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Abstract. Groundwater is one of the crucial natural resources for economic development and environmental sustainability 

particularly in Alberta, Canada. In this study, we estimated groundwater storage in 11 major river basins across Alberta, 10 

Canada using a combination of remote sensing (Gravity Recovery and Climate Experiment-GRACE), in situ surface water 

data, and land surface modelling estimates (GWSAsat). We applied separate calculations for unconfined and confined 

aquifers, for the first time, to represent their hydrogeological differences. Storage coefficients for the individual wells were 

incorporated to compute the monthly in situ groundwater storage (GWSAobs). The GWSAsat from the two satellite-based 

products were compared with GWSAobs estimates. The estimates of GWSAsat were in good agreement with the GWSAobs in 15 

terms of pattern and magnitude (e.g., RMSE ranged from 2 to 14 cm). While comparing GWSAsat with GWSAobs, most of 

the statistical analyses provide mixed responses, however the Hodrick-Presscott trend analysis clearly showed a better 

performance of the GRACE-mascon estimate. The results showed trends of GWSAobs depletion in 5 of the 11 basins. Our 

results indicate that the precipitation played an important role in influencing the GWSAobs variation in 4 of the 11 basins 

studied. A combination of rainfall and snowmelt positively influence the GWSAobs in 6 basins. Water budget analysis 20 

showed an availability of comparatively lower terrestrial water in 9 of the 11 basins in the study period. Historical 

groundwater recharge estimates indicate a reduction of groundwater recharge in 8 basins during 1960-2009. The output of 

this study could be used to develop sustainable water withdrawal strategies in Alberta, Canada. 

1 Introduction 

Fresh water is an important resource for economic development and social sustainability around the world. Approximately, 25 

1.2 billion people live in water scarce areas across the globe (UN-Water/FAO, 2007). More than a billion people lack access 

to safe drinking water and this number is increasing due to an increasing population (Connor, 2015). However, the effects of 

climate change on glaciers and snowpack, and human activities, such as over-use and over-extraction of resources, can result 

in lowering water tables and groundwater depletion (Scanlon et al., 2016; Bhanja et al., 2017b). In situ monitoring of wells is 

the traditional approach for estimating groundwater storage. However, well monitoring is spatially not continuous and has a 30 
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high cost at a large region. There are only scant observation stations in some areas, especially in semi-arid and arid 

environments, or cold climate regions covered by glacier and snowpack, due to difficulties of access and monitoring. As a 

result, proper groundwater management and decision-making are hampered considerably by the scarcity of data. 

Remote sensing data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission could be used to 

estimate groundwater storage at a continuous and large scale across the globe, and offers a new opportunity for groundwater 5 

storage assessment (Rodell et al., 2007). Although the GRACE satellite mission currently provides global-scale data for the 

detection of temporal gravity changes (Tapley et al., 2004), these temporal gravity changes are not a direct measurement of 

groundwater storage. A relationship would have to be established between temporal gravity changes and groundwater 

storage variations through the continuously evolving algorithms (Watkins et al., 2015). Estimates of groundwater storage 

using the remote sensing have been performed  around the globe (Swenson et al., 2006; Rodell et al., 2007; Strassberg et al., 10 

2007; Rodell et al., 2009; Tiwari et al., 2009; Scanlon et al., 2012; Shamsudduha et al., 2012; Voss et al., 2013; Bhanja et al., 

2014; Richey et al., 2015; Panda and Wahr, 2016; Bhanja et al., 2016; Chen et al., 2016; Long et al., 2016; Bhanja et al., 

2017b; Bhanja et al., 2018). Huang et al. (2016) used remote sensing data for computing the groundwater storage anomalies 

(GWSA) in order to estimate groundwater storage in Alberta. They used ground water levels at 36 wells, mostly confined to 

the southern Alberta region, and were correlated with both the GRACE total water storage (TWS) and groundwater storage 15 

(GWS) variations. Then they compared the TWS with groundwater levels instead of the groundwater storage and without 

considering surface water data due to the lack of available high resolution data. 

