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Abstract 29 
 Water risk management is perhaps the most ubiquitous challenge a stakeholder in the 30 

water or agricultural sector faces.  We present a methodological framework for forecasting water 31 

storage requirements and present an application of this methodology to risk assessment in India.  32 

The application focused on forecasting crop water stress for potatoes grown during the monsoon 33 

season in the Satara district of Maharashtra.  Pre-season large-scale climate predictors used to 34 

forecast water stress were selected based on an exhaustive search method that evaluates for 35 

highest Rank Probability Skill Score and lowest Mean Squared Error in a leave-one-out cross 36 

validation mode. Adaptive forecasts were made over the years 2001 through 2013 using the 37 

identified predictors and a semi-parametric k-nearest neighbors approach. The accuracy of the 38 

adaptive forecasts (2001-2013) was judged based on directional concordance and contingency 39 

metrics such as hit/miss rate and false alarms.  Based on these criteria, our forecasts were correct 40 

nine out of thirteen times, with two misses and two false alarms.  The results of these drought 41 

forecasts were compared with precipitation forecasts from the Indian Meteorological Department 42 

(IMD).  We assert that it is necessary to couple informative water stress/risk indices with an 43 

effective forecasting methodology to maximize the utility of such indices, thereby optimizing 44 

water management decisions.       45 
 46 

Keywords: Crop stress, water risk, seasonal forecasts, climate-information, deficit, monsoon 47 

prediction, contract farming, agricultural drought risk 48 
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1. Introduction 63 

Monitoring and forecasting systems can aid in pinpointing mitigation tactics for water 64 

security and water resources management.  There is a continued interest in forecasting and 65 

monitoring systems that can inform planners and decision-makers in various water-dependent 66 

sectors at sufficient lead times and with increasingly higher levels of accuracy and reliability.  67 

The agricultural sector is perhaps the greatest example of this, being a heavily water-dependent 68 

sector that serves as the economic backbone of a country.  The agricultural sector consumes 69 

more freshwater than any other economic sector, with an estimated 1,300 m
3
/cap/yr needed to 70 

maintain an adequate diet (Rockstrom et al., 2009).  Significant increases of water will be 71 

required to produce food by 2050, ranging from 8,500 to 11,000 km
3
/yr, depending on to what 72 

extent rainfed and irrigated agricultural systems improve (Rockstrom et al., 2009). Additionally, 73 

to maintain high yields, irrigation will continue to be an important buffer to climate shocks.  This 74 

is especially true when one considers that almost all of the world’s major agricultural lands are 75 

located in the most drought-prone areas of the world (Mishra and Desai, 2006).  Hence, 76 

developing forecasting techniques to improve how we address irrigation requirements, water 77 

storage requirements and crop water stress is a major step in dealing with the larger issue of 78 

water resources management at local, regional and global scales.  The present study focuses on 79 

forecasting water storage and irrigation requirements in the agricultural sector as one important 80 

dimension to the larger issue of drought forecasting and water resources management, with an 81 

application of such forecasting to the monsoonal climate of India. 82 

 83 

 Existing forecasts either deal directly with basic hydrologic or meteorological variables, 84 

such as precipitation, temperature and soil moisture, or they work with proxies of drought, often 85 

in the form of indices such as the Standardized Precipitation Index, or SPI (McKee et al, 1993), 86 

the Palmer Drought Severity Index, or PDSI (Palmer, 1965), the Standardized Precipitation 87 

Evapotranspiration Index, or SPEI (Serrano et al, 2010), and the Normalized Difference 88 

Vegetation Index, or NDVI, among others.  A comprehensive list of indices used in drought 89 

forecasting can be found in Heim (2002), Mishra and Singh (2010) and Liu and Pan (2016).  The 90 

forecast of basic variables requires subsequently integrating these forecasts into a product that 91 

can estimate water storage or irrigation requirements, as these variables do not immediately 92 

divulge such information.  This represents a challenge by itself.  In light of this limitation, in this 93 

paper, we present a crop water stress index that is defined and constructed based on work by 94 

Devineni et al (2013).  The advantage of this particular index, hereby known as the cumulative 95 

deficit index (CDI), is that it accounts for the variability in water supply and demand while 96 

incorporating information specific to a particular crop of interest.  CDI is derived by 97 

accumulating differences in supply (rainfall) and demand (crop water requirement), and with 98 

very few crop input parameters.  The CDI is a determinant of water stress faced by the crop and 99 

hence of the dependence of the crop yield on water availability.  It can be interpreted as the water 100 

that is required from external storage beyond rainfall to meet demand (Devineni et al, 2013; 101 

Devineni et al, 2015).  Therefore, the index directly informs water storage and irrigation 102 

requirements. 103 

 104 

 The primary focus of this paper will be on exploring the possibility of providing forecasts 105 

for CDI by investigating the sources of predictability and developing statistically verifiable 106 
models for the season-ahead probabilistic forecasts.  Significant crop water deficits can adversely 107 

impact the crop production or water reserves and lead to high-energy costs for pumping 108 
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groundwater for irrigation to maintain yield.  The seasonal forecasting of CDI provides a way for 109 

institutional planning and action in this context to reduce the climate-related water risks in 110 

agriculture, which is one of the largest consumers of water. An application of CDI forecasting is 111 

presented for the state of Maharashtra in India to verify whether advance reliable forecasts for 112 

potato-based CDI can be developed.  A semi-parametric k-nearest neighbor (kNN) bootstrapping 113 

algorithm as described in Lall and Sharma (1996) is employed for forecasting CDI using pre-114 

season large-scale climate indices.  This is a simple probabilistic forecasting procedure that 115 

captures uncertainty.  We examine these forecasts and suggest ways of interpreting them in a 116 

manner that can aid stakeholders in the agricultural water resources sector in addressing the 117 

fundamental questions about irrigation and water storage requirements.  These forecasts will then 118 

be compared to precipitation forecasts for the same season in the same area of India as given by 119 

the Indian Meteorological Department (IMD). 120 

 121 

 In section 2, we present a survey of the existing forecasting systems in monsoonal 122 

climates and their skill and limitations. In section 3, we discuss the background and scientific 123 

basis of CDI, including its explicit formulation and governing equations.  In section 4, we get 124 

into a thorough description of the case study and all steps involved, including background 125 

information relating to the case study and location, data collection and processing, a complete 126 

description of the forecasting model, methods and predictor selection scheme.  Section 5 presents 127 

the results of the forecast, a discussion of these results and their implications, and a comparison 128 

of our results with those of IMD.  Finally, section 6 summarizes and concludes the paper. 129 

 130 

2. A Brief Review of the Current Forecasting Systems for Water Management in 131 

Monsoonal Climates 132 

 A number of forecasting methodologies have been proposed or developed for water 133 

management and agricultural planning.  Shah and Mishra (2016) investigated the goodness of the 134 

Global Ensemble Forecast System (GEFS) for generating medium-range (~7 day) drought 135 

forecasts in India, and found that the GEFS has higher forecasting skill during the non-monsoon 136 

season than monsoon season for both temperature and precipitation, largely due to intraseasonal 137 

variability during the monsoon season.  This forecasting system tends to forecast temperature 138 

variables with higher skill than precipitation and has variable skill according to region.  Hence, 139 

there is sensitivity to intraseasonal variation, which monsoon climates are notorious for, and 140 

regional variation as well.  Mishra and Desai (2005) used well-chosen linear stochastic models 141 

