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Abstract.  14 

In this study, we modeled the distribution of deep-rooted woody species in southern Portugal from 15 

climatic, hydrological and topographic environmental variables. To achieve this, we first relied on the 16 

density of Quercus suber, Quercus ilex and Pinus pinea as proxy species of GDV. Model fitting was 17 

performed between the proxy species Kernel density and the selected environmental predictors using 1) a 18 

simple linear model and 2) a Geographically Weighted Regression (GWR), to account for auto-19 

correlation of the spatial data and residuals. When comparing the results of both models, the GWR 20 

modelling results showed improved goodness of fitting, as opposed to the simple linear model. Climatic 21 

indices were the main drivers of GDV density closely followed by groundwater depth, drainage density 22 

and slope. Groundwater depth did not appear to be as pertinent in the model as initially expected, 23 

accounting only for about 6% of the total variation against 89% for climate drivers. 24 

The relative proportions of model predictor coefficients were used as weighting factors for multicriteria 25 

analysis, to create a suitability map to the GDV in southern Portugal showing where the vegetation is 26 

most likely to rely on groundwater to cope with aridity. A validation of the resulting map was performed 27 

using independent data of the Normalized Difference Water Index (NDWI) a satellite-derived vegetation 28 

index. NDWI anomalies were calculated for June, July and August of 2005 in reference to years 1999-29 

2009 to assess the response of active woody species in the region after an extreme drought. The results 30 

from the NDWI anomaly provided an overall good agreement between areas with good or bad suitability 31 

to host GDV. The model was considered reliable to predict the distribution of the studied vegetation. 32 

However, lack of data quality and information were shown to be the main cause for suitability 33 

discrepancies between maps. 34 

The methodology developed to map GDV’s will allow to predict the evolution of the distribution of GDV 35 

according to climate change scenarios and aid stakeholder decision-making concerning priority areas of 36 

water resources management. 37 
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1 Introduction 40 

 41 

Mediterranean forests, woodlands and shrublands, mostly growing under restricted water availability, are 42 

one of the terrestrial biomes with higher volume of groundwater used by vegetation (Evaristo and 43 

McDonnell, 2017). Future predictions of decreased precipitation (Giorgi and Lionello, 2008; Nadezhdina 44 

et al., 2015), decreased runoff (Mourato et al., 2015) and aquifer recharge (Ertürk et al., 2014; Stigter et 45 

al., 2014) in the Mediterranean region threaten the sustainability of groundwater reservoirs and the 46 

corresponding dependent ecosystems. Therefore, a sustainable management of groundwater resources and 47 

the Groundwater Dependent Ecosystems (GDE) is of crucial importance. 48 

Mapping GDE constitutes a first and fundamental step to their active management. Several approaches 49 

have been proposed, including remote sensing techniques (e.g. Normalized Difference Vegetation Index – 50 

NDVI) (Barron et al., 2014; Eamus et al., 2015; Howard and Merrifield, 2010), remote-sensing combined 51 

with ground-based observations (Lv et al., 2013), based on geographic information system (GIS) (Pérez 52 

Hoyos et al., 2016a) or statistical approaches (Pérez Hoyos et al., 2016b). An integrated multidisciplinary 53 

methodology (Condesso de Melo et al., 2015) has also been used. A widely used classification of GDE 54 

was proposed by Eamus et al. (2006). This classification distinguishes three types: 1) Aquifer and cave 55 

ecosystems, which includes all subterranean waters; 2) Ecosystems reliant on surface groundwater (e.g. 56 

estuarine systems, wetlands; riverine systems) and 3) Ecosystems reliant on subsurface groundwater (e.g. 57 

systems where plants remain physiologically active during extended drought periods, without visible 58 

water source).  59 

Despite of a wide-ranging body of literature regarding GDE, most of the studies do not include 60 

Mediterranean regions (Doody et al., 2017; Dresel et al., 2010; Münch and Conrad, 2007). Moreover, 61 

studies on ecosystems relying on subsurface groundwater frequently only focused on riparian 62 

environments (Lowry and Loheide, 2010; O’Grady et al., 2006), with few examples in Mediterranean 63 

areas (del Castillo et al., 2016; Fernandes, 2013; Hernández-Santana et al., 2008; Mendes et al., 2016). 64 

There is a clear knowledge gap concerning the identification of such ecosystems, their phreatophyte 65 

associated vegetation (Robinson, 1958) in the Mediterranean region and the management actions that 66 

should be taken to decrease the adverse effects of climate change. 67 

In the driest regions of the Mediterranean basin, the persistent lack of water during the entire summer 68 

periods selected plants with drought-avoiding strategies, like those that reach deeper stored water up to 69 

the point of relying on groundwater (Canadell et al., 1996; Miller et al., 2010). Groundwater access by 70 

deep rooting species is often associated to hydraulic lift and/or hydraulic redistribution mechanisms 71 

(Orellana et al., 2012). Those mechanisms provide the ability to move water from deep soil layers, where 72 

water content is higher, to more shallow layers where water content is lower (Horton and Hart, 1998; 73 

Neumann and Cardon, 2012). Hydraulic lift and redistribution have been reported for several woody 74 

species of the Mediterranean basin (David et al., 2007; Filella and Peñuelas, 2004) and noticeably for 75 

Cork oak (Quercus suber L.) (David et al., 2013; Kurz-Besson et al., 2006; Mendes et al., 2016).  76 
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Cork oak woodlands are agro-silvo-pastoral systems of the southwest Mediterranean basin (Joffre et al., 77 

1999) that have already been referenced has a groundwater dependent terrestrial ecosystem (Mendes et 78 

al., 2016). In the ecosystems of this geographical area, the dominant tree species are the cork oak 79 

(Quercus suber L.) and the Portuguese holm oak (Quercus ilex subs rotundifolia Lam.) (Pinto-Correia et 80 

al., 2011). Additionally, stone pine (Pinus pinea L.) has become a commonly co-occurrent species in the 81 

last decades (Coelho and Campos, 2009). The use of groundwater has been frequently reported for both 82 

Pinus (Filella and Peñuelas, 2004; Grossiord et al., 2016; Peñuelas and Filella, 2003) and Quercus 83 

(Barbeta and Peñuelas, 2017; David et al., 2007, 2013, Kurz-Besson et al., 2006, 2014; Otieno et al., 84 

2006) genre. Furthermore, the contribution of groundwater to tree physiology has been shown to be of a 85 

greater magnitude for Quercus sp. as compared with Pinus sp. (del Castillo et al., 2016; Evaristo and 86 

McDonnell, 2017).  87 

Q. suber and Q. ilex have been associated with high resilience and adaptability to hydric and thermic 88 

stress, and to recurrent droughts in the southern Mediterranean basin (Barbero et al., 1992). In Italy and 89 

Portugal, during summer droughts Q. ilex used a mixture of rain-water and groundwater and was able to 90 

take water from very dry soils (David et al., 2007; Valentini et al., 1992). An increasing contribution of 91 

groundwater in the summer has also been shown for this species (Barbeta et al., 2015). Similarly, Q. 92 

suber showed a seasonal shift in water sources, from shallow soil water in the spring to the beginning of 93 

the dry period followed by a progressive higher use of deeper water sources throughout the drought 94 

period (Otieno et al., 2006). In addition, the species roots are known to reach depths as deep as 13m in 95 

southern Portugal (David et al., 2004). Although co-occurrent to cork and holm oaks species, there is still 96 

no evidence yet that P. pinea relies on groundwater resources during the dry season. However it shows a 97 

very similar root system (Montero et al., 2004) as compared to cork oak (David et al., 2013), with large 98 

sinker roots reaching 5 m depth (Canadell et al., 1996). Given the information available on water use 99 

strategies by the phreatophyte arboreous species of the cork oak woodlands, we considered Q. ilex, Q. 100 

suber and P. pinea as proxies for vegetation that belongs to GDE relying on subsurface groundwater 101 

(from here onwards designed as Groundwater Dependent Vegetation – GDV). 102 

GDV of the Mediterranean basin is often neglected in research. Indeed, still little is known about the 103 

GDV distribution, but research has already been done on the effects of climate change in specific species 104 

distribution, such as Q. suber, in the Mediterranean basin (Duque-Lazo et al., 2018; Paulo et al., 2015). 105 

While the increase in atmospheric CO2 and the raising temperature can boost tree growth (Barbeta and 106 

Peñuelas, 2017; Bussotti et al., 2013; Sardans and Peñuelas, 2004), water stress can have a counteracting 107 

effect on growth of both Quercus ilex (López et al., 1997; Sabaté et al., 2002) and P. pinaster (Kurz-108 

Besson et al., 2016). Therefore, it is of crucial importance to identify geographical areas where subsurface 109 