Recent studies (e.g. Huang et al., 2015; Nanteza et al., 2017) have considered both confined and unconfined aquifers for in 

situ GWSA computation but they have not separated the data from the two types. The two types of aquifers have different 

recharge and storage patterns. Confined aquifers are overlain by relatively impermeable rock or clay, which limits vertical 20 

water infiltration, while in unconfined aquifers, vertical water infiltration can occur from precipitation, snowmelt, surface 

water etc. The two types of aquifers are also responding differently with effect from pumping (Alley et al., 1999). Therefore, 

these should be studied separately for estimating groundwater storage at a region. Further, Rodell et al. (2007) indicated the 

importance of surface water factors in the GWSA estimation and sought for inclusion of surface water storage variations in 

GWSA disaggregation. They also pointed out the importance of separating contributions to temporal mass variability using 25 

auxiliary observations and numerical models when estimating groundwater storage changes in large scale regions. In cold 

climate regions, such as in Alberta, the surface water could make a significant contribution to groundwater storage variations 

due to the effects of climate change on snowpack, glaciers, permafrost, and wetlands. Therefore, more efforts are required to 

properly evaluate groundwater storage for aquifer storage coefficients in transforming groundwater level information to 

groundwater storage in cold climate regions (Feng et al., 2013). The main objectives of this study are: 30 

1. To investigate the long term groundwater storage conditions in cold climate regions, such as the 11 river basins in 

Alberta, Canada, by combining all of the processing steps, such as the surface water storage estimates.  
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2. To validate the remote sensing estimates from two different remote sensing products using the maximum available 

in situ observation well data. The in situ groundwater storage has been estimated by combining the storage 

coefficients and aquifer thickness (for confined aquifers) with the water table fluctuation. 

3. To find the role of natural hydrological components (e.g. precipitation, snowmelt, evapotranspiration) for 

influencing groundwater storage variations. We have also studied long-term groundwater recharge trends from a 5 

global-scale hydrological model for inferring long-term variabilities in groundwater recharge rates. 

2 Materials and Methods 

2.1 Study area 

This study has been conducted in the major river basins (the map has been made following Lemay and Guha, 2009; AEP, 

2011; AEP, 2017) within the province of Alberta (Figure 1a, 1b). The Peace River basin is the largest basin in the province, 10 

followed by the Athabasca River basin and Hay River basin, respectively (Table 1). Most parts of the study region have been 

characterized as the cold climate region (Peel et al., 2007). Basin-scale, annual average precipitation varies within 330 to 570 

mm/year (Table 1). We used Global Land Cover Facility (GLCF) native resolution data (resolution: ~460 m × 460 m; 

www.landcover.org) for characterizing land cover (Channan et al., 2014). Most of the land areas in Alberta are covered by 

natural vegetation (i.e. Forest, Shrubland, mixture of Shrub and Grassland (MSG), and Grassland; Figure 1c, Table S1). The 15 

second most prevalent land-cover type is cropland (Figure 1c, Table S1). Surface water bodies (water and permanent 

wetland) cover less than 6% of the area of all the river basins (Figure 1c, Table S1).  

We used monthly mean precipitation data from the archives of the Climatic Research Unit (CRU), University of East Anglia. 

The quality controlled, gridded 0.250 × 0.250, monthly mean TS4.0 total precipitation products are used here (Harris et al., 

2014). The precipitation-gauge based data was collected through the World Meteorological Organization (WMO), National 20 

Oceanographic and Atmospheric Administration (NOAA), as well as other international and national agencies across the 

globe for preparing this dataset (Harris et al., 2014). The precipitation data are spatially averaged in order to provide basin-

scale data. CRU data have been found to have the best match of other available products while comparing with in situ 

precipitation measurements in China (Zhao and Fu, 2006). Precipitation data exhibits temporal as well as spatial variations in 

the study period with values of 150 mm/year to >1000 mm/year (Figure 2). In general, the lowest precipitation has been 25 

observed in 2004 and the highest in 2010 (Figure 2). Spatially averaged basin-scale precipitation values indicate the highest 

precipitation rates prevail in the North Saskatchewan River basin (basin 4, 573 mm/year; Table 1) and lowest rates prevail in 

the South Saskatchewan River basin (basin 9, 334 mm/year; Table 1). Precipitation rates are highly seasonal in Alberta 

(Figure 3). 