(ARIMA) to forecast SPI- 3, 6, 9, 12, and 24 as a drought proxy in the Kansabati River Basin, an 142 

important source of water for irrigation and an area in which crops are grown, in the Purulia 143 

district of West Bengal, India at lead times of 1, 2, 3, 4, 5 and 6 months.  Highest skill, as 144 

measured by the correlation coefficient between observed and model-predicted SPI series, 145 

occurred at shorter lead times, with correlation values between 0.799 and 0.925 depending on 146 

which SPI series was forecasted.  Asoka and Mishra (2015) forecasted vegetation anomalies (as 147 

NDVI) at the regional scale as a proxy of vegetation health, and thus moisture availability.  The 148 

model used NDVI, root-zone soil moisture, and sea surface temperature (SST) at one to three 149 

months lead time to develop the vegetation anomaly forecast, and skill was highest at one month 150 

lead time and much lower for two and three months lead time as measured in a validation phase 151 

by examining the R
2
 statistic and by plotting the observed NDVI against the model-interpolated 152 

series for one-, two-, and three- month lead times.  Skill also varied based on location in space 153 

and, in particular, was lower during the monsoon season (JJAS) likely due to the effect of 154 
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intraseasonal variability of the monsoon system on agricultural practices.  Belayneh and 155 

Adamowski (2012), in the interest of drought forecasting, forecasted SPI 3 and SPI 12 over lead 156 

times of one and six months in the Awash River Basin in Ethiopia using Artificial Neural 157 

Network, Wavelet Neural Network and Support Vector Regression models and similarly found 158 

that forecast skill was higher at the shorter lead time.  Kar et al (2012) considered Multi-Model 159 

Ensemble (MME) methods in both a deterministic and probabilistic context.  It was found that 160 

the individual member models showed poor skill in simulating monsoon interannual variability 161 

and that on average spatially, a MME scheme that uses the member models as predictors in a 162 

point-by-point multiple regression as a means of averaging the member model forecasts 163 

outperforms the other schemes mentioned in the paper in forecasting precipitation.  However, it 164 

was found that even here, none of the three MME schemes had any usable skill in a certain 165 

region of India, and it was concluded that a probabilistic system would work better.  When 166 

probabilistic forecasts were generated (probabilistic MME) and evaluated for skill, RPSS was 167 

positive for the best scheme, in only the northern most parts of India and a few scattered points 168 

in north and central India.  Finally, Shah et al (2017) examined how different forecast products 169 

can be used operationally to provide hydrologic forecasts (e.g. for precipitation, temperature) for 170 

India at a 7 – 45 day accumulation period, which is critical for agricultural and water resource 171 

planning.  Forecast skill was evaluated on the basis of correlation with observations, median 172 

absolute error (MAE) and the critical success index (CSI).  Four forecast products from Indian 173 

Institute of Tropical Meteorology (IITM) were compared with Climate Forecast System version 174 

2 (CFSv2) and Global Ensemble Forecast System version 2 (GEFSv2) forecast products, and it 175 

was found that the meteorological variables predicted from the IITM products showed superior 176 

skill for all accumulation periods.  The key point here is that the IITM ensemble is postulated to 177 

capture intraseasonal variability of rainfall during the monsoon season.  178 

As an alternative to these agricultural planning measures, we introduce a new seasonal 179 

crop water stress index that is more informative than the total rainfall measure. It gives a 180 

surrogate for irrigation water required and incorporates intraseasonal rainfall and temperature 181 

variability along with information inherent to the specific crop and planting region. 182 

 183 

3. The Cumulative Deficit Index: Background and Scientific Basis 184 

 Our interest in this study is to provide one-season-ahead forecasts of irrigation and water 185 

storage requirements for water resources management in the agricultural sector, and 186 

subsequently compare the outcomes of these forecasts with the forecasts issued by IMD.  We 187 

begin by developing an index for crop water stress as a means of gauging irrigation 188 

requirements.  The index developed and used in this study computes the maximum cumulative 189 

deficit over a growing season between daily water requirement for optimal crop growth and daily 190 

effective rainfall.  Variants of this method have been presented in our previous studies for 191 

quantifying the water stress globally (Devineni et al, 2013; Devineni et al, 2015; Chen et al, 192 

2014), and drought indexing for the United States (Etienne et al, 2016; Ho et al, 2016).  Given an 193 

n-year record of daily data, our water stress index calculates the day-by-day accumulation of 194 

deficit in rainfall in each of the n growing seasons.  The maximum of these seasonal daily deficit 195 

values is taken to be the value of the index for the season.  Hence, we give this index the name 196 

cumulative deficit index, abbreviated CDI.   On a practical level, such an index gives a worst-197 

case scenario in terms of the seasonal water stress on the crop, and can therefore be interpreted as 198 
the amount of water that should be drawn from external storage to meet water demand.  This 199 
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may include irrigation, ground water pumping, interbasin transfers, and/or withdrawing water 200 

from a storage or water-harvesting facility. 201 

 Deficit is estimated as the difference between the seasonal crop water requirement and 202 

effective rainfall for each crop in a given location in the season.  Effective rainfall is given as  203 

 204 

𝑆𝑡,𝑑 = 𝛼 ∗ 𝑃𝑡,𝑑 … (1) 205 

In Eq. (1), 𝑃𝑡,𝑑 is the rainfall for a given day d in the year t.  𝛼 is the parameter that determines 206 

the fraction of rainfall that can be utilized by the crops for a location.  It accounts for losses to 207 

direct runoff, evaporation and groundwater infiltration.  In our study, we set α = 0.7. 208 

 The water use for a given crop is estimated based on the expected growth stage and daily 209 

evapotranspiration as  210 

 211 

𝐷𝑡,𝑑 = 𝑘𝑐,𝑑 ∗ 𝐸𝑇0 𝑡,𝑑 … (2) 212 

 213 

In Eq. (2), 𝑘𝑐,𝑑 is the crop coefficient, which is the ratio of actual evapotranspiration (ETa) of a 214 

given crop under non-stressed conditions to reference crop evaporation (ET0).  It represents crop-215 

specific water use at various growth stages of the crop and is typically derived empirically based 216 

on local climatic conditions (Doorenbose and Pruitt, 1977).  The accumulated deficit over a 217 

season is then given as 218 

 219 

𝑑𝑒𝑓𝑖𝑐𝑖𝑡𝑗,𝑑 = max (𝑑𝑒𝑓𝑖𝑐𝑖𝑡𝑗,𝑑−1 + 𝐷𝑗,𝑑 − 𝑆𝑗,𝑑, 0) where deficitj,d=0 = 0 … (3) 220 

 221 

𝐶𝐷𝐼𝑗,𝑡 = max(𝑑𝑒𝑓𝑖𝑐𝑖𝑡𝑗,𝑑(𝑦): 𝑑 = 1: 𝑛𝑠; 𝑡 = 1: 𝑛) ; where deficitj,d(0)=0, y=1,…,n … (4) 222 

 223 

In equation (3), 𝑑𝑒𝑓𝑖𝑐𝑖𝑡𝑗,𝑑 refers to the accumulated daily deficit for any given year with a crop 224 

growth period of 𝑛𝑠 days in the year, 𝐷𝑗,𝑑 to total daily water demand, 𝑆𝑗,𝑑 to the total daily 225 

effective rainfall, for geographical location j, and day d; t refers to a calendar or cropping year; 226 

and n is the total number of years in the analysis.  For an n-year record, seasonal water stress is 227 

evaluated as the maximum cumulative deficit each season and defined here as 𝐶𝐷𝐼𝑗,𝑡. CDI 228 

focuses on the rainfall distribution within the season relative to the crop water demand.  It 229 

therefore accounts for the timing of planting, different stages of crop growth, and the timing and 230 

distribution of rainfall in the season.  The index may also be treated as a hydrologic index and 231 

forecasted exactly as one would forecast precipitation or temperature variables, or any other 232 

water stress or drought index.  Depending on the lead time of such forecasts, this can give 233 

farmers and other agricultural stakeholders a sufficient amount of planning and preparation time, 234 

thus providing them a critical edge in hedging agricultural water risk.  This is critical in irrigation 235 

and water storage planning. 236 

 237 

4. Case Study: Forecasting Irrigation Requirements for Potatoes in Maharashtra, India 238 

We endeavored to forecast CDI for potatoes grown in the Satara district in Maharashtra, 239 

