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Abstract.

Data assimilation has been recently the focus of much attention for integrated surface-subsurface hydrological models,

whereby joint assimilation of water table, soil moisture, and river discharge measurements with the ensemble Kalman filter

(EnKF) have been extensively applied. Although the EnKF has been specifically developed to deal with nonlinear models,

integrated hydrological models based on the Richards equation still represent a challenge, due to strong nonlinearities that may5

significantly affect the filter performance. Thus, more studies are needed to investigate the capabilities of the EnKF to correct

the system state and identify parameters in cases where the unsaturated zone dynamics are dominant, as well as to quantify

possible tradeoffs associated with assimilation of multi-source data. Here, the model CATHY (CATchment HYdrology) is

applied to reproduce the hydrological dynamics observed in an experimental two-layered hillslope, equipped with tensiometers,

water content reflectometer probes, and tipping bucket flow gages to monitor the hillslope response to a series of artificial10

rainfall events. Pressure head, soil moisture, and subsurface outflow are assimilated with the EnKF in a number of scenarios

and the challenges and issues arising from the assimilation of multi-source data in this real-world test case are discussed. Our

results demonstrate that the EnKF is able to effectively correct states and parameters even in a real application characterized by

strong nonlinearities. However, multi-source data assimilation may lead to significant tradeoffs: the assimilation of additional

variables can lead to degradation of model predictions for other variables that were otherwise well reproduced. Furthermore,15

we show that integrated observations such as outflow discharge cannot compensate for the lack of well-distributed data in

heterogeneous hillslopes.

1 Introduction

Data assimilation, i.e., the process in which observations of a system are merged in a consistent manner with numerical model

predictions (e.g., Troch et al., 2003; Moradkhani, 2008), has become increasingly popular in hydrological modeling over20

the last few decades (Montzka et al., 2012). Among the various techniques available, the ensemble Kalman filter (EnKF)

(Evensen, 2003, 2009b) is probably the most widespread, thanks to its ease of implementation, capability to handle nonlinear

models and potential to be used as a sequential inverse modeling tool when parameters are included in the update step. Ap-

plications in hydrology include studies in different disciplines, such as groundwater hydrology (e.g., Chen and Zhang, 2006;

Hendricks Franssen and Kinzelbach, 2008; Bailey and Baù, 2010; Li et al., 2012; Zovi et al., 2017), rainfall-runoff modeling25
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(e.g., Moradkhani et al., 2005; Vrugt et al., 2006; Weerts and El Serafy, 2006; Clark et al., 2008; Xie and Zhang, 2010; Han and

Li, 2008), and land surface modeling at multiple scales (e.g., Reichle et al., 2002a, b; Crow and Wood, 2003; Francois et al.,

2003; Pan and Wood, 2006; De Lannoy et al., 2007; Cammalleri and Ciraolo, 2012; Flores et al., 2012; Hain et al., 2012).

As a consequence of such popularity, the EnKF is more and more applied also with integrated surface-subsurface hydrolog-

ical models (IHSSMs), whereby multiple terrestrial compartments (e.g., snow cover, surface water, groundwater) are solved5

simultaneously, in an attempt to tackle environmental problems in a holistic approach (Maxwell et al., 2014; Kollet et al.,

2017). For instance, Camporese et al. (2009a) and Camporese et al. (2009b) combined the CATHY model and the EnKF to

assimilate pressure head, soil moisture, and streamflow data, finding that the assimilation of pressure head and soil moisture is

beneficial to subsurface states and river discharge, but the assimilation of river discharge alone does not improve the prediction

of subsurface states. Similar conclusions were drawn by Pasetto et al. (2012), who compared the EnKF with a modified particle10

filter to assimilate discharge and pressure head, again with the CATHY model. More recently, Pasetto et al. (2015) used the

