database is essential to rigorously 725 

characterize the spatial dynamics of groundwater depth between hydrographic basins (Lorenzo-Lacruz et 726 

al., 2017). Unfortunately, such resolution was not available for our study area.  727 

The aridity and ombrothermic indexes were the most important predictors of GDV density in the Alentejo 728 

region, according to our model outcomes. Our results agree with previous findings linking tree cover 729 

density and rooting depth to climate drivers such as aridity, at a global scale (Zomer et al., 2009; Schenk 730 

and Jackson, 2002) and specifically for the Mediterranean oak woodland (Gouveia and Freitas 2008, 731 

Joffre et al. 1999). Through previous studies showing the similarities in vegetation strategies to cope with 732 

water scarcity in the Mediterranean basin (Vicente-Serrano et al., 2013) or the relationship between 733 

rooting depth and water table depth increased with aridity at a global scale (Fan et al., 2017) we can admit 734 

that the most relevant climate drivers in this study are similarly important to map GDV in other semi-arid 735 

regions. In this study, the most important environmental variables that define GDV’s density in a semi-736 

arid region were identified, helping to fill the gap of knowledge for modelling this type of vegetation. 737 

However, the coefficients to be applied when modelling each variable need to be calculated locally, due 738 

to their high spatial variability. 739 

Temporal data would further help discriminate areas of optimal suitability to GDV, either during the wet 740 

and the dry seasons, because the seasonal trends in groundwater depth are essential under Mediterranean 741 

conditions. Investigations efforts should be invested to fill the gap either by improving the Portuguese 742 

piezometric monitoring network, or by assimilating observations with remote sensing products focused on 743 

soil moisture or groundwater monitoring. This has already been performed for large regional scale such as 744 

GRACE satellite surveys, based on changes of Earth’s gravitational field. So far, these technologies are 745 

not applicable to Portugal’s scale, since the coarse spatial resolution of GRACE data only allows the 746 

monitoring of large reservoirs (Xiao et al. 2015). 747 
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As stated by our model equation, groundwater depth appeared to have little influence on GDV density. 748 

This disagrees with our initial hypothesis However, this disagreement should be regarded cautiously due 749 

to the poor quality of the data used. On one hand, data points in the study region were highly 750 

heterogeneous, and certain areas showed a better statistical representation than others. Moreover, the high 751 

variability in geological media, topography and vegetation cover at the regional scale did not allow to 752 

account for small changes in groundwater depth (<15m deep), which has a huge impact on GDV 753 

suitability (Canadell et al., 1996; Stone and Kalisz, 1991). Indeed, a high spatial resolution of 754 

hydrological database is essential to characterize the spatial dynamics of groundwater depth between 755 

hydrographic basins (Lorenzo-Lacruz et al., 2017). However, such resolution was not available for our 756 

study area. In addition, the lack of temporal data did not allow the calculation of seasonal trends in 757 

groundwater depth, which are essential under Mediterranean conditions to build a reliable interpolation of 758 

observed data. Temporal data would also further help discriminate areas of optimal suitability to GDV, 759 

either during the wet and the dry seasons. 760 

 761 

4.3 Validation of the results 762 

The understory of woodlands and the herbaceous layer of grasslands areas in southern Portugal usually 763 

ends their annual life cycles in June (Paço et al. 2007), while the canopy of woody species is still fully 764 

active with maximum transpiration rates and photosynthetic activities (Kurz-Besson et al. 2014, David et 765 

al. 2007, Awada et al. 2003). This is an ideal period of the year to spot differential response of the canopy 766 

of woody species to extreme droughts events using satellite derived vegetation indexes (Gouveia 2012).    767 

The spatial patterns of NDWI anomaly in June 2005 seem indicate that the woody canopy showed a 768 

strong loss of canopy water in the areas were tree density and GDV suitability were higher (figs03, 09 and 769 

10). This occurred although trees minimized the loss of water in leaves with a strong stomatal limitation 770 

in response to drought (Kurz-Besson et al. 2014, Grant et al. 2010). In the most arid area of the region 771 

were Holm oak is dominant but tree density is lower, the NDWI anomaly was generally less negative thus 772 

showing a lower water stress or higher canopy water content.  Holm oak (Quercus ilex spp rotundifolia) 773 

is well known to be the most resilient species to dry and hot conditions in Portugal, due to its capacity to 774 

use groundwater and associated to a higher water use efficiency (David et al. 2007). Furthermore, the 775 

dynamics of NDWI anomaly spatial patterns over the summer period (fig10a, b and c) pointed out that the 776 

lower water stress status on the map is progressively spreading from the most arid areas to the milder 777 

ones from June to August 2005, despite the intensification of drought conditions. This endorses the idea 778 

that trees manage to cope with drought by relying on deeper water sources in response to drought, 779 

replenishing leaf water content despite the progression and intensification of drought conditions. Former 780 

studies support this statement by showing that groundwater uptake and hydraulic lift were progressively 781 

taking place after the onset of drought by promoting the formation of new roots reaching deeper soil 782 

layers and water sources, typically in July, for cork oak in the Alentejo region (Kurz-Besson et al., 2006, 783 

