
1 

 

Explorative Analysis of Long Time Series of Very High Resolution 

Spatial Rainfall  

Emma Dybro Thomassen1, Hjalte Jomo Danielsen Sørup1, Marc Scheibel2, Thomas Einfalt3, Karsten 

Arnbjerg-Nielsen1 

1Department of Environmental Engineering, Technical University of Denmark, Lyngby, 2800, Denmark 5 
2Wupperverband, Wuppertal, 42289, Germany 
3hydro & meteo GmbH&Co.KG, Lübeck, 23552, Germany 

Correspondence to: Emma Dybro Thomassen (edth@env.dtu.dk) 

Abstract. Rainfall is often represented by a design storm with uniform intensity in urban hydrological models even though 

rainfall is a highly dynamic process across very small temporal and spatial scales. This study examines characteristics of high-10 

resolution radar data (5-minute temporal resolution, 1x1 km spatial resolution) over an area of 1824 km2 covering the 

catchment of the river Wupper, North Rhine-Westphalia, Germany. Extreme events were sampled by a Peak Over Threshold 

method using several sampling strategies, all based on selecting an average of three events per year. A simple identification- 

and tracking algorithm for rain cells based on intensity threshold and fitting of ellipsoids, is developed for the study. Both 

hourly and daily extremes were analysed with respect to a set of 16 descriptive variables. The spatio-temporal properties of 15 

the extreme events are explored by means of principal component analysis, cluster analysis, and linear models for these 16 

variables. The PCA indicated between 5 and 9 dimensions in the extreme event characteristic data. The cluster analyses 

identified four rainfall types: extreme convective, convective, convective events in front systems and front system events. The 

stepwise regression for each variable identified independent variables that correspond well with the correlation structure 

identified in the clusters. This indicates that the correlation structure may prove useful in setting up a weather generator. 20 

1 Introduction 

Urban hydrological models of high quality are a required tool to make cities more resilient to pluvial flooding and pollution 

management. A key input parameter when modelling urban drainage systems is rainfall (Berndtsson and Niemczynowicz, 

1988; Schilling, 1991; Thorndahl et al., 2008; Vaes et al., 2001). A common way is to use a model including a rainfall-runoff 

component that uses rainfall input as either a long-term rainfall series or a design storm (Butler and Davies, 2011; Willems et 25 

al., 2012). For some applications rainfall data must be of high spatial and temporal resolution (Berndtsson and Niemczynowicz, 

1988; Einfalt et al., 2004; Ochoa-Rodriguez et al., 2015; Schilling, 1991). Schilling (1991) and Einfalt et al. (2004) have 

proposed resolution requirements of 1-5 minute temporal resolution and 1x1 kilometre spatial resolution.  
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Inference on properties of rainfall can be based upon two types of data: rain gauge and radar data. Both types of data have 

significant strengths and weaknesses. Rain gauge data require less data treatment compared to radar data, and measurements 

are often available for longer time periods. Rain gauges measure rainfall at ground level, which is the rainfall of interest in 

hydrological modelling (Thorndahl et al., 2016), and often have a temporal resolution of around 1 minute (Einfalt et al., 2004). 

A major weakness about rain gauge data is the lack of information on rainfall movement (mainly for convective events), spatial 5 

variation and coverage. Radar data, on the other hand, gives information about rainfall movement and spatial coverage 

(Thorndahl et al., 2016), and have significantly improved our understanding of how precipitation is formed (Collier, 1989). 

Weaknesses of radar data is that rainfall intensities are inferred based on reflectivity with often very high uncertainties for high 

rainfall intensities. Furthermore, radar data is based on an instantaneous scan of volume high above ground that is then used 

to represent the average rainfall intensity during the entire sampling time. This can lead to aggregation errors and might not 10 

reflect the rainfall at ground level (Einfalt et al., 2004).  

 

Weather Generators (WG) to simulate rainfall are numerous and diverse in kind, input data, spatial and temporal scale 

(Arnbjerg-Nielsen et al., 2013; Wilks and Wilby, 1999). In the field of rainfall simulation, focus has until now been on models 

based on rain gauge data and hence several WGs model precipitation as a stochastic point process (Burton et al., 2008; 15 

Cowpertwait and O’Connell, 1997; Onof and Arnbjerg-Nielsen, 2009). Weather generators can be based upon a dense network 

of rain gauges in order to include some spatial variation in the model (e.g. Jinno et al. (1993); Willems (2012); Sørup et al. 

(2016)) but none of these WGs describe the spatial dynamics of rainfall at a resolution suitable for urban hydrology.  

 

Radar data has been suggested as potential rainfall input in urban hydrology since the mid 80's (Einfalt et al., 2004). Radar 20 

products have more recently become available in spatial and temporal resolution fulfilling the resolution requirement in urban 

hydrology, and has within the last 1-2 decades become more frequently used in urban hydrology along with increasing length 

of recording period (Thorndahl et al., 2016). Weather generators based on high resolution radar data are very limited, and often 

rely heavily on statistically based variables (e.g. Peleg and Morin, (2012)). The downside of this is the absence of physically 

based variables to represent the spatio-temporal variation in rainfall and thereby enabling linking WGs to e.g. climate change 25 

models.  