GDV is present and characterize the environmental conditions this vegetation type is thriving in. This 110 

would contribute to the understanding of how to manage these species under unfavorable future climatic 111 

conditions. 112 

The aim of this study was to create a suitability map of the current distribution of the arboreous 113 

phreatophyte species considered here as GDV in southern Portugal, based on the occurrence of known 114 

and foreseen subsurface phreatophyte species and well-known environmental conditions affecting water 115 
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resources availability. Several environmental predictors were selected according to their impact on water 116 

use and storage and then used in a Geographically Weighted Regression (GWR) to model the density of 117 

Q. suber, Q. ilex and P. pinea occurrence in the Alentejo region (NUTSII) of southern Portugal. So far, 118 

very few applications of this method have been used to model species distribution and only recently its 119 

use has spread in ecological research (Hu et al., 2017; Li et al., 2016; Mazziotta et al., 2016). The 120 

coefficients proportions obtained from the model equation for each predictor were used as weights to 121 

build the suitability map with GIS multi-factor analysis, after reclassifying each environmental predictor. 122 

Based on the environmental conditions of the study area and the species needs, we hypothesized that 1) 123 

groundwater depth together with climatic conditions play one of the most important environmental roles 124 

in GDV’s distribution and 2) groundwater depth between 1.5 and 15m associated with xeric conditions 125 

should favor a higher density of GDV and thus a larger use of groundwater by the vegetation.  126 

 127 

  128 
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2 Material and Methods 129 

 130 

2.1 Study area 131 

The administrative region of Alentejo (NUTSII) (fig01) covers an area of 31 604.9 km2, between the 132 

latitude 37.22º to 39.39º N and longitude 9.00º to 6.55º W. This study area is characterized by a 133 

Mediterranean temperate mesothermic climate with hot and dry summers, defined as Csa in the Köppen 134 

classification (APA, n.d.; ARH Alentejo, 2012a, 2012b). It is characterized by a sub-humid climate, 135 

which has recently quickly drifted to semi-arid conditions (Ministério da Agricultura do Mar do 136 

Ambiente e do Ordenamento do Território, 2013).  A large proportion of the area (above 40%) is covered 137 

by forestry systems (Autoridade Florestal Nacional and Ministério da Agricultura do Desenvolvimento 138 

Rural e das Pescas, 2010) providing a high economical value to the region and the country (Sarmento and 139 

Dores, 2013).  140 

 141 

2.2 Kernel Density estimation of GDV 142 

Presence datasets of Quercus suber, Quercus ilex and Pinus pinea of the last Portuguese forest inventory 143 

achieved in 2010 (ICNF, 2013) were used to calculate Kernel density (commonly called heat map) as a 144 

proxy for GDV suitability. Only data points with one of the three proxy species selected as primary and 145 

secondary occupation were used. The resulting Kernel density was weighted according to tree cover 146 

percentage and was calculated using a quartic biweight distribution shape, a search radius of 10 km, and 147 

an output resolution of 0.018 degrees, corresponding to a cell size of 1km. This variable was computed 148 

using QGIS version 2.14.12 (QGIS Development Team, 2017). 149 

 150 

2.3 Environmental variables 151 

Species distribution is mostly affected by limiting factors controlling ecophysiological responses, 152 

disturbances and resources (Guisan and Thuiller, 2005). To characterize the study area in terms of GDV’s 153 

suitability, environmental variables expected to affect GDV’s density were selected according to their 154 

constraint on groundwater uptake and soil water storage. Within possible abiotic variables, landscape 155 

topography, geology, groundwater availability and regional climate were considered to map GDV 156 

density. The twelve selected variables for modeling purposes, retrieved from different data sources are 157 

listed in Table 1. The softwares used in spatial analysis were ArcGIS® software version 10.4.1 by Esri 158 

and R program software version 3.4.2 (R Development Core Team, 2016). 159 

 160 

2.3.1 Slope and soil characteristics 161 

The NASA and METI ASTER GDEM product  was retrieved from the online Data Pool, courtesy of the 162 

NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources 163 
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Observation and Science (EROS) Center, Sioux Falls, South 164 

Dakota, https://lpdaac.usgs.gov/data_access/data_pool.. Spatial Analyst Toolbox was used to calculate the 165 

slope from the digital elevation model. Slope was used as proxy for the identification of shallow soil 166 

water interaction with vegetation.  167 

The map of soil type was obtained from the Portuguese National Information System for the Environment 168 

- SNIAmb (© Agência Portuguesa do Ambiente, I.P., 2017) and uniformized to the World Reference 169 

Base with the Harmonized World Soil Database v 1.2 (FAO et al., 2009). The vector map was converted 170 

to raster using the Conversion Toolbox. To reduce the analysis complexity involving the several soil 171 

types present in the map, soil types were regrouped in three classes, according to their capacity to store or 172 

drain water (Table A1 in appendix A). The classification was based on the characteristics of each soil unit 173 

(available water storage capacity, drainage and topsoil texture) from the Harmonized World Soil 174 

Database (FAO et al., 2009). In the presence of dominant soil with little drainage capacity, AWC and 175 

mainly topsoil clay fraction, lower scores were given to higher shallow soil water retention and decreased 176 

suitability for GDV. Otherwise, when soil characteristics suggested water storage at deeper soil depths, 177 

lower AWC, drainage and sand topsoil texture, higher scores were given. 178 

Effective soil thickness (Table 1) was also considered for representing the maximum soil depth explored 179 

by the vegetation roots. It constrains the expansion and growth of the root system, as well as the available 180 

amount of water that can be absorbed by roots.  181 

 182 

2.3.2 Groundwater availability 183 

Root access to water resources is one of the most limiting factors for GDV’s growth and survival, 184 

especially during the dry season. The map of depth to water table was interpolated from piezometric 185 

observations from the Portuguese National Information System on Water Resources (SNIRH) public data 186 

base (http://snirh.apambiente.pt, last accessed on March 31st 2017) and the Study of Groundwater 187 

Resources of Alentejo (ERHSA) (Chambel et al., 2007). Data points of large-diameter wells and 188 

piezometers were retrieved for the Alentejo region (fig02) and sorted into undifferentiated, karst or 189 

porous geological types to model groundwater depth (GWDepth). In the studied area, piezometers are 190 

exclusively dedicated structures for piezometric observations, in areas with high abstraction volumes for 191 

public water supply. Oppositely, large wells are mainly devoted to private use and low volume 192 

abstractions. Due to the large heterogeneity of geological media, groundwater depth was calculated 193 

separately for each sub-basin. A total of 3158 data points corresponding to large wells and piezometers 194 

were used, with uneven measurements between 1979 and 2017. For each piezometer an average depth 195 

was calculated from the available observations and used as a single value. In areas with undifferentiated 196 

geological type, piezometric level and elevation were highly correlated (>0.9), thus a linear regression 197 

was applied to interpolate data. Ordinary kriging was preferred for the interpolation of karst and porous 198 

aquifers, combining large wells and piezometric data points. To build a surface layer of the depth to water 199 

table, the interpolated surface of the groundwater level was subtracted from the digital elevation model. 200 

Geostatistical Analyst ToolBox was used for this task. 201 

https://lpdaac.usgs.gov/data_access/data_pool
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Drainage density is a measure of how well the basin is drained by stream channels. It is defined as the 202 

total length of channels per unit area. Drainage density was calculated for a 10km grid size for the 203 

Alentejo region, by the division of the 10km square area (A) in km2 by the total stream length (L) in km, 204 

as in Eq. (1). 205 

𝐷𝑑 =  
𝐿

𝐴
 ,          (1) 206 

 207 

2.3.3 Regional Climate 208 

Temperature and precipitation datasets were obtained from the E-OBS 209 

(http://eca.knmi.nl/download/ensembles/ensembles.php, last accessed on March 31st 2017) public 210 

database (Haylock et al., 2008). Standardized Precipitation Evapotranspiration Index (SPEI), Aridity 211 

Index (AI) and Ombrothermic Indexes were computed from long-term (1951-2010) monthly temperature 212 

and precipitation observations. The computation of potential evapotranspiration (PET) was performed 213 

according to Thornthwaite (1948) and was assessed using the SPEI package (Beguería and Vicente-214 

Serrano, 2013) in R program. 215 

SPEI multi-scalar drought index (Vicente-Serrano et al., 2010) was calculated over a 6 month interval to 216 

characterize drought severity in the area of study using SPEI package (Beguería and Vicente-Serrano, 217 

2013) for R program. SPEI is based on the normalization of the water balance calculated as the difference 218 

between cumulative precipitation and PET for a given period at monthly intervals. Normalized values of 219 

SPEI typically range between -3 and 3. Drought events were considered as severe when SPEI values were 220 

between -1.5 and -1.99, and as extreme with values below -2 (Mckee et al., 1993). Severe and extreme 221 