EnKF and CATHY to investigate the impact of possible sensor failure on the observability of flow dynamics and estimation of

the model parameters characterizing the soil properties of an artificial hillslope. Ridler et al. (2014) assimilated soil moisture

remote sensing products in the MIKE SHE model and found that surface soil moisture has correction capabilities limited to the

first 25 cm of soil. With the same model, Rasmussen et al. (2015a), Rasmussen et al. (2015b), Zhang et al. (2015), and Zhang15

et al. (2016) investigated in detail issues related to uncertainty quantification and biased observations, as well the impacts of

update localization and ensemble size on the multivariate assimilation of groundwater head and river discharge at the catchment

scale. Kurtz et al. (2016) first presented a data assimilation framework for the land surface-subsurface part of the Terrestrial

System Modelling Platform (TerrSysMP), followed by Baatz et al. (2017), who assimilated distributed river discharge data

into the TerrSysMP to estimate the spatially distributed Manning’s roughness coefficient, and Zhang et al. (2018), who tested20

and compared five data assimilation methodologies for assimilating groundwater level data via the EnKF to improve root

zone soil moisture estimation. Within yet another modeling framework, Tang et al. (2017) used the EnKF in conjunction with

HydroGeoSphere to study the influence of heterogeneous riverbeds on river-aquifer exchange fluxes.

In spite of such a strong interest, several issues related to the use of EnKF for state and parameter estimation in integrated

hydrological modeling remain unresolved. The subsurface component of many IHSSMs is based on the solution of the Richards25

equation in one or three dimensions and although recent studies in synthetic experiments (Erdal et al., 2014; Brandhorst et al.,

2017) have shown that the EnKF has great potential for the estimation of soil hydraulic parameters in the unsaturated zone, it is

still unclear whether the method is able to cope with nonlinearities and parameter estimation in real test cases, where multiple

uncertainties on initial and boundary conditions make the problem much more challenging (e.g., Visser et al., 2006; De Lannoy

et al., 2007; Monsivais-Huertero et al., 2010; Shi et al., 2015). Also, as more sources of data become available at cheaper costs,30

it is increasingly difficult to assess which data types are the most suitable or effective to assimilate and in general to assess

possible tradeoffs related to multivariate data assimilation.

Within this context, the main goals of the present study are: i) to assess whether the EnKF in combination with a Richards

equation-based hydrological model is able to effectively improve states and parameters in a real-world test case characterized

by dominant unsaturated dynamics and ii) to quantify the tradeoffs associated to multi-source data assimilation. To pursue35
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these goals, the EnKF is used in combination with the CATHY (CATtchment HYdrology) model (Camporese et al., 2010) to

assimilate real observations of pressure head, soil moisture and subsurface outflow collected during a controlled experiment

carried out in an artificial hillslope. The experiment is characterized by strong nonlinearities, due to the dominant unsatu-

rated dynamics, but the strictly controlled conditions, as opposed to field studies, allow us to minimize the effects of initial and

boundary conditions uncertainty on the problem at hand. The behavior and performance of the EnKF-based assimilation frame-5

work in terms of its ability to retrieve the correct hillslope response are evaluated in a number of data assimilation scenarios,

characterized by different combinations of assimilated and updated variables.

2 The hillslope experiment

The artificial hillslope is placed inside a concrete structure of lenght 6 m, width 2 m, and height varying linearly from 3.5 m

to 0.5 m, corresponding to a slope of 32 degrees. A total of fifty apertures, which can be kept closed with screw cups when10

needed, allow the positioning of various monitoring sensors in properly chosen positions on each lateral wall of the structure.