 

This study aims to quantify and describe spatial rainfall as a function of temporal and spatial dynamics, rainfall types and 

seasonal variation. Descriptive statistical methods are applied to analyse selected physically based variables and their internal 

correlation. The study aims to statistically describe spatio-temporal varying rainfall using physically based variables, in order 30 

to assess the possibility of creating artificial spatio-temporal rainfall series, of high resolution scales useful for urban hydrology.  
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2 Data and case area 

2.1 Case area  

The case area is a 38x48km rectangle (1824 km2) surrounding the catchment of the river Wupper in North Rhine-Westphalia, 

Germany. It stretches from the Rhine lowland in southwest to the more hilly area in east, with steep valleys around the river 

Wupper. The elevation varies from 31 meters to 483 meters above sea level (see Figure 1). The mean annual precipitation in 5 

the area ranges from 770 mm to 1352 mm, due to strong orographic effects, with lowest precipitation in low lying areas and 

most precipitation in the highest elevated areas (orographic rainfall). Due to partly high urbanisation, small-scale but highly 

intense convective rainfall causes flash floods with a huge damage potential, Therefore, a good knowledge about the structures 

and impacts of different storm types on a high resolution is essential for planning and forecasting matters. 

2.2 Data 10 

Radar data from the Deutsche Wetterdienst (DWD) Doppler C-band radar network was used in this study (5-minute temporal 

resolution, 1x1 km spatial resolution). The data comes from the Wupper Association and spans 13 years, from the 1st of 

November 2000 to the 1st of November 2013. The case area is within the range of the Essen radar and partly within the range 

of the Flechtdorf and Neuheilenbach radars. The data is a weighted composition of the three radars (Einfalt and Lobbrecht, 

2011). 15 

 

The data is post processed by hydro & meteo GmbH & Co. KG on behalf of the Wupper Association. Data is corrected in 

regards of blockage, clutter and attenuation. The reflectivity (Z) rainfall intensity (R) relationship is fixed as 𝑍 = 256 ⋅ 𝑅1.42. 

In the Wupper Association district the radar data is adjusted to rain gauge data on a daily basis, with a correction factor per 

gauge in a 1 km correction grid using inverse distance weighting. Rain gauge data is beforehand visually inspected and 20 

compared to nearby gauges in order to secure the quality. There are 60 rain gauges within the area of the Wupper Association. 

The post processed data have less than 5 % difference from annual ground truth (Frerk et al., 2012) 

3 Methodology 

3.1 Extreme events 

Extreme events are identified based on time series data and defined based on a Peak Over Threshold method (Coles, 2001). A 25 

Type II censoring is applied with a prefixed number of 39 extreme events, equal to an average of 3 events per year (Mikkelsen 

et al., 1995). Two types of extreme events are considered, 1-hour and 24-hour extreme events, based on the maximum average 

intensity for either 1 hour or 24 hours.  
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3.2 Spatial selection of extreme events 

The extreme event definition is based on time series of point data. To our knowledge there is no generally applied procedure 

to sample extreme events from multisite or areal measurements such as radar data. Based on time series data we examine four 

methods to identify rain events in order to determine the number of grid cells which should be considered when selected 

extreme events for further analyses. All methods identify the number of rain events in the data period, average length of rain 5 

events, average maximum number of grid cells registering each event, and seasonal distribution of rain events. The sampling 

strategies (SS) are listed below in order of increasing number of grid cells: 

SS1. Sampling from 1 grid cell 

SS2. Sampling from 5 grid cells 

SS3. Sampling from one side of the mountains (every ninth grid cell) 10 

SS4. Sampling from the entire catchment (every ninth cell) 

 

SS1, Sampling from 1 grid cell 

The simplest sampling strategy is choosing one grid cell from which rain events are identified. Rain events separated by dry 

periods less than 24 hours apart are aggregated to one event in accordance with (Madsen et al., 2002, 2009). The single grid 15 

cell considered is shown in Figure 2. 

 

SS2, Sampling from 5 grid cells 

The second sampling strategy considers 5 grid cells in a spatially small area on the same side on the mountain as the 

predominant wind direction (west wind, see Figure 2). Precipitation occurs when at least one of the locations measures rainfall 20 

and events are aggregated using the same approach as when sampling from one grid cell.  

 

SS3, Sampling from one side of the mountain (every ninth grid cell) 

The third sampling strategy for rain events considers a larger part of the catchment. Due to the strong orographic effect, the 

part of the catchment which is on the same side of the mountains and therefore located on the same side where the main part 25 

of the weather arrives from is considered. Every ninth grid cell in this area is selected with a total of 104 grid cells (see Figure 

2). Precipitation events are defined using the same approach as when sampling from 5 grid cells. 

 

SS4, Sampling from the entire catchment (every ninth grid cell) 

The fourth sampling strategy concerns the entire catchment. Every ninth grid cell is selected, and precipitation time series are 30 

merged with a 24-hour dry period between independent events. A total of 187 grid cells are considered. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-184
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 2 May 2018
c© Author(s) 2018. CC BY 4.0 License.



