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Key points 16 

1. An analytical solution of the hydraulic head due to oscillatory pumping test in unconfined 17 

aquifers is presented. 18 

2. The effects of wellbore storage and initial condition of static groundwater before the test 19 

are analyzed. 20 

3. The present solution agrees well to head fluctuation data taken from a field oscillatory 21 

pumping test.  22 
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Abstract 23 

Oscillatory pumping test (OPT) is an alternative to constant-head and constant-rate pumping 24 

tests for determining aquifer hydraulic parameters without water extraction. There is a large 25 

number of analytical models presented for the analyses of OPT. The combined effects of 26 

wellbore storage and initial condition regarding the hydraulic head prior to OPT are commonly 27 

neglected in the existing models. This study aims to develop a new model for describing the 28 

hydraulic head fluctuation induced by OPT in an unconfined aquifer. The model contains a 29 

typical flow equation with an initial condition of static water table, inner boundary condition 30 

specified at the rim of a finite-radius well for incorporating wellbore storage effect, and 31 

linearized free surface equation describing water table movement. The analytical solution of 32 

the model is derived by the Laplace transform and finite integral transform. Sensitivity analysis 33 

is carried out for exploring head response to the change in each of hydraulic parameters. Results 34 

suggest that head fluctuation due to OPT starts from the initial condition and gradually tends 35 

to simple harmonic motion (SHM) after a certain pumping time. A criterion for estimating the 36 

time to have SHM since OPT is graphically presented. The validity of assuming an 37 

infinitesimal well radius without wellbore storage effect is investigated. The present solution 38 

agrees well to head fluctuation data observed at the Boise hydrogeophysical research site in 39 

southwestern Idaho. 40 

KEYWORDS: oscillatory pumping test, analytical solution, free surface equation, initial 41 

condition, wellbore storage 42 
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NOTATION 43 

a 𝜎/ 𝜇 

b Aquifer thickness 

�̅�  Dimensionless aquifer thickness, i.e., �̅� = 𝑏/𝑟𝑤 

h Hydraulic head 

ℎ̅  Dimensionless Hydraulic head, i.e., ℎ̅ = (2𝜋𝑏𝐾𝑟ℎ)/|𝑄|   

Kr, Kz Aquifer horizontal and vertical hydraulic conductivities, respectively 

P Period of oscillatory pumping rate 

p Laplace parameter 

𝑄  Amplitude of oscillatory pumping rate 

R Radius of influence  

�̅� Dimensionless radius of influence, i.e., �̅� = 𝑅/𝑟𝑤 

r Radial distance from the center of pumping well 

�̅�  Dimensionless radial distance, i.e., �̅� = 𝑟/𝑟𝑤 

rc Outer radius of pumping well 

rw Inner radius of pumping well 

Ss, Sy Specific storage and specific yield, respectively 

𝑡  Time since pumping 

𝑡̅  Dimensionless pumping time, i.e., 𝑡̅ = (𝐾𝑟 𝑡)/(𝑆𝑠 𝑟𝑤
2) 

z Elevation from aquifer bottom 

𝑧̅  Dimensionless elevation, i.e., 𝑧̅ = 𝑧 𝑏⁄  

𝛼  𝑟𝑐
2/(2𝑟𝑤

2𝑆𝑠𝑏) 

𝛽𝑛, 𝛽𝑚 Roots of Eqs. (19) and (36), respectively 

𝛾  𝑆𝑠 𝑟𝑤
2 𝜔/𝐾𝑟 

𝜅  𝐾𝑧/𝐾𝑟 

𝜇  𝜅/�̅�2 

𝜎  𝑆𝑦/(𝑆𝑠 𝑏) 

𝜔  Frequency of oscillatory pumping rate, i.e., 𝜔 = 2𝜋/𝑃 

44 
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1. Introduction 45 

Numerous attempts have been made by researchers to the study of oscillatory pumping test 46 

(OPT) that is an alternative to constant-rate and constant-head pumping tests for determining 47 

aquifer hydraulic parameters (e.g., Vine et al., 2016; Christensen et al., 2017; Watlet et al., 48 

2018). The concept of OPT was first proposed by Kuo (1972) in the petroleum literature. The 49 

process of OPT contains extraction stages and injection stages. The pumping rate, in other 50 

words, varies periodically as a sinusoidal function of time. Compared with traditional constant-51 

rate pumping, OPT in contaminated aquifers has the following advantages: (1) low cost because 52 

of no disposing contaminated water from the well, (2) reduced risk of treating contaminated 53 

fluid, (3) smaller contaminant movement, and (4) stable signal easily distinguished from 54 

background disturbance such as tide effect and varying river stage (e.g., Spane and Mackley, 55 

2011). However, OPT has the disadvantages including the need of an advanced apparatus 56 

producing periodic rate and the problem of signal attenuation in remote distance from the 57 

pumping well. Oscillatory hydraulic tomography adopts several oscillatory pumping wells with 58 

different frequencies (e.g., Yeh and Liu, 2000; Cardiff et al., 2013; Zhou et al., 2016; 59 

Muthuwatta, et al., 2017). Aquifer heterogeneity can be mapped by analyzing multiple data 60 

collected from observation wells. Cardiff and Barrash (2011) reviewed articles associated with 61 

hydraulic tomography and classified them according to nine categories in a table. 62 

Various groups of researchers have worked with analytical and numerical models for OPT; 63 

each group has its own model and investigation. For example, Black and Kipp (1981) assumed 64 

the response of confined flow to OPT as simple harmonic motion (SHM) in the absence of an 65 

initial condition. Cardiff and Barrash (2014) built an optimization formulation strategy using 66 

the Black and Kipp analytical solution. Dagan and Rabinovich (2014) also assumed hydraulic 67 

head fluctuation as SHM for OPT at a partially penetrating well in unconfined aquifers. Cardiff 68 

et al. (2013) characterized aquifer heterogeneity using the finite element-based COMSOL 69 

software that adopts SHM hydraulic head variation for OPT. On the other hand, Rasmussen et 70 
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al. (2003) found that hydraulic head response tends to SHM after a certain period of pumping 71 

time when considering an initial condition prior to OPT. Bakhos et al. (2014) used the 72 

Rasmussen et al. (2003) analytical solution to quantify the time after which hydraulic head 73 

fluctuation can be regarded as SHM since OPT began. As shown above, existing models for 74 

OPT have either assumed hydraulic head fluctuation as SHM without an initial condition or 75 

ignored the effect of wellbore storage with considering an infinitesimal well radius.  76 

Field applications of OPT for determining aquifer parameters have been conducted in 77 

recent years. Rasmussen et al. (2003) estimated aquifer hydraulic parameters based on 1 – 2.5-78 

hour period of OPT at the Savannah River site. Maineult et al. (2008) observed spontaneous 79 

potential temporal variation in aquifer diffusivity at a study site in Bochum, Germany. Fokker 80 

et al. (2012; 2013) presented spatial distributions of aquifer transmission and storage 81 

coefficient derived from curve fitting based on a numerical model and field data from 82 

experiments at the southern city-limits of Bochum, Germany. Rabinovich et al. (2015) 83 

estimated aquifer parameters of equivalent hydraulic conductivity, specific storage and specific 84 

yield at the Boise Hydrogeophysical Research Site (BHRS) by curve fitting based on 85 

observation data and the Dagan and Rabinovich analytical solution. They conclude that the 86 

equivalent hydraulic parameters can represent the actual aquifer heterogeneity of the study site. 87 

