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Abstract. Modeling efforts to simulate hydrologic processes under different climate conditions rely on accurate input data; 

inaccuracies in climate projections can lead to incorrect decisions. This study aimed to develop a reliable climate 10 

(precipitation and temperature) database for the Western Lake Erie Basin (WLEB) for the 21st century. Two statistically 

downscaled bias-corrected sources of climate projections (GDO and MACA) were tested for their effectiveness in simulating 

historic climate (1966-2005) using ground-based station data from the National Climatic Data Center (NCDC). MACA was 

found to have less bias than GDO and was better in simulating certain climate indices, thus, its climate projections were 

subsequently tested with different bias correction methods including the power transformation method, variance scaling of 15 

temperature, and Stochastic Weather Generators. The power transformation method outperformed the other methods and was 

used in bias corrections for 2006 to 2099. From the analysis, maximum one-day precipitation could vary between 120 and 

650 mm across the basin, while the number of days with no precipitation could reduce by 5-15 % under the RCP 4.5 and 

RCP 8.5. The number of wet sequences could increase up to 9 times and the conditional probability of having a wet day 

followed by wet day could decrease by 25%. The maximum and minimum daily air temperatures could increase by 2-12 % 20 

while the annual number of days for optimal corn growth could decrease by 0-10 days. The resulting climate database will 

be made accessible through an open-access platform. 

1 Introduction 

Predictive hydrologic studies require accurate weather input to simulate hydrologic processes within a watershed (Obled et 

al., 1994). Any inaccuracies or bias associated with the weather data may lead to deleterious effects on simulated outputs 25 

(Kouwen et al., 2005;Obled et al., 1994;Shrestha et al., 2004). As a rule of thumb, the better the input climate data, the more 

reliable the outcomes of modeling studies can be. Such modeling outcomes can help the stakeholders or decision makers to 

formulate pollution mitigation strategies. Transport of pollutants as well as their dilution by water flows are also dependent 

upon climate (Whitehead et al., 2006). Moreover, studies based on impacts on hydrological processes due to changing 

climate have become possible using results from simulations from large scale general climate models. However, climate 30 

projections at regional scales are unclear and suffer from some bias because of the influence of local factors (Wilby and 

Wigley, 1997;Wilby and Wigley, 2002;Wilby et al., 2004). These local factors include topography and catchment 
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characteristics, atmospheric circulation, and moisture supply (Bosshard et al., 2014;Wild et al., 2008), and usually produce 

errors or bias within climate values, which may alter the outputs of many different model application studies.  

For the Great Lakes Region, and in particular for the WLEB, data for several Representative Concentration Pathways 

(RCPs) (RCP 2.6, RCP 4.5, RCP 6, RCP 8.5) scenarios from different GCM (General Circulation Model) models at varied 

resolutions (100km-600km) are available (Winkler et al., 2012;Maurer et al., 2014;Wang and Kotamarthi, 2015). These 5 

cannot be directly used for hydrologic studies due to their coarse resolution and large uncertainties associated during 

downscaling. These coarser resolution products from GCMs need to be resolved into finer resolution Regional Climate 

Models (RCMs), which is achieved using different downscaling techniques (statistical and dynamic), which are discussed in 

greater detail in subsequent paragraphs.  

In statistical downscaling, the relationship between large scale climate variables from GCMs (predictors) is determined using 10 

fine scale climate variables for RCM (Wilby et al., 2004). Statistical downscaling is computationally inexpensive, requires 

less time, and involves different methods to produce the projections (Wilby et al., 2004). On the other hand, dynamic 

downscaling techniques develop an RCM that is derived from a GCM with the same set of empirical equations and physical 

principles that were used to develop the GCM (Wilby and Wigley, 1997;Xu, 1999). The outputs are resolved at a resolution 

less than 50 km and can be used for regional studies at the catchment scale (Teutschbein and Seibert, 2010;Teutschbein et 15 

al., 2011). There is a major limitation with simulated outputs from dynamic downscaling; a dynamically simulated RCM 

may not be applicable to locations other than the region for which it was developed (Trzaska and Schnarr, 2014). In either 

downscaling approach, there may be the need for post-processing of the projected output from a downscaled GCM (Eden et 

al., 2014) to correct for bias in the data. Some errors associated with baseline climate data (Beven, 2011) and many of the 

natural variabilities and uncertainties including future greenhouse gas emissions, the structure of climate models and their 20 

parameterization, and downscaling techniques (Kay et al., 2009) are not easy to simulate with sufficient or viable model runs 

based on computations and resource availability, which may produce some biases (Teutschbein et al., 2011). Bias-correction 

and perturbation are usually performed to correct or remove the bias or biases.   

Bias-correction and perturbation are some post-processing options after downscaling (Troin et al., 2015). Bias-correction 

helps to maintain the statistical relationships between the distributions of observations and model outputs of different climate 25 

variables for the current period simulated along with future period (Troin et al., 2015). The perturbation approach assumes 

that change in the distribution of observations from current to future will be the same as the model distribution (Ho et al., 

2012).  

Different bias-correction techniques can lead to different results in climate change impact studies (SeguÃ et al., 

2010;Teutschbein et al., 2011). Therefore, it is very important to quantify the bias in outputs generated from the climate 30 

models before they are applied in climate change impact modeling studies (Teutschbein et al., 2011). Different sources of 
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uncertainty arising from GCM or RCM structure and hydrological model parameterization have been studied but evaluation 

of GCM and RCM model outputs of different climate variables for climate change impact studies are rarely studied (Dobler 

et al., 2012), specific to the WLEB. Previous climate change implication studies in the WLEB have used projected daily 

climate data summaries from different sources without quantifying the bias associated with it (Cousino et al., 2015;Kalcic et 

al., 2016;Scavia et al., 2016). This study addresses the gap where reliable climate information for simulating future water 5 

resource responses in the WLEB is lacking. The goal was to develop a framework to evaluate and correct biases associated 

with simulated weather output from the most reliable and easy to access statistical downscaled models available in the public 

domain for the WLEB, and produce a reliable climate database for the entire WLEB for 2006-2099.  

Three major research questions were answered in this study. First, we assessed two sources of climate projections available 

in the public domain and selected the one having less bias for further analysis.  Second, we evaluated the performance of 10 

different methods in correcting the bias of the climate values obtained from the source selected for the historical period. 

Finally, future climate values for the 21st century were developed using the most effective bias-correction method for the 

eight stations in the WLEB. 

2 Materials and Methods 

2.1 Study Site and Climatology 15 

The WLEB extends into Michigan, Indiana, and Ohio, and is a 29,137 km2 spatially wide watershed that drains into Lake 

Erie, the shallowest of the five Great Lakes (Fig 1). Total annual precipitation varies from 1050 to 1200 mm (1966-2015), 

with more occurring during the spring season. To answer the research questions in this study to select the climate projection 

source and evaluate bias-correction methods, three of the eight stations were used to develop methodology (Adrian, MI, Fort 

Wayne, IN, and Norwalk, OH). The three stations were selected based on their geographical location and difference in 20 

precipitation, and best represent the tristate area. Moreover, the magnitude of precipitation events was different for the three 

stations both spatially and temporally. Norwalk received relatively greater precipitation event depths (0-40 mm) with less 

frequency than the other two stations (transparent to green as seen in the color pallet/legend in Figure 2 besides the three 

stations). However, Adrian and Fort Wayne received more frequent precipitation events with lesser depths (0-20 mm). The 

temporal spread of precipitation was quite variable and with the diverse geographic coverage, these three stations were 25 

considered satisfactory to answer the first two major questions of this study. 
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Figure 1. Pilot site: The Western Lake Erie Basin (WLEB) and different ground-based climate stations considered in this 

study 
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Figure 2. Temporal distribution of daily precipitation records (mm), for Adrian, MI; Fort Wayne, IN, and Norwalk, OH from 

1966 to 2015 from the respective ground-based weather stations. Red boxes encompass the greatest magnitude precipitation 

event for each station.  
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2.2 Data Acquisition 

Downscaled climate data for this project were obtained from two sources:  1.) GDO (authors created acronym for Global 