2014). Root elongation following a declining water table has also been reported in a review on the effect 784 

of groundwater fluctuations on phreatophyte vegetation (Naumburg et al. 2005). 785 
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Our results and the dynamics of NDWI over summer 2005 tend to corroborate the studies of Schenk and 786 

Jackson (2002) and Fan et al. (2017), by suggesting a larger/longer dependency of GDV on groundwater 787 

with higher aridity. Further investigation needs to be carried on across aridity gradients in Portugal and 788 

the Iberian Peninsula to fully validate this statement, though. 789 

Overall, the map of suitability to  GDV showed an excellent good results agreement with the NDWI 790 

validation maps., compared with the validation maps showing the proxy species integrated suitability 791 

(Magalhães et al., 2015b, 2015a, 2015c). However, areas of high suitability to GDV matched areas of the 792 

validation that were non-suitable areas for the proxy species. The main areas showing good suitability are 793 

mostly matching in both maps. Furthermore, our results highly agree with Paulo et al. (2015) who 794 

predicted site productivity index and soil variables for cork oak (Q. suber) stands in Portugal with a 795 

stochastic modelling approach. This allows us to apply the methodology to extend our findings for larger 796 

geographical areas such as the Iberian Peninsula. Also, the model equation can be considered reliable to 797 

simulate the impact of future climatic conditions on the distribution of GDV in southern Portugal.The 798 

good agreement between our GDV suitability maps, and NDWI dynamic maps opens the possibility to 799 

apply and extend the methodology to larger geographical areas such as the Iberian Peninsula, or the 800 

simulation of the impact of climate changes on the distribution of groundwater dependent species in the 801 

Mediterranean basin. As shown by the simulationsSimulations of future climate conditions based on 802 

RCP4.5 and RCP8.5 emission scenarios (Soares et al., 2015, 2017) predict, a significant decrease of 803 

precipitation for the Guadiana basin and overall decrease for the southern region of Portugal are 804 

expectedwithin 2100. Agroforestry systems relying on groundwater resources, such as cork oak 805 

woodlands, may show a decrease in productivity and ecosystem services or even face sustainability 806 

failure. Many studies carried out on oak woodlands in Italy and Spain identified drought as the 807 

main driving factor of tree die-back and as the main climate warning threatening oak stands sustainability 808 

in the Mediterranean basin (Gentilesca et al. 2017). An increase in aridity and drought frequency for the 809 

Mediterranean (Spinoni et al., 2017) will most probably induce a geographical shift of GDV vegetation 810 

toward milder/wetter climates (Lloret et al., 2004; Gonçalez P., 2001). plant physiological adaptations 811 

(Peñuelas and Filella, 2001) as well as species substitution (Lloret et al., 2004). In the Mediterranean 812 

environment, Peñuelas et al. (2011) distinguished two plant communities regarding water consumption, 813 

one with deep roots, able to constantly access water and nutrients and a second  community with shallow 814 

roots, depending on superficial water from rainfall. Due to climate change conditions, in the Alentejo 815 

region of Portugal, we should expect GDV of the less suitable areas to be replaced by the community with 816 

shallow roots using rainfall water exclusively. This has already been reported for a Mediterranean 817 

woodland of the Iberian Peninsula, where extreme drought conditions led to a shift in vegetation cover 818 

from deep-rooting species to water spending species (Caldeira et al., 2015). Groundwater reservoirs 819 

would thus no longer be a constraint for plant survival during summer droughts, because the supplanting 820 

vegetation community, namely annuals that stop their growing cycle or die before the onset of the dry 821 

season, would no longer need constant access to water. Such species substitution would be associated 822 

with ecological and biodiversity costs, by shifting from woodland to shrubland ecosystems. 823 

In environments with scarce water sources such as the Mediterranean basin, many tree species have 824 

adapted to the precipitation’s seasonality and its large variability by developing dimorphic root systems. 825 
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When comparing different water limited ecosystems from a global dataset, Schenk and Jackson (2002) 826 

showed that rooting depth increased with aridity. Our results agree with these findings since the aridity 827 

index was the second most important predictor of GDV density, according to our equation. Nevertheless, 828 

the soil type turned out to be the most important predictor of GDV density. This is comprehensible 829 

because the soil type defines the capacity for groundwater storage and the accessibility for deep root 830 

system (Centenaro et al., 2017; Grimaldi et al., 2015). However, the soil type component is not expected 831 

to change as dramatically as the aridity index in response to climate change, leaving the aridity index as 832 

the main driver for the GDV density under climatic changes in southern Portugal.  833 