India as an application. The Satara district in Maharashtra is one of the primary regions for 240 

sourcing potatoes during the monsoon season (June - September). Satara supplies the majority of 241 
the potatoes processed by the Frito-Lay manufacturing plant in Pune, Maharashtra (Economic 242 

Times, 2013). Potato is a major cash crop in Maharashtra and accounts for at least 75% of total 243 
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production (Nikam, et al., 2008). The average annual rainfall in this arid to semi-arid region is 244 

around 350 mm with high inter-annual variability. The region has experienced four droughts 245 

(seasonal rainfall below long-term average) since 2001. The ability to predict such droughts with 246 

a reasonable accuracy at lead times of three to six months could suggest ways to adapt existing 247 

agricultural operations to the anticipated conditions and minimize the impacts of droughts on the 248 

agricultural supply chain. Hence, we develop, present and evaluate the results from retrospective 249 

forecasts of CDI for the monsoon season over the period 2001-2013.  The June-July-August-250 

September (JJAS) season is the growing season for potatoes in the Satara district. It is also the 251 

core monsoon season for the Indian sub-continent.  The forecasts use climate data from three to 252 

six months prior to the beginning of the monsoon season as predictors, and forecasts are to be 253 

issued in May, one month prior to monsoon onset.   254 

 255 

4.1: Data Collection and Processing 256 
4.1.1: Precipitation and Temperature Data and the CDI 257 

Gridded daily rainfall data from 1901 – 2004 available at 1
0
 x 1

0
 spatial resolution from 258 

the India Meteorological Department (Rajeevan et al., 2006), and gridded daily temperature data 259 

from 1948 – 2000, available at the same spatial resolution from National Center for Atmospheric 260 

Research (Ngo, et al., 2005) are used in this study. Since the daily temperature data is available 261 

only for 53 years, we used the daily climatology, i.e. the mean daily temperature, for the 262 

remaining 60 years (Devineni et al., 2013). The daily climate time series grids were spatially 263 

averaged over the Satara district. This process resulted in a time series of daily precipitation and 264 

temperature estimates for 104 years. The daily Reference Crop Evapotranspiration (ET0) was 265 

developed based on the daily time series of minimum, mean and maximum temperature data, and 266 

extraterrestrial solar radiation (Hargreaves and Samani, 1982). The Hargreaves method is used 267 

globally to predict ET0 in regions where data availability is limited to air temperature data (Allen, 268 

et al., 1998). Seasonal daily rainfall data from 2005 to 2013 for the Satara district were collected 269 

separately from a website maintained by the Agricultural Department of Maharashtra State and 270 

used to augment the 104 years of rainfall and temperature data. The CDI was computed for each 271 

of these 113 seasons using the daily rainfall data and reference crop evapotranspiration.  This 272 

will serve as the predictand for our forecast model.  The computation of CDI is illustrated in Fig. 273 

1.  These figures provide insights on the time-evolving vulnerability to stress arising from 274 

deficient rainfall and changes in crop demand. 275 

 276 

CDI as a water stress measure is a proxy of not only crop water stress but also irrigation 277 

and water storage requirements.  Consider Fig. 1.  When daily seasonal rainfall is low or when 278 

rainfall enters an inactive phase for a considerable period of time, as displayed by the vertical 279 

cyan bars, the amount of daily accumulated water deficit increases to reflect the disparity 280 

between water supplied as rainfall and the water required by the crop to sustain itself, as 281 

displayed by the red curve in Fig. 1.  The highest point, or peak, on the black deficit time series 282 

in Fig.1 is the value of CDI, and it prepares us for the worst-case scenario of deficient water 283 

supply for the crop.  This can be calculated for multiple crops, each CDI value depending on the 284 

specific crop’s water demand and the location and time of planting.  This gives the stakeholder a 285 

conservative estimate of how much additional water is needed beyond what Nature is willing to 286 

supply in order to maintain critical yields while apportioning water resources intelligently.  Since 287 

agriculture tends to be one of the largest consumers of water --- about seventy-percent of all the 288 
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world’s freshwater withdrawals go towards irrigation use (USGS, 2017), and this is in addition to 289 

what is rainfed --- this is an integral part of water resources management. 290 

The annual time series of the CDI computed for the JJAS season (referred to as Kharif 291 

season in India sub-continent) in Satara is presented in Fig. 2. We have standardized the CDI 292 

values as the percentage difference each year from the 113-year average of CDI. The long-term 293 

average CDI for growing potatoes in Satara is 241 mm. This is equivalent to approximately 294 

257,644 gallons of water used for irrigating a one-acre farm of potatoes on average throughout 295 

the season. The percent differences in Fig. 2 refer to percentages of this number, i.e. a 10% 296 

increase in CDI indicates an additional requirement of 25,764 gallons. From Fig. 2, it is clear that 297 

(a) Satara experiences recurrent droughts with intermediate wet periods and (b) there is year-to-298 

year persistence in the incidence of these droughts. Such variations and epochal changes are 299 

typically modulated through large-scale global climate patterns. Investigating the relationship 300 

between monsoon deficit and the large-scale climate teleconnections could enable the 301 

development of models that can be used to understand and predict the variability in the CDI in 302 

the region. 303 

 304 

4.1.2: Climate Precursors and Climate Data 305 

Our goal was to develop a simple statistical model for predicting CDI for potatoes grown in 306 

Satara. The generalized climate forecast models available at low spatial resolution are not 307 

specific enough for this task. Consequently, the first objective was to identify appropriate climate 308 

predictors before the monsoon starts in June. There is an extensive history of developing long-309 

range predictions of monsoon rainfall that are based on various regional to large-scale climate 310 

predictors (Walker, 1924; Thapliyal, 1987). A variety of seasonal forecasts of the all India 311 

Summer Monsoon Rainfall (ISMR) are documented and available for reference (Gadgil et al., 312 

2007; Kumar et al., 1995).   313 

It is well established that inter-annual climate modes such as ENSO associated with 314 

anomalous Sea Surface Temperature (SST) conditions in the tropical Pacific Ocean influence the 315 

inter-annual variability of ISMR (Parthasarathy and Pant, 1985; Shukla and Paolino, 1983). 316 

Anomalously warm tropical eastern Pacific SSTs (El Niño) are associated with a drier-than-317 

normal ISMR, whereas anomalously cool tropical eastern Pacific SSTs (La Niña) are associated 318 

with a wetter-than-normal ISMR (Sikka, 1980; Parthasarathy and Panth, 1985; Rasmusson and 319 

Carpenter, 1983). Ihara, et al. (2007) have suggested that the ENSO warm (cool) phases shift the 320 

location of the tropical Walker circulation and cause deficient (excessive) rainfall by suppressing 321 

(enhancing) the convection over India. Hence, ENSO indices were chosen to be among the 322 

candidate predictors for the forecast model. 323 

Raw monthly SST data for the Niño 3, Niño 4, Niño 12 and Niño 34 indices were taken from 324 

the KNMI climate explorer database (KNMI, 2016). For each given raw ENSO index (3, 4, 12 325 

and 34), we considered three different types of derived ENSO indices: a December-January-326 