4 
 

2.2 In situ measurements of groundwater storage 

Groundwater level (GWL) depth data are obtained from the Alberta Environment and Parks, Government of Alberta 

(http://environment.alberta.ca/apps/GOWN/#). Daily GWL depth data are obtained for 470 monitoring wells distributed 

across the province of Alberta. Out of 470 available groundwater level monitoring locations, data recording intervals in 

approximately two third of the wells are intermittent during the study period. Therefore, we applied a filter of at least 80% of 5 

the temporal data availability at any locations for their further usage in our analyses within the study period 2003-2015, 

resulting in the use of GWL data from 157 measurement locations. Daily GWL information is converted to monthly GWL at 

individual locations. Because of the differences in GWS variations within different types of aquifers, these wells need to be 

classified as unconfined, semi-confined and confined. Out of the 157 measurement locations used in the study, 24 are located 

in unconfined aquifers, 17 are located within semi-confined aquifers, 100 are located within confined aquifers and 16 are 10 

unclassified (Figure 1d). Basin-wide details of distribution of wells are provided in Table S2. The screen depth of the wells 

varies from 6 m to 220 m (Figure 1e). The wells located in unclassified or semi-confined aquifers are characterized as either 

confined or unconfined based on their location hydrogeology and screen depth. For example, a well screened at a semi-

confined aquifer with shallower depth and underlain by permeable materials, can be classified as an unconfined aquifer for 

storage calculations and vice versa. 15 

We have studied the subsurface hydrogeology in detail using well-specific lithology information from the Alberta 

Environment and Parks, Government of Alberta (http://environment.alberta.ca/apps/GOWN/#). In order to compute 

groundwater storage anomalies (GWSAobs) in an unconfined aquifer, the GWSA needs to be accurately represented using the 

storage coefficients of the aquifer (Scanlon et al., 2012). We have followed the equation (Todd and Mays, 2005; Bhanja et 

al., 2017a): 20 

GWSAobs = (hm × Sy - hi × Sy)      (1) 

Where, hm and hi represent the mean GWL depth and GWL depths at different time periods at a location; Sy represents the 

specific yield of the aquifer. Sy is assigned to the individual data based on the specific yield of the geologic material in its 

screen position. Specific yield data corresponding to a specific geologic material are presented in Table S3. 

GWSAobs in a confined aquifer have been estimated following the equation (Todd and Mays, 2005): 25 

GWSAobs = (hm × Ss × b - hi × Ss × b)     (2) 

Where, Ss is the specific storage and b is the thickness of the aquifer. Ss of a material varies over a wide range, the details of 

material-specific Ss are provided in Table S4. Thickness of the aquifer for the individual aquifer units is obtained from the 

Alberta Environment and Parks, Government of Alberta. The data are assigned to individual wells based on their screening 

zone and thickness of the particular aquifer unit. 30 
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2.3 Surface water storage processing 

Surface water level daily time-series are obtained (n= 393) from the Water Office, Government of Canada 

(wateroffice.ec.gc.ca) for the study region. After rearranging the data based on near-continuous data availability, we used 65 

locations with > 80% of the data availability range. The data are temporally averaged at each location for estimating monthly 

mean values. The number of locations that fall within each of the river basins are spatially averaged to obtain the month-5 

scale spatially averaged surface water anomaly. The surface water coverage fraction varies over the study region (Figure 1c 

and Table S1). In order to get realistic surface water storage variations, surface water area fractions have been multiplied 

with the spatially averaged surface water anomaly in each river basin. 

2.4 Gravity recovery and climate experiment (GRACE) 

We have obtained the monthly mean liquid water equivalent thickness, 10 × 10 gridded data from the archives of the National 10 

Aeronautics and Space Administration’s (NASA) Jet Propulsion Laboratory (JPL). JPL-mascon solutions, version RL05, 

was used for 137 months (the data were not available for some of the months, details can be found in Watkins et al., 2015) 

between January 2003 and April 2015. The GRACE mission observes changes in gravity in the Earth’s subsurface and 

provide the data on a continuous basis. The gravity change information has been processed further in order to obtain the 

terrestrial water storage (TWS) change data (details can be found here: http://grace.jpl.nasa.gov/data/get-15 

data/jpl_global_mascons/ accessed on 14 November, 2017). Satellite Laser Ranging (SLR) has been incorporated for 

estimating degree 2 and order 0 coefficients (Cheng and Tapley, 2004). Processes to improve the geocenter correction have 

been reported by Swenson et al. (2008). The Glacial isostatic adjustment (GIA) related post glacial rebound signals are 

removed using the process by Geruo et al. (2013). In the mascon approach, the entire globe is characterized as equally-

spaced 30 spherical mass concentration blocks (Watkins et al., 2015). In order to improve the TWS estimates, scale factors 20 

provided with the data are multiplied (Bhanja et al., 2016). Scale factors are estimated in order to improve the performance 

of the TWS estimates. 