Downscaled Climate and Hydrology Projections), available at the URL: https://gdo-

dcp.ucllnl.org/downscaled_cmip_projections/; and 2.) MACA (Multivariate Adaptive Constructed Analogs), available at the 

URL: https://climate.northwestknowledge.net/MACA/. The historical period for both sources was 1950-2005 and future 5 

climate projections ranged from 2006-2099. Data from both sources were statistically downscaled from the set of GCMs and 

have been used in many climate change studies (Cousino et al., 2015;Ficklin et al., 2009;Mehan et al., 2016). The sources 

provide fine spatial resolution translations of climate projections over the United States based on the multi-model dataset 

referenced in the IPCC AR 5 (CMIP5) to an extent of 0.25 and 0.04 degrees, sufficient for regional climate impact 

assessment studies.  10 

The GDO source incorporates non-dynamic approaches including monthly Bias-correction and Spatial Disaggregation 

(BCSD) and daily Bias-corrected and Constructed Analogue (BCCA), which have been well tested and automated to 

produce output statistics matching those of a historical period for fine scaled gridded precipitation and temperature 

(Abatzoglou, 2013). Under the BCSD method, quantiles of historical patterns are related to quantiles of predictions from the 

GCM to project daily time series for the downscaled grid. GCM predictions are matched statistically with a set of observed 15 

historical weather patterns to develop the fine scale map while downscaling using the BCCA method. The drawback of using 

GDO downscaled data is the assumption that the statistical properties of the high resolution GCM and local scaled RCM 

after downscaling, including mean and variance are constant through time, which is not the true case (Brekke et al., 

2013;Wood et al., 2004).  

The other source was the Multivariate Adaptive Constructed Analogs (MACA) dataset, in which both the observation dataset 20 

and GCM outputs are resolved to either 4 km or 6 km. To overcome the problem of limited availability of suitable weather 

analogues in changing climate, seasonal and yearly trends at each grid point are computed using 21 days, 31-year running 

mean of data. A cumulative distribution function (CDF) of 15-days is computed at each grid point using non-parametric 

quantile mapping, and the CDF of historical data is used for bias-correction. The final outputs are consistent with the GCM 

data and compatibility with the observational dataset is ensured. Downscaled variables include 2-m maximum and minimum 25 

temperature, 2-m maximum and minimum relative humidity, 10-m zonal wind, downward short-wave radiation, 2-m specific 

humidity, and precipitation accumulation all at a daily time step. There are two versions of MACA data and the difference 

between them pertains to epoch adjustments for variables and periods, while removing the trend at the start. For this study, 

MACA version 2 was used.  

The two sources provide outputs from different GCMs under different RCP scenarios. GDO simulate values for RCPs 2.6, 30 

4.5, 6, and 8.5 from 40 GCMs, whereas MACA has output from 20 GCMs, for RCP 4.5 and 8.5. For this study, nine GCMs 

were selected for preliminary assessment (Table 1), and all were available from both GDO and MACA. Analysis, 

comparisons and evaluations were performed using climate projections from 1966-2005 for GDO and MACA and observed 
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ground-based weather station data. Prior analysis of the Ft. Wayne station (Mehan et al., 2017a) indicated an increasing trend 

in precipitation depth from 1966 forward, thus we selected 1966 as the beginning year in our analyses. 

2.3 Data Analysis 

The dataset for the historical period obtained from the two sources was compared to the observed data from the three 

ground-based climate stations for 1966-2005. Data analysis included comparisons of means and distributions of the observed 5 

data and simulated values. Beyond the descriptive statistics, we computed precipitation conditional probabilities, various 

climate indices, model performance coefficients, and verification forecasting and skills scores to evaluate the performance of 

each data source and different methods of bias-correction. Comparisons were performed to quantify the error in simulated 

values in terms of their distributions, descriptive statistics, and extremes, including climate indices. A list of all the climate 

indices, verification forecasting and skill scores is provided in Table 2 with definitions and applications. For this study, a day 10 

with precipitation depth less than 0.1 mm was considered a dry day and any day with precipitation depth ≥ 0.1 mm was 

considered a wet day.  

The analysis began by comparing GDO and MACA values with the observed data for the three ground-based stations from 

the National Climatic Data Center (NCDC). The one source that performed better in simulating climate values was selected 

and then treated with different bias-correction methods, that were chosen after extensive review of literature (Leander and 15 

Buishand, 2007;Leander et al., 2008;Teutschbein et al., 2011), with care taken to preserve the means and variances. One 

method was a conventional one that included power transformation (Leander and Buishand, 2007;Leander et al., 2008) and 

variance scaling of temperature (Chen et al., 2011a;Chen et al., 2011b). The other bias-correction method was novel and 

based on conclusions and discussions from previous studies (Guo et al., 2017;Mehan et al., 2017a), where Stochastic 

Weather Generators (SWGs) performed better at simulating greater depths of precipitation. We postulated that SWGs could 20 

be used to redistribute the precipitation and simulate greater daily precipitation depths, which otherwise would be distributed 

to dry days or days with lower or no precipitation, adversely affecting the simulation outputs from crop growth and 

hydrologic models.   

To evaluate the performance of SWGs for bias-correction, the climate values from the better performing climate projection 

source were used as an input to two SWGs: CLimate GENerator (CLIGEN) (Nicks et al., 1995) and the Long Ashton 25 

Research Station Weather Generator (LARS-WG) (Semenov, 2010;Semenov and Barrow, 2002). The weather generators 

were used in their default state without changing their parametrization for the historic period for analysis. Twenty-five 

different realizations (Guo et al., 2017) were generated for all nine GCMs at the three stations, to capture the variability and 

correct for bias or reduce error. Since the interest was to redistribute the precipitation to capture the high magnitude 

precipitation events, the extreme percentiles (75th and 90th) from the 25 different realizations were used for precipitation 30 

depth comparisons and means were used for temperature comparisons. This was because precipitation is not normally 

distributed but temperatures are. The 75th percentile or interquartile range (as 0th percentile was zero) and 90th percentile 
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were thought to pick up the extreme precipitation events well which were not captured by GCMs. Moreover, maximum 

variation was noticed at higher percentiles while simulating greater precipitation depths using SWGs (Mehan et al., 2017a).  

After the evaluation of the different bias-correction methods, the best approach was used to develop the correction factors 

using the historic period and was translated to the climate projections from the different climate models for the eight stations 

in Figure 1. The reliable climate projections, so generated, can be used for understanding changing climate impacts on water 5 

resources in the WLEB. Methodology in this study can be extended to any study site.  

3 Results 

3.1 Comparison of two different climate projections (GDO and MACA) 

The density distribution plots for count of events having magnitude equal to monthly precipitation total events in each year 

for the period from 1966 to 2005 (Fig 3a) showed that performance of both climate projection sources was similar. The 10 

GCMs distributed the corresponding amounts of precipitation to the dry days or days simulated with high precipitation 

depths. Therefore, there were some model outputs which simulated more counts of events having monthly precipitation 

totals between 20-100 mm, than what was seen for the observed data (highlighted in red box in Fig 3a). Some models were 

even over estimating the events having monthly precipitation totals more than 100 mm in either case. MACA had a wider 

range of simulation outputs from the different GCMs compared to GDO. The MACA GCM output did not perform well 15 

during late 1970s and 80s in capturing lower values of precipitation totals seen in the observed data (red boxes in Fig 3b), 

whereas around mid-1970s and late 1990s, the GDO projections did not capture higher values of precipitation total events 

(Fig 3b) for Adrian, MI. 