SPEI predictors were computed as the number of months with severe or extreme drought, counted along 222 

the 60 years of the climate time-series. 223 

While the SPEI index used in this study identifies geographical areas affected with more frequent extreme 224 

droughts, the Aridity index (AI) distinguishes arid geographical areas prone to annual negative water 225 

balance (with low AI value) to more mesic areas showing positive annual water balance (with high AI 226 

value). AI gives information related to evapotranspiration processes and rainfall deficit for potential 227 

vegetative growth. It was calculated following Eq. (2) according to Middleton et al. (1992), where PET is 228 

the average annual potential evapotranspiration and P is the average annual precipitation, both in mm for 229 

the 60 years period of the climate time-series. Dry lands are defined by their degree of aridity in 4 classes: 230 

Hyperarid (AI<0.05); Arid (0.05<AI<0.2); Semi-arid (0.2<AI<0.5) and Dry Subhumid (0.5<AI<0.65) 231 

(Middleton et al., 1992).  232 

AI= 
𝑃

 𝑃𝐸𝑇
 ,          (2) 233 

Ombrothermic Indexes were used to better characterize the bioclimatology of the study region (Rivas-234 

Martínez et al., 2011), by evaluating soil water availability for plants during the driest months of the year. 235 

Four ombrothermic indexes were calculated according to a specific section of the year stated in Table 1, 236 

and following Eq. (3), where Pp is the positive annual precipitation (accumulated monthly precipitation 237 

http://eca.knmi.nl/download/ensembles/ensembles.php
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when the average monthly mean temperature is higher than 0°C) and Tp is the positive annual 238 

temperature (total in tenths of degrees centigrade of the average monthly temperatures higher than 0°). 239 

Ombrothermic index presenting values below 2 for the analyzed months, can be considered as 240 

Mediterranean bioclimatically. For non-Mediterranean areas, there is no dry period in which, for at least 241 

two consecutive months, the precipitation is less than or equal to twice the temperature.  242 

𝐼𝑜 =
𝑃𝑝

𝑇𝑝
 ,          (3) 243 

 244 

2.4 Model predictors selection 245 

The full set of environmental variables was evaluated as potential predictors for the suitability of GDV 246 

(based on the Kernel density of the proxy species). A preliminary selection was carried out, first by 247 

computing Pearson’s correlation coefficients between environmental variables and second by performing 248 

a Principal Components Analysis (PCA) to detect multicollinearity. Covariates were discarded for 249 

modeling according to a sequential procedure. Whenever pairs of variables presented a correlation value 250 

above 0.4, the variable with the highest explained variance on the first axis of the PCA was selected. In 251 

addition, selected variables had to show the lowest possible correlation values between them. Variables 252 

showing low correlations and explaining a higher cumulative proportion of variability with the lowest 253 

number of PCA axis were later selected as predictors for modeling. PCA was performed using the GeoDa 254 

Software (Anselin et al., 2006) and Pearson’s correlation coefficients were computed with Spatial Analyst 255 

Tool . 256 

 257 

2.5 Model development  258 

When fitting a linear regression model based on the selected variables, the normal distribution and 259 

stationarity of the model predictors and residuals must be assured.  260 

The Kernel density of the proxy GDV species, Q. suber, Q. ilex and P. pinea, showed a skewed normal 261 

distribution. Therefore, a square-root normalization of the data was applied on this response variable, 262 

before model fitting. To be able to compare the resulting model coefficients and use them as weighting 263 

factors of the multi-criteria analysis to build the suitability map, the predictor variables were normalized 264 

using the z-score function. This allows to create standardized scores for each variable, by subtracting the 265 

mean of all data points from each individual data point, then dividing those points by the standard 266 

deviation of all points, so that the mean of each z-predictor is zero and the deviation is 1.  267 

Spatial autocorrelation and non-stationarity are common when using linear regression on spatial data. To 268 

overcome these issues, Geographically Weighted Regression (GWR) was used to allow model 269 

coefficients to adjust to each location of the dataset, based on the proximity of sampling locations 270 

(Stewart Fotheringham et al., 1996). In this study, simple linear regression and GWR were both applied to 271 

the dataset and their performances compared. Models were fitted on a 5% random subsample of the entire 272 

dataset (6242 data points), due to computational restrictions and to decrease the spatial autocorrelation 273 
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effect (Kühn, 2007). This methodology has already been applied with a subsample of 10%, with points 274 

distant 10km from each other (Bertrand et al., 2016). In our dataset, even though we selected a 5% 275 

subsample, the mean and maximum distance between two random data points were, respectively, 3.6 km 276 

and 16.7 km, providing a good representation of local heterogeneity, as shown in figures 05 and 06. An 277 

additional analysis showing an excellent agreement between the two datasets is presented in FigA1 in 278 

appendix A. 279 

Initially the model was constructed containing all selected predictors through the PCA and Pearson’s 280 

correlation analysis. After, we sequentially discarded predictors so as to ascertain the model presenting 281 

lower second-order Akaike Information Criteria (AICc) and higher quasi-global R2 chosen to predict the 282 

suitability of GDV. 283 

Adaptive Kernel bandwidths for the GWR model fitting were used due to the spatial irregularity of the 284 

random subsample. Bandwidths were obtained by minimizing the CrossValidation score (Bivand et al., 285 

2008). To analyze the performance of the GWR model alone, the local and global adjusted R-squared 286 

were considered. To compare between the GWR model and the simple linear model, we considered the 287 

distribution of the model residuals, e.g. whether there were visible clustered values and the AICc.  The 288 

spatial autocorrelation of the models residuals was evaluated with the Moran’s I test (Moran, 1950) using 289 

the Spatial Statistics Tool, and also graphically. GWR model was fitted using the spgwr package from R 290 

program (Bivand and Yu, 2017). 291 

 292 

2.6 Suitability map building 293 

To create the suitability map we proceeded with the classification of all predictor layers included in the 294 

GWR model, similarly to Condesso de Melo et al. (2015) and Aksoy et al. (2017) . The likelihood of an 295 

interaction between the vegetation and groundwater resources was scored from 1 to 3 for each predictor. 296 

Scores were assigned after bibliographic review and expert opinion. The higher the score, the higher the 297 

likelihood, 1 corresponding to a weak likelihood and 3 indicating very high likelihood. Groundwater 298 

depth was divided in two classes, according to the accessibility to shallow soil water above 1.5 m and the 299 

maximum rooting depth for Mediterranean woody species reaching 13 m, reported by Canadell et al. 300 

(1996). Throughout the manuscript, we designated as shallow soil water the water between 0 and 1.5 m 301 

depth, while water below 1.5 m depth was considered as groundwater. The depth class between 0 and 302 

1.5m was based on the riparian vegetation in semi-arid Mediterranean areas which is mainly composed of 303 

shrub communities (Salinas et al., 2000) and present a mean rooting depths of 1.5m (Silva and Rego, 304 

2004). The most common tree species rooting depth in riparian ecosystems is normally similar to the 305 

depth of fine sediment not reaching gravel substrates (Singer et al., 2012) and not reaching levels as deep 306 

as deep-rooted species. The minimum score was given to areas where groundwater depth was too shallow 307 

(below 1.5 m) considered to belong to surface groundwater dependent vegetation. Areas with steep slope 308 

were considered to have superficial runoff and less recharge and influence negatively tree density (Costa 309 

et al., 2008). Those areas were treated as less suitable to GDV. Values of the Ombrothermic Index of the 310 

summer quarter and the immediately previous month (Ios4) were split in 3 classes according to Jenks 311 
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natural breaks, with higher suitability corresponding to higher aridity. The higher values of AI, 312 

corresponding to lower aridity had a score of 1, because a higher humid environment would decrease the 313 

necessity of the arboreous species to use deep water sources. Accordingly, an increase in aridity (lower 314 

values of AI) has already been shown to increase tree decline (Waroux and Lambin, 2012) and so higher 315 

AI values corresponded to a score of 2, leaving the score 3 to intermediate values of AI.  Drainage density 316 

scoring was based on the capability of drainage of the water through the hydrographical network of the 317 

river. When drainage density was lower (below 0.5), a higher suitability scoring was given because the 318 

water lost from runoff through the hydrographic network would be less available to the vegetation thus 319 

favoring a higher use of water from groundwater reservoirs (Rodrigues, 2011). 320 

A direct compilation of the predictor layers could have been performed for the multicriteria analysis. 321 

However some predictors might have a stronger influence on the GEV distribution and density than 322 

others. Therefore, there was a need to define weighting factors for each layer of the final GIS multicriteria 323 

analysis. Yet, due to the intricate relations between all environmental predictors and their effects on the 324 

GDV, experts and stakeholders suggested very different scoring for a same layer. Subsequently, we 325 

instead chose to use the relative proportion of each predictor’s coefficient locally, according to the GWR 326 

model (Eq. 4) as weighting factors. The final GIS multicriteria analysis was performed using the Spatial 327 

Analyst Tool by applying local model equations obtained for each of the 6242 coordinates of the Alentejo 328 

map (Eq.4),  329 

Suitability = Intercept + coef1 * [real value X1] + coef2 * [real value X2] + coef3 * [real value X3] + …, 330 