The spherical harmonics (SH) related TWS information has been obtained for 137 months (between January 2003 and April 

2015) from the NASA JPL archive. We used 10 × 10 gridded RL05 data sets of SH solutions (Landerer and Swenson, 2012). 

Three independent solutions from the Center for Space Research at the University of Texas at Austin, the NASA JPL, and 25 

the German Space Agency (GFZ), were retrieved and combined to use in this study. Like the mascon approach, several 

similar techniques are applied to obtain the TWS change in the SH approach (Source: http://grace.jpl.nasa.gov/data/get-

data/monthly-mass-grids-land/ accessed on 14 November, 2017). Errors associated with N-S stripes in the TWS data are 

removed using a destriping filter. A Gaussian filter at 300-km width is also applied to the data. In order to improve the TWS 

estimates, the scale factor provided with the data are multiplied (Bhanja et al., 2016). 30 

One advantage of the mascon approach is the introduction of a priori information that leads to the removal of correlated 

noise (stripes) in the data. As a result, post-processing filters are not required to be applied (Watkins et al., 2015). TWS data 



6 
 

obtained from the mascon approach are less dependent on scale factors for estimating basin-scale mass change estimates 

(Watkins et al., 2015). 

2.5 Estimating groundwater storage from remote sensing and global models 

Satellite-based groundwater storage anomalies (GWSAsat) are estimated using a mass balance approach after removing other 

components of the hydrological cycle from the TWSA. These components include soil moisture anomaly (SMA), anomalies 5 

in snow water equivalents (SNA), and anomalies in surface water variations (SWA). Anomalies are estimated after removing 

the all-time mean value from the individual monthly values for all of the components. Soil moisture and snow water 

equivalents data were retrieved from NASA’s Global Land Data Assimilation System (GLDAS) (Rodell et al., 2004) for 148 

months in the study period. The GLDAS include observation data from satellite sensors and ground-based measurements in 

order to improve the simulation output (Rodell et al., 2015). Bhanja et al. (2016) reported better GWSA estimates while 10 

using a combination of data from simulations of three different land surface models (LSM), comparing the use of any single 

model’s output. We also used a combined estimate from the outputs of the Community Land Model (CLM), Variable 

Infiltration Capacity (VIC), and Noah (Rodell et al., 2004). Surface water variation plays an important role in estimating 

GWSA. We have computed the surface water variations using in situ data, described in section 2.3. GWSA can be estimated 

using the following equation: 15 

GWSAsat = TWSA – SMA – SNA – SWA   (3) 

2.6 Groundwater recharge from global-scale hydrological model 

In order to find the historical groundwater recharge pattern, we used a global-scale hydrological model, WaterGAP (version 

2.2) (Döll et al., 2014) to estimate long-term groundwater recharge data (1960-2009). The WaterGAP simulates global-scale 

water storage and transport including human water use and groundwater recharge from surface water bodies at 0.50 × 0.50 20 

resolution (Döll et al., 2014). Water withdrawal from both groundwater and surface water have also been considered. We 

used a combination of diffuse groundwater recharge and recharge from the surface water bodies, which we termed as “total 

groundwater recharge”. As the WaterGAP simulation consider simple water balance approach for groundwater recharge 

estimation, uncertainties may arise as a function of groundwater table gradient (Döll et al., 2014). Furthermore, increasing 

groundwater recharge from surface water bodies as a function of groundwater withdrawal, has not been considered here 25 

(Döll et al., 2014). More information on model processes, data used and other details can be found in Döll et al. (2014).  