Descriptive statistics from all different GCMs from the two different climate projection sources showed that both the sources 

performed equally well in simulating mean, skewness, and kurtosis for all three stations for daily precipitation depth, 20 

maximum air temperature, and minimum air temperature (Supplementary Table S1, S2, S3). However, GDO did not perform 

as well in simulating the number of dry days when compared with the MACA outputs (Table 3). The nine GCMs from GDO 

simulated one-day maximum precipitation values from 65.4 mm to 110.1 mm when compared to 120.4 mm from the 

observed data for Adrian, MI. The daily air temperature analysis revealed that both the sources performed at par in 

simulating the descriptive statistics for maximum and minimum air temperature for all three stations (Supplementary Table 25 

S2 and S3) with the exception that MACA values overestimated the number of days with maximum temperature greater than 

35°C (Table 3). Descriptive statistics of one-day maximum precipitation for Fort Wayne, IN suggested that the mean value 

of one-day maximum precipitation was not well simulated by GDO climate models. The results for performance evaluation 

in simulating one day maximum precipitation by two different climate projection source (GDO and MACA) can be seen in 

Supplementary Table S4. There were less dry days simulated from climate models from GDO for Fort Wayne and Norwalk 30 
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for almost all months in a year when compared with the observed values from respective ground-based climate stations 

(Supplementary Table S6).   

 

Figure 3. (a) Density distribution charts for Adrian, MI for count of monthly precipitation depths, mm; (b) Distribution of 

annual precipitation depths, mm, with range bounds from different GCM outputs (For Fort Wayne, IN and Norwalk, OH, 5 

please refer Supplementary Figures S1 (A) and (B)).  

On the other hand, the number of wet days in a month as simulated by the GDO source were relatively much greater than 

what was simulated by the MACA source for all three stations in a month (Supplementary Table S5). The extreme event 

analysis or climate indices showed that maximum dry length was overestimated by GDO for all three stations 

(Supplementary Table S7). This strengthens the previous observation that GDO climate models were over estimating the 10 

number of precipitation days (Supplementary Table S1), e.g., in the case of Adrian, MI (Fig 4). On the other hand, the 
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maximum wet length was over simulated by both climate projection sources but greater discrepancies in terms of wider 

ranges and average ensemble values were seen with GDO outputs. The numbers of dry sequences were under estimated and 

wet sequences were over simulated by both GDO and MACA for all three stations, as presented for Adrian, MI in Figure 4. 

The average output values from nine different climate models for maximum dry length for Norwalk, OH were 12 and 21 

days from GDO and MACA, respectively, corresponding to 25 days recorded from the observed data (Supplementary Table 5 

S7). On the other hand, 44 and 20 days were simulated as the maximum wet length from GDO and MACA simulation 

outputs, respectively, for Norwalk, OH, compared to 18 days from observed data (Supplementary Table S7). For Fort 

Wayne, IN, the GDO source output estimated 72 days for optimum corn growth, while MACA source output estimated 65 

days; observed was 63 days. On the other hand, for Adrian, the average value from the outputs of nine different climate 

models while simulating snow days with GDO and MACA sources were both 50, compared with the observed 30 days (Fig 10 

4).   

 

Figure 4. Comparison of GDO and MACA climate projection sources while simulating different climate indices for Adrian, 

MI between 1966 and 2005 (GDO_NT: GDO No Treatment; MACA_NT: MACA No Treatment). Plots for Fort Wayne, IN 

and Norwalk, OH can be seen at Supplementary Figure S3 (A) and (B).  15 
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The transitional probabilities values from GDO outputs for all three stations indicated that the climate dataset lacked much 

needed accuracy (Table 4). The mean lengths of the dry and wet periods were underestimated and overestimated, 

respectively, for all three stations and the pattern reversed for return period in years to have an event equivalent to the mean 

lengths of the dry and wet periods from GDO and MACA (Table 4). Such outcomes strengthen the argument that because 

the mean length of the dry period simulated using GDO was almost double than what was recorded in the observed data, the 5 

return period to have a dry event was so long for the GDO projections, whereas the MACA projections were more 

reasonable (Table 4). Verification forecasting or skill scores along with performance coefficients for precipitation events 

showed that GDO had a higher Brier score (0.6) than MACA (0.5) for Norwalk, OH; which indicated that GDO projections 

were relatively more offset from the observed data unlike MACA (Fig 5). GDO source had less percent correct (0.4) in 

comparison to MACA (0.5) for Norwalk, OH. Not much information was observed in evaluating the performance of the two 10 

different projection sources using Gini coefficient, LEPS Score, HSS, and PSS as all the values showed that both GDO and 

MACA lack skill in projecting the climate data (Supplementary Table S8). Higher bias was recorded for GDO (1.7, 1.8, and 

2.1 for Adrian, Fort Wayne, and Norwalk), when compared with 1.4, 1.2, and 1.3 for the MACA climate source for the three 

stations, respectively. Lower EDS score for MACA showed that there was greater dependence between the projected GDO 

output and observed data and the GDO forecast was less random. The GDO EDS scores for Adrian, Fort Wayne, and 15 

Norwalk were 0.3, 0.4, and 0.6, and for MACA were 0.2, 0.1, and 0.2, respectively. No high correlations were seen between 

projected values from either source and the observed data. Greater NSE for MACA outputs indicated better performance of 

the MACA over GDO (Supplementary Table S8). Relative performance of both climate projection sources stayed the same 

while simulating the growth degree days for all stations (Supplementary Table S9).  From the outputs discussed above, out 

of the two given sources of climate projection for the historic period, the MACA source performed better than GDO in most 20 

of the parameters. Despite similar conditional probabilities for both sources, GDO overestimated the median daily 

precipitation and underestimated the days with no precipitation, resulting in more wet days. Therefore, the MACA source 

was evaluated for further analysis to correct its biases in the subsequent section using different methods. 

3.2 Evaluation of different bias-correction methods for the historic period 

The climate values from different climate models from the MACA source were treated with different methods of bias-25 

correction, including conventional methods (power scaling for precipitation and variance scaling of temperature) and SWGs. 

The Q-Q plots between simulated values and observed data for Fort Wayne revealed that the conventional method 

redistributed the precipitation and simulate higher values for maximum daily precipitation (Fig 6). The LARS-WG 90th 

percentile approach produced better maximum daily precipitation depths for Fort Wayne and daily precipitation depths for 

all three stations than the LARS-WG 75th, CLIGEN 90th, and CLIGEN 75th percentile approaches, but not as good as the 30 

power transformation of precipitation (conventional method) (Fig 6). The output values from the SWGs simulations did not 

perform well in simulating values daily precipitation depth. The performance of the LARS-WG and CLIGEN outputs were 

better in one or the other case. It can be argued for use of higher percentiles than the 90th percentile from the weather 
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generators, as these might result in better results or using the entire set of 25 realizations than just a single time series from 

25 different realizations, which would be evaluated in future study. Precipitation suffered from the most bias (evident in 

section 3.1), while maximum and minimum temperature did not require much bias-correction (Fig 7 and 8). The Q-Q plots 

drawn from outputs of different climate models when treated with different bias-correction methods, showed that the SWGs 

and Variance scaling of temperature did not perform well in correcting biases; rather the default projected values from either 5 

GDO or MACA suffered from less bias (Fig 7 for Adrian, MI) and can be used without any bias-correction for studies based 

on temperature projections.  

Furthermore, descriptive statistics computed at a daily time step (Supplementary Table S1, S2, and S3) and seasonal basis 

(Table 5) were also evaluated to compare the performance of different bias-correction methods. For all three stations, mean, 

skewness, and standard deviation were captured well with a conventional method of bias-correction (power transformation). 10 

The LARS-WG 75th percentile was able to project mean values better, however, standard deviations were simulated better 

with LARS-WG 90th percentile output (Supplementary Table S1). Average values for daily precipitation from nine different 

climate models for mean, skewness, and standard deviation were: Adrian: 2.4 mm, 5.5, 6.6 mm; Fort Wayne 2.5 mm, 6.7, 

5.3 mm; and Norwalk 2.6 mm, 7, 7.3 mm after conventional bias-correction method, while the values from the observed data 

were 2.4 mm, 4.9, and 6.5 mm; 2.5 mm, 4.7, and 6.7 mm; and 2.6 mm, 7.5, and 7.0 mm, respectively.  The maximum values 15 

of daily precipitation were also improved after using the power transformation. The average value of maximum daily 

precipitation from the different climate models was 220.7 mm for Norwalk, OH; 108.8 for Fort Wayne, IN; and 125.1 mm 

for Adrian, MI when compared to observed data of 229.1, 111.8, and 120.4 mm, respectively (Supplementary Table S1). 