February (DJF) seasonal average, a March-April-May (MAM) seasonal average, and a MAM 327 

minus DJF (MAM-DJF) differenced time series. Among the Niño indices calculated, the change 328 

in the tropical Pacific SSTs from December to May (MAM-DJF trend) was found to be of 329 

significance by previous investigators.  Shukla and Paolino (1983) found the correlation 330 

coefficient between the MAM-DJF trend pressure anomalies and the ISMR to be a significant -331 

0.42.  Parthasarathy et al. (1988) found the correlation coefficient between this winter-to-spring 332 

trend and ISMR over the period 1951-1980 to be between 0.40 and 0.52 in magnitude, depending 333 
on the specific region within the tropical pacific.  Hence, MAM-DJF trends from Niño 3, Niño 4, 334 
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Niño 12 and Niño 34 were considered to be potential model predictors.  Parthasarathy et al. 335 

(1988) found that the MAM-averaged tropical Pacific SSTs over the box 14 N to 20 N, 176 E to 336 

160 W had a correlation of -0.40 with ISMR, convincing us to consider this average as well.  In 337 

addition to the MAM and MAM-DJF averages, we computed the winter season (DJF) average, 338 

although DJF-averaged tropical Pacific SSTs were not found to be significant in the literature.  339 

However, it is worth noting that Parthasarathy et al. (1988) found that the correlation coefficient 340 

between the Darwin SLP during the DJF season and ISMR was +0.39.   341 

As the concurrent season (JJAS) state of ENSO has an important, well-documented impact 342 

on ISMR, we also elected to include the Niño 34 JJAS average.  As mentioned earlier, an El 343 

Niño event during the JJAS season is strongly associated with an anomalously dry JJAS rainfall 344 

season in India, while a La Niña event during the JJAS season is strongly associated with an 345 

anomalously wet JJAS rainfall season in India, prompting our choice. We coupled the JJAS 346 

seasonal average for the Niño 34 index with forecasts of the JJA and JAS seasonal averages for 347 

the Niño 34 index. These forecasts were obtained from the International Research Institute for 348 

Climate and Society (IRI) ENSO forecast page and covered the period 2002-2013.  These 349 

forecasts can be used to forecast JJAS monsoon CDI in place of the observed Niño 34 JJAS 350 

values on a real-time basis.  These forecasted values were averages of the projections from at 351 

least six distinct statistical/dynamical models, with one average for the JJA season and one 352 

average for the JAS season.  Together, we start with a total of thirteen ENSO-based indices.   353 

Other candidate predictor variables include concurrent season (JJAS) eastern Indian Ocean 354 

SSTs known as the Indonesian Throughflow, or ITF. Warm, low-salinity water from the Pacific 355 

is introduced into the Indian Ocean via the ITF and is considered to be an integral component in 356 

the heat and hydrological budget of the Indian Ocean (Gordon et al., 1997).  The ITF waters are 357 

also believed to influence SSTs and associated ocean-atmosphere coupling within the Indian 358 

Ocean, making it an important aspect of monsoon climate research (Gordon et al., 1997). Thus, 359 

the ITF was also selected to be a candidate predictor in the model.  During the JJAS monsoon 360 

season, the ITF is strengthened considerably, allowing an abundant amount of relatively warm 361 

water to be injected into the Indian Ocean.  Eastern Indian Ocean SSTs during the JJAS season 362 

correspond to enhanced (suppressed) atmospheric convection during the anomalous warming 363 

(cooling) of the Indian Ocean waters, which in turn supplies (robs) the developing monsoon of 364 

much-needed moisture. We found that the Spearman rank correlation coefficient between CDI in 365 

Satara and the average SST anomalies over 20
o
 N and 5

o
 S and 100

o
 E and 130

o
 E (the region 366 

representing ITF) during the JJAS season is around -0.35 (statistically significant at the 95% 367 

level), suggesting that warm conditions in the ITF region result in below-normal CDI, or low 368 

crop water stress. Figure 3 presents the field correlation map of SST anomalies with CDI.  For 369 

these reasons, we chose concurrent season ITF data to be a candidate predictor. The ITF data was 370 

collected from the IRI data library and consists of two components: an observation component 371 

and a forecasted component. The observations consist of measured eastern Indian Ocean SST 372 

anomalies during the JJAS season from 1901 through 2013.  The forecasts consist of JJAS-373 

season ITF values retrospective from the ECHAM4.5 global climate model and cover the period 374 

2001-2013.  Skillful forecasts for the tropical SSTs based on coupled ocean-atmospheric general 375 

circulation models have been in operation from various climate centers since 1998.  Hence, in 376 

the forecasting scheme, we used the ITF derived from forecasted SST state issued in May from 377 

ECHAM4.5 operational forecasting center (available from IRI data library: 378 

http://iridl.ldeo.columbia.edu/SOURCES/.IRI/.FD/.ECHAM4p5/.Forecast/.ca_sst/.ensemble24/; 379 
Li and Goddard, 2005; van den Dool, 2007; Roeckner et al., 1996).  The observed JJAS ITF data 380 
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are used to train the model, while the retrospective JJAS ITF forecasts are used to make forecasts 381 

for the years 2001 – 2013. 382 

 383 

4.2: The Forecasting Procedure 384 
4.2.1: Predictor Selection 385 

Given a pool of candidate predictors, the next step is to select the best subset of those 386 

predictors. The predictors used in the forecasting model were chosen based on an exhaustive 387 

search method.  In the exhaustive search method, all possible combinations of the candidate 388 

predictor variables are used to develop models that are cross-validated on historical data. Skill 389 

metrics are then used to compare the predictive accuracy of each combination. In the present 390 

study, we began with 113 years of CDI data and fourteen candidates: Niño 3 DJF, Niño 3 MAM, 391 

Niño 3 MAM-DJF, Niño 4 DJF, Niño 4 MAM, Niño 4 MAM-DJF, Niño 12 DJF, Niño 12 392 

MAM, Niño 12 MAM-DJF, Niño 34 DJF, Niño 34 MAM, Niño 34 MAM-DJF, Niño 34 JJAS 393 

and ITF.  The exhaustive search method utilized the kNN cross-validation algorithm and forty 394 

years of training data (1901-1940) to build forecast distributions for each of the years 1941-2013.  395 

At each step, the training data was updated to include data from all of the years up until the year 396 

being cross-validated. Thus, we always use only the historical data and update the model each 397 

year with the information of the previous year, much as a regular user of the forecast system 398 

would have to do. These forecasting distributions, built over a 73-year record (1941 to 2013) 399 

were created successively for every unique combination of two variables, every unique 400 

combination of three variables, so on and so forth until we reached the entire pool of predictors.   401 

For each and every possible unique combination of the predictor variables, we obtain a 402 

matrix of seventy-three columns.  For each of these seventy-three (73) years, the squared error 403 

and rank probability score (Epstein, 1969; Murphy, 1969, 1971; Candille and Talagrand, 2005) 404 

were computed, and from this the root mean squared error (RMSE) and rank probability skill 405 

score (RPSS) were computed.  In this manner, a single RPSS value and MSE value were 406 

calculated for every possible combination of the predictor variables.  We chose the following 407 

combination of predictors based on the relative optimality of both their RPSS and RMSE scores: 408 

Niño 12 MAM-DJF, Niño 34 MAM-DJF, and ITF, and this set of variables had an RMSE of 409 