5 

 

3.3 Data analysis 

3.3.1 Seasonal variation 

The seasonal variation of occurrence of extreme events from the five grid cells filled in Figure 2 is analysed for 1-hour and 

24-hour extreme events. The analysis is based on four seasons: winter (December-February), spring (March-May), summer 

(June-August) and fall (September-November).  5 

3.3.2 Spatial correlation 

The spatial correlation between 4950 pairs of grid cells (100 randomly selected grid cells) is calculated, applying the framework 

of spatial correlating structures by Mikkelsen et al. (1996). The method calculates the spatial correlation by estimating the 

correlation of extreme events that are meteorologically dependent. The unconditional correlation coefficient ρ between a pair 

of grid cells (A and B) is calculated by identifying concurrent events. If it is assumed that the start (ts) and end (te) times of all 10 

events are known, concurrence between the i'th event at grid cell A, ZAi and the j'th event at grid cell B, ZBj is defined as: 

{𝑍𝐴𝑖 , 𝑍𝐵𝑖}: [𝑡𝑠𝑖 −
1

2
∆𝑡, 𝑡𝑒𝑖 +

1

2
∆𝑡]

𝐴
∩ [𝑡𝑠𝑖 −

1

2
∆𝑡, 𝑡𝑒𝑖 +

1

2
∆𝑡]

𝐵
≠⊘              (1) 

where Δt is a lag time introduced to ensure that events can be concurrent events though travelling time means that these events 

do not overlap in time. Δt was in this study set to 11 hours equal to the Δt used in Gregersen et al. (2013).  Based on the sample 

of concurrent events and the sample of not concurrent events in a pair of grid cells, the unconditional covariance is estimated 15 

as: 

𝐶𝑜𝑣{𝑍𝐴, 𝑍𝐵} = 𝐶𝑜𝑣{𝐸{𝑍𝐴|U}, 𝐸{𝑍𝐵|𝑈}} + 𝐸{𝐶𝑜𝑣{𝑍𝐴, 𝑍𝐵|𝑈}}              (2) 

Given by the definition in Mikkelsen et al. (1996), the unconditional correlation coefficient ρ can now be estimated by dividing 

the unconditional covariance with the standard deviation for the two stations. Following the procedure proposed by Gregersen 

et al. (2013) the data is hereafter divided into bins based on distance between stations and the average ρ for each bin is 20 

calculated in order to minimise noise in the data set. An exponential function is fitted to data, relating the distance between a 

pair of stations with the unconditional correlation coefficient ρ. The e-folding distance is then found as the distance where the 

unconditional correlation have decreased to 1/e, based on the fitted exponential function (Gregersen et al., 2013). 

3.3.3 Spatial variation 

The spatial variation in extreme events is analysed for the five grid cells filled in Figure 2. The extreme events sampled from 25 

each of the five grid cells, are compared to identify the small-scale variability in sampled extreme events. The black filled grid 

cell is used as reference and compared to the four grey filled grid cells. The number of concurrent events and the distance 

between the grid cells are calculated. 
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3.4 Characterisation of events 

The two sets of 39 extreme events are characterised by 16 variables chosen to describe a variety of event properties (see Table 

1); these can be further aggregated into six categories: Duration, intensity, wet area coverage, depth, rain cell properties and 

movement. Rain cell properties and movement are described with a simple rain cell identification and tracking algorithm as 

described below. 5 

3.4.1 Rain cell identification 

Rain cells are identified in each time step by assigning an intensity threshold and an areal threshold. The intensity threshold is 

set to 25% of the maximum 5-minute intensity for the given event with a minimum threshold of 7 mm h-1. The areal threshold 

is set to a minimum coverage of 10 km2. An event specific threshold is chosen to distinguish between different rain cell types 

(e.g. convective and front cells) and secure a high threshold for all events which result in a more stable tracking of a clear cell 10 

centre (Dixon and Wiener, 1993). Rain cells with an area below the areal threshold are disregarded to avoid noise in the overall 

tracking from multiple small cells (Dixon and Wiener, 1993). An ellipse is fitted to each of the identified rain cells, with the 

coordinates for the centroid, length of the axis and orientation in degrees between major axis and east-axis (Belachsen et al., 

2017; Peleg and Morin, 2012). 

3.4.2 Rain cell tracking 15 

Various complex rain cell tracking algorithms can be found in literature (e.g. Dixon and Wiener, 1993; Handwerker, 2002; 

Kyznarová and Novák, 2009). For describing the overall moving direction and velocity of each rain event this study has 

developed a simple tracking algorithm. Rain cell movement is recorded by linking the identified rain cells in each time step 

together in a simple tracking algorithm based on the position of the centroid. Tracking is based on the moving direction and 

velocity from last time step which is used to predict the approximate position of the rain cell in the next time step. The rain 20 

cell with the centroid closest to the predicted position of the rain cells centroid is linked to the rain cell in the previous time 

step with no further evaluation of the fit. A maximum distance of 7.5 km, corresponding to a moving velocity of 25 m s-1, from 

the predicted position of the rain cell to the linked rain cell is applied. For new rain cells, the position of the rain cell in time 

step one is the predicted position of the rain cell in next time step. The tracking algorithm manages birth, tracking and death 

of rain cells. If splitting of a rain cell occurs, the algorithm will treat it as continuous tracking of the rain cell and a birth of a 25 

new rain cell. In case of merging of two rain cells, the algorithm will classify it a death of one rain cell and continue tracking 

of the other rain cell.  

3.5 Statistical analyses 

All statistical analyses are performed using normalised data, i.e. mean zero and variance one. All analyses are carried out in R 

using the build-in R Stats Package version 3.4.1. 30 
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3.5.1 Principal component analysis 

Principal Component Analysis (PCA) is used to estimate the correlation structures in data and determine the number of 

dimensions necessary to describe it. PCA is a linear orthogonal transformation method to describe the variance of data using 

linear combinations, called Principal Components (PC).  