The hillslope toe is made with a hollow-brick porous wall, in order to allow subsurface water to drain. The soil was placed

inside the structure to mimic a two-layered hillslope. A uniform 60 cm-thick silty fine sand was deployed on top of a relatively

impermeable basement made of sandy clay soil. More details on the soil properties can be found in Lora et al. (2016) and

Schenato et al. (2017). In the following, we will refer to the two soil types simply as sand and clay.15

Six tensiometers and six water content reflectometer (WCR) probes are used to measure pressure head and water content in

the top soil layer. All the sensors are located in an intermediate position of the hillslope, as shown in Figure 1, which reports

a plan view and longitudinal cross-section along with the six positions where each tensiometer has been installed in front of

the corresponding WCR. Two tipping-bucket flow gages are placed at the toe of the hillslope to measure surface runoff and

subsurface outflow, while the rain is generated by a rainfall simulator that can produce relatively uniform rainfall intensities20

varying from 50 to 150 mm/h (Lora et al., 2016).

A Campbell Scientific (CR 1000) data logger has been used to collect and record all the data with a frequency of 0.5 Hz

during a 12-day experiment, which has been carried out by generating rainfall events of different duration alternated with

recession periods. Before the experiment, two preliminary tests have been performed to check the intensity and the uniformity

of the rainfall rate. The coefficient of uniformity of the preliminary tests resulted equal to 72%, for a mean rate of 58.825

mm/h. Figure 2 reports all the data collected during the experiment. Note that the tensiometers P1 and P4 were affected by

malfunctioning, therefore their data are not reported and will not be used in the data assimilation simulations.

3 Numerical methods

3.1 The CATHY model

The CATHY (CATchment HYdrology) model (Camporese et al., 2010) is a physics-based hydrological model capable of30

simulating integrated subsurface, overland and channel water flow. The model combines a Richards equation solver for the
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three-dimensional flow in variably saturated porous media with a surface water flow module for the solution of the one-

dimensional diffusion wave approximation of the De saint Venant equation. In this study, however, there is no surface runoff.

Therefore, only subsurface flow is considered, according to the following form of Richards equation:

SwSs
∂ψ

∂t
+φ

∂Sw
∂t

=∇[KsKr∇ψ+ ηz] + qs. (1)

In equation (1), Sw = θ/φ is water saturation, θ and φ being the volumetric soil water content and porosity [/], respectively,5

Ss is the specific storage coefficient [L−1], ψ is the pressure head [L], t is time [T ], ∇ is the gradient operator, Ks is the

saturated hydraulic conductivity tensor [L/T ], Kr is the relative hydraulic conductivity function [/], ηz = (0,0,1)T is the

vertical direction vector, z is the vertical coordinate directed upward [L], and qs represents distributed source or sink terms

[L3/L3T ].

The unsaturated hydraulic properties are taken into account by means of the van Genuchten (1980) functions Sw(ψ) and10

Kr(ψ):

Sw = Swr +
1−Swr

[1 + (α|ψ|)n]m
, (2)

Kr =

(
Sw −Swr
1−Swr

)0.5{
1−

[
1−

(
Sw −Swr
1−Swr

) 1
m
]m}2

, (3)

where Swr = θr/φ is the residual water saturation, with θr the residual water content, α is an empirical constant [L−1] related to15

the inverse of the air entry suction, while the dimensionless shape parameters n andm are linked by the expressionm= 1−1/n.

Equation (1) is solved by means of Galerkin finite elements with tetrahedral elements and linear basis functions in space and

weighted finite differences for integration in time (Camporese et al., 2010).

3.2 The ensemble Kalman filter

The ensemble Kalman filter (Evensen, 2003, 2009a, b) is a sequential data assimilation scheme, in which states (and parame-20

ters) are sequentially updated based on a Monte Carlo approximation of the covariance matrices needed in the standard Kalman

filter. The process is Markovian of the first order and the implementation of the EnKF does not require the linearization of the

model, making it particularly suitable to handle non-linear problems.