Seasonally, the predicted number of days with no precipitation by all the treatments were underestimated when compared 

with ground-based observed data. The maximum one-day precipitation was overestimated after power transformation, only 20 

for Adrian, MI. It was 125.1 mm for Adrian, MI when compared with ground-based station value of 120.4 mm. For all other 

treatments and across all other stations, the maximum one-day precipitation simulated was underestimated, though the best 

results was achieved with power transformation method over SWGs (Supplementary Table S10, S11, and S12). The average 

value for maximum precipitation simulated by all climate models for Adrian after conventional bias-corrections was 102.5 

mm when compared with 80.3 mm recorded from the observed data during spring; for Norwalk, OH, the average value of 25 

one day maximum precipitation during spring after power transformation was 146.7 mm compared to 87.6 mm from the 

observed data (Supplementary Table S12).The average value of maximum daily precipitation from the climate models after 

the conventional bias-correction method was 108.5 mm compared to 71.9 mm from the ground-based station data for Fort 

Wayne, IN during summers (Supplementary Table S11). 
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Figure 5. Comparison of performance GDO and MACA climate projection sources without any bias-correction and MACA climate source with 

different bias-correction treatments using verification forecasting or skill scores for period between 1966 and 2005.
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Figure 6. Q-Q Plots to evaluate the performance of different bias-correction methods for period between 1966 and 2005 to 

reduce the bias in simulating values for daily precipitation, mm and to present the future climatic scenarios (2006-2099) for 5 

Fort Wayne, IN. (Note: Q-Q plots to evaluate performance of different bias-correction methods for period between 1966 and 

2005 to reduce the bias in simulating values for daily precipitation, mm and to present the future climatic scenarios (2006-

2099) for other two stations can be seen in Supplementary Figures S2 (A) and (B)). 
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Figure 7. Q-Q Plots to evaluate the performance of different bias-correction methods for period between 1966 and 2005 to 

reduce the bias in simulating values for daily maximum temperature, °C and to present the future climatic scenarios (2006-

2099) for Adrian, MI. (Note: Q-Q plots to evaluate performance of different bias-correction methods for period between 

1966 and 2005 to reduce the bias in simulating values for daily maximum temperature, °C and to present the future climatic 5 

scenarios (2006-2099) for other two stations can be seen in Supplementary Figures S2 (C) and (D)). 
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Figure 8. Q-Q Plots to evaluate the performance of different bias-correction methods for period between 1966 and 2005 to 

reduce the bias in simulating values for daily minimum temperature, °C and to present the future climatic scenarios (2006-

2099) for Norwalk, OH. (Note: Q-Q plots to evaluate performance of different bias-correction methods for period between 

1966 and 2005 to reduce the bias in simulating values for daily minimum temperature, °C and to present the future climatic 5 

scenarios (2006-2099) for other two stations can be seen in Supplementary Figures S2 (E) and (F)). 
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The climate indices analysis showed that transitional probabilities were well captured by the data corrected for its bias by the 

power transformation method (Table 5). Maximum dry and wet period lengths were also projected reasonably well. The 

average maximum length of a dry period from nine different climate models using conventional bias-correction for Adrian, 

Fort Wayne, and Norwalk were 24, 27, and 22 days, respectively, when compared to 26, 30, and 25 days in the observed 

data (Supplementary Table S7). On the other hand, the maximum wet period length as recorded by the dataset simulated 5 

after conventional bias-correction were 19, 21, and 19 days for Adrian, Norwalk, and Fort Wayne, respectively, compared to 

9, 11, and 18 days observed (Supplementary Table S7). The possibility of using SWGs for bias-correction cannot be 

completely discarded because of their ability to better predict the number of wet sequences (Table 5). The number of days 

for optimum growth of corn and number of snow days were well simulated by the conventional method of bias-correction 

(Supplementary Table S7). Air temperature simulations were not improved with any method of bias-correction and 10 

descriptive statistical analysis showed that the climate data for maximum and minimum air temperature from the two 

different sources can be directly use for any changing climate applications without any bias-correction.  

The mean values for maximum one-day precipitation during each year showed that conventional bias-correction treatment 

was able to maintain the mean, skewness, and standard deviation. The range of mean values for one-day maximum 

precipitation simulated by each model after treatment with the power transformation method for Adrian, Fort Wayne, and 15 

Norwalk, were 57.3-61.2 mm, 57.5-62.2 mm, and 61.6-66.1 mm, when compared to observed values of 55.3 mm, 55.6 mm, 

and 64.2 mm, respectively (Supplementary Table S4). Even the distributions seen using Lorenz curves (Fig 9) showed that 

the power transformation reduced the bias and projected similar distributions as those observed from the ground-based 

stations. With use of the SWGs, Brier score increased. It was 0.6 - 0.7 with CLIGEN and LARS-WG and 0.5 with the 

conventional method, which indicated that the SWG simulation outputs were less close to the observed data. Percent correct 20 

was also lower when SWGs were used (0.3-0.4) over conventional method (0.5). The bias was higher when using the SWGs 

(2.6-3.0) compared to the conventional method (1.2-1.4) (Supplementary Table S8).  

These results indicated that the power transformation outperformed any other method of bias-correction in this study. 

Moreover, it was only precipitation which required bias-correction. SWGs have a huge potential in bias-correction. Testing 

with parameters other than defaults and understanding the impact of realizations in correcting the bias needs further research 25 

but was beyond the scope of this study.   

3.3 Analysis of climate projections for Western Lake Erie Basin 

The Q-Q plots in Figures 6, 7, and 8 showed that daily precipitation depth and average maximum and minimum air 

temperature could increase. Variance scaling of the air temperature demonstrated large changes at either extreme ends of the 

Q-Q plots (Figures 7 and 8), which seems unrealistic and suggested that downscaled data from different climate models can 30 

be used without treating it with different bias-correction methods for further studies based on temperature data. In both cases, 

before and after bias-correction, the future climatic predictions showed that mean precipitation over the WLEB will increase 
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under both the high (RCP 8.5) and medium (RCP 4.5) emission scenarios for 2006 to 2099. The daily mean precipitation 

values by 2099 would range between 2.6 and 2.8 mm for different climatic projections (observed range 2.4 - 2.6 mm). The 

Q-Q plots of corrected daily precipitation for the future time series revealed that there would be more precipitation events 

and the magnitude of the maximum daily precipitation event would be much greater than the observed data (Figure 6). The 

maximum value of daily precipitation after bias-correction was 213.2 mm for RCP 4.5 for Norwalk, OH, compared with 5 

111.8 mm during the baseline period. RCP future climate projections after bias-correction had 53.1-53.5% no precipitation 

days for Adrian, MI, indicating that the number of days with no precipitation will eventually decrease in the future. The 

deviation from the mean is anticipated to increase in the future for all three stations in WLEB. For Fort Wayne, the standard 

deviation for the corrected time series under RCP 4.5 and 8.5, will be 7.7 and 7.9 mm, respectively, compared to 6.7 mm in 

the baseline observed data.  10 

The different climate projections after bias-correction showed that maximum daily precipitation would increase for the three 

stations, and this will be especially evident during summer and spring. The descriptive statistical analysis on a seasonal basis 

revealed that the number of days with no precipitation will decrease and the mean of average daily precipitation depth will 

be increasing. For winter, the mean daily precipitation depth was projected to be between 1.9-2.3 mm (1.7 -1.9 mm for 

observed data); 2.8-3.2 mm for summer (2.8-3.1 for observed data); 3.2-3.5 mm for spring (3.0-3.2 mm for observed data); 15 

and 2.4-2.5 mm for fall (2.3 mm for observed data) for the three stations in this study (Supplementary Table S13). 