49.25 mm of required (JJAS) seasonal water storage and RPSS of 0.26.  We devised a simple but 410 

effective decision rule for determining the optimal choice of predictors based on ranking the 411 

metric values.  This is especially useful when the number of combinations of variables is 412 

unwieldy.  Optimality was determined by assigning a rank number to the RMSE and RPSS 413 

values in such a way that the number 1 was assigned to the lowest RMSE value, 2 to the second 414 

lowest RMSE value, and so on, and the number 1 was assigned to the largest RPSS value, 2 to 415 

the second largest RPSS value, and so on.  For a fixed number of cross-validated predictor 416 

candidates, and for each RMSE/RPSS pair, one pair for each combination of predictors, we 417 

determined an RMSE and RPSS rank and took the sum of these ranks.  The smallest of all of 418 

these sums corresponds to the best or optimal set of predictors among all possible sets of cross-419 

validated predictors.  We then compared the rank sum along with the number of predictors to 420 

choose the best set of predictors.  The chosen trio of predictors mentioned above had the 421 

unequivocally highest value of RPSS and second lowest RMSE value out of all possible 422 

combinations of the original set of seventeen candidates, the lowest RMSE being only slightly 423 

smaller at 48.92 mm.  Conceptually, this procedure is similar to the “best subsets regression” or 424 

“step-wise regression” (Helsel and Hirsch, 2002), but in the spirit of using kNN algorithm for 425 
forecasting, we designed this selection scheme to use the kNN algorithm instead. 426 
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  CDI forecasts were subsequently made using the selected set of predictors.  The forecast 427 

procedure is tested using the leave-one-out cross-validation method.  Each historical observation 428 

is omitted in turn, and the model is developed using the remaining years of data.  A prediction of 429 

the observation that was not kept in the model-building set is then made and compared with the 430 

actual outcome for that year.  Results from a variant of this approach are presented in the next 431 

section.  The CDI for the 2001 Kharif season is predicted using the model developed based on 432 

data from 1901 – 2000.  Similarly, the CDI for 2002 is predicted based on the model that is 433 

developed using the data from 1901 – 2001.  Thus, as we move from year to year, we update the 434 

model observations and predict the future state. 435 

 436 
4.2.2: The k-Nearest Neighbors Real-Time Forecasting Model 437 

 The forecasts were developed using a semi-parametric k-nearest neighbors (k-NN) 438 

model.  This is a data-driven approach that develops a conditional probability distribution of the 439 

CDI given the predictors by first identifying the k-historical climate conditions that are most 440 

similar to the current values of the climate predictors and then randomly drawing the vector of 441 

CDI values in the historical data that correspond to these k neighbors.  The neighbors are 442 

weighted so that the closer or more similar neighbors are chosen more often than those further 443 

away.  The key steps are as follows. 444 

Let X be the design matrix of size n x p, where p = number of predictors selected from 445 

the original pool of candidates.  Let xi denote the i
th

 row of X.  Hence, xi is a vector containing 446 

the values of each of the p predictor variables during year i.  Denoting the current values of the 447 

predictors by xc, the idea is to find k such predictor vectors from the historical record (i.e. find k 448 

values of xi with i < c) that are most "similar" to the value of xc and use this information to 449 

construct a sampling distribution of CDI from which we can issue probabilistic forecasts. The 450 

number of neighbors in the model, or k, represents the number of degrees of freedom in the 451 

model, and should be chosen with care, as the choice of k affects the skewness and level of 452 

uncertainty in the sampling distributions.  After trying several different values for k, we found an 453 

optimal value to be k = 25.  Rajagopalan and Lall (1999) recommend that k be roughly equal to 454 

√𝑛, where n = the total number of observations.  In our situation, it was evident that we required 455 
more neighbors than this rule would allow, due to the skewness and variance apparent in the 456 

sampling distributions when using only eleven or fewer neighbors.    457 

 Let y be the n-dimensional vector of seasonal CDI values, each component of which 458 

represents the aggregate water deficit level over the JJAS growing season of every year in the 459 

historical record.  Assume that y has been centered and normalized by its historical average to 460 

produce mean-normalized anomalies.  The first step was to consider the individual distance 461 

values (under some specified metric) between xc and xi for i = 1,...,c-1.  The chosen distance 462 

metric for our k-NN model was the Mahalanobis distance (Mahalanobis, 1936) 463 

 464 

𝐷𝑀(𝒙𝑐,  𝒙𝑖) = √(𝒙𝑐−𝒙𝑖)
𝑇∑−1(𝒙𝑐−𝒙𝑖) … (5) 465 

 466 

where ∑ is the covariance matrix of the training values in X. The Mahalanobis distance measure 467 

judges point separations in a metric space based on statistical dissimilarity, as opposed to solely 468 

physical distance.  Hence, the level of similarity between predictor values across different years 469 

is determined by the orientation and location of each point relative to the scatterplot of the 470 
predictor data.  Large distances from xc represent predictor values that are statistically anomalous 471 

in the context of the predictor data.   472 
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 After the Mahalanobis distances had been calculated, the k (with k = 25) smallest distance 473 

values were selected and the corresponding years in which these distances occurred were noted.  474 

These years, hereby referred to as the analog years, are the years during which the predictor 475 

signals were most similar to those of the current year.  The vector-valued predictors during these 476 

analog years are referred to as the neighbors of xc.    477 

 The final step was to resample CDI values from the analog years.  The resampling 478 

technique employed is a nonparametric method known as the bootstrap (Efron, 1979; Efron and 479 

Tibshirani, 1993).  The idea behind the bootstrap component is to sample with replacement from 480 

a pool of data using the underlying distribution that generated the data to guide the sampling 481 

process.  We chose not to assign a parametric family of distributions to the CDI data, and instead 482 

estimated its underlying distribution semi-parametrically using a kernel density estimator.  This 483 

semi-parametric method of k-NN bootstrapping was first introduced in Lall and Sharma (1996). 484 

Applications of the methods using different variants have since been presented (see for example, 485 

Rajagopalan and Lall, 1999, Souza and Lall, 2003 and references therein). We employed the 486 

same discrete resampling kernel proposed in Lall and Sharma (1996), which has the general form 487 

K(j) = 1/(j*S) with S = ∑ 1/j𝑘
𝑗=1  , where j is the rank of each neighbor of xc, a rank of j=1 488 

assigned to the closest neighbor and a rank of j=k assigned to the most distant neighbor. Our 489 

strategy was to build this kernel density estimator based on the ranks of the selected neighbors 490 

and resample the predictand values from these analog years. We resampled from the twenty-five 491 

analog CDI values 1,000 times, and each of the twenty-five values was resampled proportionally 492 

to the probability of its occurrence as determined by the density estimator. 493 

 494 

4.2.3: Analyzing the k-NN Results 495 

The way in which model results are interpreted and presented is important for potential 496 

stakeholders.  In this case study, our interest was in forecasting the CDI for a given potato 497 

growing season in Satara.  The information from these forecasts can be of great use to potato 498 

farmers in Satara as well as corporations with investments in these farming areas.  This 499 

necessitates a clear and concise communication of the forecast results. 500 

The output of the k-NN model was a time series for each forecasted year consisting of 501 

1,000 realizations.  This is the sampling distribution for the CDI and consists of mean-502 

normalized anomaly values from the analog years converted to percentage values.  As stated in 503 

the previous section, the deficit value from each analog year in the sampling distribution is 504 

represented proportionally to its probability of occurrence as assigned by a kernel density 505 

estimator.  The sampling distribution is used to issue one-season-ahead probabilistic forecasts 506 

(i.e. the likelihood of a deficit for the forthcoming growing season).  There are a whole slew of 507 

possibilities when it comes to using these sampling distributions for probability-based forecasts.  508 