2.7 Statistical approaches 

In order to compare the datasets using statistically robust techniques, we have used the root mean square error (RMSE), 

Pearson’s correlation, skewness, kurtosis, and the coefficient of variation. RMSE has been used to show the departures from 

the true (in situ estimates here) value (Helsel and Hirsch, 2002). The trend analyses are based on the linear regression 30 

analysis. In order to represent the non-linearity present within the data, we used the Hodrick-Prescott (HP) filter (Hodrick 
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and Prescott, 1997), a non-parametric, non-linear trend analysis. The HP filter employs a specific approach for separating 

trend (Tt) and cycle (ct) components in the data (yt). 

yt = Tt + ct       (4) 

In order to estimate the trend and cycle separately, the HP filter solves the following equation (Hodrick and Prescott, 1997): 

Min (T) � ((y� − ��)� + ((���� −  ��) − (�� −  ����))��

���
  (5) 5 

Where Tt+1 and Tt-1 represents the trend component with time steps of t+1 and t-1, respectively. The long term average of the 

cyclical components is close to zero (Hodrick and Prescott, 1997). The smoothing parameter () is a positive number that 

reduces the variability within cyclical components (Hodrick and Prescott, 1997). The value of  was chosen to be 14400 for 

monthly data (Hodrick and Prescott, 1997; Ravn and Uhlig, 2002). 

2.8 Assumptions and limitations 10 

On the basis of data availability, we have not included the entire extent of the river basins (Figure 1a) in the current analysis. 

The river basins are selected based only on their geopolitical extent in the province of Alberta (Figure 1b). For in situ 

estimates, GWSA information is spatially averaged for providing the basin’s GWSA estimates and also to compare them 

with the satellite-based estimates following Bhanja et al. (2017a) and Scanlon et al. (2018) etc. The time-period of the study 

is restricted by the availability of data. Separation of GWSA signals from TWSA by removing all other components is a 15 

challenging task due to the lack of in situ measurements of other components and the large uncertainties associated with 

LSM simulated products (Scanlon et al., 2015). We have shown the satellite-based estimates for all of the basins, however, 

users should be cautious to use GRACE data in the smallest basins. This is because GRACE’s native resolution could not 

allow users to directly use the data for smaller basins. Other processes, such as, the use of GRACE and integrated land 

surface model’s operation could make the data available to use for smaller basins (Landerer and Swenson, 2012; Watkins et 20 

al., 2015). Data processing methods Proposed by Dutt Vishwakarma et al. (2016) could be used to make the data available 

for smaller basins with GRACE-SH products.  

3 Results and Discussions 

3.1 Groundwater storage anomalies 

In situ GWSA (GWSAobs) values ranged from -30 to 30 cm in all of the basins, with the highest fluctuations observed in 25 

basin 7. GWSAobs exhibits near zero values in basins 5, 6, 10 and 11 (Figure 3). GWSAobs magnitudes in different basins can 

arise as a result of diversity in specific yield values in the underlying material (Table S3). In situ estimates show seasonality, 

i.e. variations with precipitation rates etc., in basin 7. Trends in the GWSAobs show decreasing GWSA between 2003 and 

2015 in basins 2, 3, 7, 8 and 9 (Table 1). The results indicate that GWSAobs depletion is in the range of -0.20 in basins 2 and 

3. It is interesting to note that the basins 7, 8 and 9 are composed of >25% cropland (Table S1). Basin 3 has been subjected 30 
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to the highest amount of licensed groundwater withdrawal allocation in Alberta (basin 3 accounts for 39% of the total 

groundwater usage in Alberta). On the other hand, an increasing trend has been observed in the remaining basins (Table 1). 

One probable cause for the groundwater table increase in these basins could be related to precipitation variability. The study 

region has been subjected to large-scale drought during 1999-2005 (Hanesiak et al., 2011). As a result, the TWS recovery in 

2004-2007 has also been observed by Lambert et al. (2013). 5 

Another important factor influencing groundwater recharge as well as the groundwater storage, is the snowmelt processes 

prevailing in cold regions during the onset of spring-summer. The river basins have been receiving substantial amount of 

snowfall during winter months (Figure 3). This leads to snow accumulation in the region. At the end of winter season, 

snowmelt processes are majorly accounting for our observation of increasing GWSA in April onwards (Figure 3). The 

observation is in line with the observations from the earlier studies conducted within the study region (Hayashi and Farrow, 10 

2014; Hood and Hayashi, 2015). Comparatively higher rates of precipitation during summer months and the snowmelt 

during the start of the summer season, are the major processes responsible for the observation of higher GWSA during 

summertime at the entire study region (Figure 3).  