 5 

Eigenvalues and corresponding vectors are calculated based on the correlation matrix of the normalised data. The eigenvector 

with the ith largest eigenvalue (λi) is noted the ith principal axis, where PCi represent the projection of data on the ith principal 

axis (Morrison, 1967). The percentage of the variance, which PCi describes, is calculated as the percentage of the sum of the 

eigenvalues based on the ith eigenvalue (Morrison, 1967).  

 10 

Two tests are applied to determine the number of dimensions necessary to describe data. The first test is an approximate test 

to estimate the number of significant PC’s based on the magnitude of the eigenvalues. The hypothesis tested is that the last 

k+1 to m eigenvalues are similar and therefore non-significant, where m is the total number of eigenvalues. The test is described 

in Lawley and Maxwell (1963) and Anderson (1984) as: 

𝐻0: 𝜆1 ≥ ⋯ ≥ 𝜆𝑘 ≥ 𝜆𝑘+1 = ⋯ = 𝜆𝑚                 (3) 15 

The test statistic is defined as: 

𝑧2 = −𝑛 ∗ ln (
∏ 𝜆𝑖

𝑚
𝑖=𝑘+1

𝜆̂𝑚−𝑘 )                    (4) 

where 𝜆̂ is defined as: 

𝜆̂ =  ∑ 𝜆/(𝑚 − 𝑘)𝑚
𝑖=𝑘+1                     (5) 

The second test estimates the number of effective spatial degrees of freedom based on the eigenvalues and was proposed by 20 

Bretherton et al., (1999) as: 

𝑁𝑒𝑓𝑓 =
(∑ 𝜆𝑖 

𝑚
𝑖=1 )

2

∑ 𝜆𝑖 
2𝑚

𝑖=1

                    (6) 

3.5.2 Cluster analysis 

Partitioning and hierarchical clustering is performed on the dataset to identify similarities between the events based on all 

variables. Both clustering methods are based on the normalised data, i.e. the same dataset used for the PCA. 25 

 

The K-means clustering algorithm presented by Hartigan (1975) and Hartigan and Wong (1979) is selected as partitioning 

clustering method. The method divides the dataset into a predefined number of clusters by minimising the sum of squared 

distances (Hartigan, 1975). Initially all events are assigned a cluster and it is afterwards for each event tested if the Euclidean 

distance to the centre of the cluster will be reduced if the event is moved to another cluster. The centre of the cluster is defined 30 

as the mean of each of the PCs that the events in the cluster are projected onto and updated every time a cluster is moved from 
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or added to the cluster. If l(i) describes the cluster where the event i is contained and l represents any cluster then D[i,l(i)] 

denotes the Euclidean distance between event i and cluster centre l(i) and similarly D[i,l] denotes the Euclidean distance 

between event i and the centre of any other cluster. Reallocation of events to another cluster is done if it decreases the error 

as: 

𝑁𝑙𝐷[𝑖,𝑙] 2

𝑁𝑙+1
−

𝑁𝑙𝐷[𝑖,𝑙(𝑖)]2

𝑁𝑙(𝑖)+1
< 0                    (7) 5 

The hierarchical clustering methods selected are the Ward method and the Average Linkage Method (Murtagh, 1983). The 

methods are agglomerative clustering methods where all events start in separate clusters, the two less dissimilar events are 

joined until all events are in one cluster (Cormack, 1971). The dissimilarities between events are calculated based on the Lance-

Williams cluster update method (Lance and Williams, 1966). As an example, assume that the dataset is divided into three 

clusters, h, i and j with nh, ni, and nj number of events in each of the clusters and the dissimilarities between the clusters are 10 

denoted dhi, dhj and dij. The dissimilarities between two events are calculated as the Euclidean distance between the events 

when all events are in separate clusters. If the dissimilarity between the clusters i and j is smallest, the two clusters are joined 

to the new cluster k, with 𝑛𝑘 = 𝑛𝑖 + 𝑛𝑗 events. The dissimilarity between cluster k and h is calculated as: 

𝑑ℎ𝑘 = 𝛼𝑖𝑑ℎ𝑖 + 𝛼𝑗𝑑ℎ𝑗 + 𝛽𝑑𝑖𝑗 + 𝛾(𝑑ℎ𝑖 + 𝑑ℎ𝑗)                (8) 

Where αi, αj, β and γ are parameters determined by the clustering method (Cormack, 1971). For the Ward method  𝛼𝑖 = (𝑛𝑖 +15 

𝑛𝑘)/(𝑛𝑖 + 𝑛𝑗 + 𝑛𝑘), 𝛽 = −𝑛𝑘/(𝑛𝑖 + 𝑛𝑗 + 𝑛𝑘) and 𝛾 = 0 while for the Average Linkage 𝛼𝑖 = 𝑛𝑖/(𝑛𝑖 + 𝑛𝑗), 𝛽 = 0 and 𝛾 =

0. The results are illustrated using dendrograms. 

3.5.3 Stepwise regression 

Stepwise regression is used to estimate the number of independent variables which are necessary to describe a dataset (Draper 

and Smith, 1998). The method fits a linear model which is as simple as possible and as complex as necessary to data. Stepwise 20 

regression is performed with a stepwise forward selection of variables to include in the model and an evaluation of  all variables 

in the model to test if any of the included variables should be eliminated (Rawlings et al., 1998). The Akaike’s Information 

Criterion (AIC) (Akaike, 1971) is used to determine the trade-off between simplicity and fit: 

𝐴𝐼𝐶 = −2 ⋅ 𝐿𝑜𝑔𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 + 2𝑝                  (9) 