Our approach includes the following for a given forecasted growing season:  509 

1. A boxplot depicting the sampling distribution with the observed percent anomaly value 510 

superimposed on the boxplot for every growing season forecasted.  In using predictand 511 

anomalies, the historical mean becomes the zero line in the coordinate plane of the 512 

boxplot. 513 

2. A three-category forecasting system with the categories “above normal”, “normal” and 514 

“below normal”, provided that the historical mean/climatology is the threshold that is 515 

desired. 516 
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3. Calculate the probabilities for the categories specified in step 2 from the sampling 517 

distribution generated in step 1, and use this to evaluate the accuracy and strength of the 518 

forecast based on contingency metrics such as hit rates and false alarms. 519 

4. To get a sense of the spread/variability in the boxplot distribution, calculate the 520 

Interquartile Range (IQR). 521 

5. Compare the value of the observed percent anomaly of the predictand with the category 522 

in which the majority of the probability mass of the sampling distribution lies.  This is of 523 

central importance in getting a basic sense of the accuracy of the forecast.  524 

In general, the construction of such a sampling distribution allows the investigator the freedom to 525 

calculate probabilities on many different thresholds.  The thresholds should be defined by the 526 

particular application and the needs of any stakeholders involved.  527 

5. Case Study: Forecast Results and Discussion 528 

5.1: CDI Forecast Results and Comparison with IMD Monsoon Forecasts 529 
 We hereby present the results of the CDI forecasts for the 2001 – 2013 JJAS seasons in 530 

the Satara district, Maharashtra, India.  Forecasts are specifically made in the interest of 531 

irrigation requirements for potatoes grown in the Satara district, and we discuss the results in this 532 

context.  The output of the k-NN model is the forecasting distributions for CDI of the thirteen 533 

years and a series of boxplots representing these forecast distributions as shown in Fig. 4.  The 534 
probabilities calculated from these distributions are shown in Table 1, columns 2 and 3. 535 

Figure 4 shows a series of boxplot diagrams depicting the k-NN forecast distributions for 536 

CDI over the years 2001 – 2013.  All calculations in this Figure, including the construction of the 537 

distributions themselves, were done using anomalies of the predictand rather than the raw 538 

predictand values.  The anomalies were calculated by subtracting the 1901 – 2013 mean from the 539 

data and dividing by this mean value and converting the quotient to a percentage.  The idea is to 540 

gauge the level of seasonal crop water deficit in a forecasted year with respect to the level of 541 

crop water deficit that has occurred on average over the entire historical record.  This should 542 

address the question: how “normal” or “abnormal” is a given level of deficit over a season with 543 

respect to everything we have seen or experienced thus far. Given that the forecast is developed 544 

one season ahead, the sign of a strong shift in the probability will alert the decision-makers to an 545 

anticipated deficit or surplus event. 546 

We have created two general possibilities: the observed percent anomaly values (triangles 547 

in Fig. 4) can be positive or negative.  As the forecasts have been carried out using anomalies 548 

instead of raw values, the 1901 – 2013 historical average is re-positioned as the zero line in Fig. 549 

4.  We calculate the probability under the kNN forecast distribution of observing positive 550 

(negative) deficit anomalies for each year in 2001 – 2013.  These are retrospective forecasts in 551 

the sense that these anomalies have already been observed and recorded but not used in building 552 

the model.  These probabilities, corresponding observed percent anomalies and IQR values are 553 

presented in Table 1.  The utility of these forecasts are discussed in section 5.2. 554 

 Given the above information, we judge the accuracy of the forecasts during any given 555 

year on a few simple criteria: the directional agreement between the observed percent predictand 556 

anomaly and the median of the forecast distribution (Fig. 4), joint consideration of the forecast 557 

probabilities and the observed percent anomaly (Table 1, columns 2, 3 and 4) and the level of 558 

uncertainty in the forecast distribution (Fig. 4 and Table 1, column 5).  Uncertainty is measured 559 
by the IQR of the boxplot distribution.  In the present context, we say that a forecast for a given 560 

year has identical directionality (with respect to the observation) if both the median of this 561 
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forecast and the observation (as a percent anomaly) are either positive (above the historical 562 

average) or negative (at or below the historical average).  The absence of identical directionality 563 

will be called dissimilar directionality. 564 

 The box-and-whiskers plots shown in Fig. 4 for each year illustrates the range of possible 565 

values of the CDI for that year.  We have identical directionalities for the years 2001, 2004, 566 

2005, 2006, 2007, 2010, 2011, 2012 and 2013.  For the years 2001, 2011 and 2012, the model 567 

correctly forecasted that the water stress conditions for the Maharastran potatoes would be above 568 

the CDI climatology.  We can see from Fig. 4 that both the observed percent anomalies 569 

(triangles) and the medians for all of these forecasted years are positive.  Additionally, Table 1, 570 

column 2 shows that the majority of the probability mass of the kNN distribution is placed in the 571 

“Above Mean” category for 2001, 2011 and 2012, while column 4 shows that for these years, the 572 

observed CDI anomalies are positive.  Similarly, for the years 2004, 2005, 2006, 2007, 2010 and 573 

2013, the model correctly forecasted that water stress conditions for the potatoes would be below 574 

the historical average, and this can be seen from Fig. 4, where the observed anomalies and the 575 

medians for all of these forecasted years are negative.  Similarly, Table 1, column 3 shows that 576 

the majority of the probability mass from the kNN forecasting model was placed on the “Below 577 

Mean” category for these years, and the corresponding observed CDI anomalies are also 578 

negative.  For the years 2002, 2003, 2008 and 2009, we have dissimilar directionalities.  The 579 

forecasts suggest higher probability values for below average CDI during 2002 and 2003, 580 

whereas positive anomalies were observed for these years.  Similarly, the forecasts for 2008 and 581 

2009 placed the majority of the probability mass on higher than average CDI, suggesting that 582 

these years were likely to see higher than normal potato water stress.  However, the observed 583 

CDI anomalies were negative, implying the opposite scenario. 584 

 We say that a hit has occurred if identical directionality is observed.  A miss occurs if the 585 

forecast implies below average water stress, but the observation shows above average water 586 

stress.  Finally, a false alarm occurs if the forecast implies above average water stress while the 587 

observation shows below average water stress.  Table 2 shows that the hit rate of the kNN 588 

forecasts is 9/13, the miss rate is 2/13 and the false alarm rate is 2/13.  Table 3 shows a 589 

comparison of our CDI forecasts with seasonal total precipitation forecasts of the India 590 

Meteorological Department, abbreviated IMD.  The IMD forecast presented here for 2001 is 591 

long-range for precipitation in the JJAS season over three climatically homogeneous regions in 592 

India: Northwest India, Peninsular India, and Northeast India.  Maharashtra is in Peninsular 593 

India, and so we refer to this forecast.  For 2001, the forecast result was categorized as either 594 

normal, above normal or below normal.  “Normal” is defined as being within ±10% of the long-595 

period average, or LPA.  Beginning in 2003, IMD began offering two-stage forecasts, the first 596 

released in mid-April using data up to March and an update in June using data up through May.  597 

For both 2011 and 2013, we used the initial country-wide forecast, as the updated forecasts for 598 

JJAS could not be found.  In 2003, IMD began to divide their forecast results into five 599 

categories: drought/deficient, below normal, near normal/normal, above normal and excess.  600 

“Deficient” (drought) is defined as JJAS total seasonal rainfall that is less than 90% of the long 601 

period average (LPA).  “Below normal” is defined as JJAS rainfall that is 90% – 96% of the 602 

LPA, “normal” (sometimes called “near normal”) is defined as JJAS rainfall that is 96% – 104% 603 

of the LPA, “above normal” is defined as JJAS rainfall that is 104% – 110% of the LPA and 604 

“excess” is defined as JJAS rainfall that is more than 110% of the LPA.  The IMD forecasts are 605 

reported as percentages of the LPA, as shown in column 3 of Table 3.  Going by the categories 606 
defined by IMD, and comparing these forecasts with actual JJAS seasonal total precipitation 607 
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anomalies from our gridded rainfall data set, where these anomalies have been calculated with 608 

respect to the long period average defined as 1901 – 2013, we classify each forecast as a hit, miss 609 

or false alarm as was done with the CDI forecasts.  The hit rate for IMD is 1/9, the miss rate is 610 