For fall, maximum daily precipitation depths exceeded the recorded observed values.  The increase in the number of 

precipitation days will be more pronounced in summers. Number of days with no precipitation decreased to 52.7% for RCP 

4.5 and 53.6% for RCP 8.5 compared to 70.7% in the observed baseline data at Adrian, MI for summer, and similar changes 

were found for Fort Wayne and Norwalk. The maximum daily precipitation depth received during winters at Fort Wayne 20 

will be nearly constant, though there will be more precipitation days. On the other hand, the daily precipitation maximums at 

Adrian and Norwalk will be greater than that seen in the observed data. This implies that by the end of 21st century 

precipitation events with higher magnitudes will be more evident. Maximum dry and wet period lengths were projected to 

increase at all three stations, as well as the number of dry and wet sequences. The number of days for optimum corn growth 

will be greater than current levels for WLEB. The snow days were projected to be greater as well for the bias-corrected data 25 

but lower for the uncorrected weather data. The mean length of dry periods will be reduced to 3 days from 3-4 days for all 

stations. The transitional probabilities will be more or less the same, when compared with the observed data, indicating the 

reliability of the future climatic projections. Table 6 reports different climate indices for Fort Wayne, IN (Supplementary 

Table S7 for all other stations).   

The number of wet days per month is projected to considerably increase and could range between 12 and 16 instead of 8 to 30 

14 days as observed in data from ground-based station in Adrian, MI; 12-15 days (9-13 days in observed baseline data) for 
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Fort Wayne, IN; and 13-16 days (9-13 days in observed baseline data) for Norwalk, OH. Most changes were seen during 

April to October for the number of wet days (Supplementary Table S5 and S6). 

 

Figure 9. Performance evaluation of different bias-correction methods for historic period (1966-2005) in reducing the bias in 

the daily time series in simulating daily precipitation, mm for Adrian, MI; Fort Wayne, IN; and Norwalk, OH using Lorenz 5 

Curve. 
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The growing degree days will be sufficient for seeding, flowering and harvesting of corn, but the climate analysis indicated 

that the growth period may shift 15 days earlier. GDD values for May 1 and 15 varied from 118-144 and 198-236 heat units, 

respectively, in comparison to 60 and 104 heat units in the observed baseline temperature data for Adrian, MI. GDD values 

were projected to be 152-178 and 249-287 on May 1 and 15, respectively, compared with 86 and 148 from the observed 

baseline data for Fort Wayne, IN (Table 6). GDD values at Norwalk, OH were projected to be 124-153 and 209-249 for May 5 

1 and 15, respectively, compared to the observed baseline data values of 80 and 129 (Supplementary Table S9). 

Under medium and high emission scenarios, except for Bowling Green and Sandusky, OH, the average maximum dry period 

length computed from nine different climate projections was expected to increase compared to observed data from the 

ground-based climate stations, whereas median values from the different climate projections could decrease. For example for 

Bucyrus, OH, it was estimated that the average and median values of the maximum dry period length were 30 and 23 days 10 

from 2066-2099 (RCP 4.5) compared to 25 days observed during the historic period from 1966-2005; average and median 

values are expected to increase further to 31 and 28 days respectively under RCP 8.5. The maximum wet period length for 

both the medium or high emission scenarios increased for all eight stations in the WLEB. Maximum wet period length was 

projected to be between 14 and 30 days long during the 21st century compared to 9 to 18 days recorded from ground-based 

climate stations for the historic period. The number of dry sequences was projected to increase except in Bowling Green and 15 

Sandusky during the 21st century. The range of days for optimal growth of corn may decrease and so may the snow days 

under the two emission scenarios. However, the number of wet sequences was projected to increase, indicating more 

frequent precipitation and less dry days through the end of the century. Moreover, with such conditions, it is expected that 

most precipitation will fall as rain, not snow.  

Median values for one-day maximum precipitation were projected to be higher except for Bucyrus and Defiance, OH, under 20 

RCP 4.5 where the average and median values for one-day maximum precipitation decreased. The mean value of daily 

precipitation depth was projected to increase 0.1-0.4 mm for all the stations in the WLEB, and the skewness and standard 

deviation were also projected to increase. Additionally, higher daily temperatures are anticipated under RCP climate 

projections for the 8 stations in the WLEB. The rise in average temperature in the WLEB may vary between 1 and 5°C, with 

more expected under the high emission scenario. One-day value of maximum temperature can increase from a few degrees to 25 

+10°C when compared to current climatic conditions. An increase between 1 and 3°C can be seen for maximum values for 

minimum temperature, but it is topographic specific. Lima, Defiance, and Sandusky all have lower projected one-day 

maximum values of minimum temperature than current baseline values (Supplementary Table S14, S15, and S16). 

4 Conclusions 

Water is an essential component for human survival and ecosystem sustenance. Movement of water under different future 30 

climate projections should be determined as accurately as possible at the regional, national and global scales, to help 
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determine policies for a sustainable future with sufficient supplies of good quality water (Kalcic et al., 2016;Liu et al., 2016). 

This can only be achieved if the climate projections for air temperature and precipitation are free from as much bias as 

possible (Christensen et al., 2007;Teutschbein et al., 2011). Biases in climate projections occur mainly because of flawed or 

faulty ideational boundary assumptions and can lead to deleterious outcomes. The use of uncorrected climate projections 

from downscaled climate models in hydrologic modeling or any other applications can lead to lot of uncertainty (Déqué et 5 

al., 2007;Kjellström et al., 2011;Mehan et al., 2017b). Therefore, it is always suggested to have a reliable climate database 

free from most of errors.  

Many bias-correction methods exist, including delta change (Hay et al., 2000), linear scaling (Leander and Buishand, 

2007;Leander et al., 2008), distribution mapping (Boé et al., 2007;Sennikovs and Bethers, 2009) and other highly efficient 

methods. There are one or more drawbacks associated with each of the method. Some of them are difficult to understand and 10 

implement, require excessive time and computational resource, and/or preserve only the mean. Therefore, out of all 

conventional methods this study incorporated the use of power transformation and variance scaling to conserve the mean and 

variance of the weather parameters. Additionally, there was an effort to evaluate the application of SWGs, including 

CLIGEN and LARS-WG for bias-correction, which was different from conventional statistical downscaling. The outputs 

from both methods (SWGs and Conventional) were compared with the observed data and used to create the reliable future 15 

climatic database for the WLEB.  

The outcomes from the study can be summarized as below: 

 Outputs from the MACA source were better than the GDO source, even without any treatment to correct the bias. 

Though both datasets were tested and corrected for bias, additional bias was present in the precipitation values that 

needed to be corrected. The metadata files from the GDO outputs suggested that the historic period was 1950-2015, 20 

but it was 1950-2005. Very limited information was available in the source documentation, and care must be taken 

by users to properly understand the historic period before applying future projections to any modelling application. 

 Bias-correction using conventional methods, including power transformation and variance scaling, and SWGs 

(Stochastic Weather Generators), were tested for their effectiveness using distributions, descriptive statistics, and 

climate indices or extremes. The idea comes from Mehan et al. (2017a), where it was seen that weather generators 25 

were successful in capturing descriptive statistics and extremes, while simulating long-term climate at a location 

provided they are run for an optimum number of realizations to capture the variability in the climate data. 

Moreover, SWGs help in redistribution of precipitation which is a key element in weather simulation, especially 

correcting bias during simulations where the large precipitation events are not well captured and the probability of 

having a wet day increases.  30 
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 Conventional method of bias-correction, including power transformation for precipitation outperformed other 

approaches in this study. Temperatures were less sensitive than precipitation values, which needed further bias-

correction. 

 SWGs have the potential for bias-correction because of their ability to preserve descriptive statistics and some 

climate indices. In this study, it was seen that 75th percentile for LARS-WG maintained the mean of daily 5 

precipitation, while standard deviation was preserved by the 90th percentile of LARS-WG. The main reason for 

poor performance of the SWGs in this study was their inability to compute accurate transitional or conditional 

probabilities. If this can be improved, the overall efficacy of SWGs in bias-correction could also be improved.  

 The GCMs underestimated the number of dry days as they were redistributing the amount of precipitation. 

Alternately, the number of wet days simulated by GCMs in a month was more than what was observed in the station 10 

data.  