In this paper the EnKF is implemented according to the numerical formulation proposed by Sakov et al. (2010). Let X be

an ensemble matrix of M rows and N columns, where N is the number of realizations and M is the state dimension, i.e., the25

number of nodes in the finite element grid, augmented by the number of parameters that are subject to update. The main idea

behind this type of implementation is that the matrix X can be defined as the sum, x + A, of the ensemble average, x,

x =
1
N

X1, (4)

and the matrix of ensemble anomalies, A,

A = X(I− 1
N

11T ), (5)30
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where 1 and I are a vector with all elements equal to one and the identity matrix, respectively. As usual, superscript T denotes

matrix transposition.

Whenever observed data are available, the EnKF can compute the updated matrix Xu as the sum of the updated ensemble

mean, xu, and the updated anomalies, Au,

Xu = xu + Au. (6)5

In the following, the lack of a superscript u denotes that the matrix or vector is computed at the forecast stage, i.e., at the

previous model time step.

The updated mean can be calculated as

xu = x + βAGs, (7)

where β is a diagonal matrix of dampening factors (Hendricks Franssen and Kinzelbach, 2008), whose elements vary from 010

to 1, s is the scaled innovation vector

s = R−1/2(D−Hx)/
√
N − 1, (8)

which depends on the measurement error covariance matrix, R, and on the difference between the measurements, D, and the

ensemble mean of the simulated observations, Hx.

The matrix G is defined as15

G = MST , (9)

where S is the matrix of scaled ensemble innovation anomalies

S = R−1/2HA/
√
N − 1, (10)

HA being the simulated measurement anomalies

HA = HX(I− 1
N

11T ), (11)20

and M being defined as

M = (I + STS)−1. (12)

The updated anomalies, Au, are computed as

Au = A + βA(M1/2− I). (13)

When updating the states only, the elements of X are the pressure heads at each node of the finite element grid, while the state25

augmentation technique is used when updating also the parameters. In this latter case, the desired parameters (e.g., hydraulic

conductivity, parameters of the retention curves), transformed as described in section 4.2, are added to X and updated based

on their correlation with the system states (e.g., Erdal et al., 2015).
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4 Model and data assimilation setup

4.1 CATHY setup

The artificial hillslope is discretized with a surface triangular grid resulting from the subdivision of square cells of 10 cm

side. The triangular grid is then replicated vertically for a total of 25 layers to generate the three-dimensional tetrahedral mesh

(Figure 3). Fifteen layers are used to represent the top sand, while 10 layers discretize the clay. No flow boundary conditions5

are assumed at each boundary, except for the subsurface outflow section, where seepage face boundary conditions are used, and

the surface, where rainfall and evaporation rates are imposed. Finally, the soil hydraulic parameters are assigned as reported

in Table 1. The values of saturated hydraulic conductivity and van Genuchten retention parameters are perturbed to generate

the ensemble of realizations as described in the following section, while soil porosities and specific storages are considered

deterministic, as the former were well characterized with laboratory tests, while the CATHY model is usually not very sensitive10

to the latter.

4.2 EnKF setup

In order to generate the ensemble of realizations needed for the application of the EnKF, we perturb the atmospheric forcing

(i.e., rainfall and evaporation rates), soil properties, and initial conditions. Table 1 reports a summary of the perturbed variables,

along with their nominal mean values as well as the nature and statistics of the perturbations. The ensemble of time-variable15

atmospheric forcing rates was generated with a sequence of multiplicative perturbations, qk, correlated in time as in Evensen

(2003),

qk = γqk−1 +
√

1− γ2wk−1, (14)

where the subscript k is the time index, wk is a sequence of white noise drawn from the standard normal distribution, and the

coefficient γ is computed as20

γ = 1− ∆t
τ
, (15)

∆t being the assimilation interval and τ the specified time decorrelation length, here set equal to 108,000 s, i.e., 30 h.