(4) 331 

with brackets representing the reclassified GIS X layer corresponding to the scoring and coefpx indicating 332 

the relative proportion for the predictor x. 333 

According to this equation, lower values indicate a lower occurrence of groundwater use referred a lower 334 

GDV suitability while higher values correspond to a higher use of groundwater referred a higher GDV 335 

suitability. To allow for an easier interpretation, the data on suitability to GDV was subsequently 336 

classified based on their distribution value, according to Jenks natural breaks. This resulted in 5 suitability 337 

classes: “Very poor”, “Poor”, “Moderate”, “Good” and “Very Good”. 338 

 339 

2.7 Map validation 340 

The Normalized Difference Water Index (NDWI) (Gao, 1996) is a satellite-derived index estimating the 341 

leaf water content at canopy level, widely used for drought monitoring (Anderson et al., 2010, Gu et al., 342 

2007; Ceccato et al., 2002a) and to estimate fuel moisture content (Maki et al., 2004). NDWI is computed 343 

using the near infrared (NIR) and the short-wave infrared (SWIR) reflectance, which makes it sensitive to 344 

changes in liquid water content and in vegetation canopies (Gao, 1996; Ceccato et al., 2002a,b).  NDWI 345 

computation (Eq. X) was further adapted by Gond et al. (2004) to SPOT-VEGETATION instrument 346 

datasets, using NIR (0.84 µm) and MIR (1.64 µm) channels, as described by Hagolle et al. (2005). 347 
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 348 

𝑁𝐷𝑊𝐼 =  
𝜌𝑁𝐼𝑅−𝜌𝑀𝐼𝑅

𝜌𝑁𝐼𝑅+𝜌𝑀𝐼𝑅
.         (5) 349 

Following Eq. (5), NDWI data were computed using B3 and MIR data acquired from VEGETATION 350 

instrument on board of SPOT4 and SPOT5 satellites. Extraction and corrections procedures applied to 351 

optimize NDWI series are fully described in Gouveia et al. (2009 and 2012). 352 

The NDWI anomaly was computed as the difference between NDWI observed in June, July and August 353 

of 2005 and the median NDWI for the same month for the period 1999 to 2009. June was selected to 354 

provide the best signal from a still fully active canopy of woody species while the herbaceous layer had 355 

usually already finished its annual cycle and dried out. The hydrological year of 2004/2005 was 356 

characterized by an extreme drought event over the Iberian Peninsula, where less than 40% of the normal 357 

precipitation was registered in the southern area (Gouveia et al., 2009). Thus, in June 2005 the vegetation 358 

of the Alentejo region was already coping with an extreme long-term drought, which was well captured 359 

by the anomaly of the NDWI index, as shown by Gouveia et al. 2012. 360 

  361 
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3 Results 362 

 363 

3.1 Kernel Density 364 

Within the studied region of Portugal, the phreatophyte species Quercus suber, Quercus ilex and the 365 

suspected phreatophyte species Pinus pinea were not distributed uniformly throughout the territory. Areas 366 

with higher Kernel density (or higher distribution likelihood) were mostly spread between the northern 367 

part of Alentejo region and the western part close to the coast, with values ranging between 900 and 1200 368 

(fig03). Two clusters of high density also appeared below the Tagus river. The remaining study area 369 

presented mean density values, with a very low density in the area of the river Tagus.  370 

 371 

3.2 Environmental conditions 372 

The exploratory analysis of the variables, performed through the PCA and Pearson correlation matrix 373 

confirmed the presence of multicollinearity. From the initial variables (Table 1), Thickness, Spei_severe, 374 

Spei_extreme, Annual Ombrothermic Index (Io), Ombrothermic Index of the hottest month of the 375 

summer quarter(Ios1) and Ombrothermic Index of the summer quarter (Ios3) were discarded, while the 376 

variables slope, drainage density, soil type, groundwater depth, AI and Ios4 were maintained for analysis 377 

(figA2 and Table A1 in appendix). A sequential removal of each predictor from the model with the six 378 

variables was performed (table 2) which allowed to choose the model with the highest global R2 (0.99) 379 

and the lowest AICc (18050.34). Therefore, five environmental variables out of the initial 12 considered 380 

(fig04) were endorsed to explain the variation of the Kernel density of GDV in Alentejo: AI, Ios4, 381 

GWDepth, Dd and slope. 382 

In most part of the Alentejo region, slope was below 10% (fig04e) andcoastal areas presenting the lowest 383 

values and variability. Highest values of groundwater depth (fig04c), reaching a maximum of 255 m, 384 

were found in the Atlantic margin of the study area, mainly in Tagus and Sado river basins. Several other 385 

small and confined areas in Alentejo also showed high values, corresponding to aquifers of porous or 386 

karst geological types. Most of the remaining study area showed groundwater depths ranging between 1.5 387 

m and 15 m. Figures 04a and 04b indicate the southeast of Alentejo as the driest area, given by minimum 388 

values of the aridity index (0.618), and potential evapotranspiration much higher that precipitation. 389 

Besides, Ios4 presented a maximum value (0.714) for this region (meaning that soil water availability was 390 

not compensated by the precipitation of the previous M-J-J-A months). This is also supported by the 391 

higher drainage density in the southeast which indicates a lower prevalence of shallow soil water due to 392 

higher stream length by area. 393 

Combining all variables, it was possible to distinguish two sub-regions with distinct conditions: the 394 

southeast of Alentejo and the Atlantic margin. The latter is mainly distinguished by its low slope areas, 395 

higher groundwater depth and more humid climatic conditions than the southeast of Alentejo. 396 

 397 
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3.3 Regression models 398 

The best model to describe the GDV distribution was found through a sequentially discard of each 399 

variable (Table 2) and corresponded to the model with a distinct lower AICc (18050.76) compared with 400 

the second lowest AICc (27389.74) and showed an important increase in quasi-global R2 (from 0.926 for 401 

the second best model to 0.992 for the best one). The best model fit was obtained with AI, Ios4, 402 

GWDepth, Dd and slope. This final model was then applied to the GIS layers to map the suitability of 403 

GDV in Alentejo, according to Eq. 6. 404 

Suitability = Intercept + AI coefp * [reclassified AI value] + Ios4 coefp * [reclassified Ios4 value] + 405 

GWDepth coefp * [reclassified GWDepth value] + Dd coefp * [reclassified Dd value] + slope coefp * 406 

[reclassified slope value], 407 

(6) 408 

Local adjusted R-squared of the GWR model was highly variable throughout the study area, ranging from 409 

0 to 0.99 (fig05). Also, the local R-squared values below 0.5 corresponded to only 0.3% of the data. The 410 

lower R-squared values were distributed throughout the Alentejo area, with no distinct pattern. The 411 

overall fit of the GWR model was high (Table 3). The adjusted regression coefficient indicated that 99% 412 

of the variation in the data was explained by the GWR model, while only 0.02% was explained by the 413 

simple linear model (Table 3). Accordingly, GWR had a substantially lower AICc when compared with 414 

the simple linear model, indicating a much better fit. 415 

The spatial autocorrelation given by the Moran Index (Griffith, 2009; Moran 1950) retrieved from the 416 

geospatial distribution of residual values was significant for both GWR and linear model. It was 417 

substantially lower for the GWR model though, than for the linear model (-z-score of 50.24 and 147.56 418 

respectively). Indeed, in the linear model (fig06b), positive residuals were condensed in the right side of 419 

Tagus and Sado river basins, while negative values were mainly present on the left side of the Tagus river 420 

and in the center-south of Alentejo. In the GWR model (fig06a) the positive and negative residual values 421 

were much more randomly scattered throughout the study region, highlighting a much better performance 422 

of the GWR, which minimized residual autocorrelation.  423 

The spatial distribution of the coefficients of GWR predictors are presented in Fig07. They were later 424 

used for the computation of the GDV suitability score for each data point (Eq.6). The coefficient 425 

variability was three times higher for the Aridity Index as compared to Ios4 (fig08), reaching 66 and 22% 426 

respectively. For GWDepth, Dd and Slope, the coefficient variation was much lower, representing only 427 

about 6.2, 3.8 and 1.2% of the total variation observed in the coefficients, respectively. The remaining 428 

variables showed a median close to 0 and the Ios4 was the second with higher variability followed by the 429 

GWDepth. The coefficient median values were, respectively, -3.40, 0.29, -0.015, -0.018 and 0.022 for AI, 430 

Ios4, GWDepth, Dd and Slope variables. 431 

The distributions of negative coefficients were similar for AI and the Ios4 variables (fig07a and fig07b), 432 

with lower values in the southern coastal area, and in the Tagus river watershed. The highest absolute 433 

values were mostly found for AI in the southern area of the Alentejo region and on smaller patches in the 434 

https://www.sciencedirect.com/science/article/pii/S0034425714000212#bbb0090
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northern region. In the center and easter areas of Alentejo a higher weight of the groundwater depth 435 

coefficient could be found (fig07c), approximately matching a higher influence of slope (fig07e). The 436 