 834 

This can be explained by the lack of information in the model concerning main land occupation and land 835 

management in the studied region. We found that areas where the main land occupation is non-836 

silvicultural (e.g. temporary irrigation fields), corresponded to non-suitable areas for proxy species in the 837 

validation map. Several other discrepancies can be explained by additional information considered in the 838 

validation map by their authors, such as the current occupation type (e.g. olive orchards, vineyards or 839 

urban). 840 

The main areas showing good suitability are mostly matching in both maps. Furthermore, our results 841 

highly agree with Paulo et al. (2015) who predicted site productivity index and soil variables for cork oak 842 

(Q. suber) stands in Portugal with a stochastic modelling approach. This allows us to apply the 843 

methodology to extend our findings for larger geographical areas such as the Iberian Peninsula. Also, the 844 

model equation can be considered reliable to simulate the impact of future climatic conditions on the 845 

distribution of GDV in southern Portugal. 846 

 847 

4.43 Key limitations 848 

With the methodology applied in this study, weighting factors can be easily evaluated solely from local 849 

and regional observations of the studied area. Nonetheless, either the computation of model coefficients 850 

or expert opinion to assess weighting factors, require recurrent updateamendments, associated with 851 

updatedand/or environmental data, species distribution and revised expert knowledge (Doody et al., 852 

2017).  853 

The evolution of groundwater depth in response to climate change is difficult to model on a large scale 854 

based on piezometric observations because it requires an excellent knowledge of the components and 855 

dynamics of water catchments. Therefore, a reliable estimation of the impact of climate change on GDV 856 

suitability in southern Portugal could only been performed on small scale studies. However, the GWR 857 

model appeared to be much more sensitive to climate drivers than the other predictors, given that 88% of 858 

the model outputs variability was covered by climate indexes Ai and O4. Nevertheless, changes in climate 859 

conditions only represents part of the water resources shortage issue in the future. Global-scale changes in 860 

human populations and economic progresses also rules water demand and supply, especially in arid and 861 

semi-arid regions (Vörösmarty et al., 2000). A decrease in useful water resources for human supply can 862 
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induce an even higher pressure on groundwater resources (Döll, 2009), aggravating the water table 863 

drawdown caused by climate change (Ertürk et al., 2014). Therefore, additional updates of the model 864 

should include human consumption of groundwater resources, identifying areas of higher population 865 

density or intensive farming. Future model updates should also account for the interaction of deep rooting 866 

species with the surrounding understory species. In particular, shrubs surviving the drought period, which 867 

can benefit from the redistribution of groundwater by deep rooted species (Dawson, 1993; Zou et al., 868 

2005). 869 

 870 

  871 
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5 Conclusions 872 

Our results show a highly dominant contribution of water scarcity of the last 30 years (Aridity and 873 

Ombrothermic indexes) on the density and suitability of deep-rooted groundwater dependent species in 874 

southern Portugal. Therefore, in geographical regions of the world with similar semi-arid climate 875 

conditions (Csa according to Köppen-Geigen classification, Peel et al. 2007) and similar physiological 876 

responses of the groundwater dependent vegetation (Vicente-Serrano et al., 2013), the use of the aridity 877 

and ombrothermic indexes could be used as first approximation to model and map deep rooted 878 

phreatophyte species and the evolution of their distribution in response to climate changes. The 879 

contribution of groundwater depth was lower than initially expected, however, this might be 880 

underestimated due to the poor quality of the piezometric network, especially in the central area of the 881 

studied region.  882 

The current pressure applied by human consumption of water sources has reinforced the concern on the 883 

future of economic activities dependent on groundwater resources. To address this issue, several countries 884 

have developed national strategies for the adaptation of water sources for Agriculture and Forests against 885 

Climate Change, including Portugal (FAO, 2007). In addition, local drought management as long-term 886 

adaptation strategy has been one of the proposals of by Iglesias et al. (2007) to reduce the climate change 887 

impact on groundwater resources in the Mediterranean. The preservation of Mediterranean agroforestry 888 

systems, such as cork oak woodlands and the recently associated P. pinea species, is of great importance 889 

due to their high socioeconomic value and their supply of valuable ecosystem services (Bugalho et al., 890 

2011). Management policies on the long-term should account for groundwater resources monitoring, 891 

accompanied by defensive measures to ensure agroforestry systems sustainability and economical income 892 

from these Mediterranean ecosystems are not greatly and irreversibly threatened. 893 