The initial conditions consist of a uniform value of pressure head, ψ0, whose nominal ensemble mean is -0.67 m, corre-

sponding to a fully unsaturated soil. The ensemble of ψ0 values is generated by additive perturbations normally distributed

with mean equal to 0 and standard deviation equal to 0.2 m.25

Perturbed soil parameters, for both sand and clay, include the saturated hydraulic conductivity as well as the parameters of

the van Genuchten retention curves. Table 1 reports the nominal mean values of Ks, based on soil samples analyzed in the

laboratory, as well as the parameters used for generating their ensembles. The saturated hydraulic conductivities of sand and

clay are perturbed independently from each other with multiplicative perturbations sampled from a lognormal distribution.

The parameters of the van Genuchten retention curves α, n, and θr are perturbed taking into account their mutual correlation30

according to Carsel and Parrish (1988), who described their statistics and transformed them into normally distributed variables
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via the Johnson system (Johnson, 1970; Bertino et al., 2003). Three main transformation functions are used, i.e, the lognormal

(LN), log-ratio (SB), and hyperbolic (SU):

LN :Y = ln(V ) (16)

SB :Y = ln[(V −A)/(B−V )] = ln(U) (17)

SU :Y = sinh−1(U), (18)5

where V denotes the parameter before transformation, bounded within the range [AB], and Y denotes the transformed param-

eter with normal distribution. In this work, the prior statistics of the van Genuchten parameters are taken from the soil types

“sandy loam” and “silt loam” in Carsel and Parrish (1988), assumed as valid representations of our sand and clay, respectively.

The ensemble of transformed parameters is generated by

y = u + TTz, (19)10

where y is the vector containing transformed α, n, and θr, u contains the transformed variable means, T is the factored

covariance matrix (see Table 2), and z is a vector of normal deviates with mean equal to 0 and standard deviation σV G. The

transformed variables can be included in the matrix X when updating the parameters, and can then be back-transformed in

order to obtain the updated values of the soil retention parameters.

The EnKF algorithm implemented here is actually an ensemble transform Kalman filter (Bishop et al., 2001) that does not15

require the perturbation of observations. However, the measurement error covariance matrix, R, is assumed to be known a

priori. In this work, R was estimated directly from the measurements, taking advantage of the high time resolution of the

collected data. Pressure head and water content data were collected every 2 s and averaged every 10 min over a 40 s window

to obtain the observations to assimilate. Over the same time window, the data were linearly detrended and the residuals used

to calculate the correlation coefficients between all pairs of observations. The final covariance matrices were then assembled20

multiplying the correlation coefficients by the relevant standard deviations, assumed as 0.05 m and 0.025 for pressure head

and water content, respectively. The subsurface outflow measurements are assumed independent from the pressure head and

water content data, with a standard deviation equal to 8% of the measured discharge. When assimilating multiple variables,

proper normalization of the measurement error covariance matrices, anomalies of the simulated data, and innovation vectors

were performed, using values of 0.6 m, 0.58, and 4.17× 10−5 m3/s for pressure head, water content, and subsurface outflow,25

respectively.

4.3 Data assimilation scenarios

A total of 17 data assimilation scenarios have been simulated, whereby we varied the assimilation interval, the assimilated

variables, the updated variables, and the uncertainty on the van Genuchten retention parameters. Table 3 reports a summary of

the main characteristics for each scenario. Assimilated variables may include water content only or with subsurface outflow,30

pressure head only or with subsurface outflow, and all three variables together. As regards the updated variables, three cases

have been analyzed: update of the state variables only; update of the state variables and saturated hydraulic conductivities for

7

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-18
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 31 January 2018
c© Author(s) 2018. CC BY 4.0 License.



both sand and clay; update of the state variables, hydraulic conductivities and van Genuchten parameters, for both sand and

clay. In all the data assimilation scenarios, observations were assimilated only during the first five days of simulation, leaving

the final seven days as a validation period, during which the ensemble was let to evolve freely. For comparison, two open loop

simulations, i.e., without data assimilation, have also been carried out (Table 3).