Where p is the number of parameters in the model, as the lower AIC the better fit p therefore acts like a penalty when adding 25 

more parameters. An optimal linear model is fitted to each of the 16 variables from the event analysis independently with the 

remaining variables as descriptors using stepwise regression. 
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4 Results and discussion 

4.1 Spatial selection of extreme events 

For the four sampling strategies, the number of rain events in the data period, average length of rain events, average maximum 

number of grid cells registering each event, and seasonal distribution of rain events are shown in Table 2. The total number of 

events within the data period decreases substantially, and the average length increases similarly, when the number of grid cells 5 

considered is increased. The seasonal proportion of the events indicates that especially summer events are joined when more 

grid cells are considered. The results from Table 2 indicate that meteorologically independent events are joined when grid cells 

in a large part of the catchment is considered. In order to sample events which are meteorologically independent and use the 

knowledge about extreme events from rain gauge data, sampling method one, only considering one grid cell when sampling 

extreme events, is selected.  10 

4.2 Data analysis 

4.2.1 Seasonal variation 

The seasonal variation of occurrence of extreme events for each of the five grid cells filled in Figure 2, can be seen in Figure 

3. There is very little variation between the five stations in seasonal variation in occurrence of extreme events. In contrast to 

this, the difference between 1-hour and 24-hour extreme events is more pronounced, with 1-hour extreme events almost only 15 

occurring in the summer while 24-hour extreme events are more uniformly distributed over the year. This corresponds well 

with the seasonal difference in precipitation in the area (ExUS, 2010; Quirmbach et al., 2012) and the expectance of differences 

in seasonal variation between different event types, convective vs. front events, (Gregersen et al., 2013). 

4.2.2 Spatial correlation 

The spatial correlations calculated between 4590 pairs of grid cells for 1-hour and 24-hour extreme events are shown in Figure 20 

4. The spatial correlation for 1-hour extreme events decreases faster with distance than for the 24-hour extreme events. This 

indicates that 1-hour extreme events are more localised small-structured events while the 24-hour extreme events are spatially 

larger events. From the fitted exponential functions, the e-folding distances are calculated to be 9.3 km and 21.3 for 1-hour 

and 24-hour extreme events respectively. Studies calculating e-folding distances on rain gauge data show similar orders of 

magnitude and differences between 1-hour and 24-hour extreme events (Gregersen et al., 2013). 25 

4.2.3 Spatial variation 

The spatial variation of extreme events is indicated by calculating the similarity of choice of events by grid cells close to the 

chosen grid cell, see Table 3. Only approximately 55 % of the 1-hour extreme events are the same events for the four 

surrounding grid cells (grey filled, Figure 2), when comparing to the reference grid cell (black filled, Figure 2), while 80% of 
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the 24-hour extreme events are the same. This again indicates that 1-hour extreme events are very localised events and state 

the importance of carefully selecting a sampling strategy for analysed extreme events.  

4.3 Event characterisation 

1-hour and 24-hour extreme events sampled using sampling method one and described by the chosen 16 variables in the event 

analysis can be found in the supplementary material. The 39 sampled 1-hour extreme events consist of 27 summer events and 5 

12 non-summer events while the 39 24-hour extreme events consist of 9 summer events and 30 non-summer events. 

Differences between variables describing 1-hour and 24-hour extreme events are in particular pronounced for the variables 

Duration, Maximum 10 minute intensity and Maximum depth, which can be related to the differences between convective 

events and events within front systems. The results from the event characterisation, in relation with the results from the seasonal 

variation and spatial correlation indicate that the events sampled are representative for extreme events over the year in the area. 10 

Twelve events occur in both 1-hour and 24-hour extreme events; these are listed in Table 4. 

4.4 Statistical analyses 

4.4.1 Principal component analysis 

The PCA is performed on both the 1-hour and 24-hour extreme event dataset separately and as one dataset. The shown results 

focus on the 1-hour and 24-hour extreme events treated as one dataset. In Table 5 the weighted composition of variables in 15 

each of the first nine PCs can be seen. PC1 and PC2 are influenced by most of the variables describing the means of the events. 

PC3 describe the movement of the rain cells in the events and is mostly influenced by Standard deviation of direction and 

Mean direction, which is not contributing much in PC1 and PC2, and Standard deviation of velocity. PC4 can be summarised 

to describe the extremity of the events, mostly influenced by Duration, Ratio 10min, Maximum 24hr intensity, Mean wet area 

and Rain cell life time. The two first PCs explain 57.58 % of the total variance and the first nine PCs should be considered if 20 

95 % of the variance must be explained. Based on the eigenvalues 14 PCs are significant when using the approximate test in 

Eq. (3-5). The alternative test suggests that there are 5.1 effective PCs. As such, five to nine dimensions should be, and up to 

14 dimensions could be, considered in order to describe the variability of the events when considering both 1-hour and 24-

hour extreme events.   