GWDepth seemed to have almost no influence on GDV density in the Tagus river watershed, expressed 437 

by coefficients mostly null around the riverbed (fig07c). The coefficient distribution of Dd and Ios4 438 

shows some similarities, mostly in the center and southeats of Alentejo (fig07d). Extreme values of Ios4 439 

coefficients were mostly concentrated in the eastern part of the Tagus watershed and in the southern 440 

coastal area included in the Sado watershed. Slope coefficient values showed the lowest amplitude 441 

throughout the study area (fig07e), with prevailing high positive values gathered mainly in the center of 442 

the study area and in the Tagus river watershed (northwest of the study center). 443 

 444 

3.4 GDV Suitability map 445 

The classification of the 5 endorsed environmental predictors is presented in Table 4 and their respective 446 

maps in figure B1 in appendix B. Rivers Tagus and Sado had an overall positive impact on GDV’s 447 

suitability for each predictor, with the exception of AI and GWDepth. This is due to a higher water 448 

availability reflected by the values of the Ios4, the Dd and the lower slopes due to the alluvial plains of 449 

the Tagus river (figs. B1b,d and e in appendix B). On the other hand, those regions also presented higher 450 

humidity conditions (through analysis of the AI in fig B1a in appendix B) and groundwater depths outside 451 

the optimum range (Fig. B1c in appendix B), therefore less suitable for GDV. Optimal conditions for 452 

groundwater access were mainly gathered in the interior of the study region (fig. B1c in appendix B), with 453 

the exception of some confined aquifers in the northeast and southeast of the study region. Favorable 454 

slopes for GDV were mostly highlighted in the Tagus river basin area, where a good likelihood of 455 

interaction between GDV and groundwater could be identified (fig. B1e in appendix B).  456 

The final map illustrating the suitability to GDV is shown in Fig. 09. The proportion of each suitability 457 

class was quite evenly distributed throughout the study area. The largest area (8 787km2) presented a very 458 

poor suitability to GDV but corresponded only to approximately a quarter of the total study area (0.29%). 459 

This percentage was followed closely by the moderate suitability to GDV which occupied 0.26% 460 

(8000km2). Overall, the two less suitable classes (very poor and poor) represented 0.47% of the study 461 

area, whilst the two best ones and the moderate class (very good, good and moderate) represented 0.53%. 462 

Consequently, most of the study area showed high to moderate suitability to GDV. The very good and 463 

good suitability classes corresponded to the most southern and eastern center area of the Alentejo region, 464 

mainly close to the coastal line, passing through the Sado Guadiana river basins. Most of the center of the 465 

study area showed moderate to very good suitability do GDV, while the areas corresponding to the 466 

alluvial deposits of the Tagus river showed poor to very poor suitability.  467 

The suitability to GDV in the Alentejo region was mainly driven by the AI, given by the highest 468 

coefficient variability associated to the AI predictor in the GWR model equation. This is also supported 469 

by the similar distribution pattern observed between the suitability map and the aridity index predictor 470 

(fig04a and fig09). Areas with good or very good suitability mostly matched areas of AI with score 3 471 

(Fig. B1a in appendix B). On the other hand, the lowest suitability classes showed a good agreement with 472 
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the lowest scores given to GWDepth (Fig. B1c in appendix B), mostly in the coastal area and in the Tagus 473 

river basin.  474 

 475 

3.5 Map validation 476 

To assess the accuracy of the suitability map developed in the present study, we compared our results 477 

with the NDWI anomaly considering the month of June of the dry year of 2005 in the Alentejo area 478 

(fig10). Both maps (figs 09 and 10) showed similar areas for higher and lower presence for GDV. The 479 

NDWI anomaly was mostly negative over the Alentejo territory indicating water stress in the vegetation 480 

leaves. Water stress due to the extreme drought was maximum (brown colour) in geographical areas 481 

matching the highest GDV suitability (fig09). It was less pronounced (mostly yellowish) in the central 482 

area of the Alentejo region between the Guadiana and Sado river basins where the vegetation presents a 483 

lower density (fig03). Areas with positive/null values of NDWI anomaly (corresponding to a higher water 484 

availability) were mostly distributed on the coastal area of the Atlantic ocean or close to riverbeds, 485 

namely in the Tagus and Sado floodplains (green colour, fig10), matching areas of poor suitability for 486 

GDV in Figure 09. 487 

  488 



17 
 

4 Discussion 489 

 490 

4.1 Modeling approach 491 

The Geographically Weighted Regression model has been used before in ecological studies (Li et al., 492 

2016; Mazziotta et al., 2016), but never for the mapping of GDV, to our knowledge. This approach 493 

considerably improved the goodness of fit when compared to the linear model, with a coefficient of 494 

regression (R2) increasing from 0.02 to 0.99 at the global level, and an obvious reduction of residual 495 

clustering. Despite those improvements, it has not been possible to completely eliminate the residual 496 

autocorrelation after fitting the GWR model.  497 

Kernel density for the study area provided a strong indication of presence and abundance of the tree 498 

species considered as GDV proxy for modeling. Mediterranean cork woodlands (Montados) are 499 

agroforestry systems considered as semi-natural ecosystems, that must be continually maintained through 500 

human management by thinning, understory use through grazing, ploughing and shrub clearing 501 

(Huntsinger and Bartolome, 1992) to maintain a good productivity, biodiversity and ecosystems service 502 

(Bugalho et al., 2009). Montados dominate about 76% of the Alentejo region (while only 7% is covered 503 

by stone pine). In those systems, tree density is known to be a tradeoff between climate drivers (Joffre 504 

1999, Gouveia & Freitas 2008) and the need for space for pasture or cereal cultivation in the understory 505 

(Acacio & Holmgreen 2014). In our study, the anthropologic management of agroforestry systems in the 506 

Alentejo region has not been taken into account. This could, at least partially, explain the non-randomness 507 

of the residual distribution after GWR model fitting as well as the mismatches between the GDV and the 508 

validation maps.  509 

Another explanation of the reminiscent autocorrelation after GWR fitting could be the lack of 510 

groundwater dependent species in the model. For example, we decided to exclude Pinus pinaster Aiton 511 

due to its more humid distribution in Portugal, and due to conflicting conclusions driven from previous 512 

studies to pinpoint the species as a potential groundwater user (Bourke, 2004; Kurz-Besson et al., 2016). 513 

In addition, we excluded olive trees although the use of groundwater by an olive orchard has been 514 

recently proved (Ferreira et al., 2018), however with a weak contribution of groundwater to the daily root 515 

flow, and thus with no significant impact of groundwater on the species physiological conditions. 516 

Methods previously used by Doody et al., (2017) and Condesso de Melo et al. (2015) to map specific 517 

vegetation relied solely on expert opinion, e.g. Delphi panel, to define weighting factors of environmental 518 

information for GIS multicriteria analysis. In our study, we used a GWR modelling approach to assess 519 

weighting factors for each environmental predictor in the study area, to build a suitability map for the 520 

GDV in southern Portugal. This allowed an empirical determination of the local relevance of each 521 

environmental predictor in GDV distribution, thus avoiding the inevitable subjectivity of Delphi panels. 522 

Modelling of the entire study region at a regional level did not provide satisfactory results. Therefore, we 523 

developed a general model varying locally according to local predictor coefficients. The local influence of 524 

each predictor was highly variable throughout the study area, especially for climatic predictors reflecting 525 

water availability and stress conditions. The application of the GWR model did not only allowed for a 526 
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localized approach, by decreasing the residual error and autocorrelation over the entire studied region, but 527 

also provided insights on how GDV’s density can be explained by the main environmental drivers locally. 528 

Predictor coefficients showed a similar behavior in the spatial distribution of the coefficients. This was 529 

noticeable for the aridity index and the groundwater depth in the Tagus and Sado river basins. 530 

Groundwater depth had no influence on GDV’s density in these areas and similarly, the coefficient of 531 

Aridity index showed a negative effect of increased humidity on GDV’s density. In addition, a cluster of 532 

low drainage density values matched these areas.  533 

 534 

4.2 Suitability to Groundwater Dependent Vegetation  535 

 536 

According to our results, more than half of the study area appears suitable for GDV. However, one 537 

quarter of the studied area showed the lowest suitability to GDV. The lower suitability to this vegetation 538 

in the more northern and western part of the studied area can be explained by less favorable climatic and 539 

hydrological conditions, resulting from the combination of a high aridity index and low groundwater 540 

depth scores (equivalent to high shallow soil water availability), corresponding to the coastal area and in 541 

the Tagus river basin.  542 

 543 
Zomer et al. (2009) attempted to quantify the extent of agroforestry at the global level by performing a 544 

geospatial analysis of remote sensing derived global datasets. They showed that the average tree cover 545 

density within agricultural land can were closely linked to aridity with similar trends for different 546 

geographical areas. Our results agree with these findings since the aridity and ombrothermic indexes were 547 

the most important predictors of GDV density in the Alentejo region, according to our model outcomes. 548 