Although a large number of studies have been made on development of analytical models 88 

for OPT, little is known about the combined effects of wellbore storage and initial condition 89 

prior to OPT. Analytical solution to such a question will not only have important physical 90 

implications but also shed light on OPT model development. This study builds an improved 91 

model describing hydraulic head fluctuation induced by OPT in an unconfined aquifer. The 92 

model is composed of a typical flow equation with the initial condition of static water table, an 93 

inner boundary condition specified at the rim of the pumping well for incorporating wellbore 94 

storage effect, and a first-order free surface equation describing the movement of aquifer water 95 

table. The analytical solution of the model is derived by the methods of Laplace transform and 96 

finite integral transform. Based on the present solution, sensitivity analysis is performed to 97 
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explore the hydraulic head in response to the change in each of hydraulic parameters. The 98 

quantitative criteria for excluding the individual effects of wellbore storage and the initial 99 

condition are discussed. The radius of influence induced by OPT is investigated for engineering 100 

applications. In addition, curve fitting of the present solution to head fluctuation data recorded 101 

at BHRS is presented. 102 

2. Methodology 103 

2.1. Mathematical model 104 

Consider an oscillatory pumping at a fully penetrating well in an unconfined aquifer illustrated 105 

in Fig. 1. The aquifer is of unbound lateral extent with a finite thickness 𝑏. The radial distance 106 

from the centerline of the well is r; an elevation from the impermeable bottom of the aquifer is 107 

z. The well has inner radius 𝑟𝑐 and outer radius 𝑟𝑤.  108 

The flow equation describing spatiotemporal head distribution in aquifers can be written 109 

as:  110 

𝐾𝑟 (
𝜕2ℎ

𝜕𝑟2 +
1

𝑟

𝜕ℎ

𝜕𝑟
) + 𝐾𝑧

𝜕2ℎ

𝜕𝑧2 = 𝑆𝑠
𝜕ℎ

𝜕𝑡
   for   𝑟𝑤 ≤ 𝑟 < ∞, 0 ≤ 𝑧 ≤ 𝑏  and  𝑡 ≥ 0   (1) 111 

where ℎ(𝑟, 𝑧, 𝑡) is hydraulic head at location (r, z) and time t; 𝐾𝑟 and 𝐾𝑧  are respectively 112 

the radial and vertical hydraulic conductivities; Ss is the specific storage. Consider water table 113 

as a reference datum where the elevation head is set to zero; the initial condition is expressed 114 

as: 115 

ℎ = 0 at 𝑡 = 0 (2) 116 

The rim of the wellbore is regarded as an inner boundary, which provides the associated 117 

condition as:  118 

2𝜋𝑟𝑤𝐾𝑟𝑏
𝜕ℎ

𝜕𝑟
= 𝑄 sin(𝜔𝑡) + 𝜋𝑟𝑐

2 𝜕ℎ

𝜕𝑡
 at 𝑟=𝑟𝑤 (3) 119 

where 𝑄 and 𝜔 are respectively the amplitude and frequency of oscillatory pumping rate; is 120 

frequency. The first term on the right-hand side (RHS) of Eq. (3) represents an oscillatory 121 

pumping rate, and the second term represents the volume change within the well reflecting 122 

wellbore storage effect. Water table movement can be defined by the first-order free surface 123 
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equation proposed by Neuman (1972) as 124 

𝐾𝑧
𝜕ℎ

𝜕𝑧
= −𝑆𝑦

𝜕ℎ

𝜕𝑡
   at    𝑧 = 𝑏 (4) 125 

where 𝑆𝑦 is the specific yield. The impervious aquifer bottom is under the no-flow condition: 126 

𝜕ℎ

𝜕𝑧
= 0  at   𝑧 = 0  (5) 127 

The hydraulic head far away from the well remains constant and is expressed as 128 

lim
𝑟→∞

ℎ(𝑟, 𝑧, 𝑡) = 0 (6) 129 

Define dimensionless variables and parameters as follows: 130 

ℎ̅ =
2 𝜋 𝑏 𝐾𝑟

𝑄
ℎ, �̅� =

𝑟

𝑟𝑤
, 𝑧̅ =

𝑧

𝑏
, 𝑡̅ =

𝐾𝑟

𝑆𝑠 𝑟𝑤
2 𝑡, �̅� =

𝑏

𝑟𝑤
,     131 

𝛼 =
𝑟𝑐

2

2 𝑟𝑤
2   𝑆𝑠 𝑏

, 𝛾 =
𝑆𝑠 𝑟𝑤

2

𝐾𝑟
𝜔, 𝜅 =

𝐾𝑧

𝐾𝑟
,   𝜇 =  

𝜅

�̅�2 , 𝜎 =
𝑆𝑦

𝑆𝑠𝑏
 , 𝑎 =

σ

𝜇
 (7) 132 

where the overbar stands for a dimensionless symbol. Note that the magnitude of 𝛼 dominates 133 

wellbore storage effect (Papadopulos and Cooper, 1967) and γ is a dimensionless frequency 134 

parameter. With Eq. (7), the dimensionless forms of Eqs. (1) - (6) become, respectively, 135 

𝜕2ℎ̅

𝜕�̅�2
+

1

�̅�

𝜕ℎ̅

𝜕�̅�
+ 𝜇

𝜕2ℎ̅

𝜕�̅�2
=

𝜕ℎ̅

𝜕�̅�
  for   1 ≤ �̅� < ∞, 0 ≤ 𝑧̅ < 1  and  𝑡̅ ≥ 0  (8) 136 

ℎ̅ = 0  at  𝑡̅ = 0 (9) 137 

𝜕ℎ̅

𝜕�̅�
= sin(𝛾𝑡̅) + 𝛼

𝜕ℎ̅

𝜕�̅�
  at  �̅� = 1 (10) 138 

𝜕ℎ̅

𝜕�̅�
= −𝑎

𝜕ℎ̅

𝜕�̅�
  at  𝑧̅ = 1 (11) 139 

𝜕ℎ̅

𝜕�̅�
= 0  at  𝑧̅ = 0 (12) 140 

lim
�̅�→∞

ℎ̅(�̅�, 𝑧̅, 𝑡̅) = 0 (13) 141 

The transient solution of the dimensionless head ℎ̅  satisfies Eqs. (8) - (13) with the initial 142 

condition Eq. (9). Here we define a pseudo-steady state solution ℎ̅s to the model of Eqs. (8) 143 

and (10) - (13) with sin(𝛾𝑡̅) in Eq. (10) replaced by Im(𝑒𝑖𝛾�̅�), Im(-) being the imaginary 144 

part of a complex number, and 𝑖 being the imaginary unit. The pseudo-steady state model 145 

accounts for SHM of head fluctuation after a certain period of pumping time. 146 
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2.2. Transient solution for unconfined aquifer 147 

The Laplace transform and finite integral transform are applied to solve Eqs. (8) - (13) (Liang 148 

et al., 2017). The former converts ℎ̅(�̅�, 𝑧̅, 𝑡̅) into ℎ̂(�̅�, 𝑧̅, 𝑝), 𝜕ℎ̅/𝜕𝑡 ̅ in Eq. (8), (10) and (11) 149 

into 𝑝ℎ̂, and  sin(𝛾𝑡̅) in Eq. (10) into 𝛾/(𝑝2 + 𝛾2) with the Laplace parameter p. The result 150 

of Eq. (8) in the Laplace domain can be written as  151 

𝜕2ℎ̂

𝜕�̅�2
+

1

�̅�

𝜕ℎ̂

𝜕�̅�
+ 𝜇

𝜕2ℎ̂

𝜕�̅�2
= 𝑝ℎ̂ (14) 152 

The transformed boundary conditions in r and z directions are expressed as  153 
𝜕ℎ̂

𝜕�̅�
=

𝛾

𝑝2+𝛾2 + 𝛼𝑝ℎ̂  at  �̅� = 1 (15) 154 

𝜕ℎ̂

𝜕�̅�
= −𝑎𝑝ℎ̂  at  𝑧̅ = 1 (16) 155 

𝜕ℎ̂

𝜕�̅�
= 0  at  𝑧̅ = 0 (17) 156 

lim
�̅�→∞

ℎ̂(�̅�, 𝑧̅, 𝑝) = 0 (18) 157 

The finite integral transform proposed by Latinopoulos (1985) is applied to Eqs. (14) - 158 

(17). The definition of the transform is given in Appendix A. Using the property of the 159 

transform converts ℎ̂(�̅�, 𝑧̅, 𝑝)  into ℎ̃(�̅�, 𝛽𝑛, 𝑝) , 𝜇 ∂2ℎ̂/ ∂𝑧̅2  in Eq. (14) into −𝜇𝛽𝑛
2ℎ̃ , and 160 

𝛾/(𝑝2 + 𝛾2)  in Eq. (15) into 𝛾𝐹𝑡 sin 𝛽𝑛 /(𝑝2 + 𝛾2)  where 𝑛 ∈ (1,2,3, … ∞) ; 𝐹𝑡 =161 