 25 

In Figure 5 the dataset is projected into the first two PCs. In the left figure the PCA is performed on the 24-hour dataset alone 

and the 1-hour extreme events are projected on to the two first PCs for the 24-hour extreme events, i.e. the 1-hour and 24-hour 

dataset are normalised separately. On the right the PCA is performed on the combined dataset, i.e. the 1-hour and 24-hour 

dataset are normalised together. While no distinct difference between 1-hour and 24-hour extreme events can be seen when 

data is normalised separately (Figure 5, left), a clear clustering between 1-hour and 24-hour extreme events can be seen when 30 

data is normalised as one dataset and a combined PCA is performed (Figure 5, right). This indicates that the observed 
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differences between 1-hour and 24-hour extreme events can be described by scaling across the variables rather than a change 

in the overall structure of the spatial precipitation. Furthermore, there is a tendency of increasing extremity with decreasing 

PC1 and PC2. How able the combined dataset is to distinguish between 1-hour and 24-hour extreme events for PC 1-7 is 

illustrated in Figure 6. The distinctions between the two event types are clear for all combination of PCs if either PC1 or PC2 

is included. 5 

 

The seasonal variation of the sampled extreme events visualised by the two first PCs can be seen in Figure 7. A distinction 

between summer and non-summer events is clear, reflecting the difference in the seasonal variation between 1-hour and 24-

hour extreme events.  

4.4.2 Cluster analysis 10 

The K-means clustering algorithm is performed with a predefined number of two and four clusters (Figure 8). The two clusters 

in Figure 8 left, describe the distinction between 1-hour and 24-hour extreme events with few 1-hour extreme events in the 

first cluster primarily consisting of 24-hour extreme events and opposite in the second cluster. In Figure 8 right, the two very 

extreme events on the 06-08-2009 and the 19-06-2013 constitute a separate cluster. These events can be described as severe 

convective events with very high Maximum 10 minute and Maximum 1 hour intensity and high Ratio between maximum and 15 

average 10 minute intensity. The second cluster contains 1-hour extreme events or events sampled as both types of extreme 

events. The extreme events in the second cluster are clearly convective events, less extreme than in the first cluster but with 

remarkably high Maximum 1-hour intensity and a large Ratio between maximum and mean depth. The third cluster is dominated 

by 1-hour extreme events coupled with 24-hour extreme events. Common for all 24-hour extreme events in this cluster is a 

shorter Duration compared to the rest of the 24-hour extreme events and a relative low Mean depth. The events in cluster three 20 

can be characterised as convective events that could be within a front system. The last cluster, cluster four, consists mostly of 

24-hour events with characteristics as long Duration, low Ratio between maximum and mean depth and low Maximum 1 hour 

intensity. These events can be classified as frontal events with little or no convective activity. Two 1-hour extreme events are 

within this cluster; these differ from the rest of the 1-hour extreme events by long Duration, and large Minimum and Mean 

depths.  25 

 

The dendrograms of the two hierarchical clustering methods Ward and Average linkage can be seen in Figure 9. Even though 

the two dendrograms appear quite different, many similarities can be seen between the two methods when a specific number 

of clusters is chosen. Figure 10 visualises the first four clusters from the dendrograms. The clusters identified with the Ward 

method are very similar to the clusters using the K-means clustering method. The clusters identified with the Average linkage 30 

method have the same tendency as the other clustering method, though with more focus on the unusual events. If the number 

of clusters are increased, the Average linkage method will divide the 1-hour and 24-hour extreme events into separate clusters 
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just like the other clustering method. For the purpose of modelling spatial rainfall the different types of extreme events 

described by the K-means clustering method seem more appropriate than the Ward clustering method. 

4.4.3 Stepwise regression 

Linear models for all of the variables are identified by means of stepwise regression. Table 6 specifies the variables in each of 

the linear models and the goodness of the fit while Table 7 summarises the number of times that each variable is used in the 5 

linear models. The linear models in Table 6 consist of between 3 and 10 descriptive variables, with an average of 7.4, which 

correspond well with the number of independent variables found in the PCA. Six variables are used in more than half of the 

linear models: Ratio 10 minute, Maximum 24 hour intensity, Mean wet area, Ratio depth, Cell lifetime and Standard deviation 

of velocity. These variables were also identified as variables that are able to distinguish between 1-hour and 24-hour extreme 

events. Furthermore, do the six variables correspond well with the variables influencing the first four PCs in the PCA: Ratio 10 

10min and Ratio depth both largely influence PC1, Maximum 24 hour intensity influence PC2, Standard deviation of velocity 

influence PC3 and Mean wet area and Cell lifetime influence PC4.  

5 Conclusion 

Spatial rainfall from radar data was analysed using a range of metrics and the findings are in general in accordance with current 

understanding of spatial rainfall. The seasonal variation and spatial correlation of the analysed extreme events confirm a clear 15 

difference between 1-hour and 24-hour extreme events which can be described as a difference between convective and front 

events. Four sampling strategies for sampling spatial extreme events were analysed and it was found that it is best to sample 

from only one grid cell to avoid unrealistic long events with sub-events that are meteorologically independent. 1-hour extreme 

events are very local. It was shown that a least 50 % of sampled extreme events would change if another grid cell within a 

radius of approximately 5 km were chosen as sample point, with decreasing similarity in sampled extreme events with 20 

increasing distance between the compared grid cells. This study suggests that further development on a sampling strategy for 

sampling spatial extreme events is needed.  

 

Events were characterised by 16 variables giving a thorough description of the spatio-temporal variability of the events. All 

variables contribute with information about the analysed extreme events, even though there are correlations suggesting that 25 

not all dimensions are necessary. The PCA suggest five to nine dimensions necessary to describe the data, but up to 14 PC’s 

were found significant, implying that more dimensions might be relevant to consider. From the PCA and cluster analysis it 

was possible to distinguish between 1-hour and 24-hour extreme events and identify four different storm types with varying 

level of extremity. Variables found important in the PCA and cluster analysis were concluded to be important in the stepwise 

regression as well. The findings of the three methods supplement each other well and no contradictions between them have 30 

been identified. 
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A simple rain cell identification and tracking algorithm was developed for the study to describe the overall tendency in rain 

cell lifetime, number, direction and velocity of extreme events. For the purpose of this study the relatively simple algorithm 

proved to be sufficient to give a realistic picture of the related variables. 