This is in agreement with former studies linking tree cover/density of Mediterranean oak woodland to 549 

climate drivers derived from precipitation (Gouveia and Freitas 2008, Joffre et al. 1999). Also, Waroux 550 

and Lambin (2012) studied the degradation of the argania woodlands in semi-arid to arid Southwest 551 

Morocco and found that a 44% decline of the forest density was mostly driven by the increasing aridity in 552 

the region between 1970 and 2007. Similarly, many studies carried out on oak woodlands in Italy and 553 

Spain identified drought as the main driving factor of tree die-back and as the main climate warning 554 

threatening oak stands sustainability in the Mediterranean basin (Gentilesca et al. 2017). Tree mortality 555 

linked to increasing drought stresses can also be associated to a geographical shift in vegetation 556 

communities (Lloret et al., 2004). For example, xeric plant species Sahel have expanded in the north of 557 

Sahel since the last half of the 20th century, toward areas of higher rainfall at an average rate of 500 to 558 

600 m yr–1 (Gonçalez P., 2001). 559 

In environments with scarce water sources such as the Mediterranean basin, plants have developed 560 

strategies to either avoid or escape drought stress (Chaves et al., 2003). The development of a dimorphic 561 

root systems in woody species is an adaptation strategy to escape drougth (Dinis 2014, David et al., 562 

2013). When comparing different water limited ecosystems from a global dataset, Schenk and Jackson 563 
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(2002) showed that rooting depth increased with aridity. Furthermore, a clear relationship between 564 

rooting depth and the water table depth was evidenced at global scale (Fan et al. 2017).  565 

In our study, groundwater depth appeared to have a lower influence on GDV density than climate drivers, 566 

as reflected by the relative low magnitude of the GWDepth coefficient in our model outcomes. This 567 

surprisingly disagrees with our initial hypothesis because groundwater represents a notable proportion of 568 

the transpired water of deep-rooting phreatophytes, reaching up to 86% of absorbed water during drought 569 

periods and representing about 30.5% of the annual water absorbed by trees (David et al. 2013, Kurz-570 

Besson et al. 2014). Nonetheless, this disagreement should be regarded cautiously due to the poor quality 571 

of the data used. On one hand, data points in the study region were highly heterogeneous, and certain 572 

areas showed a better statistical representation than others. Moreover, the high variability in geological 573 

media, topography and vegetation cover at the regional scale did not allow to account for small changes 574 

in groundwater depth (<15 m deep), which has a huge impact on GDV suitability (Canadell et al., 1996; 575 

Stone and Kalisz, 1991). Indeed, a high spatial resolution of hydrological database is essential to 576 

rigorously characterize the spatial dynamics of groundwater depth between hydrographic basins 577 

(Lorenzo-Lacruz et al., 2017). However, such resolution was not available for our study area. In addition, 578 

the lack of temporal data hampered the calculation of seasonal trends in groundwater depth, which are 579 

essential under Mediterranean conditions to build a reliable interpolation of observed data. Temporal data 580 

would also further help discriminate areas of optimal suitability to GDV, either during the wet and the dry 581 

seasons. Investigations efforts should be invested to fill the gap either by improving the Portuguese 582 

piezometric monitoring network, or by assimilating observations with remote sensing products focused on 583 

soil moisture or groundwater monitoring. This has already been performed for large regional scale such as 584 

GRACE satellite surveys, based on changes of Earth’s gravitational field. So far, these technologies are 585 

not applicable to Portugal’s scale, since the coarse spatial resolution of GRACE data only allows the 586 

monitoring of large reservoirs (Xiao et al. 2015). 587 

 588 

4.4 Validation of the results 589 

Satellite derived remote-sensing products have been widely used to follow the impact of drought on land 590 

cover and the vegetation dynamics (AghaKouchaket al. 2015). Vegetation indexes offer excellent tools to 591 

assess and monitor plant changes and water stress (Asrar et al. 1989).  592 

The understory of woodlands and the herbaceous layer of grasslands areas in southern Portugal usually 593 

ends their annual life cycles in June (Paço et al. 2007), while the canopy of woody species is still fully 594 

active with maximum transpiration rates and photosynthetic activities (Kurz-Besson et al. 2014, David et 595 

al. 2007, Awada et al. 2003). This is an ideal period of the year to spot differential response of the canopy 596 

of woody species to extreme droughts events using satellite derived vegetation indexes (Gouveia 597 

2012).  In this manuscript we preferred the NDWI index to be more sensitive to canopy water content and 598 

a good proxy for water stress status in plants. Moreover, NDWI has been shown to be best related to the 599 

greenness of Cork aok woodland’s canopy, expressed by the fraction of intercepted photosynthetically 600 

active radiation (Cerasoli et al., 2016). 601 
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By looking at the map of the NDWI anomaly in June 2005, it appears that the woody canopy showed a 602 

strong loss of canopy water in the areas were tree density and GDV suitability were higher (figs03, 09 and 603 

10). This occurred although trees minimized the loss of water in leaves with a strong stomatal limitation 604 

in response to drought (Kurz-Besson et al. 2014, Grant et al. 2010). In the most arid area of the region 605 

were Holm oak is dominant but tree density is lower, the NDWI anomaly was generally less negative thus 606 

showing a lower water stress or higher canopy water content.  Holm oak (Quercus ilex spp rotundifolia) 607 

is well known to be the most resilient species to drought conditions in Portugal, due to its capacity to use 608 

groundwater and a higher water use efficiency (David et al. 2007). Furthermore, by looking at the 609 

dynamics of NDWI anomaly (fig10) we can see that the lower water stress status on the map is 610 

progressively spreading from the most arid areas to the milder ones from June to August 2005, despite the 611 

intensification of drought conditions. This endorses the idea that trees manage to cope with drought by 612 

relying on deeper water sources in response to drought, replenishing leaf water content despite the 613 

progression and intensification of drought conditions. Former studies support this statement by showing 614 

that groundwater uptake and hydraulic lift were progressively taking place after the onset of drought by 615 

promoting the formation of new root reaching deeper soil layers and water sources, typically in July, for 616 

cork oak in the Alentejo region (Kurz-Besson et al., 2006, 2014). Root elongation following a declining 617 

water table has also been reported in a review on the effect of groundwater fluctuations on Phreatophytic 618 

vegetation (Nuamburg et al. 2005). 619 

Our results and the dynamics of NDWI over summer 2005 tend to corroborate the studies of Schenk and 620 

Jackson (2002) and Fan et al. (2017), by suggesting a larger/longer dependency of GDV on groundwater 621 

with higher aridity. Further investigation needs to be carried on across aridity gradients in Portugal and 622 

the Iberian Peninsula to fully validate this statement, though. 623 

Overall, the map of suitability to GDV showed an excellent agreement with the NDWI validation maps. 624 

The main areas showing good suitability are mostly matching in both maps. The good agreement between 625 

our GDV suitability maps, and validation maps opens the possibility to apply and extend the methodology 626 

to larger geographical areas such as the Iberian Peninsula, or the simulation of the impact of climate 627 

changes on the distribution of groundwater dependent species in the Mediterranean basin. Simulations of 628 

future climate conditions based on RCP4.5 and RCP8.5 emission scenarios (Soares et al., 2015, 2017) 629 

predict a significant decrease of precipitation for the Guadiana basin and overall decrease for the southern 630 

region of Portugal within 2100. Agroforestry systems relying on groundwater resources, such as cork oak 631 

woodlands, may show a decrease in productivity and ecosystem services or even face sustainability 632 

failure. An increase in aridity and drought frequency for the Mediterranean (Spinoni et al., 2017) will 633 

most probably induce a shift of GDV vegetation toward milder/wetter climates.  634 

 635 

4.3 Key limitations 636 

With the methodology applied in this study, weighting factors can be easily evaluated solely from local 637 

and regional observations of the studied area. Nonetheless, either the computation of model coefficients 638 
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or expert opinion to assess weighting factors, require update, and/or environmental data, species 639 

distribution and revised expert knowledge (Doody et al., 2017).  640 

The evolution of groundwater depth in response to climate change is difficult to model on a large scale 641 

based on piezometric observations because it requires an excellent knowledge of the components and 642 

dynamics of water catchments. Therefore, a reliable estimation of the impact of climate change on GDV 643 

suitability in southern Portugal could only been performed on small scale studies. However, we showed 644 

that groundwater depth was only accounting for about 6% of the coefficient variation in the studied area, 645 

against 89% of the variation represented by climate indexes AI and Ios4. Changes in climate conditions 646 

only represents part of the water resources shortage issue in the future. Global-scale changes in human 647 

populations and economic progresses also rules water demand and supply, especially in arid and semi-648 

arid regions (Vörösmarty et al., 2000). A decrease in useful water resources for human supply can induce 649 

an even higher pressure on groundwater resources (Döll, 2009), aggravating the water table drawdown 650 

caused by climate change (Ertürk et al., 2014). Therefore, additional updates of the model should include 651 

human consumption of groundwater resources, identifying areas of higher population density or intensive 652 

farming. Future model updates should also account for the interaction of deep rooting species with the 653 

surrounding understory species. In particular, shrubs surviving the drought period, which can benefit from 654 

the redistribution of groundwater by deep rooted species (Dawson, 1993; Zou et al., 2005). 655 