3/9 and the false alarm rate is 5/9.  We must bear in mind that the total precipitation forecasts 611 

given here are for an entire region that includes the state of Maharashtra, whereas our CDI 612 

forecasts are generated based on CDI calculations from the target location of Satara, 613 

Maharashtra, India.  Hence, our CDI anomalies reflect the conditions of Satara on a much higher 614 

resolution than the coarse IMD precipitation anomalies.  Furthermore, we are comparing IMD 615 

forecasts with actual precipitation totals from Satara, and computed with respect to the 1901 – 616 

2013 LPA instead of the 1951 – 2000 LPA of IMD, under the reasonable assumption that the 617 

LPA does not change much between those two definitions.  While the IMD monsoon forecasts 618 

can provide a broad regional understanding of the monsoon conditions, supplementing them with 619 

targeted crop-specific forecasts such as ours will help improve agricultural planning and regional 620 

water management. 621 

We define a strong forecast as a forecast in which the probability assigned to one of the 622 

two categories is at least 60%.  In our situation, ten out of the thirteen years witnessed strong 623 

forecasts.  A weak forecast runs the risk of being less informative to decision-makers, whereas a 624 

strong forecast is much more assertive and definitive, and hence decisions can be made more 625 

easily with a strong forecast.  The forecasts were also correct for seven of these ten years, as seen 626 

in Table 2.  The forecasts were correct, but barely weak, for two years (2001 and 2011).  If one 627 

considers acting only if the probability associated with a CDI forecast is at least 60%, then the 628 

forecast is correct seven out of ten times.  Raising this to 66% leads to four out of six years 629 

classified correctly.   630 

It is important to point out that one should also consider the uncertainty (column five in 631 

Table 1) when evaluating the power of the forecasts.  Knowing the uncertainty is useful since 632 

years in which the uncertainty in the forecast is low and there is a strong indication for CDI may 633 

lead to different risk management actions than years in which the forecast has strong directional 634 

change but is also marked by high uncertainty. 635 

 636 

5.2: Discussion of Results: The Utility of Targeted Forecasts 637 
It is natural to ask how one might go about using CDI forecasts.  Here is a short example 638 

of how these forecasts can facilitate decision-making.  In 2001, irrigating, or ensuring water 639 

storage equal to 294,745 gallons per acre for the potatoes would have been the ideal situation, as 640 

this is equivalent to being 14.4% above the average CDI value of 241 mm of water storage 641 

equivalent.  However, this exact amount cannot be known in the absence of the observed CDI 642 

anomaly, which is found in column four of Table 1.  Using the median as a plausible estimate for 643 

the true anomaly value, roughly 268,980 gallons per acre would have been irrigated or stored 644 

instead.  A more risk-averse decision-maker may choose to use the upper quartile or even 645 

maximum of the kNN-generated sampling distribution as a proxy for the true anomaly value.  646 

Such decisions are often made on the basis of prior experience. 647 

Although total seasonal rainfall is sometimes used for agricultural water planning, CDI 648 

boasts a significant advantage over total seasonal rainfall in this capacity.  CDI reliably accounts 649 

for water stress incurred by haphazard and erratic patterns of rainfall during the season.  A total 650 

seasonal rainfall forecast that indicates a growing season with sufficient rainfall will not be 651 

reliable when rain throughout the season is erratically distributed in clusters of rainy days, 652 
whereby all of the rainfall in a given season occurs within a portion of the season, and the 653 
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remainder of the season is virtually dry.  This is a common occurrence in monsoonal climates, 654 

and may have deleterious effects on crops that are vulnerable to prolonged dry periods and/or 655 

chunks of time during which rainfall is excessive.  Long dry spells throughout the season that 656 

can be detrimental to drought-sensitive crops are not accounted for in a measure of total seasonal 657 

rainfall, making it possible for the seasonal rainfall to appear sufficient due to sporadic 658 

occurrences of large precipitation events.  Consequently, it can also serve as a better indicator 659 

than regional rainfall to devise index insurance products for agriculture, where crop specific 660 

indices can be developed (Skees, 2016).  These characteristics of crop water stress must be 661 

accounted for in the proper planning and management of agricultural water resources. 662 

To illustrate the above point further, we appeal to Figure 5.  In this figure, the varying 663 

rainfall distribution is indicated by the vertical bars, the crop demand is given by the horizontal 664 

line (primary y-axis), and the time series shows the cumulative deficit.  The second panel shows 665 

two distinct years during which the total seasonal rainfall was 590 mm (vertical line).  During 666 

one of these two years, the CDI value was 111 mm of water deficit for the potato crop, while the 667 

CDI value for the other year was 228 mm.  This indicates that the water stress for a particular 668 

crop relies on both the magnitude and frequency of seasonal rainfall.  When daily seasonal 669 

rainfall is more uniform, the daily deficit values do not have the chance to accumulate as much 670 

as when rainfall is less uniform and, as a result, when there are persistent dry spells or long 671 

precipitation-inactive periods.  Panel three shows the resulting cumulative deficit when daily 672 

rainfall occurs with greater frequency during the JJAS season and hence the total seasonal 673 

rainfall is distributed among the days of the growing season fairly uniformly.  The fourth panel, 674 

immediately to the right of the third panel, shows the resulting cumulative deficit when rainfall is 675 

dominant during the first and last months of the JJAS season.  While rainfall events do occur in 676 

between, the magnitude of the rainfall is quite low, allowing the seasonal daily CDI time series 677 

to spike to a considerably higher maximum value (228 mm) than the CDI time series in panel 678 

three (111 mm maximum).  The CDI time series recedes and recovers at the end of the season 679 

when the rainfall increases in magnitude.  Hence, CDI can discriminate between two monsoon 680 

seasons which have the same total rainfall, but differ in that one may have rainfall distributed 681 

uniformly over the season through modest rainfall events, while the other may have a few intense 682 

rain events separated by long dry periods.  As we can see, the latter gives rise to a much higher 683 

CDI. 684 

 685 

6. Summary and Conclusion  686 
 A novel crop water stress index, the CDI, was developed here as a way of estimating 687 

water storage and irrigation requirements in the interest of agricultural water resources.  As 688 

management of water resources requires advance knowledge of water risk, the main task 689 

accomplished here was the forecasting of CDI as an effective method for understanding and 690 

hedging risk.  This concept of forecasting CDI for evaluating irrigation requirements was applied 691 

to a case study in the Satara district of Maharashtra, India in which the CDI pertaining to 692 

potatoes grown in Satara during the Southwest monsoon season was forecasted using large-scale 693 

climate indices as predictors in a semi-parametric k-nearest neighbors stochastic model that 694 

issues probabilistic forecasts.  The climate indices used were defined either concurrent to the 695 

monsoon season or three to six months prior.  Based on the hit and false alarm rates, the results 696 

achieved using our methodology were more favorable than precipitation forecasts conducted by 697 

the India Meteorological Department.  We also observed in our method a greater tendency 698 
towards strong and informative forecasts. 699 
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 This study developed a framework for quantifying and analyzing climate-induced 700 

agricultural risks.  It is based on (a) developing CDI for assessing crop-specific water risk, 701 

irrigation requirements and water storage needs for the agricultural sector; (b) investigating the 702 

sources of predictability for this indicator, and (c) developing statistically verifiable models for 703 

issuing season-ahead probabilistic forecasts for evaluating water risk and irrigation needs.  We 704 

can conclude that this is a useful approach to investigating irrigation requirements and that 705 

bootstrap-based uncertainty estimation is useful for developing probability-based management 706 

models for optimizing agricultural decisions. 707 
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Tables 887 