 5 

The results of this study conduct the preliminary steps prior to setting up a weather generator with similar properties as high-

resolution radar rainfall data. The results point out which variables in such a weather generator should be considered 

independent and which could be co-varied. The study should be considered as a first step into the direction of good practises 

to find and analyse single storm events in radar rainfall data sets. The tested methods helps to understand the characteristics of 

the different storm types and the results show which weather regimes should be included to reproduce all relevant situations 10 

in which extremes could appear.    
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Figure 1: Overview of the case area. Left: Gridded area represents the part of the catchment where time series data is produced. 

Right: Elevation in the Wupper catchment. 

 5 

 

Figure 2: Overview of the four sampling strategies: - SS1: Filled black cell, SS2: Black and grey filled cells, SS3: cells outlined in 

light grey and SS4: cells outlined in light and dark grey. 
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Table 1: Description of variables 

Variable Short name Unit Description 

Duration Duration Hours From start to end with an extension of 2 hours in each end to consider the event 

in the entire case area. 

Intensity Max 10min mm min-1 Maximum average intensity for 10 minutes. 

 Ratio 10min - Ratio between max 10 minute and mean 10 minute intensity. 

 Max 1h mm min-1 Maximum average intensity for 1 hour. 

 Max 24h mm min-1 Maximum average intensity for 24 hours. 

Wet Area Mean wet A - Average ratio of cells with precipitation (wet cells) from each time step of the 

event. 

Depth Min depth mm Value of the grid cell with the lowest depth in the case area. 

 Max depth mm Value of the grid cell with the highest depth in the case area. 

 Mean depth mm Average depth considering all cells in the case area. 

 Ratio depth - Ratio between max depth and mean depth. 

Rain cell 

properties 

Cell num - Number of tracked rain cell in the rain event. 

Cell life min Average lifetime of the rain cells in the event. 

Movement Mean vel m s-1 Mean rain cell velocity 

 Sd vel m s-1 Standard deviation of velocity. 

 Mean dir Degrees Mean moving direction of rain cells, compass degrees. 

 Sd dir Degrees Standard deviation of direction. 

 

Table 2: Results from the four sampling strategies described in Sect. 3.2 

Sampling 

strategy 

Number of 

events total 

Average 

event length 

[h] 

Average 

number of grid 

cells 

Proportion of 

events in 

winter 

Proportion of 

events in 

spring 

Proportion of 

events in 

summer 

Proportion of 

events in  fall 

SS1 (1 grid cell) 879 65.29 1.00 0.21 0.27 0.28 0.24 

SS2 (5 grid 

cells) 

843 80.61 4.38 0.22 0.27 0.27 0.25 

SS3 (west side 

of the 

mountain) 

439 219.88 67.74 0.28 0.27 0.18 0.27 

SS4 (total 

catchment) 

297 347.48 122.61 0.31 0.27 0.16 0.26 
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Figure 3: Seasonal variation in occurrence of extreme events for each of the five grid cells filled in Figure 2. 
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Figure 4: Spatial correlation calculated for binned data of 100 grid cells, 4950 pairs. 

Table 3: Comparison of the five grid cells filled in Figure 2, the black filled grid cell is used as reference. 

 

 5 

 

 

 

 

 10 

  

Name 162_176 167_178 163_181 159_180 158_174 

distance (S,E) [km] (0,0) (-4,-1) (-3,7) (3,5) (4,-3) 

distance [km] 0.00 5.39 5.10 5.00 4.47 

Similar 1-hour 39 19 21 23 22 

Similar 24-hour 39 31 32 30 32 

Similar 1-hour [%] 100 49 54 59 56 

Similar 24-hour [%] 100 79 82 77 82 
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Table 4: Overview of the 12 events sampled as both 1-hour and 24-hour extreme event. The numbers refer to the tables in the 

supplementary material. 

Date (LT) 1-hour 24-hour 

17-07-2001 3 2 

19-08-2002 6 6 

05-10-2002 7 7 

10-09-2004 12 14 

29-06-2005 16 19 

29-09-2005 19 22 

06-08-2007 22 25 

18-08-2007 23 26 

10-08-2010 29 30 

19-06-2013 36 37 

22-07-2013 37 38 

06-09-2013 39 39 

 

Table 5: Composition of variables for the first nine PC's in a combined PCA including both 1-hour and 24-hour extreme events. 5 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