√2(𝛽𝑛
2 + 𝑎2𝑝2)/(𝛽𝑛

2 + 𝑎2𝑝2 + 𝑎𝑝); 𝛽𝑛 is the positive roots of the equation: 162 

tan 𝛽𝑛 = 𝑎𝑝/𝛽𝑛 (19) 163 

The method to find the roots of 𝛽𝑛  is discussed in section 2.3. Eq. (14) then becomes an 164 

ordinary differential equation (ODE) denoted as 165 

𝜕2ℎ̃

𝜕�̅�2
+

1

�̅�

𝜕ℎ̃

𝜕�̅�
− 𝜇𝛽𝑛

2ℎ̃ = 𝑝ℎ̃ (20) 166 

with the transformed Eqs. (18) and (15) written, respectively, as  167 

lim
�̅�→∞

ℎ̃(�̅�, 𝛽𝑛, 𝑝) = 0                 (21a) 168 

𝜕ℎ̃

𝜕�̅�
=

𝛾 𝐹𝑡 sin 𝛽𝑛

𝛽𝑛(𝑝2+𝛾2)
+ 𝛼𝑝ℎ̃  at  �̅� = 1 (21b) 169 

Note that the transformation from Eq. (14) to (20) is applicable only for the no-flow condition 170 
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specified at 𝑧̅ = 0 (i.e., Eq. (17)) and third-type condition specified at 𝑧̅ = 1 (i.e., Eq. (16)). 171 

Solve Eq. (20) with (21a) and (21b), and we obtain: 172 

ℎ̃(�̅�, 𝛽𝑛, 𝑝) = −
𝛾 𝐹𝑡 sin 𝛽𝑛𝐾0(𝑟𝜆)

𝛽𝑛(𝑝2+𝛾2)(𝑝𝛼𝐾0(𝜆)+𝜆𝐾1(𝜆))
 (22) 173 

with 174 

𝜆 = √𝑝 + 𝜇 𝛽𝑛
2 (23) 175 

where 𝐾0(−) and 𝐾1(−) is the modified Bessel function of the second kind of order zero 176 

and one, respectively. Applying the inverse Laplace transform and inverse finite integral 177 

transform to Eq. (22) results in the transient solution expressed as 178 

ℎ̅(�̅�, 𝑧̅, 𝑡̅) = ℎ̅exp(�̅�, 𝑧̅, 𝑡̅) + ℎ̅SHM(�̅�, 𝑧̅, 𝑡̅) (24a) 179 

with 180 

ℎ̅exp(�̅�, 𝑧̅, 𝑡)̅ =
−2

𝜋
∑ ∫ cos(𝛽𝑛𝑧̅) Im(𝛾𝜀1𝜀2 exp(𝑝0𝑡̅)) 𝑑𝜁

∞

0
∞
𝑛=1  (24b) 181 

ℎ̅SHM(�̅�, 𝑧̅, 𝑡̅) = �̅�𝑡(�̅�, 𝑧̅) cos(𝛾 𝑡̅ − 𝜙𝑡(�̅�, 𝑧̅)) (24c) 182 

�̅�𝑡(�̅�, 𝑧̅) = √𝑎𝑡(�̅�, 𝑧̅)2 + 𝑏𝑡(�̅�, 𝑧̅)2 (24d) 183 

𝑎𝑡(�̅�, 𝑧̅) =
2

𝜋
∑ ∫ cos(𝛽𝑛𝑧̅) Im(𝜀1𝜀2 𝑝0)

∞

0
∞
𝑛=1 𝑑𝜁 (24e) 184 

𝑏𝑡(�̅�, 𝑧̅) =
2𝛾

𝜋
∑ ∫ cos(𝛽𝑛𝑧̅) Im(𝜀1𝜀2)

∞

0
∞
𝑛=1 𝑑𝜁 (24f) 185 

𝜙𝑡(�̅�, 𝑧̅) = cos−1(𝑏𝑡(�̅�, 𝑧̅)/�̅�𝑡(𝑟, 𝑧̅)) (24g) 186 

𝜀1 = sin 𝛽𝑛 𝐾0(�̅�𝜆0)/ (𝛽𝑛(𝑝0
2 + 𝛾2)(𝑝0𝛼𝐾0(𝜆0) + 𝜆0𝐾1(𝜆0))) (24h) 187 

𝜀2 = (𝛽𝑛
2 + 𝑎2𝑝0

2)/(𝛽𝑛
2 + 𝑎2𝑝0

2 + 𝑎𝑝0) (24i) 188 

𝑝0 = −𝜁 − 𝜇𝛽𝑛
2 (24j) 189 

𝜆0 = √𝜁𝑖 (24k) 190 

The detailed derivation of Eqs. (24a) – (24k) is presented in Appendix B. The first RHS term 191 

in Eq. (24a) due to the initial condition exhibits exponential decay since pumping began; the 192 

second term defines SHM with amplitude �̅�𝑡(�̅�, 𝑧̅) and phase shift 𝜙𝑡(�̅�, 𝑧̅) at a given point 193 

(�̅�, 𝑧̅). The numerical results of the integrals in Eqs. (24b), (24e) and (24f) are obtained by the 194 

Mathematica NIntegrate function. 195 
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2.3. Calculation of 𝜷𝒏 196 

 The eigenvalues 𝛽1,…, 𝛽𝑛, the roots of Eq. (19) with p replaced by p0 in Eq. (24j), can 197 

be determined by applying the Mathematica function FindRoot based on Newton’s method 198 

with reasonable initial guesses. The roots are located at the intersection of the curves plotted 199 

by the RHS and left-hand side (LHS) functions of 𝛽𝑛 in Eq. (19). The roots are very close to 200 

the vertical asymptotes of the periodical tangent function tan 𝛽𝑛. The initial guess for each 𝛽𝑛 201 

can be considered as (2𝑛 − 1)𝜋/2 + 𝛿  where 𝑛 ∈ (1,2, … ∞)  and 𝛿  is a small positive 202 

value set to 10-10 to prevent the denominator in Eq. (19) from zero. 203 

2.4. Transient solution for confined aquifer 204 

When Sy = 0 (i.e., 𝜎 =  0 ), Eq. (11) reduces to 𝜕ℎ̅/𝜕𝑧̅ = 0 for a no-flow condition at the top 205 

of the aquifer, indicating that the unconfined aquifer becomes a confined one. Under this 206 

condition, Eq. (19) becomes tan 𝛽𝑛 = 0 with roots 𝛽𝑛 = 0, 𝜋, 2𝜋, …, 𝑛𝜋, …, ∞; Eq. (24i) 207 

reduces to 𝜀2 = 1; factor 2 in Eqs. (24b), (24e) and (24f) is replaced by unity. The analytical 208 

solution of the transient head for the confined aquifer can be expressed as  209 

ℎ̅(�̅�, 𝑡̅) = ℎ̅exp(�̅�, 𝑡)̅ + ℎ̅SHM(�̅�, 𝑡̅) (25a) 210 

with 211 

ℎ̅exp(�̅�, 𝑡̅) =
−1

𝜋
∫ Im(𝜀1𝛾 exp(−𝜁𝑡̅)) 𝑑𝜁

∞

0
 (25b) 212 

ℎ̅SHM(�̅�, 𝑡̅) = �̅�𝑡(�̅�) cos(𝛾𝑡̅ − 𝜙𝑡(�̅�)) (25c) 213 

�̅�𝑡(�̅�) = √𝑎𝑡(�̅�)2 + 𝑏𝑡(�̅�)2 (25d) 214 

𝑎𝑡(�̅�) =
1

𝜋
∫ Im(−𝜀1𝜁)

∞

0
𝑑𝜁 (25e) 215 

𝑏𝑡(�̅�) =
𝛾

𝜋
∫ Im(𝜀1)

∞

0
𝑑𝜁 (25f) 216 

𝜙𝑡(�̅�) = cos−1(𝑏𝑡(�̅�)/�̅�𝑡(�̅�)) (25g) 217 

𝜀1 = 𝐾0(�̅�𝜆0)/((𝑝0
2 + 𝛾2)(−𝛼𝜁𝐾0(𝜆0) + 𝜆0𝐾1(𝜆0))) (25h) 218 

Note that Eq. (24h) reduces to Eq. (25h) based on 𝛽𝑛 = 0 and L' Hospital's rule and gives 219 