The performance of the simulations has been evaluated by means of the root mean square error (RMSE), computed for the5

different variables, i.e., pressure head, water content, and subsurface outflow. The root mean square error is calculated as

RMSE(t) =
1
No

No∑

j=1

√√√√ 1
N

N∑

i=1

(
Si,j(t)−Oj(t)

)2

, (20)

where No is the number of observations available (six, four, and one for water content, pressure head, and subsurface outflow,

respectively), Si,j refers to the simulated results of the ith realization of the ensemble at the location of the jth observation and

Oj is the corresponding experimental value. To obtain a meaningful comparison between the errors of different variables, we10

also compute the time-averaged normalized root mean square error, NRMSE,

NRMSE =
1
NT

NT∑

k=1

RMSEk
NF

, (21)

where NT is the number of time steps, k is the time index, and NF is a normalization factor equal to 0.58, 0.60 m, and

4.17×10−5 m3/s (i.e., 2.5 l/min) for the water content, pressure head, and subsurface discharge, respectively. The NRMSE

is computed separately for each variable and for the assimilation (NT = 120) and validation (NT = 167) periods, but also as a15

global index of performance averaged over all the variables and the two periods.

5 Results and discussion

5.1 Preliminary simulations

A preliminary sensitivity analysis over a number of EnKF parameters has been performed, in order to select a final and

satisfactory setup for the subsequent data assimilation scenarios. First, simulations with N equal to 32, 128 and 256 have been20

performed and it has been found that an ensemble size of 128 ensures a good tradeoff between performance and computational

effort.

Then, several dampening factor values (β in equations (7) and (13)) have been tried, including combinations of different

values for the update of system state and parameters. Based on this analysis, a value of 1 has been chosen for the update of the

system state, whereas a dampening factor equal to 0.5 has been selected for the update of the soil hydraulic parameters (Ks, α,25

n, and θr, for both sand and clay). This choice of the dampening factors is consistent with previous studies (Brandhorst et al.,

2017) and prevents abrupt changes of the retention curve parameters that could lead to difficulties in model convergence and

hence loss of realizations.

According to these preliminary analyses, all scenarios reported in Table 3 have been simulated with an ensemble size of 128

and dampening factors of 1 and 0.5 for system state and parameters, respectively.30
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5.2 Overall EnKF performance

Table 4 and Figure 4 summarize the performance of the EnKF in all the data assimilation scenarios, expressed in terms

of NRMSE for the three measured variables (water content, WC, pressure head, PH , and subsurface outflow, Q), and

averaged separately over the assimilation and validation windows. A comparison between scenarios 1-5 and 8-12 in Table 4,

characterized by the same assimilated and updated variables but different assimilation intervals, show that assimilating more5

frequently does not always result in significant improvements of model predictions. The variable that benefits more from more

frequent updates is subsurface outflow, especially in the scenarios where Q is assimilated (e.g., compare scenarios 3-5 with

10-12).

Figure 4 highlights that most of the data assimilation scenarios result in an improvement of model predictions for pressure

head and subsurface outflow, compared to the open loop simulations (data pairs below the 45-degree reference line). However,10

there are some scenarios in which the filter performance in predicting water content is actually worse than in the open loop.

From a close inspection of the values in Table 4, it is possible to identify such scenarios as those where pressure head is

assimilated, alone or in conjunction with water content and subsurface outflow. This is probably due to a combination of two

factors: i) only four out of six tensiometers are available for assimilation, compared to the six WCR probes available for water

content, and ii) the pressure head measurements are characterized by relatively poor quality. This can be appreciated from the15

pressure head data shown in Figure 2, where diurnal disturbances caused by temperature fluctuations (Warrick et al., 1998) are

apparent.