Our present study, and novel methodology, provides an important tool to help delineating priority areas of 894 

action for species and groundwater management, at regional level, to avoid the decline of productivity 895 

and cover density of the agroforestry systems of southern Portugal. This is important to guarantee the 896 

sustainability of the economical income for stakeholders linked to the agroforestry sector in that area. 897 

Furthermore, mapping vulnerable areas at a small scale (e.g.by hydrological basin), where reliable 898 

groundwater depth information is available, should provide further insights for stakeholder to promote 899 

local actions to mitigate climate change impact on GDV.  900 

Based on the methodology applied in this work, future predictions on GDV suitability, according to the 901 

RCP4.5 and RCP8.5 emission scenarios will be shortly computedintroduced, providing guidelines for 902 

future management of these ecosystems in the allocation of water resources. 903 

 904 

 905 

 906 

  907 
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Figure and Table Legends 1322 

 1323 

Table 1: Environmental variables for characterization of the suitability of GDV in the study area characterization in 1324 

suitability to Groundwater Dependent Vegetation. 1325 

Table 2: Effect of variable removal in the performance of GWR model linking the Kernel density of Quercus suber, 1326 

Quercus ilex and Pinus pinea (SGDV) to predictors Aridity Index (Ai); Ombrothermic Index of the summer quarter 1327 

and the immediately previous month (O4); Slope (s); Drainage density (D); Groundwater Depth (W) and Soil type 1328 

(St). The model with all predictors is highlighted in grey and the final model used in this study is in bold. Coefficients 1329 

of determination resulting from the application of GWR model between GDV density and the selected predictive 1330 

variables.  1331 

Table 3:  Comparison of Adjusted R-squared and second-order Akaike Information Criterion (AICc) between the 1332 

simple regression and the GWR models. 1333 

Table 4: Classification scores for each predictor. A score of 31 to highly suitable areas and 1was given to areashighly 1334 
less suitable and 3 to highly suitable areas for GDV. 1335 

Table 5: Interception (in %) between the classes of the GDV suitability map classes and the Overlapped Integrated 1336 

suitability map. Value of “0” in overlapped integrated suitability map represent the non-suitable area for all the proxy 1337 

species; value of “1” represent the suitable area for 1 of the proxy species; value of “2” represent the suitable area for 1338 

2 of the proxy species and value of “3” represent the suitable area for all the proxy species. 1339 

Table A1: Classification scores for soil type predictor.  1340 

Table A2: Squared cCorrelations between predictor variables and principal components axis. The most important 1341 

predictors for each axis (when squared correlation is above 0.3) are showed in bold. The cumulative proportion of 1342 

variance explained by each principal component axis is shown at the bottom of the table. 1343 

 1344 

Figure 01: Study area. On the left the location of Alentejo in the Iberian Peninsula; on the right, the elevation 1345 

characterization of the study area with the main river courses from Tagus, Sado and Guadiana basins. Names of the 1346 

main rivers are indicated near to their location in the map. 1347 

Figure 02: Large well and piezometer data points used for groundwater depthWater Table Depth calculation. Squares 1348 

represent piezometers data points and triangle represent large well data points.  1349 

Figure 03: Map of Kernel Density weighted by cover percentage of Q. suber, Q. ilex and P. pinea. 1350 

Figure 04: Map of environmental layers used in model fitting. (a) – Soil type; (b) – Slope; (c) – Groundwater Depth 1351 
(Depth); (d) – Ombrothermic Index of the summer quarter and the immediately previous month (Ios4) and; (e) – Aridity 1352 
Index (AI). 1353 

Figure 05: Spatial distribution of local R2 from the fitting of the Geographically Weighted Regression. 1354 

Figure 06: Spatial distribution of model residuals from the fitting of the Simple Linear model (a) and Geographically 1355 
Weighted Regression (b). 1356 

Figure 07: Map of local model coefficients for each variable. (a) – Aridity Index; (b) - Ombrothermic Index of the 1357 
summer quarter and the immediately previous month; (c) – Groundwater Depth; (d) – Drainage density and (e) - Slope. 1358 

Figure 08: Boxplot of GWR model coefficient values for each predictor (a) and boxplot of the GWR model outputs, 1359 

corresponding to GDV’s density after each of the predictors was disturbed for the sensitivity analysis (b). Ai stands for 1360 
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Aridity Index; O4 for the ombrothemic index of the hottest month of the summer quarter and the immediately previous 1361 

month; W for the groundwater depth; D for the drainage density and s for the slope. Error bars represent the 25th and 1362 

75th percentile while crosses indicate the 95th percentile. 1363 

Spatial distribution of local R2 from the fitting of the Geographically Weighted Regression. 1364 