  656 
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5 Conclusions 657 

Our results show a highly dominant contribution of water scarcity (Aridity and Ombrothermic indexes) 658 

on the density and suitability of deep-rooted groundwater dependent species. The contribution of 659 

groundwater depth was much lower than we initially expected, accounting only for 6% of the total 660 

coefficient variation. This might be underestimated however, due to the poor quality of the piezometric 661 

network especially in the central area of the studied region. 662 

The current pressure applied by human consumption of water sources has reinforced the concern on the 663 

future of economic activities dependent on groundwater resources. To address this issue, several countries 664 

have developed national strategies for the adaptation of water sources for Agriculture and Forests against 665 

Climate Change, including Portugal (FAO, 2007). In addition, local drought management as long-term 666 

adaptation strategy has been one of the proposals of Iglesias et al. (2007) to reduce the climate change 667 

impact on groundwater resources in the Mediterranean. The preservation of Mediterranean agroforestry 668 

systems, such as cork oak woodlands and the recently associated P. pinea species, is of great importance 669 

due to their high socioeconomic value and their supply of valuable ecosystem services (Bugalho et al., 670 

2011). Management policies on the long-term should account for groundwater resources monitoring, 671 

accompanied by defensive measures to ensure agroforestry systems sustainability and economical income 672 

from these Mediterranean ecosystems are not greatly and irreversibly threatened. 673 

Our present study, and novel methodology, provides an important tool to help delineating priority areas of 674 

action for species and groundwater management, at regional level, to avoid the decline of productivity 675 

and cover density of the agroforestry systems of southern Portugal. This is important to guarantee the 676 

sustainability of the economical income for stakeholders linked to the agroforestry sector in that area. 677 

Furthermore, mapping vulnerable areas at a small scale (e.g.by hydrological basin), where reliable 678 

groundwater depth information is available, should provide further insights for stakeholder to promote 679 

local actions to mitigate climate change impact on GDV.  680 

Based on the methodology applied in this work, future predictions on GDV suitability, according to the 681 

RCP4.5 and RCP8.5 emission scenarios will be shortly computed, providing guidelines for future 682 

management of these ecosystems in the allocation of water resources. 683 

  684 
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Figure and Table Legends 1063 

 1064 

Table 1: Environmental variables for characterization of the suitability of GDV in the study area. 1065 

Table 2: Effect of variable removal in the performance of GWR model linking the Kernel density of Quercus suber, 1066 

Quercus ilex and Pinus pinea to predictors Aridity Index (AI); Ombrothermic Index of the summer quarter and the 1067 

immediately previous month (Ios4); Groundwater Depth (GWDepth); Drainage density (Dd); Slope; and Soil type. 1068 

The model with all predictors is highlighted in grey and the final model used in this study is in bold.  1069 

Table 3: Comparison of Adjusted R-squared and second-order Akaike Information Criterion (AICc) between the simple 1070 

regression and the GWR models. 1071 

Table 4: Classification scores for each predictor. A score of 3 to highly suitable areas  and 1  to highly less suitable 1072 
for GDV. 1073 

Table A1: Classification scores for soil type predictor.  1074 

Table A2: Correlations between predictor variables and principal component axis. The most important predictors for 1075 

each axis (when squared correlation is above 0.3) are showed in bold. The cumulative proportion of variance 1076 

explained by each principal component axis is shown at the bottom of the table. 1077 

 1078 

Figure 01: Study area. On the left the location of Alentejo in the Iberian Peninsula; on the right, the elevation 1079 

characterization of the study area with the main river courses from Tagus, Sado and Guadiana basins. Names of the 1080 

main rivers are indicated near to their location in the map. 1081 

Figure 02: Large well and piezometer data points used for groundwater depth calculation. Squares represent 1082 

piezometers data points and triangle represent large well data points.  1083 

Figure 03: Map of Kernel Density weighted by cover percentage of Q. suber, Q. ilex and P. pinea. 1084 

Figure 04: Map of environmental layers used in model fitting. (a) – Soil type; (b) – Slope; (c) – Groundwater Depth 1085 
(Depth); (d) – Ombrothermic Index of the summer quarter and the immediately previous month (Ios4); (e) – Aridity 1086 
Index (AI). 1087 

Figure 05: Spatial distribution of local R2 from the fitting of the Geographically Weighted Regression. 1088 

Figure 06: Spatial distribution of model residuals from the fitting of the Simple Linear model (a) and Geographically 1089 
Weighted Regression (b). 1090 

Figure 07: Map of local model coefficients for each variable. (a) – Aridity Index (AI); (b) - Ombrothermic Index of the 1091 
summer quarter and the immediately previous month (Ios4); (c) – Groundwater Depth (GWDepth); (d) – Drainage 1092 
density; (e) - Slope. 1093 

Figure 08: Boxplot of GWR model coefficient values for each predictor. AI is Aridity Index; Ios4 is the ombrothemic 1094 

index of the hottest month of the summer quarter and the immediately previous month; GWDepth is Groundwater 1095 

Depth and Dd is drainage density. 1096 

Figure 09: Suitability map for Groundwater Dependent Vegetation. 1097 

Figure 10: Validation map corresponding to the NDWI anomaly considering the months of June, July and August of 1098 

the extremely dry year of 2005 in the Alentejo area. Brown colors (corresponding to more negative values) indicate 1099 

vegetation in water stress.  1100 
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 1101 

Figure A1: Boxplot of the main predictors used for the Geographically Weighted Regression model fitting (top) and 1102 

the response variable (below), for the total data (left) and for the 5% subsample (right). 1103 

Figure A2: Correlation plot between all environmental variables expected to affect the presence of the Groundwater 1104 

Dependent Vegetation. Ios1, Ios3 and Ios4 are ombrothermin indices of, respectively, the hottest month of the 1105 

summer quarter, the summer quarter and the summer quarter and the immediately previous month; Io is the annual 1106 

ombrothermic index, Spei_extreme and Spei_severe are, respectively, the number of months with extreme and severe 1107 

Standardized Precipitation Evapotranspiration Index; AI is Aridity index; GWDepth is Groundwater depth, Dd is the 1108 

Drainage density; Thickness and Soil type refer to soil properties. 1109 

Figure B1 – Predictors maps after score classification. (a) – Aridity Index (AI); (b) – Ombrothermic Index of the 1110 

summer quarter and the immediately previous month (Ios4); (c) – Groundwater Depth (GWDepth); (d) – Drainage 1111 

density (Dd); (e) – Slope. 1112 

 1113 

  1114 
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Table 1: Environmental variables for the characterization of the suitability of GDV in the study area. 1115 

Variable code Variable type Source Resolution and Spatial extent 

Slope Slope (%) This work 0.000256 degrees (25m) raster resolution 

Soil type Soil type in the first soil layer 

SNIAmb (© Agência 

Portuguesa do Ambiente, 

I.P., 2017) 

Converted from vectorial to 0.000256 

degrees (25m) resolution raster 

Thickness Soil thickness (cm) 
EPIC WebGIS Portugal 

(Barata et al., 2015) 

Converted from vectorial to 0.000256 

degrees (25m) resolution raster 

GWDepth Depth to groundwater (m) This work 0.000256 degrees (25m) raster resolution 

Dd Drainage Density This work 0.000256 degrees (25m) raster resolution 

Spei_severe 
Number of months with severe 

SPEI 
This work 

0.000256 degrees (25m) raster resolution 

Time coverage 1950-2010 

SPEI_extreme 
Number of months with extreme 

SPEI 
This work 

0.000256 degrees (25m) raster resolution 

Time coverage 1950-2010 

AI Aridity Index This work 
0.000256 degrees (25m) raster resolution 

Time coverage 1950-2010 

Io 

Annual Ombrothermic Index 

Annual average (January to 

December) 

This work 
0.000256 degrees (25m) raster resolution 

Time coverage 1950-2010 

Ios1 

Ombrothermic Index of the 

hottest month of the summer 

quarter (J, J and A) 

This work 
0.000256 degrees (25m) raster resolution 

Time coverage 1950-2010 

Ios3 
Ombrothermic Index of the 

summer quarter (J, J and A) 
This work 

0.000256 degrees (25m) raster resolution 

Time coverage 1950-2010 

Ios4 

Ombrothermic Index of the 

summer quarter and the 

immediately previous month 

(M, J, J and A) 