 The future climate projections indicated that the WLEB will have more frequent rainfall events, and annual 

precipitation totals may increase to nearly double the current levels. Air temperature increase by 1-5°C is projected 

for the WLEB by the end of 21st century. The crop growing period will shift earlier because of earlier accumulation 

of sufficient heat units for planting crops.  15 

 This study suggests that the means should not be considered the only criteria to evaluate the performance of any 

weather simulation forecast or bias-correction method. Other essential characteristics like skewness, standard 

deviation, and climate extremes should also be evaluated. Verification forecasting and skill scores have huge 

potential to assess climate projections before the climate values should be put to any further use.  

 The results above indicated that precipitation was the key element of all three weather variables which undergoes 20 

the most changes during the climate simulation process. Temperature simulations were affected least during 

downscaling and bias-correction. The prime reason for the establishment of climate models was to simulate the 

dynamics of aerosols and the amount of greenhouse gases that contribute to global warming (Moriondo et al., 

2016;Xu, 1999). Therefore, the precision of the climate models in simulating the air temperature was better than 

precipitation. Henceforth, precipitation data should be thoroughly analyzed for its bias and should be corrected 25 

before it can be used for any hydrologic and/or crop modeling studies, as precipitation is a critical factor as it forms 

an important component of the hydrologic cycle. 

 The results from this study were very useful in creating a reliable climate database for the entire WLEB, which can 

be used in further hydrologic assessment studies looking at the impact of changing climatic patterns on water 

quality in Lake Erie. 30 
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Supplemental Data. Provided as a separate file uploaded with this manuscript. 

Data availability. Data used in this study were obtained from two sources:  1.) GDO (authors created acronym for Global 

Downscaled Climate and Hydrology Projections), available at the URL: https://gdo-

dcp.ucllnl.org/downscaled_cmip_projections/; and 2.) MACA (Multivariate Adaptive Constructed Analogs), available at the 

URL: https://climate.northwestknowledge.net/MACA/. Daily summaries of climate data from ground based climate stations 5 

were downloaded from https://www.ncdc.noaa.gov/cdo-web/datasets. 
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Tables  

Table 1. Different GCM models used for quantifying the error or bias when compared with the ground-based station from 

NOAA’s Climate Data Online facility. 

S. No. GCM Basic Source Studies based on 

source  

1 Beijing Climate Center Climate System 

Model, Beijing, China 

(BCCCSM) 

 

http://forecast.bcccsm.ncc-cma.net/htm/ 

  

(Friedlingstein et 

al., 2014;Sun et al., 

2015) 

2 Community Climate System Model, USA 

(CCSM4) 

http://www.cesm.ucar.edu/ (Lawrence et al., 

2012;Palazzoli et 

al., 2015) 

3,4 Geophysical Fluid Dynamic Laboratory, USA 

(GFDL_ESM2G and GFDL_ESM2M) 

http://nomads.gfdl.noaa.gov:8080/DataPortal/cmip5.jsp (Straatsma et 

al.;Gorguner et 

al.;Sridhar et al., 

2017) 

5,6 Institute Pierre Simon Laplace Climate 

Modeling Center, France 

(IPSL_CM5ALR and IPSL_CM5AMR) 

http://icmc.ipsl.fr/ (Murawski et al., 

2016;Song et al., 

2017) 

7,8 MIROCESM and MIROCESMCHEM, 

Japan 

http://www.geosci-model-dev.net/4/845/2011/ (Peng et al., 

2016;Park et al., 

2014) 

9 Norwegian Earth System Model, Norway  

(NorESM1M) 

http://adsabs.harvard.edu/abs/2013GMD.....6..687B (Lant et al., 

2016;Ivancic, 

2016) 

 

Table 2 List with explanation, application, and computational formula for various climate indices, verification skill scores, 5 

and performance coefficients. 

CLIMATE INDICES 

Parameter Name Definition Application 

Count of Dry Spell 

(Mathugama and 

Peiris, 

2011;Sivakumar, 

1992;Taley and Dalvi, 

1991;Mathlouthi and 

Lebdi, 

A period with at least 15 

consecutive days in which none 

of the days had greater than 0.1 

mm of rainfall 

Onset and cessation of droughts can be projected using the count of dry 

spells. Moreover, dry spells affect aquatic biodiversity, crop growth, and 

hydropower generation. 
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2008;Douguedroit, 

1987) 

 

Count of Wet Spell  

(Bai et al., 2007) 

A period with more than three 

wet days (precipitation more 

than or equal to 0.1 mm) ending 

with two continuous dry days 

(precipitation less than 0.1 mm) 

Information on wet spells is important for optimizing water allocation and 

distribution, which is instrumental in planning flood control remedies and 

regulating sediment yield into the main streams.  

Number of dry and wet 

day count in a month 

Absolute number of days with 

precipitation depth of less than 

and at least 0.1 mm, 

respectively on a single day  

Estimates of crop water requirements and decisions on when to plant depend 

on monthly numbers of dry and wet days. 

Number of Snow Days 

(Auer, 1974;Lawrence, 

2015) 

 

Day precipitation depth more 

than 0.1 mm and average 

temperature lower than 2°C.  

The water budget of snow-dominated watersheds is dependent on the count 

of snow days. 

Growing Season 

Requirement/ Period 

of optimal growth 

(Neild and Newman, 

1987;Loftus, 

1999;Davis, 2012) 

Number of days during the 

entire crop growing season with 

average temperatures between 

20 and 25 °C (supports corn 

growth in Midwest USA) 

Estimation of growth and yield of corn requires information on period of 

optimal growth of corn 

Growing Degree Days 

(GDD) or Heating 

Units (HU) 

(Neild and Newman, 

1987) 

Heating Units (HU) indicate 

energy accumulations affecting 

crop cycles from planting 

through to harvesting.  

𝐺𝐷𝐷 =
 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑇𝑒𝑚𝑒𝑝𝑟𝑎𝑡𝑢𝑟𝑒

2

− 𝐵𝑎𝑠𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

 

Different stages of the crop growth cycle can be simulated using information 

on Heating Units (HU). 

Count for Maximum 

Dry and Wet Length 

(Deni et al., 2008) 

The longest continuous stretch 

of the dry and wet period  

Information on this data helps in identifying extreme events, including dry 

and wet period 

Probability of dry day 

(Pd) 

All these factors are critical in 

generating long-term climate 

simulation, hence needed 

evaluation. Moreover, mean 

length of dry and wet period 

decides onset of planting and 

harvesting in rainfed 

Pd =  
Number of dry days

Total number of days  
 

Probability of wet day 

(Pw) 
Pw =  

Number of wet days

Total number of days
= 1 − Pd       

Probability of dry 

followed by dry day(P 

(D|D)) 

  Pd|d =  
Number of sequence with two dry days

Total number of dry days
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Probability of wet day 

followed by wet day (P 

(W|W)) 

agricultural places.  

(for the transition probabilities 

computation, the dry day is day 

with the precipitation 0.01 mm 

and anything equal and more 

than 0.01 mm is wet day for all 

other purposes, the threshold 0.1 

mm) 

Pw|w =  
Number of sequence with two wet  days

Total number of wet days
 

Probability of wet day 

followed by dry day (P 

(W|D)) 

Pw|d =  1 − Pd|d 

Probability of dry day 

followed by wet day (P 

(D|W)) 

Pd|w =  1 − Pw|w 

Average length of dry 

and wet day (Ld, and 

Lw) 

Ld =  
1

Pw|d
          

Lw =  
1

1 − Pw|w
 

Return time Period to 

have an event equal to 

average length of dry 

and wet day (Td and 

Tw) 

(Pandharinath, 

1991;Sonnadara and 

Jayewardene, 2015) 

Td =
1 − Pw|w + Pw|d

Number of days in a month ∗ Pw|d(1 − Pw|w)(1 − Pw|d)
Ld

 

 

Tw =
1 − Pw|w + Pw|d

Number of days in a month ∗ Pw|d(1 − Pw|w)Pw|w
Ld

 

One day maximum 

Precipitation (mm) 

(Bhattacharaya and 

Sarkar, 

1982;Upadhaya and 

Singh, 1998) 

Maximum value of single day 

precipitation event 

Drainage design, soil conservation and management, risk mitigation, in 

events, including flash floods and droughts  

 