Figure 06: Spatial distribution of residuals from the fitting of the Simple Linear model (a) and Geographically Weighted 1365 
Regression (b). 1366 

Figure 097: Suitability map for Groundwater Dependent Vegetation. 1367 

Figure 1008: Validation map corresponding to the NDWI anomaly considering the months of June, July and August   1368 

of the extremely dry year of 2005, in reference to the same months of the period 1999-2009, in the Alentejo region. 1369 

Green colors (corresponding to low NDWI values) indicates vegetation canopy undergoing a higher water stress than 1370 

the average reference period 1999-2009. juxtaposition of the integrated suitability maps for each of the proxy species 1371 

Q. suber, Q. ilex and P. pinea. Areas suitable for more than 1 or more proxy species are represented with a gradient of 1372 

brown colors. Rivers and dams are indicated in blue and artificialized areas in grey  1373 

Figure 11: Sensitivity analysis performed on the GWR model by perturbing one of the predictors, while remaining 1374 

the rest of the model equation constant. Graphics present the output range of GDV’s density when the aridity index 1375 

(a), the ombrothermic index (b), the groundwater depth (c), the drainage density (d) or the slope variable (e) was 1376 

perturbed; and the maximum possible range combining all predictors (f). The 95th percentile was used for the 1377 

maximum value of the color bar for a better statistical representation of the spatial variability.  1378 

 1379 

Figure A1: Boxplot of the main predictors used for the Geographically Weighted Regression model fitting (top) and 1380 

the response variable (below), for the total data (left) and for the 5% subsample (right). 1381 

Figure A2: Correlation plot between all environmental variables expected to affect the presence of the Groundwater 1382 

Dependent Vegetation. O1, O3 and O4 are ombrothermic indices of, respectively, the hottest month of the summer 1383 

quarter, the summer quarter and the summer quarter and the immediately previous month; O is the annual 1384 

ombrothermic index, SPEIe and SPEIs are, respectively, the number of months with extreme and severe Standardized 1385 

Precipitation Evapotranspiration Index; Ai is Aridity index; W is groundwater depth; D is the Drainage density; T is 1386 

thickness and St refers to soil type. 1387 

Figure A2: Correlation plot between predictors used for fitting the simple linear model and the GWR model. AI is 1388 

Aridity Index; Depth is Groundwater Depth (Depth) and Ios4 is the Ombrothermic Index of the summer quarter and 1389 

the immediately previous month. 1390 

Figure B1 – Predictors maps after score classification. (a) – Aridity Index; (b) – Ombrothermic Index of the summer 1391 

quarter and the immediately previous month; (c) – Groundwater Depth; (d) – Drainage density and (e) – Slope. 1392 

Figure B1 – Predictors maps after classification. (a) – Ombrothermic Index of the summer quarter and the 1393 

immediately previous month (Ios4); (b) – Aridity Index (AI); (c) – Groundwater Depth (Depth); (d) – Slope; (e) – 1394 

Soil type. 1395 

 1396 

  1397 
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Table 1: Environmental variables for the characterization of the suitability of GDV in the study area. 1398 

characterization in suitability to Groundwater Dependent Vegetation. 1399 

Variable code Variable type Source Resolution and Spatial extent 

sSlope Slope (%) This work 
0.000256 degrees (25m) raster 

resolution 

Soil type Soil type in the first soil layer 

SNIAmb (© Agência 

Portuguesa do Ambiente, 

I.P., 2017) 

Converted from vectorial to 0.000256 

degrees (25m) resolution raster 

Thickness Soil thickness (cm) 
EPIC WebGIS Portugal 

(Barata et al., 2015) 

Converted from vectorial to 0.000256 

degrees (25m) resolution raster 

WDepth 
Groundwater Depth to 

groundwater (m) 
This work 

0.000256 degrees (25m) raster 

resolution 

Dd Drainage Density This work 
0.000256 degrees (25m) raster 

resolution 

SPEIspei_severe 
Number of months with severe 

SPEI 
This work 

0.000256 degrees (25m) raster 

resolution 

Time coverage 1950-2010 

SPEIe_extreme 
Number of months with extreme 

SPEI 
This work 

0.000256 degrees (25m) raster 

resolution 

Time coverage 1950-2010 

AiI Aridity Index This work 

0.000256 degrees (25m) raster 

resolution 

Time coverage 1950-2010 

OIo 

Annual Ombrothermic Index 

Annual average (January to 

December) 

This work 

0.000256 degrees (25m) raster 

resolution 

Time coverage 1950-2010 

OIos1 

Ombrothermic Index of the 

hottest month of the summer 

quarter (J, J and A) 