GWSAobs values from the unconfined aquifers reflect higher magnitude than that in the confined aquifers (Figure S1). This is 

because of the intrinsic property of the different types of aquifers. For instance, dewatering from the saturated zone during a 15 

pumping event, is mainly responsible for the release of water in unconfined aquifer (Alley et al., 1999). On the other hand, a 

net decrease in groundwater potential and associated reduction in water pressure have been occurred during a pumping event 

in a confined aquifer. The indigenous water expands slightly due to the decrease in water pressure, leading to slight 

compression in the aquifer material (Alley et al., 1999). This can explain why the groundwater storage change in the 

confined aquifers are comparatively lower than that in the unconfined aquifers. 20 

Remote sensing estimates of GWSA (GWSAsat) using the two different assessments, GRACE-MS and GRACE-SH 

approaches, show temporal variations ranging from -20 to 20 cm. However, the seasonal amplitudes are not similar in 

different basins (Figure 3). In general, the magnitude of the GWSAsat compares well with that of the GWSAobs (Figure 3). 

GWSAsat exhibits large amplitudes in basins 4, 7 and 8 (Figure 3). In general, the GWSAsat estimates from the two products 

match well with the observed estimates (Figure 3). The estimations are in line with the values reported for the Mackenzie 25 

River basin by Scanlon et al. (2018). Overall, the two satellite based estimates are found to be closely matching with one 

another, detailed comparisons are provided in section 3.2.  

3.2 Comparison between observed and satellite-based GWSA 

Deviations from the observed values are measured by the root mean squared error (RMSE) that combines both bias and lack 

of precision (Helsel and Hirsch, 2002). The RMSE estimates show a good match of satellite-based GWSA estimates in 30 

comparing the in situ estimates. RMSE was found to be within 5 cm in most of the basins (Figure 4a). In general, both of the 

satellite-based estimates exhibit similar RMSE in basins 2, 3, 5, 6 and 11 (Figure 4a). Pearson’s correlation coefficient (r) 

provides information on the linear association between the two variables (Helsel and Hirsch, 2002). Comparing the two 
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products, correlation coefficients are found to be higher for the MS product in most of the basins (Figure 4b). Skewness has 

been used to represent the symmetricity in the data distribution (Helsel and Hirsch, 2002) and kurtosis has been used to 

represent the tail length of data distribution. Skewness and kurtosis have been used here in order to compare the GWSA 

estimates from the two satellite-based estimates with the in situ estimate. Comparing the two estimates, skewness and 

kurtosis analyses provide mixed results. For example, one product provides better results in some of the basins, the other in 5 

the remaining basins (Figure 4c, 4d). 

Data dispersion can be measured through the coefficients of variation (CV). In general, CV data are found to match well for 

the two satellite-based products and the in situ estimates (Figure 5). CV data shows mixed responses when comparing the 

two satellite-based estimates. Scatter analysis shows the characteristic of the relationship (i.e. linear, non-linear) between the 

two variables (Helsel and Hirsch, 2002). Scatter analysis results do not provide any distinct comparison between the MS, SH 10 

estimates and the in situ estimate (Figure 6). The in situ data contains signatures of individual wells and, as a result, are 

influenced by local-scale climatic, hydrogeologic, and anthropogenic responses. However, the satellite-based estimates are 

providing responses from a large region and may not be influenced by local-scale fluctuations (Bhanja et al., 2016). 

We used a non-parametric filtering (HP filter) approach for computing the trends in GWSA and compared the results with in 

situ estimates. HP trends of GWSAobs show the recent depleting trends in basins 1, 2, 3, 7 and 9 (Figure 7). In general, the 15 

HP trends of satellite-based estimates are relatively similar to each other. However, a comparatively better match of GWSA 

for the GRACE-MS product and in situ estimates has been observed in basins 4, 5, 6, 10 and 11. Significantly negative (p 

value <0.01) correlation has been observed for both estimates in basins 7, 8 and 9, which are subjected to irrigation with 

>25% land area coverage affected (Figure 1b and Table S1). 

3.3 Precipitation and snowmelt influence on GWSA 20 

In general, precipitation is the major controlling factor for variations in water storage (Scanlon et al., 2012). In this study, we 

have observed that GWSA values are not directly influenced by the precipitation pattern in some of the basins (Figure 8). 

The HP trend analysis shows a good match of GWSAobs with precipitation in basins 1 and 10 only (Figure 8, Table S5). 