 

VERIFICATION PARAMETERS 

Parameter Name Definition Formula Range 

Lorenz Curve 

(Gastwirth, 1971) 

 

Daily precipitation totaled data 

is arranged in increasing order, 

cumulative, and converted to a 

proportion of total precipitation 

  

 Gini Coefficient  

(advantage over the 

other measures of 

variability such as 

Two times the area between line 

representing uniform 

precipitation distribution (slope 

= 1) and Lorenz curve  

𝐺 =  
1

𝑛
 (𝑛 + 1 − 2 (

∑ (𝑛 + 1 − 𝑖)𝑦𝑖
𝑛
𝑖=1

∑ 𝑦𝑖
𝑛
𝑖=1

)) 

 

 

[0,1]  

0 represent a 

uniform 

distribution 
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standard deviation, 

which are scale and 

probability dependent 

and make them less 

robust) 

(Gastwirth, 1972) 

Where yi indicates PRCPTOT or SD II at a particular 

year i and n indicated total number of years. PRCPTOT is 

defined as the total amount of precipitation on wet days 

(days with precipitation >0.1 mm). SDII is the annual 

precipitation intensity, obtained by dividing the total 

amount of precipitation annually by the count of days in a 

year with precipitation depth more than 0.1 mm 

over the time 

period and 1 

represents all 

the 

precipitation 

occurred on a 

single day 

LEPS (Linear Error in 

Probability Space) 

Score 

(Potts et al., 1996) 

LEPS is independently sensitive 

to bias and forecast variance if 

forecast is less than observed. 

LEPS are less sensitive to 

outliers than correlations but 

more sensitive to changes in 

values near the center of the 

cumulative probability 

distribution. It can be used to 

assess the forecast of continuous 

and categorical variables. LEPS 

score is equitable and does not 

"bend back" (give better scores 

for worse forecasts near the 

extremes) 

𝐿𝐸𝑃𝑆 =  3(1 − |𝐶𝐷𝐹(𝑠𝑖𝑚) − 𝐶𝐷𝐹 (𝑂𝑏𝑠)|

+ 𝐶𝐷𝐹(𝑠𝑖𝑚)2

− 𝐶𝐷𝐹((𝑠𝑖𝑚) + 𝐶𝐷𝐹 (𝑜𝑏𝑠)2) − 1 

 

 

Where CDF is cumulative probability density function  

Range: 0 to 1.  

Perfect score: 0 

Brier Score  

 (Murphy, 1973) 

 Measures the mean squared 

probability error 
𝐵𝑆 =  

1

𝑛 
∑(𝑓𝑖 − 𝑜𝑖)2

𝑛

𝑖=1

 

 

Where fi are forecast probabilities between 0 and 1 and oi 

are given as 0 and 1 for observed dry and wet day 

respectively.  

Lower brier 

score means the 

forecast is 

closer to the 

observation. BS 

can be 

partitioned into 

three terms: (1) 

reliability, (2) 

resolution, and 

(3) uncertainty. 

Heidke Skill Score 

(HSS) 

(Heidke, 1926) 

Ratio of difference between the 

number of times the forecast 

matches with the observation 

and number of categorical 

correct forecast and difference 

𝐻𝑒𝑖𝑑𝑘𝑒 =  
(𝐻 − 𝐸)

(𝑁 − 𝐸)
 

 

Where H is the number of categorical forecasts (hits), N 

is total number of forecast issue. E is the number of 

Perfect score is 

1 (perfect set of 

forecasts) 

Random 

forecast would 
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of total number of forecast and 

number of categorical correct 

forecast. 

categorically correct forecast be scored as 0. 

Set of forecast 

having fewer 

hits would be 

negative scores. 

Pierce Skill Score 

(PSS) 

(Peirce, 1884;Hanssen 

and Kuipers, 

1965;Murphy and 

Katz, 1985;Flueck) 

 

PSS measure the difference 

between probability of detection 

and false detection. In other 

words, it measures the ability of 

the forecast to differentiate 

between occurrence of an event 

or not.  

𝑃𝑆𝑆 = 𝐻 − 𝐹 

 

Where, H = Hit Rate (Relative number of times an event 

was forecast when it occurred) and F is False Alarm Rate 

(relative number of times the event was forecast when it 

did not occur) 

Range: -1 to 1, 

0 indicates no 

skill. Perfect 

score: 1 

Percentage Correct 

(Finley, 1884) 

Forecast accuracy by 

considering the simple matching 

coefficient based on the 

‘‘proportion’’ of total ‘‘correct’’ 

hits and rejections (PC) 

𝑃𝐶 =
𝐵 − 𝐻 − 𝐹𝐵 + 2𝐻𝐹

𝐵 + 𝐹 − 𝐻
 

 

Where B = Bias, H = Hit rate, F = False Alarm Rate  

 

 

Bias  

(Finley, 1884) 

Verification metric denoted by 

ratio of total number of events 

forecast and total number of 

events observed, Forecast is 

termed as under forecast when 

BIAS<1 or over forecast 

(BIAS>1) events.  

𝐵𝑖𝑎𝑠 =  
ℎ + 𝑓

ℎ + 𝑚
 

 

 

 

Where h = Hit, f = False Alarm, m = miss 

 

Perfect Score: 1 

Odd’s Ratio Skill 

Score Yule’s Q 

(Stephenson, 

2000;Yule, 1900) 

Because ORSS is independent 

of the marginal distribution, it 

strongly discriminates between 

the cases with and without 

association even when the 

different contingency tables 

appear to have similar cell 

counts. So is difficult to hedge.  

𝑂𝑅𝑆𝑆 =
𝐻 − 𝐹

𝐻 + 𝐹 − 2𝐻𝐹
 

 

Where, H = Hit Rate 

F = False Alarm Rate 

[-1,1] 

0 indicates no 

skill 

Perfect score 1 

 

Extreme Dependent 

Score  

(Ferro and Stephenson, 

2011) 

EDS is independent of bias, so 

should be presented together 

with the frequency bias. 

𝐸𝐷𝑆 =  
ln 𝑝 − ln 𝐻

ln 𝑝 + ln 𝐻
 

Where p=(hits+misses)/total is the base rate 

(climatology), q=(hits+false alarms)/total is the frequency 

with which the event is forecast, H is the hit rate, also 

known as the probability of detection, and F is the false 

[-1, 1], 0 

indicating no 

skill with 1 

representing 

perfect score.  
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alarm rate, also known as the probability of false 

detection. 

Performance Coefficient 

Parameter Name Definition Formula Range 

NSE  

(Nash and Sutcliffe, 

1970)  

It is usually the coefficient to 

assess the predictive power of 

the simulation models, most 

frequently used in hydrology  

𝑁𝑆𝐸 = 1 − 
∑ (𝑋𝑜𝑏𝑠

𝑖 − 𝑋𝑠𝑖𝑚
𝑖 )

2𝑛
𝑖=1

∑ (𝑋𝑜𝑏𝑠
𝑖 − 𝑋𝑜𝑏𝑠

̅̅ ̅̅ ̅̅ )
2𝑛

𝑖=1

 
[-∞,1], with 1 

as perfect 

score; 0 means 

the projections 

are as accurate 

as the mean of 

the observed 

data, anything 

less than 0 

means accuracy 

of simulation is 

being 

compromised. 

Coefficient of 

Correlation 

(Galton, 1889) 

Linear measure of observed and 

simulated values. It does not 

take forecast bias into account 

and is sensitive to outliers 

𝑅𝐶 =  
∑ (𝑋𝑜𝑏𝑠

𝑖 − 𝑋𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ )(𝑋𝑠𝑖𝑚

𝑖 − 𝑋𝑠𝑖𝑚
̅̅ ̅̅ ̅̅ )𝑛

𝑖=1

√∑ (𝑋𝑜𝑏𝑠
𝑖 − 𝑋𝑜𝑏𝑠

̅̅ ̅̅ ̅̅ )
2

∑ (𝑋𝑠𝑖𝑚
𝑖 − 𝑋𝑠𝑖𝑚

̅̅ ̅̅ ̅̅ )
2𝑛

𝑖=1
𝑛
𝑖=1

 
[-1,1] with 1 

being the 

perfect score 

Relative Error  Relative error is function of 

absolute error and the observed 

value and expressed as absolute 

error divided by the magnitude 

of the exact value. 