 888 

Table 1 889 

Year Probability 

of Above 

Mean 

Probability 

of Below 

Mean 

Observed 

CDI 

Anomaly (%) 

Boxplot IQR 

(vertical axis units 

of %-anomalies)  

2001 0.59 0.41 +14.4 10.9 

2002 0.42 0.58 +15.5 21.0 

2003 0.20 0.80 +37.8 23.1 

2004 0.35 0.65 -20.1 7.70 

2005 0.25 0.75 -51.3 12.1 

2006 0.37 0.63 -47.9 10.0 

2007 0.37 0.63 -20.5 2.60 

2008 0.75 0.25 -6.33 19.1 

2009 0.64 0.36 -30.0 5.10 

2010 0.18 0.82 -56.4 31.1 

2011 0.58 0.42 +2.72 0.19 

2012 0.68 0.32 +25.4 9.90 

2013 0.18 0.82 -9.36 24.6 
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Table 2 914 

Year Forecast Actual Observation Result 

2001 AM (59%) AM Hit  

2002 BM (58%) AM Miss 

2003 BM (80%) AM Miss  

2004 BM (65%) BM Hit 

2005 BM (75%) BM Hit 

2006 BM (63%) BM Hit 

2007 BM (63%) BM Hit 

2008 AM (75%) BM False Alarm 

2009 AM (64%) BM False Alarm 

2010 BM (82%) BM Hit 

2011 AM (58%) AM Hit 

2012 AM (68%) AM Hit 

2013 BM (82%) BM Hit 
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Table 3 944 

Year CDI Forecast 

Results 

IMD Precipitation 

Forecast 

Actual 

Precipitation 

IMD Forecast 

Results 

2001 Hit  96% of LPA 93% of LPA Hit 

2002 Miss Not Available 68%  of LPA NA 

2003 Miss  99% of LPA 40% of LPA Miss 

2004 Hit 103% of LPA 160% of LPA False Alarm 

2005 Hit Not Available 160% of LPA NA 

2006 Hit 90% of LPA 141% of LPA False Alarm 

2007 Hit 96% of LPA 163% of LPA False Alarm 

2008 False Alarm Not Available 95% of LPA NA 

2009 False Alarm Not Available 212% of LPA NA 

2010 Hit 99% of LPA 199% of LPA False Alarm 

2011 Hit 98%  of LPA 85% of LPA Miss 

2012 Hit 96% of LPA 46% of LPA Miss 

2013 Hit 98% of LPA 150% of LPA False Alarm 
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Figure and Table Captions 1024 

 1025 
Table 1: The table below shows important statistics calculated from kNN forecasts of CDI.  In 1026 

particular, column 2 displays the probabilities of the CDI for a particular season being above the 1027 

CDI climatology.  These probabilities are calculated from the kNN sampling distribution, which 1028 

in turn is simulated from historical values of the CDI based on the nearest neighbors determined 1029 

in the predictor variable space.  Column 3 shows the complementary probabilities of being below 1030 

this historical average.  The forecasts for years 2001-2013 are retrospective and may serve as a 1031 

cross-validation for the kNN model.  Column 4 shows the values of the actual (observed) CDI 1032 

anomalies with respect to the 1901-2013 climatology as percentages.  A negative value implies 1033 

that the actual CDI value was below the historical average by the given percentage.  The rounded 1034 

IQR values are shown in the final column of the table. 1035 

 1036 

Table 2: The results of the kNN-generated CDI forecasts, including the most likely category 1037 

(AM = Above Mean, BM = Below Mean) along with the corresponding kNN-assigned 1038 

probability value expressed as a percentage in parentheses next to it (column 2), the category in 1039 

which the observed anomaly value resides (column 3), and the hit/miss/false alarm designations 1040 

corresponding to these results (column 4).      1041 

 1042 

Table 3: A comparison of the CDI forecasts and the JJAS total seasonal precipitation forecasts 1043 

generated by the India Meteorological Department (IMD).  Column 2 is a repeat of column 4 in 1044 

Table 2; a record of the accuracy of CDI forecasts expressed in terms of hits and misses.  1045 

Column 3 contains the forecasts issued by IMD, and column 4 are the actual observations of 1046 

JJAS seasonal total rainfall using rainfall data from the Satara district itself.  The fifth and final 1047 

column of Table 3 shows the accuracy of the IMD forecasts in terms of hits and misses using 1048 

their own 5-category system. 1049 

 1050 

Figure 1: A plot of the cumulative deficit index (CDI) for the JJAS season in a randomly 1051 

selected year in our data set.  The plot depicts the change in CDI as rainfall distribution and crop 1052 

water requirement varies over the given monsoon season.  The vertical cyan bars are the daily 1053 

rainfall magnitudes, the slowly-changing red line is the crop water requirement (demand) and the 1054 

black time series is the CDI itself.  Notice how CDI increases as rainfall is either low in 1055 

magnitude or sparsely distributed in certain blocks of time in the season.  1056 

 1057 

Figure 2: Bar plot showing the CDI percent deficit anomalies for each of the years/growing 1058 

seasons under consideration (1901 – 2013).  The black, smooth time series is produced by an 11-1059 

year LOWESS smoothing of the CDI percent deficit anomalies and is meant to show the critical 1060 

trends in the CDI over the entire 1901 – 2013 period. 1061 

 1062 

Figure 3: Spearman rank correlation between CDI in Satara and SST field during the same JJAS 1063 

season.  SST region in the Indian Ocean (red box) that influences the CDI has a statistically 1064 

significant correlation at the 95% significance level. 1065 

 1066 

Figure 4: Boxplot diagrams depicting the kNN forecast distributions for CDI over the years 1067 

2001 – 2013 for potatoes grown in the Satara district, Maharashtra, India.  Longer, more 1068 
stretched out boxes indicate a greater degree of variability, or uncertainty, in the forecast 1069 
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distribution.  Boxes in which the median is grossly off-center indicates that the forecast 1070 

distribution is heavily skewed.  Anomalies with respect to the climatology of the predictand were 1071 

used in the boxplot calculations.  As the results are presented in terms of the percent anomalies, 1072 

the historical average is located at zero.  The triangles represent the observations as percent 1073 

anomalies about the mean.  1074 

 1075 
Figure 5: The four panels pictured here depict the CDI in various ways.  In panels (a), (c) and 1076 

(d), the blue bars represent daily seasonal rainfall levels (in mm), the red curve represents crop 1077 

evaporative water demand (ET0) and the black time series is the CDI calculated based on this 1078 

data.  Panel (a) illustrates the basic nature of CDI using the daily seasonal CDI time series from 1079 

the JJAS growing season of 2013.  Note that this time series is specifically calculated for 1080 

potatoes grown in the Satara district of Maharashtra, India during the 2013 JJAS growing season.  1081 

Panel (b) shows a scatterplot of total rainfall across all growing seasons (1901 – 2013) and CDI 1082 

across all growing seasons.  A significant negative correlation between them is apparent from 1083 

this scatterplot (Pearson correlation is -0.8, Spearman rank correlation is -0.812, Kendall rank 1084 

correlation is -0.623).  This panel demonstrates two different growing seasons, with two different 1085 

CDI values, during which the total seasonal rainfall was the same.  Panel (c) is a seasonal CDI 1086 

time series plot corresponding to the growing season with the lower CDI value on the vertical 1087 

line in panel (b).  Panel (d) is a seasonal CDI time series plot corresponding to the growing 1088 

season with the higher CDI value on the vertical line in panel (b). 1089 
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