This work 

0.000256 degrees (25m) raster 

resolution 

Time coverage 1950-2010 

OIos3 
Ombrothermic Index of the 

summer quarter (J, J and A) 
This work 

0.000256 degrees (25m) raster 

resolution 

Time coverage 1950-2010 

IosO4 

Ombrothermic Index of the 

summer quarter and the 

immediately previous month 

(M, J, J and A) 

This work 

0.000256 degrees (25m) raster 

resolution 

Time coverage 1950-2010 

 1400 

 1401 

 1402 
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Table 2: Effect of variable removal in the performance of GWR model linking the Kernel density of Quercus 1403 

suber, Quercus ilex and Pinus pinea (SGDV) to predictors Aridity Index (Ai); Ombrothermic Index of the 1404 

summer quarter and the immediately previous month (O4); Slope (s); Drainage density (D); Groundwater 1405 

Depth (W); and Soil type (St). The model with all predictors is highlighted in grey and the final model used in 1406 

this study is in bold.Coefficients of determination resulting from the application of GWR model between GDV 1407 

density and the selected predictive variables.  1408 

Variables Minimum 1st Quartile Median 3rd Quartile Maximum Global 

Intercept -48.55 16.01 23.88 29.16 94.65 13.86 

Ios4 -18.31 -2.47 0.22 3.13 16.29 -0.22 

AI -48.27 -11.22 -1.61 5.48 64.87 -0.72 

Depth -32.30 -1.08 0.06 0.95 33.25 0.43 

Soil type (2) -19.78 -1.34 1.33 3.97 24.32 3.98 

Soil type (3) -20.18 -0.48 2.46 5.13 23.17 7.62 

Slope -2.88 -0.18 0.14 0.68 4.75 -0.13 

Type Model Discarded predictor AICc Quasi-global R2 

GWR SGDV~ O4 + Ai + s + D + W + St 
 

27389.74 0.926481 

GWR SGDV ~ O4 + s + D + W + St Ai 28695.14 0.9085754 

GWR SGDV ~ Ai + s + D + W + St O4 28626.88 0.9095033 

GWR SGDV ~ O4 + Ai + s+ W + St D 27909.86 0.9184337 

GWR SGDV ~ O4 + Ai + D + W + St S 27429.55 0.924176 

GWR SGDV ~ O4 + Ai + s + D + St W 27742.67 0.9208344 

GWR SGDV ~ O4 + Ai + s + D + W St 18050.76 0.9916192 

 1409 

Table 3:  Comparison of Adjusted R-squared and second-order Akaike Information Criterion (AICc) between 1410 

the simple linear regression and the GWR models. 1411 

Model R2-squared AICc p-value 

OLS 0.0211 4272076 <0.001 

GWR 0.992 * 1885127795 - 

*Quasi-global R2 1412 

 1413 

 1414 

Table 4: Classification scores for each predictor. A score of 31 was given to highlyareas less suitable areas and 1415 
13 to highly less suitable areas for GDV. 1416 

Predictor Class Score 

Slope 

0%-5% 13 

5%-10% 22 

>10% 31 

Soil type 

Eutric Cambisols; Dystric Regosol; 

Humic Cambisols; Haplic 

Luvisols; Gleyic Luvisols; Ferric 

3 
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Luvisols; Chromic Luvisols 

associated with Haplic Luvisols; 

Ortic Podzols 

 

Calcaric Cambisols; Dystric 

Regosol associated with Umbric 

Leptosols; Eutric Regosols; Vertic 

Luvisols; Eutric Planosols; Cambic 

Arenosols 

 

2 

Chromic Cambisols; Eutric 

fluvisols; Chromic Luvisols; 

Gleyic Solonchak; Eutric Vertisols 

1 

Groundwater Depth 

>15 m 1 

1.5m-15m 3 

≤1.5m 1 

Aridity Index 

0.6-0.68 13 

0.68-0.75 22 

≥0.75 31 

Ombrothermic Index of the summer quarter and the immediately 

previous monthIos4 

<0.28 13 

0.28-0.64 22 

≥0.64 31 

Drainage Density 
≤0.5 3 

>0.5 1 

 1417 

 1418 

Table 5: Interception (in %) between the classes of the GDV suitability map classes and the Overlapped 1419 

Integrated suitability map. Value of “0” in overlapped integrated suitability map represent the non-suitable area 1420 

for all the proxy species; value of “1” represent the suitable area for 1 of the proxy species; value of “2” represent 1421 

the suitable area for 2 of the proxy species and value of “3” represent the suitable area for all the proxy species. 1422 

 1423 

1424 GDV suitability Validation map (Integrated 

Suitability for 0 to 3 of the 

proxy species) 