GWSAobs trends are not following precipitation pattern in other basins (Figure 8, Table S5). The cross-correlation analysis 

between HP trends provide similar inferences (Table S5). In order to investigate the relationship with more detail, the 25 

Granger causality analyses (Granger, 1988) were performed with order 1 (insignificant results were found when other orders 

were used). Results show precipitation significantly (p value <0.01) causes GWSAobs in 4 of the 11 studied basins, basin 1, 5, 

7 and 11. The results were found to be insignificant or even negatively correlated in other basins (Table S5).  

A part of the precipitation, in particular, snowfall has little influence in modulating the groundwater storage, unless it is 

converted to snowmelt water. Therefore, we have studied the combined influence of rainfall and snowmelt water on 30 

GWSAobs without considering the direct snowfall amount. The rainfall and the snowmelt water data are retrieved from the 

three LSMs (CLM, VIC and Noah) in GLDAS archive and used in combination. Good match between rainfall and snowmelt 

water, and GWSAobs have been obtained in basins 1 and 11. Cross-correlation analyses indicate similar inference (Table S6). 
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Granger causality analyses (order 1) show the combined effect of rainfall and snowmelt water significantly causes GWSAobs 

in 6 basins: 1, 2, 5, 7, 9 and 11 respectively.  

3.4 GWSA and the natural water budget 

Observation of a non-significant relationship of precipitation, snowmelt water and GWS anomalies in most of the basins 

indicated the influence of other factors controlling GWS. In this aspect, the natural water availability for terrestrial water 5 

components (i.e. groundwater, surface water, soil moisture, etc.) have been studied by delineating the difference (DIFF) 

between precipitation (P) and evapotranspiration (ET) in another way, called the net precipitation flux (Syed et al., 2005; 

Rodell et al., 2015). Long et al. (2014) found outputs from LSMs provide the best ET estimates comparing in situ 

observations. We retrieved data from the simulation of the Noah land surface model, version 2.1, as a part of the GLDAS 

simulation (Rodell et al., 2004). The DIFF data exhibit negative values during summer months (Figure 9). Comparatively 10 

lower P and higher ET values are observed in the summer months, making the DIFF negative. The basin-wise DIFF values 

show reducing estimates in 9 of the 11 basins with the highest being observed in the Peace River basin (basin 2), where the 

DIFF estimate shows a net reduction of 0.41 km3 of water between 2003 and 2015 (Table 1). Reduction in DIFF values is 

putting stress on terrestrial water as well as groundwater conditions in the study region. We have studied the long-term 

(1960-2009) groundwater recharge occurrence from the global-scale model output because of unavailability of direct 15 

groundwater recharge measurement in the region. The simulated, historical total groundwater recharge was found to be 

negative in 8 out of 11 basins, suggesting a change in rechargeable water volume. Groundwater storage, being a combination 

of recharge from precipitation, snowmelt water and surface water bodies; the inter-aquifer flow, discharge to surface water 

bodies and the anthropogenic withdrawal, could be largely impacted from reductions of the first three terms. Increasing 

human activities linked with groundwater withdrawal could lead to severe groundwater stress if it continues uncontrolled. 20 

4 Conclusions 

A network of 157 daily groundwater monitoring wells was used to compute groundwater storage anomalies (GWSA) in 11 

major river basins in Alberta, Canada between January 2003 and April 2015. Well-specific hydrogeology information and 

separate treatment of the unconfined and confined aquifers were used for the calculation. Results show that the GWSA 

trends exhibit depletion in some of the basins that are dominated by anthropogenic groundwater withdrawal, either from 25 

irrigational use or domestic and industrial uses. A GWSA depletion rate has been observed as high as -0.20 cm/year in the 

Athabasca River basin. The GWSA estimates obtained from remote-sensing probes provided opportunities to evaluate 

groundwater conditions in remote, ungauged regions. We used two recently released satellite products for estimating 

GWSAsat in the studied basins. A combination of surface water measurements (n=393) and land surface model estimates of 

soil moisture and snow water equivalents were used. In general, the remote sensing estimates are in good agreement with 30 

that of the observed estimates, implying that remote sensing estimates could be used in future to monitor groundwater 
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storage in the region at a near-continuous rate. We have investigated the influence of precipitation and snowmelt water on 