𝜀1 = 0  for the other roots 𝛽𝑛 =  𝜋 , 2𝜋 , …, 𝑛𝜋 . This causes that Eqs. (25a) – (25h) are 220 

independent of dimensionless elevation 𝑧̅ , indicating only horizontal flow in the confined 221 
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aquifer. 222 

2.5. Pseudo-steady state solution for unconfined aquifer 223 

The pseudo-steady state solution ℎ̅s  satisfies the following form (Dagan and Rabinovich, 224 

2014). 225 

ℎ̅s(�̅�, 𝑧̅, 𝑡̅) =  Im(�̅�(�̅�, 𝑧̅) 𝑒𝑖𝛾�̅�) (26) 226 

where �̅�(�̅�, 𝑧̅)  is a space function of �̅�  and 𝑧̅ . Substituting Eq. (26) and 𝜕ℎ̅s/𝜕𝑡̅ =227 

Im(𝑖𝛾�̅�(�̅�, 𝑧̅) 𝑒𝑖𝛾�̅�) into the pseudo-steady state model results in 228 

𝜕2�̅�

𝜕�̅�2 +
1

�̅�

𝜕�̅�

𝜕�̅�
+ 𝜇

𝜕2�̅�

𝜕�̅�2 = 𝑖𝛾�̅� (27) 229 

𝜕�̅�

𝜕�̅�
= 1 + 𝑖𝛼𝛾�̅�  at  �̅� = 1 (28) 230 

𝜕�̅�

𝜕�̅�
= −𝑖𝑎𝛾�̅�   at   𝑧̅ = 1 (29) 231 

𝜕�̅�

𝜕�̅�
= 0   at   𝑧̅ = 0 (30) 232 

lim
�̅�→∞

�̅� = 0 (31) 233 

Again, taking the finite integral transform to Eqs. (27) - (31) yields  234 

𝜕2�̃�

𝜕�̅�2 +
1

�̅�

𝜕�̃�

𝜕�̅�
− 𝜇𝛽𝑚

2 �̃� = 𝑖𝛾�̃� (32) 235 

𝜕�̃�

𝜕�̅�
=

sin 𝛽𝑚

𝛽𝑚
𝐹s + 𝑖𝛼𝛾�̃�  at   �̅� = 1 (33) 236 

lim
�̅�→∞

�̃� = 0 (34) 237 

𝐹𝑠 = √2(𝛽𝑚
2 − 𝑎2𝛾2)/(𝛽𝑚

2 − 𝑎2𝛾2 + 𝑖𝑎𝛾) (35) 238 

where 𝛽𝑚 = 𝑐𝑚 + 𝑑𝑚𝑖 is a complex number being the roots of the equation: 239 

𝛽𝑚 tan 𝛽𝑚 = 𝑖𝑎𝛾 (36) 240 

The method to determine 𝛽𝑚  is given in section 2.6. Solving Eq. (32) with (33) and (34) 241 

results in 242 

�̃�(�̅�, 𝛽𝑚) = 𝐹𝑠
𝑖sin(𝛽𝑚)𝐾0(�̅�𝜆)

𝛽𝑚(𝛼𝛾𝐾0(𝜆)−𝑖𝜆𝐾1(𝜆))
 (37) 243 

where 𝜆 = √𝛾𝑖 + 𝜇𝛽𝑚
2  . After taking the inverse finite integral transform to Eq. (37) and 244 
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applying the formula of 𝑒𝑖𝛾�̅� = cos(𝛾𝑡̅) + 𝑖 sin(𝛾𝑡̅)  to the result, the pseudo-steady state 245 

solution can be expressed as 246 

ℎ̅s(�̅�, 𝑧̅, 𝑡̅) = �̅�𝑠(�̅�, 𝑧̅) cos(𝛾𝑡 − 𝜙𝑠(�̅�, 𝑧̅)) (38a) 247 

with 248 

�̅�𝑠(�̅�, 𝑧̅) = √𝑎s(�̅�, 𝑧̅)2 + 𝑏s(�̅�, 𝑧̅)2  (38b) 249 

𝑎𝑠(�̅�, 𝑧̅) = Re(∑ 𝐷(�̅�, 𝛽𝑚) cos(𝛽𝑚𝑧̅)∞
𝑚=1 ) (38c) 250 

𝑏s(�̅�, 𝑧̅) = Im(∑ 𝐷(�̅�, 𝛽𝑚) cos(𝛽𝑚𝑧̅)∞
𝑚=1 ) (38d) 251 

𝜙s(�̅�, 𝑧̅) = cos−1(𝑏𝑠(�̅�, 𝑧̅)/𝐴𝑠(�̅�, 𝑧̅)) (38e) 252 

𝐷(�̅�, 𝛽𝑚) = 𝑖𝐹s
2 sin 𝛽𝑚 𝐾0(�̅�𝜆)/ (𝛽𝑚(𝛼𝛾𝐾0(𝜆) − 𝑖𝜆𝐾1(𝜆))) (38f) 253 

where Re(-) is the real part of a complex number. Eq. (38a) indicates SHM for the response of 254 

the hydraulic head at any point to oscillatory pumping. 255 

2.6 Calculation of 𝜷𝒎 256 

Substituting 𝛽𝑚 = 𝑐𝑚 + 𝑑𝑚𝑖  and tan 𝛽𝑚 = sin(2𝑐𝑚) /𝜏 +  𝑖 sinh(2𝑑𝑚) /𝜏  with 𝜏 =257 

cos(2𝑐𝑚) + cosh(2𝑑𝑚) into Eq. (36) and separating the real and imaginary parts of the result 258 

leads to the following two equations: 259 

sin(2𝑐𝑚) /𝜏 = 𝑎𝛾𝑑𝑚/(𝑐𝑚
2 + 𝑑𝑚

2 ) (39) 260 

and 261 

sinh(2𝑑𝑚) /𝜏 = 𝑎𝛾𝑐𝑚/(𝑐𝑚
2 + 𝑑𝑚

2 ) (40) 262 

Noted that Eqs. (39) and (40) are respectively from the real and imaginary parts. The values of 263 

𝑐𝑚 and 𝑑𝑚 can be determined by the Mathematica function FindRoot with the initial guesses 264 

of 𝜋𝑚 2⁄  for 𝑐𝑚 and 10-4 for 𝑑𝑚. 265 

2.7 Pseudo-steady state solution for confined aquifers 266 

Again, when Sy = 0 (i.e., 𝜎 =  0 ), Eq. (36) reduces to tan 𝛽𝑚 = 0 with roots 𝛽𝑚 = 0, 𝜋, 267 

2𝜋, …, 𝑚𝜋, …, ∞; factor 2 in Eq. (35) is replaced by unity. Eq. (38f) then becomes 268 

𝐷(�̅�) = {
0   for  𝛽𝑚 ≠ 0

2𝑖𝐾0(�̅�𝜆)/(𝛼𝛾𝐾0(𝜆) − 𝑖𝜆𝐾1(𝜆))  for  𝛽𝑚 = 0
 (41) 269 
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which is obtained by applying L' Hospital's rule when 𝛽𝑚 = 0. With Eq. (41), Eqs. (38c) and 270 

(38d) reduces, respectively, to 271 

𝑎s(�̅�) = Re (
𝑖 𝐾0(�̅�𝜆)

𝛼𝛾𝐾0(𝜆)−𝑖𝜆𝐾1(𝜆)
) (42a) 272 

and 273 

𝑏s(�̅�) = Im (
𝑖 𝐾0(�̅�𝜆)

𝛼𝛾𝐾0(𝜆)−𝑖𝜆𝐾1(𝜆)
) (42b) 274 

which are independent of dimensionless elevation 𝑧̅ , indicating horizontal confined flow. 275 

Based on Eqs. (41), (42a) and (42b), the pseudo-steady state solution for confined aquifers can 276 

be expressed as: 277 

ℎ̅s(�̅�, 𝑡̅) = �̅�𝑠(�̅�) cos(𝛾𝑡 − 𝜙𝑠(�̅�)) (43a) 278 

with 279 

�̅�𝑠(�̅�) = √𝑎𝑠(�̅�)2 + 𝑏𝑠(�̅�)2  (43b) 280 

𝜙𝑠(�̅�) = cos−1(𝑏𝑠(�̅�)/𝐴𝑠(�̅�)) (43c) 281 

2.8 Sensitivity analysis 282 

Sensitivity analysis evaluates hydraulic head variation in response to the change in each of Kr, 283 