Duration 0.25 -0.27 0.10 -0.40 0.21 -0.11 0.09 -0.30 0.06 

Max 10min intensity -0.29 -0.31 0.02 -0.17 -0.23 0.01 -0.18 0.16 0.16 

Ratio 10min -0.28 -0.27 0.05 -0.33 -0.23 -0.06 -0.10 -0.10 0.10 

Max 1h intensity -0.32 -0.31 -0.10 -0.02 -0.10 0.17 -0.07 -0.06 0.17 

Max 24h intensity -0.10 -0.40 -0.16 0.27 -0.08 0.15 -0.31 0.32 -0.27 

Mean wet area 0.20 -0.04 0.11 0.62 -0.27 -0.04 -0.17 -0.19 -0.15 

Min depth 0.32 -0.30 0.10 0.01 0.15 -0.13 0.03 -0.08 0.01 

Max depth 0.16 -0.46 0.05 0.04 0.11 0.02 0.01 -0.07 -0.18 

Mean depth 0.30 -0.35 0.08 0.00 0.11 -0.09 0.01 -0.03 -0.12 

Ratio depth -0.33 0.01 -0.20 -0.05 0.07 0.25 0.23 -0.46 -0.57 

Number of rain cells 0.26 -0.03 -0.22 -0.12 0.25 0.63 0.14 0.46 0.02 

Rain cell life time -0.19 -0.21 0.23 0.41 0.06 0.25 0.54 -0.14 0.50 

Mean velocity 0.30 0.08 0.20 -0.16 -0.46 0.19 -0.17 -0.03 0.18 

Sd velocity 0.28 0.03 -0.33 -0.06 -0.30 0.43 -0.12 -0.46 0.13 

Mean direction 0.15 -0.11 -0.37 -0.06 -0.53 -0.29 0.61 0.23 -0.14 

Sd direction 0.02 -0.05 -0.71 0.16 0.25 -0.29 -0.18 -0.13 0.38 

Proportion of variance 33.94 23.57 8.81 8.64 7.14 5.24 3.50 2.93 2.55 

Prop. of variance cumulative 33.94 57.51 66.32 74.97 82.11 87.35 90.85 93.78 96.32 
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Figure 5: Projection of the extreme events into the two first PC's. Numbers refer to the tables in the supplementary 

material. Events sampled both as 1-hour and 24-hour extreme events are marked in black, 1-hour extreme events are 

marked in purple and 24-hour extreme events are marked in blue. Left: Principal component analysis performed on 

24-hour dataset and 1-hour extreme events are projected into the same coordinate system. Right: 1-hour and 24-hour 

extreme events are treated as one dataset, with a combined PCA. 
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Figure 6: Extreme events projected into PC1 to PC7. 1-hour extreme events are shown in purple, 24-hour extreme events in blue 

and event sampled with both sampling methods in black. 
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Figure 7: Projection of extreme events into the two first PC's for the combined dataset. Colours indicate season (winter, spring, 

summer and fall) and shape indicate extreme event type. 
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Figure 8: K-means cluster analysis performed on 1-hour and 24-hour data. Left: Pre-defined number of two clusters. 

Right: Pre-defined number of four clusters. 
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Figure 9: Dendrogram performed on 1-hour and 24-hour extreme events with Ward (top) and Average linkage (bottom) method. 
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Figure 10: Graphical representation of the first four clusters from the hierarchical clustering methods. Left: Ward. Right: Average 

linkage. 
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Table 6: Linear models for each of the variables, using stepwise regression to simplify the models. 

 
Variables, (number of variables) AIC r2 

Duration (8) min depth, mean wet a, mean vel, ratio 10min, max 10min, max depth, max 24h, cell 

life -157.46 0.88 

Max 10min (10) max 1h, ratio 10min, ratio depth, duration, mean wet a, max 24h, sd dir, cell life, mean 

depth, cell num -250.12 0.96 

Ratio 10min (9) max 10min, max 24h, duration, ratio depth, mean wet a, mean depth, cell life, sd vel, 

mean dir -194.83 0.93 

Max 1h (9) max 10min, ratio depth, cell life, sd dir, sd vel, mean dir, max 24h, ratio 10 min, mean 

vel -273.07 0.97 

Max 24h (6) max 1h, max depth, duration, cell life, ratio 10min, max 10min -133 0.83 

Mean wet A (10) ratio depth, ratio 10min, max 24h, max 10min, duration, max depth, min depth, mean 

vel, cell num, max 1h -69.44 0.64 

Min depth (6) mean depth, max depth, cell life, duration, mean vel, mean wet A -229.14 0.95 

Max depth (10) mean depth, max 1h, ratio depth, max 24h, cell life, duration, min depth, mean dir, 

mean wet A, sd vel -284.67 0.98 

Mean depth (9) min depth, max depth, max 1h, cell life, ratio depth, mean dir, max 24h, ratio 10min, 

max 10min -323.57 0.99 

Ratio depth (7) mean vel, max depth, mean depth, sd vel, max 24h, cell life, sd dir 83.48 0.69 

Cell num (4) sd vel, ratio 10min, mean wet A, max depth -36.61 0.41 

Cell life (10) max 1h,ratio 10min, sd dir, max 10min, ratio depth, sd vel, mean dir, max 24h, mean 

wet A, min depth -86.49 0.71 

Mean vel (4) ratio depth, sd vel, sd dir, cell life -84.71 0.68 

Sd vel (5) mean vel, sd dir, cell num, ratio depth, mean wet A -56.58 0.55 

Mean dir (6) sd vel, mean depth, sd dir, ratio 10min, max 1h, duration -19.33 0.28 

Sd dir (5) mean vel, sd vel, ratio depth, mean dir, cell life -28.15 0.35 

Average  -133.98 0.74 
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Table 7: Number of times each of the variables is used, when setting up linear models for all variables. 

  Times used 

Duration 7 

Max 10min intensity 7 

Ratio 10min 9 

Max 1h intensity 7 

Max 24h intensity 9 

Mean wet area 8 

Min depth 5 

Max depth 7 

Mean depth 6 

Ratio depth 10 

Number of rain cells 3 

Rain cell life time 11 

Mean velocity 7 

Sd velocity 9 

Mean direction 6 

Sd direction 7 
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