This work 
0.000256 degrees (25m) raster resolution 

Time coverage 1950-2010 

 1116 

 1117 

 1118 

 1119 

 1120 

 1121 

 1122 

 1123 
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 1124 

Table 2: Effect of variable removal in the performance of GWR model linking the Kernel density of Quercus 1125 

suber, Quercus ilex and Pinus pinea to predictors Aridity Index (AI); Ombrothermic Index of the summer 1126 

quarter and the immediately previous month (Ios4); Groundwater Depth (GWDepth); Drainage density (Dd); 1127 

Slope; and Soil type. The model with all predictors is highlighted in grey and the final model used in this study 1128 

is in bold. 1129 

Type Model Discarded 

predictor 
AICc Quasi-global R2 

GWR Density~ios4 +ai + slope + Dd + GWDepth + soiltype 
 

27389.74 0.926481 

GWR Density~ios4 + slope + Dd + GWDepth + soiltype Ai 28695.14 0.9085754 

GWR Density~ai + slope + Dd + GWDepth + soiltype Ios4 28626.88 0.9095033 

GWR Density~ios4 +ai + GWDepth + slope + soiltype Dd 27909.86 0.9184337 

GWR Density~ios4 +ai + Dd + GWDepth + soiltype Slope 27429.55 0.924176 

GWR Density~ios4 +ai + Dd + slope+ soiltype GWDepth 27742.67 0.9208344 

GWR Density~ios4 +ai + Dd + GWDepth + slope Soiltype 3 levels 18050.76 0.9916192 

 1130 

Table 3:  Comparison of Adjusted R-squared and second-order Akaike Information Criterion (AICc) between 1131 

the simple linear regression and the GWR model. 1132 

Model R-squared AICc p-value 

OLS 0.02 42720 <0.001 

GWR 0.99 * 18851 - 

*Quasi-global R2 1133 

 1134 

 1135 

 1136 

 1137 

 1138 

 1139 

 1140 

 1141 

 1142 

 1143 

 1144 

 1145 
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Table 4: Classification scores for each predictor. A score of 3 was given to highly suitable areas and 1 to highly 1146 
less suitable areas for GDV. 1147 

Predictor Class Score 

Slope 

0%-5% 1 

5%-10% 2 

>10% 3 

 

  

  

  

Groundwater 

Depth 

>15 m 1 

1.5m-15m 3 

≤1.5m 1 

Aridity 

Index 

0.6-0.68 1 

0.68-0.75 2 

≥0.75 3 

Ios4 

<0.28 1 

0.28-0.64 2 

≥0.64 3 

Dd ≤0.5 3 

 >0.5 1 

 1148 

1149 
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 1150 

 1151 

Figure 01: Study area. On the left the location of Alentejo in the Iberian Peninsula; on the right, the elevation 1152 

characterization of the study area with the main river courses from Tagus, Sado and Guadiana basins. Names 1153 

of the main rivers are indicated near to their location in the map. 1154 

 1155 

 1156 

Figure 02: Large well and piezometer data points used for groundwater depth calculation. Squares represent 1157 

piezometers data points and triangle represent large well data points.  1158 

 1159 
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 1160 

Figure 03: Map of Kernel Density weighted by cover percentage of Q. suber, Q. ilex and P. pinea. 1161 

 1162 
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Figure 04: Map of environmental layers used in model fitting. (a) – Soil type; (b) – Slope; (c) – Groundwater 1164 
Depth (Depth); (d) – Ombrothermic Index of the summer quarter and the immediately previous month (Ios4); 1165 
(e) – Aridity Index (AI). 1166 

 1167 

 1168 

Figure 05: Spatial distribution of local R2 from the fitting of the Geographically Weighted Regression. 1169 

 1170 

Figure 06: Spatial distribution of model residuals from the fitting of the Geographically Weighted Regression 1171 
(a) and Simple Linear model(b). 1172 

 1173 

 1174 
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Figure 07: Map of local model coefficients for each variable. (a) – Aridity Index; (b) -  Ombrothermic Index of 1176 
the summer quarter and the immediately previous month (Ios4); (c) – Groundwater Depth (GWDepth); (d) – 1177 
Drainage density and (e) – Slope. 1178 

 1179 

Figure 08 – Boxplot of GWR model coefficient values for each predictor. AI is Aridity Index; Ios4 is the 1180 

ombrothemic index of the hottest month of the summer quarter and the immediately previous month; GWDepth 1181 

is Groundwater Depth and Dd is drainage density. 1182 

 1183 

 1184 

 1185 

 1186 

 1187 
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 1188 

Figure 09: Suitability map for Groundwater Dependent Vegetation. 1189 

 1190 

 1191 

Figure 10: Validation map corresponding to the NDWI anomaly considering the months of June, July and 1192 

August of the extremely dry year of 2005 in the Alentejo area. Brown colors (corresponding to more negative 1193 

values) indicate vegetation in water stress.   1194 

 1195 

  1196 
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Appendix A 1197 

Table A1: Classification scores for the soil type predictor. 1198 

Predictor Class Score 

Soil type 

 

Eutric Cambisols; Dystric Regosol; Humic Cambisols; Haplic Luvisols; Gleyic 

Luvisols; Ferric Luvisols; Chromic Luvisols associated with Haplic Luvisols; 

Ortic Podzols 

  

3 

 

Calcaric Cambisols; Dystric Regosol associated with Umbric Leptosols; Eutric 

Regosols; Vertic Luvisols; Eutric Planosols; Cambic Arenosols 

  

2 

 

Chromic Cambisols; Eutric fluvisols; Chromic Luvisols; Gleyic Solonchak; 

Eutric Vertisols  

1 

 1199 

 1200 

 1201 

Figure A1: Boxplot of the main predictors for the final Geographically Weighted Regression model fitting 1202 
(top) and the response variable (below), for the total data (left) and for the 5% subsample (right). 1203 

 1204 

 1205 

 1206 

 1207 

 1208 

 1209 
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Figure A2: Correlation plot between all environmental variables expected to affect the presence of the 1210 

Groundwater Dependent Vegetation. Ios1, Ios3, Ios4 are ombrothemic indices of, respectively, the hottest 1211 

month of the summer quarter, the summer quarter and the summer quarter and the immediately previous 1212 

month; Io is the annual ombrothermic index, Spei_extreme and Spei_severe are, respectively, the number of 1213 

months with extreme and severe Standardized Precipitation Evapotranspiration Index; AI is Aridity Index; 1214 

GWDepth is Groundwater Depth, ; Dd is the Drainage density; Thickness and Soiltype refer to soil properties. 1215 

 1216 

 1217 

 1218 
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Table A2: Correlations between predictor variables and principal component axis. The most important predictors for each axis (when squared correlation is above 0.3) are showed in 1219 

bold. The cumulative proportion of variance explained by each principal component axis is shown at the bottom of the table 1220 

 1221 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 

Slope <0.001 0.32 0.13 0.06 0.14 0.18 0.18 <0.001 0.03 0.03 <0.01 <0.01 

AI 0.94 <0.001 0.01 <0.01 <0.001 <0.01 <0.001 <0.001 0.22 0.33 0.40 0.68 

Io 0.93 <0.01 0.01 <0.01 <0.001 <0.01 <0.001 <0.001 0.24 0.38 0.24 0.72 

Ios1 0.89 0.02 0.04 0.01 <0.001 <0.001 <0.001 0.02 0.03 0.14 0.82 0.10 

Ios3 0.21 0.18 0.47 <0.01 <0.01 <0.001 <0.01 0.11 0.64 0.33 <0.01 <0.01 

Ios4 0.15 0.19 0.53 <0.001 <0.001 <0.01 <0.001 0.33 0.53 0.33 0.05 <0.01 

Spei_severe 0.66 0.08 0.01 <0.01 <0.001 -0.02 <0.01 0.77 0.08 0.40 0.11 0.01 

Spei_extreme 0.72 0.01 0.04 0.05 <0.01 <0.001 <0.01 0.36 0.44 0.57 0.29 0.05 

GWDepth 0.16 0.05 0.01 0.33 0.14 0.26 0.06 0.06 0.04 0.06 0.04 0.01 

Dd <0.01 0.25 0.11 0.20 0.08 0.32 <0.01 0.29 0.06 0.04 <0.01 <0.01 

Soil type 0.02 0.19 0.03 0.22 0.46 0.05 0.02 0.06 0.03 0.05 0.03 <0.01 

Thickness 0.02 0.46 0.09 0.03 0.06 0.01 0.32 0.11 0.03 0.09 0.01 <0.01 

Cumulative proportion 0.39 0.54 0.66 0.74 0.81 0.88 0.93 0.96 0.98 0.99 0.99 1 

 1222 

 1223 

 1224 
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Appendix B 1225 

 1226 
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 1227 



50 
 

Figure B1 – Predictors maps after score reclassification. (a) – Aridity Index (AI); (b) – Ombrothermic Index of 1228 

the summer quarter and the immediately previous month (Ios4); (c) – Groundwater Depth (GWDepth); (d) – 1229 

Drainage density (Dd); (e) – Slope. 1230 
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