Kz, Ss, Sy, and ω. The normalized sensitivity coefficient can be defined as (McCuen, 1985) 284 

𝑆𝑖 = 𝑃𝑖
𝜕𝑋

𝜕𝑃𝑖
 (44) 285 

where 𝑆𝑖 is the sensitivity coefficient of ith parameter; 𝑃𝑖 is the magnitude of the ith input 286 

parameter; X represents the present solution in dimensional form. Eq. (44) can be approximated 287 

as 288 

𝑆𝑖 = 𝑃𝑖
𝑋(𝑃𝑖+∆𝑃𝑖)−𝑋(𝑃𝑖)

∆𝑃𝑖
 (45) 289 

where ∆𝑃𝑖, a small increment, is chosen as 10-3𝑃𝑖. 290 

3. Results and Discussion 291 

In the following sections, we demonstrate the response of the hydraulic head to oscillatory 292 

pumping using the present solution. The default values in calculation are b = 20 m, Q = 1 L/s, 293 

rc = 0.06 m, rw = 0.05 m, Kr = 10-4 m/s, Kz = 10-5 m/s, Ss = 10-5 m-1, Sy = 0.1, ω = 2π/30 s-1, r 294 
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= rw and z = 10 m. The corresponding dimensionless parameters are α = 3600, γ = 5.24×10-5, 295 

κ = 0.1, 𝜇 = 6.2 × 10−7, and σ = 500. The practical ranges for dimensionless parameters are 296 

0.1 ≤ 𝜅 ≤ 0.5, 10 ≤ 𝜎 ≤ 105, 10−1 ≤ 𝛼 ≤ 105 and 10−6 ≤ 𝛾 ≤ 1. 297 

3.1. Transient head fluctuation affected by the initial condition 298 

Figure 2 demonstrates dimensional hydraulic head predicted by the present transient solution 299 

ℎ = ℎexp + ℎSHM and the pseudo-steady state solution ℎs for unconfined aquifers. The head 300 

fluctuation defined by ℎ  starts from ℎ  = 0 at 𝑡  = 0 and approaches SHM that can be 301 

predicted by ℎSHM when ℎexp ≅ 0 m after t = 219 sec. On the other hand, ℎSHM with about 302 

13 sec shift of time predicts very close SHM to the pseudo-steady state solution with error less 303 

than 3%. This example indicates that the present transient solution ℎ can be expressed as ℎ =304 

ℎexp + ℎs with a certain time shift so that head fluctuation starts from ℎ = 0 at t = 0. 305 

Define an ignorable dimensionless head change as |ℎ̅| < 10−2  (i.e., |ℎ| < 1  mm) 306 

according to ℎ̅ = (2𝜋𝑏𝐾𝑟/𝑄)ℎ  for the practical ranges of 𝑏𝐾𝑟 ≥ 103  m2/d and 𝑄 ≤ 102 307 

m3/d (Rasmussen et al. 2003). Define 𝑡�̅�  as a dimensionless transient time to have 308 

ℎ̅exp(�̅�, 𝑧̅, 𝑡)̅ = 10−2  (or ℎ̅  ≅  ℎ̅SHM ). The time can be estimated using the Mathematica 309 

function FindRoot to solve the equation that 310 

|ℎ̅exp(1, 0.5, 𝑡�̅�)| = 10−2 (46) 311 

Figure 3 displays the curve of dimensionless frequency γ versus the largest predicted 𝑡�̅�. The 312 

curve is plotted based on the values of 𝜅 = 0.1, α = 105 and σ = 500. When 𝛾 ≤ 2.7 × 10−3, 313 

the value of 𝑡�̅� decreases with increasing 𝛾. When 𝛾 > 2.7 × 10−3, 𝑡�̅� can be regarded as 314 

zero because a numerical result from the LHS function of Eq. (46) is smaller than 10-2 for any 315 

value of 𝑡�̅� . Note that 𝑡�̅�  increases with decreasing 𝜅  so we choose the smallest of the 316 

practical range 0.1 ≤ 𝜅 ≤ 0.5 . Variations in dimensionless parameters 𝜎  and 𝛼  have 317 

insignificant effect on 𝑡�̅�  prediction. The largest 𝑡�̅�  is about 2.45× 106 that equals 10 min 318 

obtained by 𝑡𝑠 = 𝑆𝑠 𝑟𝑤
2 𝑡�̅�/𝐾𝑟, rw = 0.05 m, Kr = 10-4 m/s and Ss = 10-5 m-1. The relation between 319 

𝑡�̅� and 𝛾 can therefore be approximated as 320 
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log10 𝑡�̅� = {
− ∑ 𝑐𝑘(log10 𝛾)𝑘6

𝑘=0   for  10−6 ≤ 𝛾 ≤ 2.7 × 10−3

1  for  𝛾 > 2.7 × 10−3       (47)  321 

where c0 = 629.90517, c1 = 874.82145, c2 = 500.07155, c3 = 151.54284, c4 = 25.63248, c5 = 322 

2.29276, and c6 = 0.08471 obtained by the Mathematica function Fit based on least-square 323 

curve fitting. Existing models assuming hydraulic head response as SHM are applicable when 324 

𝑡̅ ≥ 𝑡�̅� provided in Fig. 3 for a known value of 𝛾. 325 

3.2. Radius of influence from pumping well  326 

Researchers have paid attention to the identification of aquifer hydraulic parameters within the 327 

dimensionless radius of influence �̅� from an oscillatory pumping well (e.g., Cadiff and Sayler., 328 

2016). This section quantifies �̅� that is dominated by the magnitude of γ. Define �̅� from the 329 

pumping well to a location where �̅� satisfies 330 

�̅�𝑡(�̅�, 𝑧̅) = 10−2  (48) 331 

where �̅�𝑡  is defined in Eq. (24d), 𝑧̅  can be an arbitrary value of 0 ≤ 𝑧̅ ≤ 1  because 332 

�̅�𝑡(�̅�, 𝑧̅) is independent of 𝑧̅, and the value 10-2 causes an insignificant dimensional amplitude 333 

that is defined as 𝑄�̅�𝑠(�̅�, 𝑧̅)/(2𝜋𝑏𝐾𝑟) less than 1 mm for the practical ranges of 𝑏𝐾𝑟 ≥ 103 334 

m2/d and 𝑄 ≤ 102  m3/d (Rasmussen et al. 2003). The Mathematica function FindRoot is 335 

applied to solve Eq. (48) to determine the value of �̅�. Figure 4 shows the attenuation of the 336 

amplitude �̅�𝑡(�̅�, 𝑧̅) at 𝑧̅ = 0.5 for various values of γ in panel (a) and the curve of γ versus 337 

�̅�  calculated by Eq. (48) in panel (b). The greater value of γ causes smaller �̅�𝑡  and �̅� , 338 

indicating that higher frequency of oscillatory pumping, larger aquifer storage or lower aquifer 339 

horizontal conductivity leads to smaller amplitude of groundwater fluctuation and smaller 340 

radius of influence. When 𝛾 > 2.8 × 10−2, the largest dimensionless amplitude at the rim of 341 

the pumping well is less than 10−2  (i.e., �̅�𝑡(1, 𝑧̅) < 10−2 ). The magnitude of �̅�  can 342 

therefore be considered as unity. The changes in κ and σ cause insignificant effect on the 343 

estimates of �̅�𝑡 and �̅�. The magnitude of α related to wellbore storage effect will be discussed 344 

in the next section. With the Mathematica function Fit, the relation between �̅� and γ can be 345 

approximated as 346 
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log10 �̅� = {
∑ 𝑐𝑘(log10 𝛾)𝑘6