𝑅𝐸 =
∑ 𝑋𝑠𝑖𝑚

𝑖 − ∑ 𝑋𝑜𝑏𝑠
𝑖𝑛

𝑖=1
𝑛
𝑖=1

∑ 𝑋𝑜𝑏𝑠
𝑖𝑛

𝑖=1

× 100 (%) 
[-∞,∞], values 

near to zero is 

considered to 

be better. 

Cohen’s-d effective 

size 

(Cohen, 1988;Glass et 

al., 1981;Cohen, 1977) 

 

Alternate measure of checking 

the difference in mean 

distributions 

𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 =  
𝑀1 − 𝑀2

𝑆𝐷𝑐𝑜𝑛𝑡
 

 

 

Where M1 and M2 are means from the simulated and 

observed data and SD control is standard deviation from 

observed data. 

[0-1], where 

values closer to 

0 are 

considered 

better for good 

simulation.  
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Table 3 Comparison of GDO and MACA climate projection sources for Adrian, MI, Fort Wayne, IN, and Norwalk, OH in simulating descriptive statistics 

for daily precipitation (mm), and maximum and minimum air temperatures (°C) 

Precipitation, mm 

 
Adrian, MI Fort Wayne, IN Norwalk, OH 

Treatment Median NDP0* (%) Maximum Median NDP0 (%) Maximum Median NDP0 (%) Maximum 

Observed  0 66.9 120.4 0 63.5 111.8 0 64 229.1 

GDO No 

Treatment (0.2-0.2),0.2 
(29.8-

31.9),30.9 
(65.4-

110.1),83.3 
(0.4-0.5), 

0.4 
(15.4-20.7), 

17.7 
(52.0-72.0), 

63.7 
(0.7-0.8), 

0.8 
(10.8-13.0), 

12.0 
(40.1-48.0), 

43.6 

MACA No 

Treatment (0.0-0.0),0.0 
(53.5-54.1), 

53.9 
(67.2-

71.0),69.7 (0.0-0.0),0.0 
(54.6-55.5), 

54.9 
(65.0-74.5), 

72.3 (0.0-0.0)0.0 
(51.0-51.7), 

51.4 
(54.5-112.8), 

101.6 

Maximum Temperature, °C 

Treatment 
NDT35 † 

(%) 
Maximum Minimum NDT35 (%) Maximum Minimum NDT35 (%) Maximum Minimum 

Observed  0.3 40.0 -20.0 0.3 41.1 -23.9 0.2 39.4 -22.2 

GDO No 

Treatment 
(0-0.4), 0.2 

( 36.0-38.9 ), 
37.4 

( -20.4--16.2 ), 
-18.5 

(0.1-0.5), 
0.3 

(36.7-39.5 ), 
38.1 

( -23.2--17.4 ), 
-19.7 

(0-0.3), 0.1 
(34.8-39.8), 

36.9 
( -21.3--14.9 ), 

-18.2 

MACA No 

Treatment 

(0.5-0.7), 
0.6 

( 39.5-40.2 ), 
39.9 

( -17.5--16.5 ), 
-17.1 

(0.5-0.8), 
0.7 

(40.6-42.1 ), 
41.8 

( -22.1--20.3), -
21.4 

(0.2-0.3), 
0.2 

( 37.6-37.8 ), 
37.7 

( -19.2--17.8 ), 
-18.8 

Minimum Temperature, °C 

Treatment NDT2‡ (%) Maximum Minimum NDT2 (%) Maximum Minimum NDT2 (%) Maximum Minimum 

Observed 

(MACA) 46.3 24.4 -30.0 41.1 25.6 -30.0 41.8 25.0 -29.4 

Observed 

(GDO) 45.9 24.4 -30.0 40.8 25.6 -30.0 41.6 26.1 -29.4 

GDO No 

Treatment 

(44.4-46.0), 
45.4 

( 21.7-26.3 ), 
23.6 

( -31.2-25.8 ), -
29.0 

(39.5-41.2), 
40.3 

(22.7-26.8), 
25.0 

( -33.8-26.8 ), -
30.2 

(39.9-41.6), 
40.9 

( 22.0-27.8), 
24.6 

( -29.7--23.6 ), 
-27.2 

MACA No 

Treatment 

(44.8-45.7), 
45.3 

( 23.8-24 ), 
24 

( -28.2--26.4 ), 
-27.9 

(39.9-40.7), 
40.4 

( 25.2-25.5 ), 
25.5 

( -28.9--26.9 ), 
-28.4 

(41-41.6), 
41.4 ( 24-24 ), 24 

( -28--27 ), -
27.5 

* Number of days with no precipitation expressed as percentage of the total dataset NDP0 (%) 

†  Number of days with maximum temperature more than 35°C expressed as percentage of the total dataset NDT35 (%) 

‡  Number of days with maximum temperature more than 2°C expressed as percentage of the total dataset NDT2 (%) 
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Table 4 Comparison of GDO and MACA climate projection sources for different climate indices for Adrian, MI, Fort 

Wayne, IN, and Norwalk, OH for period between 1966 and 2005 

 
Adrian, MI 

Treatment P(W|W) P(W|D) Ld Lw Td  Tw 

Observed 0.5 0.3 4 1 1 4 

GDO No Treatment (0.7-0.7), 0.7 (0.5-0.6), 0.5 (2-2), 2 (2-2), 2 (13-33), 21 (1-1), 1 

MACA No Treatment (0.6-0.6), 0.6 (0.3-0.4), 0.3 (3-3), 3 (2-2), 2 (2-3), 2 (1-2), 1 

 Fort Wayne, IN 

Observed 0.5 0.3 3 1 1 3 

GDO No Treatment (0.8-0.8), 0.8 (0.6-0.7), 0.6 (2-2), 2 (3-3), 3 (52-174), 81 (1-1), 1 

MACA No Treatment (0.6-0.6), 0.6 (0.3-0.3), 0.3 (3-3), 3 (1-2), 2 (2-2), 2 (1-2), 1 

 
Norwalk, OH 

Observed 0.5 0.3 3 1 1 3 

GDO No Treatment (0.9-0.9), 0.9 (0.7-0.8), 0.7 (1-2), 1 (3-4), 4 (256-2016), 738 (1-1), 1 

MACA No Treatment (0.6-0.6), 0.6 (0.3-0.4), 0.4 (3-3), 3 (2-2), 2 (2-3), 3 (1-1), 1 

 

 

Table 5. Extreme event analysis/climate indices analysis for Adrian, MI from the MACA climate projection before and after 5 

different bias-correction methods compared with observed climate data from ground-based station 

 

Maximum Dry 

Period Length 

(days) 

Maximum Wet 

Period Length 

(days) 

Number of dry 

sequences 

No. of wet 

sequences 

No. of days for 

optimum growth of 

corn 

Snow Days 

Observed  26 9 33 153 51 30 

MACA No 

Treatment 
(17-29), 22 (16-23), 19 (4-17), 11 

(318-450), 
387 

(57-61), 60 (40-43), 42 

MACA 

Conventional 
(17-32), 24 (15-23), 19 (4-19), 12 

(314-446), 
381 

(28-30), 29 (60-62), 61 

MACA 

CLIGEN 75 
(13-36), 23 (175-228), 210 (0-5), 2 

(108-170), 
142 

(0-0), 0 (332-338), 335 

MACA 

CLIGEN 90 
(1-3), 2 

(2146-3296), 
2845 

(0-0), 0 (0-1), 0 (0-0), 0 (365-365), 365 

MACA LARS-

WG 75 
(3-4), 3 (209-572), 297 (0-0), 0 (20-58), 34 (73-80), 77 (98-106), 102 

MACA LARS-

WG 90 
(1-1), 1 

(2460-7901), 
5183 

(0-0), 0 (0-0), 0 (73-80), 77 (104-110), 108 
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