% 

Very Poor 

0 75.67 

1 19.78 

2 2.8 

3 0.23 

Poor 

0 36.65 

1 45.27 

2 14.90 

3 0.02 

Moderate 

0 33.17 

1 15.53 

2 49.15 

3 0.03 

Good 

0 38.38 

1 29.51 

2 30.48 

3 0.15 

Very Good 

0 41.124 

1 18.38 

2 37.81 

3 0.57 
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 1425 

 1426 

Figure 01: Study area. On the left the location of Alentejo in the Iberian Peninsula; on the right, the elevation 1427 

characterization of the study area with the main river courses from Tagus, Sado and Guadiana basins (white 1428 

line) . Names of the main rivers are indicated near to their location in the map. 1429 

 1430 
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 1431 

Figure 02: Large well and piezometer data points used for Water Table Depthgroundwater depth calculation. 1432 

Squares represent piezometers data points and triangle represent large well data points.  1433 

 1434 

 1435 

Figure 03: Map of Kernel Density weighted by cover percentage of Q. suber, Q. ilex and P. pinea. 1436 
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 1437 
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1438 
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Figure 04: Map of environmental layers used in model fitting. (a) – Soil type; (b) – Slope; (c) – Groundwater 1439 
Depth (Depth); (d) – Ombrothermic Index of the summer quarter and the immediately previous month (Ios4); 1440 
(e) – Aridity Index (AI). 1441 

 1442 

 1443 

Figure 05: Spatial distribution of local R2 from the fitting of the Geographically Weighted Regression. 1444 

 1445 

Figure 06: Spatial distribution of model residuals from the fitting of the Geographically Weighted Regression 1446 
(a) and Simple Linear model (b). 1447 

 1448 

 1449 
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 1450 
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Figure 07: Map of local model coefficients for each variable. (a) – Aridity Index; (b) - Ombrothermic Index of 1451 
the summer quarter and the immediately previous month; (c) – Groundwater Depth; (d) – Drainage density and 1452 
(e) – Slope. 1453 

 1454 

Figure 08 – Boxplot of GWR model coefficient values for each predictor (a) and boxplot of the GWR model 1455 

outputs, corresponding to GDV’s density after each of the predictors was disturbed for the sensitivity analysis 1456 

(b). Ai stands for Aridity Index; O4 for the ombrothemic index of the hottest month of the summer quarter and 1457 

the immediately previous month; W for the groundwater depth, D for the drainage density and s for the slope. 1458 

Error bars represent the 25th and 75th percentile while crosses indicate the 95th percentile. 1459 

 1460 

 1461 

 1462 

Figure 05: Spatial distribution of local R2 from the fitting of the Geographically Weighted Regression. 1463 
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 1464 

 1465 

 1466 

Figure 06: Spatial distribution of residuals from the fitting of the Simple Linear model (a) and Geographically 1467 
Weighted Regression (b). 1468 

 1469 

 1470 
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 1471 

Figure 097: Suitability map for Groundwater Dependent Vegetation. 1472 

 1473 

 1474 

 1475 



55 
 

 1476 

Figure 0810: NDWI anomaly considering the months of June, July and August of the extremely dry year of 2005, 1477 

in reference to the same months of the period 1999-2009, in the Alentejo region. Green colors (corresponding to 1478 

low NDWI values) indicates vegetation canopy undergoing a higher water stress than the average reference 1479 

period 1999-2009. juxtaposition of the integrated suitability maps for each of the proxy species Q. suber, Q. ilex 1480 

and P. pinea. Areas suitable for more than 1 or more proxy species are represented with a gradient of brown 1481 

colors. Rivers and dams are indicated in blue and artificialized areas in grey.  1482 

 1483 
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 1484 

Figure 11: Sensitivity analysis performed on the GWR model by perturbing one of the predictors, while 1485 
remaining the rest of the model equation constant. Graphics present the output range of GDV’s density when 1486 
the aridity index (a), the ombrothermic index (b), the groundwater depth (c), the drainage density (d) or the 1487 
slope variable (e) was perturbed; and the maximum possible range combining all predictors (f). The 95th 1488 
percentile was used for the maximum value of the color bar for a better statistical representation of the spatial 1489 
variability.  1490 
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Appendix A 1492 

Table A1: Classification scores for the soil type predictor. 1493 

Predictor Class Score 

Soil type 

 

Eutric Cambisols; Dystric Regosol; Humic Cambisols; Haplic Luvisols; Gleyic 

Luvisols; Ferric Luvisols; Chromic Luvisols associated with Haplic Luvisols; 

Ortic Podzols 

  

3 

 

Calcaric Cambisols; Dystric Regosol associated with Umbric Leptosols; Eutric 

Regosols; Vertic Luvisols; Eutric Planosols; Cambic Arenosols 

  

2 

 