𝑘=0  for  10−6 ≤ 𝛾 ≤ 2.8 × 10−2

0  for  𝛾 > 2.8 × 10−2       (49) 347 

where c0 = −4.13203, c1 = −2.83369, c2 = 0.56905, c3 = 0.65943, c4 = 0.18209, c5 = 0.02147 348 

and c6 = 9.33152 × 10−4. It serves as a handy tool of estimating �̅� within which observation 349 

wells can receive signal from an oscillatory pumping well. 350 

3.3. Effect of wellbore storage on head fluctuation 351 

The effect of wellbore storage is dominated by the magnitude of α accounting for variation in 352 

the well radius. This section discusses the discrepancy due to assuming an infinitesimal radius. 353 

Figure 5 demonstrates the hydraulic head predicted by the present pseudo-steady state solution, 354 

Eq. (26), for α = 10-2, 10-1, 1, 10, 102 and 103 at (a) �̅� = 1 at the rim of the pumping well and 355 

(b) �̅�  = 16 away from the well. The Dagan and Rabinovich (2014) solution assuming an 356 

infinitesimal radius is taken for comparison. For the case of �̅� = 1, Fig. 5(a) indicates that the 357 

predicted dimensionless amplitude increases with decreasing α and remains constant when α 358 

≤ 10-1. The Dagan and Rabinovich (2014) solution gives an overestimate of dimensionless 359 

amplitude because of neglecting the wellbore storage effect. This result differs from the finding 360 

of Papadopulos and Cooper (1967) that the effect is ignorable for a large time of a constant-361 

rate pumping test (i.e., 𝑡 > 2.5 × 102𝑟𝑐
2/(𝐾𝑟𝑏)). For the case of �̅� = 16 (or �̅� ≥ 16), both 362 

solutions agree well when α ≤  10, indicating that the wellbore storage effect gradually 363 

diminishes with distance from the pumping well. The effect should therefore be considered in 364 

OPT models especially when observed hydrulic head data are taken close to the pumping well. 365 

3.4. Sensitivity analysis  366 

The normalized sensitivity coefficient 𝑆𝑖 defined as Eq. (44) with 𝑋 = ℎexp(𝑟, 𝑧, 𝑡) in Eq. 367 

(24b) is displayed in Fig. 6 for the response of exponential decay to the change in each of 368 

parameters Kr, Kz, Ss, Sy and ω with ω = (a) 2π/60 s-1 and (b) 2π/30 s-1. The figure indicates that 369 

exponential decay is very sensitive to variation in each of Kr, Kz, Ss and ω because of |𝑆𝑖| > 0. 370 

Precisely, a positive perturbation in Kr, Ss, and ω produces an increase in the magnitude of 371 

ℎexp(𝑟, 𝑧, 𝑡) while that in Kz causes a decrease. It is worth noting that the coefficient 𝑆𝑖 for Sy 372 
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is very close to zero over the entire period of time, indicating that ℎexp(𝑟, 𝑧, 𝑡) is insensitive 373 

to the change in Sy and the subtle change of gravity drainage has no influence on the exponential 374 

decay. In addition, the sensitivity curves of Kz and Ss are symmetrical to the horizontal axis, 375 

implying that these two parameters are highly correlated (Yeh and Chen, 2007). On the other 376 

hand, the spatial distributions of the normalized sensitivity coefficient 𝑆𝑖 defined in Eq. (44) 377 

with 𝑋 = 𝐴𝑡(𝑟, 𝑧) in Eq. (24d) are shown in Fig. 7 for SHM amplitude in response to the 378 

changes in parameters Kr, Kz, Ss, Sy and ω for ω = (a) 2π/60 s-1 and (b) 2π/30 s-1. The figure 379 

also indicates that 𝐴𝑡(𝑟, 𝑧) is sensitive to the change in each of Kr, Kz, Ss and ω but insensitive 380 

to the change in Sy. From those discussed above, we can conclude that the changes in the four 381 

key parameters Kr, Kz, Ss and ω significantly affect OPT model prediction, but the change in Sy 382 

doesn’t. 383 

3.5. Application of the present solution to field experiment 384 

Rabinovich et al. (2015) conducted a field OPT in an unconfined aquifer at the BHRS. The 385 

aquifer contains a mix of sand, gravel and cobble sediments with 20 m averaged thickness. The 386 

aquifer bottom is a clay confining unit. The pumping well fully penetrating the aquifer has 10 387 

cm inner diameter and 11.43 cm outer diameter of PVC casing. The pumping rate can be 388 

approximated as Q sin(𝜔𝑡) with Q = 5.8×10-5 m3/s and 𝜔 = 2π/24 s-1. The observation data 389 

of SHM representing time-varying hydraulic head at the pumping well after a certain period of 390 

time are plotted in Fig. 8. 391 

The aquifer hydraulic parameters Kr, Kz, Ss, and Sy can be determined by the pseudo-steady 392 

state solutions, Eqs. (38a) and (43a), coupled with the Levenberg–Marquardt algorithm 393 

provided in the Mathematica function FindFit (Wolfram, 1991). Define the residual sum of 394 

square (RSS) as RSS = ∑ 𝑒𝑖
2𝑚

𝑖=1  and the mean error (ME) as ME =
1

𝑚
∑ 𝑒𝑖

𝑚
𝑖=1  where ei is the 395 

difference between predicted and observed hydraulic heads and m is the number of observation 396 

data (Yeh, 1987). The estimated parameters are Kr = 1.034×10-5 m/s, Kz = 1.016×10-5 m/s, Ss 397 

= 8.706×10-5 m-1, Sy = 5.708×10-3 with RSS = 1.184×10-3 m2 and ME = 0.5718 m for the case 398 
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of unconfined aquifers and Kr = 5.035×10-4 m/s, Ss = 1.40998×10-5 1/m with RSS = 7.454×10-399 

4 m2 and ME = 0.46683 m for the case of confined aquifers. The estimated Sy is less than two 400 

orders of the typical range of 0.01~0.3 (Freeze and Cherry, 1979), which accords with the 401 

findings of Rasmussen et al. (2003) and Rabinovich et al. (2015). One reason for an 402 

underestimated Sy may be because flow behaviors associated with OPT and constant-rate 403 

pumping test are different especially for a high frequency (i.e., ω). The moisture exchange was 404 

limited by capillary fringe between the zones below and upper the water table. Several 405 

laboratory researches have focused on this subject for a short period or high frequency of an 406 

oscillatory pumping test (e.g., Cartwright et al., 2003; 2005) and they confirmed that the values 407 

of Sy decreases more than two orders at small period of oscillation, compared with conventional 408 

instantaneous drainage.  409 

Rabinovich et al. (2015) reported Kr = 6.3833× 10-4 m/s, Ss = 9.22× 10-6 1/m, Sy = 410 

8.691×10-4 with RSS = 2.638 ×10-3 m2 and ME = 0.5955 m for the case of unconfined aquifers 411 

and Kr = 7.149×10-4 m/s, Ss = 1.214×10-5 1/m with RSS = 3.992×10-3 m2 and ME = 0.5958 m 412 

for the case of confined aquifers on the basis of the Dagan and Rabinovich (2014) solution. 413 

Our work provides smaller RSSs than theirs. This may be attributed to the fact that the present 414 

solution considers the effect of wellbore storage on the parameter determination. Figure 8 415 

displays agreement between the observation data and the head fluctuations predicted by the 416 

pseudo-steady state solution, Eq. (38a), for unconfined aquifers and Eq. (43a) for confined 417 

aquifers based on those estimated parameters. This indicates that the present solution is 418 

applicable to real-world OPT. 419 

4. Concluding remarks 420 

A variety of analytical solutions have been proposed so far, but little attention is paid to the 421 

combined effects of wellbore storage and initial condition before OPT. This study develops a 422 

new model for describing hydraulic head fluctuation due to OPT in unconfined aquifers. Static 423 

hydraulic head prior to OPT is regarded as an initial condition. An equation accounting for 424 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-199
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 26 April 2018
c© Author(s) 2018. CC BY 4.0 License.