GWSA variations. Results show that precipitation caused significant GWSA variations in 4 out of 11 studied basins. A 

combination of rainfall and snowmelt water causes significant GWSA variations in 6 basins, indicating prevalence of other 

factors for influencing GWSA in the remaining basins. Water budget analysis of terrestrial water availability show 

reductions of available water during the study period in 9 basins. Results indicate groundwater recharge rates have been 5 

decreasing from 1960-2009 in 8 of the basins studied. Outputs of this study may be used to frame sustainable water 

withdrawal strategies in Alberta, keeping in mind the available water for groundwater recharge. 
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Figure 1: Major river basins in Alberta, (a) full basin extent; (b) Alberta only; (c) dominant land cover types; (d) aquifer types 
represented through the studied wells; (e) depth of wells screened in Alberta, overlaid by basin boundaries 

http://dx.doi.org/10.1002/2014JB011547
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Figure 2: Annual precipitation rates (mm/year) in Alberta between 2003 and 2014 
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Figure 3: Basin-wide, monthly time-series of in situ GWSA (OBS, red squares), GWSA obtained using GRACE mascon product 
(MS, black filled circles) and GRACE SH products (SH, blue open circles), respectively. Monthly, spatial averaged precipitation 
data are shown using green columns 
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Figure 4: Basin-wide estimates of (a) RMSE; (b) correlation; (c) skewness and (d) kurtosis 
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Figure 5: Basin-wide coefficient of variation (CV) analysis for in situ GWSA (OBS, red squares), GWSA obtained using GRACE 
mascon product (MS, black filled circles) and GRACE SH products (SH, blue open circles), respectively 
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Figure 6: Basin-wide scatter analysis of in situ GWSA with the GWSA obtained using GRACE mascon product (MS, black filled 
circles) and GRACE SH products (SH, blue open circles), respectively 
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Figure 7: Basin-wide time-series of HP filter data for in situ GWSA (OBS, red squares), GWSA obtained using GRACE mascon 
product (MS, black filled circles) and GRACE SH products (SH, blue open circles), respectively. Pearson’s correlation coefficient 
values are provided in in-set and statistically significant (p value < 0.01) values are shown in bold font 
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Figure 8: Basin-wide time-series of HP filter data for in situ GWSA (OBS, red squares), precipitation data (green circles) and 
rainfall+snowmelt data (blue circles). Pearson’s correlation coefficient (r) values are provided in in-set and statistically significant 
(p value < 0.01) values are shown in bold font. rp and rrs indicate correlation between GWSA, and precipitation and 5 
rainfall+snowmelt, respectively 



23 
 

 

Figure 9: Basin-wide time-series of P – ET values. Positive values are shown in blue colour and negative values are shown in red 
colour 

Table 1: Details of the river basins used (within Alberta only), number of wells used, precipitation, GWSAobs trends (statistically 
significant (p value< 0.01) trend estimates are shown in bold font) and P - ET trends in 2003-2015 5 

Basin 

ID 

Basin name Ocean Basin Area (m2) Number 

of wells 

Precipitation 

(mm/year) 

GWSAobs 

trends 

(cm/year) 

P - ET 

trends 

(km3 in 

2003-2015) 

1 Hay River Basin Arctic 

Ocean 

66196942347 3 401 1.22 -0.17 

2 Peace River Arctic 213025952509 15 429 -0.19 -0.41 
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Basin Ocean 

3 Athabasca River 

Basin 

Arctic 

Ocean 

144499671762 8 508 -0.19 -0.17 

4 North 

Saskatchewan 

River 

Hudson 

Bay 

57046775461 21 573 0.21 -0.25 

5 Battle River 

Basin 

Hudson 

Bay 

36561280700 28 424 0.43 -0.06 

6 Red Deer River 

Basin 

Hudson 

Bay 

50024664775 21 425 0.12 -0.11 

7 Bow River 

Basin 

Hudson 

Bay 

25639800168 15 546 -0.04 -0.08 

8 Oldman River 

Basin 

Hudson 

Bay 

27023265616 10 486 -0.08 -0.03 

9 South 

Saskatchewan 

River Basin 

Hudson 

Bay 

13504374212 6 334 -0.10 -0.01 

10 Milk River 

Basin 

Hudson 

Bay 

11833516877 9 353 0.52 0.00 

11 Beaver River 

Basin 

Hudson 

Bay 

16904014071 21 469 0.24 0.01 
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