Chromic Cambisols; Eutric fluvisols; Chromic Luvisols; Gleyic Solonchak; 

Eutric Vertisols  

1 

 1494 

 1495 

 1496 

Figure A1: Boxplot of the main predictors for the final Geographically Weighted Regression model fitting 1497 
(top) and the response variable (below), for the total data (left) and for the 5% subsample (right). 1498 

Figure A2: Correlation plot between predictors used for fitting the simple linear model and the GWR model. AI 1499 

is Aridity Index; Depth is Groundwater Depth (Depth) and Ios4 is the Ombrothermic Index of the summer 1500 

quarter and the immediately previous month. 1501 
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 1502 

 1503 

 1504 

 1505 

 1506 

 1507 

 1508 

 1509 

 1510 

 1511 

 1512 

Figure A2: Correlation plot between all environmental variables expected to affect the presence of the 1513 

Groundwater Dependent Vegetation. O1, O3, O4 are ombrothemic indices of, respectively, the hottest month of 1514 

the summer quarter, the summer quarter and the summer quarter and the immediately previous month; O is 1515 

the annual ombrothermic index, SPEIe and SPEIs are, respectively, the number of months with extreme and 1516 

severe Standardized Precipitation Evapotranspiration Index; Ai is Aridity Index; W is Groundwater Depth; D 1517 

is the Drainage density; T is thickness and St refer to soil type. 1518 
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Table A21: Squared cCorrelations between predictor variables and principal components axis. The most important predictors for each axis (when squared correlation is above 0.3) are 1519 

showed in bold. The cumulative proportion of variance explained by each principal component axis is shown at the bottom of the table. s is slope; Ai is Aridity Index; O, O1, O3, O4 are 1520 

ombrothemic indices of, respectively, the year, the hottest month of the summer quarter, the summer quarter and the summer quarter and the immediately previous month; SPEIs and 1521 

SPEIe are, respectively, the number of months with severe and extreme Standardized Precipitation Evapotranspiration Index; W is Groundwater Depth; D is the Drainage density; St 1522 

refer to soil type and T is thickness. 1523 

 PC1 PC2 PC3 PC4 PC5 

Slope <0.01 0.34 0.63 0.03 <0.01 

AI 0.67 0.02 <0.001 <0.01 0.31 

Ios4 0.18 0.45 0.24 0.03 0.10 

Depth 0.43 <0.01 0.06 0.45 0.06 

Soil type 0.33 0.25 0.05 0.29 0.08 
 1524 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 

s <0.001 0.32 0.13 0.06 0.14 0.18 0.18 <0.001 0.03 0.03 <0.01 <0.01 

Ai 0.94 <0.001 0.01 <0.01 <0.001 <0.01 <0.001 <0.001 0.22 0.33 0.40 0.68 

O 0.93 <0.01 0.01 <0.01 <0.001 <0.01 <0.001 <0.001 0.24 0.38 0.24 0.72 

O1 0.89 0.02 0.04 0.01 <0.001 <0.001 <0.001 0.02 0.03 0.14 0.82 0.10 

O3 0.21 0.18 0.47 <0.01 <0.01 <0.001 <0.01 0.11 0.64 0.33 <0.01 <0.01 

O4 0.15 0.19 0.53 <0.001 <0.001 <0.01 <0.001 0.33 0.53 0.33 0.05 <0.01 

SPEIs 0.66 0.08 0.01 <0.01 <0.001 -0.02 <0.01 0.77 0.08 0.40 0.11 0.01 

SPEIe 0.72 0.01 0.04 0.05 <0.01 <0.001 <0.01 0.36 0.44 0.57 0.29 0.05 

W 0.16 0.05 0.01 0.33 0.14 0.26 0.06 0.06 0.04 0.06 0.04 0.01 

D <0.01 0.25 0.11 0.20 0.08 0.32 <0.01 0.29 0.06 0.04 <0.01 <0.01 

St 0.02 0.19 0.03 0.22 0.46 0.05 0.02 0.06 0.03 0.05 0.03 <0.01 

T 0.02 0.46 0.09 0.03 0.06 0.01 0.32 0.11 0.03 0.09 0.01 <0.01 

Cumulative proportion 0.39 0.54 0.66 0.74 0.81 0.88 0.93 0.96 0.98 0.99 0.99 1 

 1525 
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Appendix B 1527 

 1528 
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Figure B1 – Predictors maps after score reclassification. (a) – Aridity IndexOmbrothermic Index of the 1530 

summer quarter and the immediately previous month (Ios4); (b) – Ombrothermic Index of the summer 1531 

quarter and the immediately previous monthAridity Index (AI); (c) – Groundwater Depth (Depth); (d) – 1532 

Drainage densitySlope and; (e) – Slopeoil type. 1533 
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