 

19 

wellbore storage effect is specified at the rim of a finite-radius pumping well. A linearized free 425 

surface equation is considered as the top boundary condition. The analytical solution of the 426 

model is derived by the Laplace transform and finite integral transform. The sensitivity analysis 427 

of the head response to the change in each of hydraulic parameters is performed. The present 428 

solution can estimate aquifer hydraulic parameters when coupling the Levenberg–Marquardt 429 

algorithm and observation data. Our findings are summarized below: 430 

1. The transient solution of dimensionless hydraulic head is expressed as the sum of the 431 

exponential and harmonic functions of time (i.e., ℎ̅ = ℎ̅exp + ℎ̅SHM) in Eq. (24a) or (25a). 432 

The latter function can be replaced by the pseudo-steady state solution with error less than 433 

3%. 434 

2. The exponential function ℎ̅exp defined in Eq. (24b) or (25b) accounts for the effect of the 435 

initial condition of static groundwater prior to OPT. The effect diminishes when 𝑡̅ ≥ 𝑡�̅� 436 

that can be approximated by Eq. (47) for a fixed dimensionless frequency γ. Existing 437 

analytical solutions assuming SHM without the initial condition are applicable when the 438 

condition 𝑡̅ ≥ 𝑡�̅� is met. 439 

3. The magnitudes of α and �̅� dominate the influence of wellbore storage on predicted head 440 

fluctuation due to OPT. Neglecting the influence causes a significant overestimate of the 441 

amplitude of SHM at the pumping well (i.e., �̅� = 1) in spite of an extreme range 𝛼 ≤ 10−1 442 

for very small well radius. In contrast, the influence gradually diminishes with distance 443 

from the pumping well and is ignorable when �̅� ≥ 16 and 𝛼 ≤ 10. Existing analytical 444 

solutions assuming an infinitesimal radius can predict accurate head fluctuation when these 445 

two conditions are met. 446 

4. The dimensionless radius of influence �̅�  can be estimated by Eq. (49) with a 447 

dimensionless frequency γ. Observation wells should be located in the area of �̅� < �̅� for 448 

obtaining observable data of head fluctuations. 449 

5. The sensitivity analysis suggests that the changes in four parameters Kr, Kz, Ss and ω 450 
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significantly affect OPT model prediction but that in Sy doesn’t exert any effect. 451 
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Appendix A: Finite integral transform 529 

Applying the finite integral transform to the model of Eqs. (14) – (18) results in (Latinopoulos, 530 

1985) 531 

ℎ̃(𝛽𝑛) = ℑ{ℎ̂(𝑧̅)} = ∫ ℎ̂(𝑧̅) 𝐹𝑡
1

0
cos(𝛽𝑛𝑧̅) 𝑑𝑧̅ (A.1) 532 

𝐹𝑡 = (
2(𝛽𝑛

2+𝑎2𝑝2)

𝛽𝑛
2+𝑎2𝑝2+𝑎𝑝

)
0.5

 (A.2) 533 

where 𝛽𝑛 is the root of Eq. (19). On the basis of integration by parts, one can write 534 

ℑ {
𝜕2ℎ̂

𝜕�̅�2
} = ∫ (

𝜕2ℎ̂

𝜕�̅�2
 ) 𝐹(𝛽𝑛) cos(𝛽𝑛𝑧) 𝑑𝑧̅

1

0
= −𝛽𝑛

2ℎ̃ (A.3) 535 

Note that Eq. (A.3) is applicable only for the no-flow condition specified at 𝑧̅ = 0 (i.e., Eq. 536 

(17)) and third-type condition specified at 𝑧̅ = 1 (i.e., Eq. (16)). The formula for the inverse 537 

finite integral transform is defined as 538 

ℎ̂(𝑧̅) = ℑ−1{ℎ̃(𝛽𝑛)} = ∑ ℎ̃(𝛽𝑛)𝐹(𝛽𝑛)∞
𝑛=1 cos(𝛽𝑛𝑧̅) (A.4) 539 

Similarly, apply the transform to the model of Eqs. (27) – (31); one can have 540 

�̃�(𝛽𝑚) = ℑ{�̅�(𝑧̅)} = ∫ �̅�(𝑧̅) 𝐹𝑠
1

0
cos(𝛽𝑚𝑧̅) 𝑑𝑧̅ (A.5) 541 

where Fs is defined in Eq. (35); 𝛽𝑚 is the root of Eq. (36). It also has the property that 542 

ℑ {
𝜕2�̅�

𝜕�̅�2 } = ∫ (
𝜕2�̅�

𝜕�̅�2  ) 𝐹𝑠 cos(𝛽𝑚𝑧) 𝑑𝑧̅
1

0
= −𝛽𝑚

2 �̃� (A.6) 543 

Again, Eq. (A.6) is applicable only for the no-flow condition specified at 𝑧̅ = 0 (i.e., Eq. (30)) 544 

and third-type condition specified at 𝑧̅ = 1  (i.e., Eq. (29)). The inverse finite integral 545 

transform can be written as 546 

�̅�(𝑧̅) = ℑ−1{�̃�(𝛽𝑚)} = ∑ �̃�(𝛽𝑚)𝐹𝑠
∞
𝑚=1 cos(𝛽𝑚𝑧̅) (A.7) 547 
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Appendix B: Derivation of Eqs. (24a) – (24k) 548 

On the basis of Eq. (A.4) and taking the inverse finite integral transform to Eq. (22), one can 549 

have the Laplace-domain solution as  550 

ℎ̂(�̅�, 𝑧̅, 𝑝) = 2 ∑ ℎ̃(�̅�, 𝛽𝑛, 𝑝) cos(𝛽𝑛𝑧̅)∞
𝑛=1             (B.1) 551 

with 552 

ℎ̃(�̅�, 𝛽𝑛, 𝑝) = ℎ̂1(𝑝) ∙ ℎ̂2(𝑝) (B.2) 553 

ℎ̂1(𝑝) =
𝛾

(𝑝2+𝛾2)
 (B.3) 554 

ℎ̂2(𝑝) = −𝜑1𝜑2 (B.4) 555 

𝜑1 = sin 𝛽𝑛 𝐾0(�̅�𝜆)/ (𝛽𝑛(𝑝𝛼𝐾0(𝜆) + 𝜆𝐾1(𝜆))) (B.5) 556 

𝜑2 = (𝛽𝑛
2 + 𝑎2𝑝2)/(𝛽𝑛

2 + 𝑎2𝑝2 + 𝑎𝑝) (B.6) 557 

where 𝜆 is defined in Eq. (23). Using the Mathematica function InverseLaplaceTransform, the 558 

inverse Laplace transform for ℎ̂𝑝1(𝑝) in Eq. (B.3) can be obtained as 559 

ℎ̂1(𝑡̅) = sin(𝛾 𝑡̅) (B.7) 560 

The inverse Laplace transform for ℎ̂𝑝2(�̅�, 𝛽𝑛, 𝑝) in Eq. (B.4) is defined as 561 

ℎ̂2(𝑡)̅ =
1

2𝜋𝑖
∫ ℎ̂2(𝑝) 𝑒𝑝�̅�𝑑𝑝

𝜉+𝑖∞

𝜉−𝑖∞
 (B.8) 562 

where 𝜉 is a real number being large enough so that all singularities are on the LHS of the 563 

straight line from (𝜉, −𝑖∞)  to (𝜉, 𝑖∞)  in the complex plane. The integrand ℎ̂2(𝑝)  is a 564 

multiple-value function with a branch point at 𝑝 = −𝜇𝛽𝑛
2 and a branch cut from the point 565 

along the negative real axis. In order to reduce ℎ̂2(𝑝) to a single-value function, we consider 566 

a modified Bromwich contour that contains a straight line AB̅̅ ̅̅ , CD̅̅ ̅̅  right above the branch cut 567 

and EF̅̅̅̅  right below the branch cut, a semicircle with radius R, and a circle 
⌒
DE with radius ε 568 

in Fig. A1. According to the residual theory and the Bromwich integral, Eq. (B.8) becomes 569 

ℎ̂2(𝑡)̅ + lim
ε→0

𝑅→∞

1

2𝜋𝑖
[∫ ℎ̂2(𝑝) 𝑒𝑝�̅�𝑑𝑝

𝐶

𝐵
+ ∫ ℎ̂2(𝑝) 𝑒𝑝�̅�𝑑𝑝

𝐷

𝐶
+ ∫ ℎ̂2(𝑝) 𝑒𝑝�̅�𝑑𝑝

𝐸

𝐷
+570 

                ∫ ℎ̂2(𝑝) 𝑒𝑝�̅�𝑑𝑝
𝐹

𝐸
+ ∫ ℎ̂2(𝑝) 𝑒𝑝�̅�𝑑𝑝

𝐴

𝐹
] = 0 (B.10) 571 
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where zero on the RHS is due to no pole in the complex plane. The integrations for paths 
⌒
BA 572 

(i.e. ∫ ℎ̂2(𝑝) 𝑒𝑝�̅�𝑑𝑝
𝐶

𝐵
+ ∫ ℎ̂2(𝑝) 𝑒𝑝�̅�𝑑𝑝

𝐴

𝐹
 ) with 𝑅 → ∞  and 

⌒
DE  (i.e. ∫ ℎ̂2(𝑝) 𝑒𝑝�̅�𝑑𝑝

𝐸

𝐷
 ) with 573 

ε → 0  equal zero. The path CD̅̅ ̅̅   starts from 𝑝 = −∞  to 𝑝 = −𝜇𝛽𝑛
2  and EF̅̅̅̅   starts from 574 

𝑝 = −𝜇𝛽𝑛
2 to 𝑝 = −∞. Eq. (B.10) therefore reduces to 575 

ℎ̂2(𝑡)̅ = −
1

2𝜋𝑖
(∫ ℎ̂2(𝑝+)𝑒𝑝+�̅�𝑑𝑝

−𝜇𝛽𝑛
2

−∞
+ ∫ ℎ̂2(𝑝−)𝑒𝑝−�̅�𝑑𝑝

−∞

−𝜇𝛽𝑛
2 ) (B.11) 576 

where 𝑝+ and 𝑝− are complex numbers right above and below the real axis, respectively. 577 

Consider 𝑝+ = 𝜁𝑒𝑖𝜋 − 𝜇𝛽𝑛
2 and 𝑝− = 𝜁𝑒−𝑖𝜋 − 𝜇𝛽𝑛

2 in the polar coordinate system with the 578 

origin at (−𝜇𝛽𝑛
2, 0). Eq. (B.11) then becomes 579 

ℎ̂2(𝑡)̅ =
−1

2𝜋𝑖
∫ ℎ̂2(𝑝+)𝑒𝑝+�̅�𝑑𝑝 − ℎ̂2(𝑝−)𝑒𝑝−�̅�𝑑𝜁

∞

0
          (B12) 580 

where 𝑝+ and 𝑝− lead to the same result of 𝑝0 = −𝜁 − 𝜇𝛽𝑛
2 for a given 𝜁; 𝜆 = √𝑝 + 𝜇𝛽𝑛

2 581 

equals 𝜆0 = √𝜁𝑖  for 𝑝 = 𝑝+  and −𝜆0  for 𝑝 = 𝑝− . Note that ℎ̂2(𝑝+) 𝑒𝑝+�̅�  and 582 

ℎ̂2(𝑝−) 𝑒𝑝−�̅� are in terms of complex numbers. The numerical result of the integrand in Eq. 583 

(B.12) must be a pure imaginary number that is exactly twice of the imaginary part of a complex 584 

number from ℎ̂2(𝑝+) 𝑒𝑝+𝑡  with 𝑝+ = 𝑝0  and 𝜆 = 𝜆0 . The inverse Laplace transform for 585 

ℎ̂2(𝑝) can be written as 586 

ℎ̂2(𝑡)̅ =
−1

𝜋
∫ Im(𝜑1𝜀2 𝑒𝑝0�̅�)

∞

0
𝑑𝜁 (B.13) 587 

where 𝑝 = 𝑝0; 𝜆 = 𝜆0; 𝜑1 and 𝜀2 are respectively defined in Eqs. (B.5) and (24i); Im(-) 588 

represents the numerical imaginary part of the integrand. According to the convolution theory, 589 

the inverse Laplace transform for ℎ̃(�̅�, 𝛽𝑛, 𝑝) is 590 

ℎ̂(�̅�, 𝛽𝑛, 𝑡̅) = ∫ ℎ̂2(𝜏)
𝑡

0
ℎ̂1(𝑡̅ − 𝜏)𝑑𝜏 (B.14) 591 

where ℎ̅1(𝑡̅ − 𝜏) = sin(𝛾(𝑡̅ − 𝜏)) based on Eq. (B.7); ℎ̅2(𝜏) is defined in Eq. (B.13) with 592 

𝑡̅ = 𝜏. Eq. (B.14) can reduce to 593 

ℎ̂(�̅�, 𝛽𝑛, 𝑡̅) =
−1

𝜋
∫ Im (

𝜑1𝜀22(𝛾𝑒𝑝0�̅�−𝛾 cos(𝛾�̅�)−𝑝0 sin(𝛾�̅�))

𝑝0
2+𝛾2 )

∞

0
𝑑𝜁 (B.15) 594 
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Substituting ℎ̃(�̅�, 𝛽𝑛, 𝑝) = ℎ̂(�̅�, 𝛽𝑛, 𝑡̅)  and ℎ̂(�̅�, 𝑧̅, 𝑝) = ℎ̅(�̅�, 𝑧̅, 𝑡̅)  into Eq. (B.1) and 595 

rearranging the result leads to 596 

ℎ̅(�̅�, 𝑧̅, 𝑡̅) =
−2

𝜋
∑ ∫ cos(𝛽𝑛𝑧̅) Im(𝜀1𝜀2𝛾𝑒𝑝0�̅�)

∞

0
𝑑𝜁∞

𝑛=1 +597 

                      
2

𝜋
∑ ∫ cos(𝛽𝑛𝑧̅) Im(𝜀1𝜀2(𝛾 cos(𝛾𝑡̅) + 𝑝0 sin(𝛾𝑡̅)))

∞

0
𝑑𝜁∞

𝑛=1      (B.16) 598 

where 𝜀1 and 𝜀2 are defined in Eqs. (24h) and (24i); the first RHS term equals ℎ̅exp(�̅�, 𝑧̅, 𝑡̅) 599 

defined in Eq. (24b); the second term can be expressed as ℎ̅SHM(�̅�, 𝑧̅, 𝑡̅) defined in Eq. (24c). 600 

Finally, the complete solution is expressed as Eqs. (24a) – (24k). 601 
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Figures 602 

 603 

Figure 1. Schematic diagram for an oscillatory pumping test at a fully penetrating well of 604 

finite radius in an unconfined aquifer  605 
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 606 

Figure 2. Hydraulic head predicted by the transient solution expressed as ℎ = ℎexp + ℎSHM 607 

and the pseudo-steady state solution ℎs for unconfined aquifers 608 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-199
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 26 April 2018
c© Author(s) 2018. CC BY 4.0 License.



 

29 

  609 

Figure 3. The curve of dimensionless frequency 𝛾 of oscillatory pumping rate versus the 610 

dimensionless time at which hydraulic head fluctuation can be regarded as SHM611 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-199
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 26 April 2018
c© Author(s) 2018. CC BY 4.0 License.



 

30 

 612 

Figure 4. (a) Attenuation of dimensionless amplitude and (b) dimensionless radius of 613 

influence for different dimensionless frequency 𝛾 of oscillatory pumping rate for unconfined 614 

aquifers 615 
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 616 

Figure 5. Predicted Head fluctuations for (a) �̅� = 1 at the rim of the pumping well and (b) �̅� 617 

= 16 away from the well using the Dagan and Rabinovich (2014) solution and the present 618 

solution with different α related to wellbore storage effect for unconfined aquifers619 
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 620 

Figure 6. Temporal distributions of the normalized sensitivity coefficient Si associated with 621 

the exponential component defined in Eq. (24b) for parameters Kr, Kz, Ss, Sy and ω when ω = 622 

(a) 2π/60 s-1 and (b) 2π/30 s-1  623 
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 624 

Figure 7. Spatial distributions of the normalized sensitivity coefficient Si associated with 625 

SHM amplitude defined in Eq. (24d) for each of parameters Kr, Kz, Ss, Sy, and ω when ω = (a) 626 

2π/60 s-1 and (b) 2π/30 s-1 627 
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 628 

Figure 8. Comparision of field observation data with head fluctuations predicted by the 629 

pseudo-steady state solutions Eq. (38a) for unconfined aquifers and Eq. (43a) for confined 630 

aquifers 631 
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 632 

Figure A1. Modified Bromwich contour for the inverse Laplace transform to a multiple-value 633 

function with a branch point and a branch cut 634 
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