5.3 Parameter estimation capabilities

To assess the capabilities and benefits of parameter estimation with the EnKF, it is useful to compare scenarios with the

same assimilated variables but different updated variables. Figures 5a, 5c, and 5e show the ratios between RMSE in data20

assimilation scenarios S6, S8, S13 and the corresponding open loop values for water content, pressure head, and subsurface

outflow, respectively. In these three scenarios, water content alone is assimilated, but the updated variables are system state

only in S6, system state and saturated hydraulic conductivity in S8, and system state plus Ks and van Genuchten parameters α,

n, and θr in S13. Figure 5a highlights that progressively updating more parameters brings significant improvements in water

content prediction over the validation period, with reductions of the NRMSE with respect to the open loop of almost 20%25

when updating Ks only and 60% when updating also the retention curve parameters. Moreover, updating parameters improves

significantly pressure head predictions in validation and subsurface outflow in both assimilation and validation, as shown in

Figures 5c and 5e.

The effect of parameter updating on model predictions for scenarios S6, S8, and S13 can be visualized in Figure 6, which

shows ensemble means and 90% confidence bands of simulated water content, pressure head, and subsurface outflow in com-30

parison with the experimental data and the corresponding open loop values. In scenario S6, without parameter update, model

predictions during the validation tend to converge again to the open loop simulations both in terms of mean and uncertainty

(Figures 6a, 6d, 6g). Updating the parameters (scenarios S8 and S13) results in decreased uncertainty during validation (Figures
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6b, 6c, 6e, 6f, 6h, 6i), due to the reduced variability of saturated hydraulic conductivity and van Genuchten parameters. Note

also that the update of Ks is particularly beneficial to pressure head (panel a versus b and c) and subsurface outflow (panel g

versus h and i) whereas updating α, n, and θr improved significantly the water content (panel e versus f).

5.4 Tradeoffs in multi-source data assimilation

We now focus our attention on the scenarios where multi-source data are assimilated. Analogously to the left panels in the5

same figure, the right panels in Figure 5 show the ratios between RMSE in data assimilation scenarios S7, S10, S15 and the

corresponding open loop values for water content, pressure head, and subsurface outflow. Whereas in scenarios S6, S8, and

S13 water content alone was assimilated, in scenarios S7, S10, and S15 water content and subsurface outflow were jointly

assimilated. The updated variables are system state only in S7, system state and saturated hydraulic conductivity in S10, and

system state plusKs and van Genuchten parameters α, n, and θr in S15. As previously noted for the scenarios with assimilation10

of water content alone, the effect of parameter updating is significant mainly in the validation phase. However, we can now

observe an increase in validation RMSE of water content when updating also Ks, with a value that exceeds the one of the

corresponding open loop. At the same time, there is a decrease in pressure head RMSE of more than 40% with respect to the

open loop, indicating that the update of Ks in this case is beneficial to pressure head, but not to water content. Including the

update of van Genuchten parameters, in scenario S15, has an opposite effect: model predictions of water content in validation15

improve dramatically (RMSE of almost 60% less than in the open loop) while pressure head predictions worsen slightly and

align with RMSE values of scenario S13. This indicates that the update of the van Genuchten parameters is more important

for predictions of water content than pressure head and represents an interesting example of the kind of the tradeoff associated

with multi-source data assimilation and parameter updating in integrated hydrological models.

Further insights about the differences between scenarios S10 and S15 can be gained by looking at Figures 7 and 8, which20

report the prior and posterior (i.e., at the end of the assimilation period) distributions of soil parameters. Figure 7 reports the

results for scenario S10, where Ks only was updated, and shows that the sand Ks is clearly identifiable, whereas the clay Ks

is not, with a large residual uncertainty and a mean value that is not consistent with the actual soil type in the hillslope. As no

data are available in the clay layer, the large residual variability should be expected, but the bias in the mean value is probably

caused by spurious correlations and is likely the reason for the poor model prediction of water content.25

Figure 8 shows the prior and posterior distributions of Ks, α, n, and θr in S15. Again, for the sand, the saturated hydraulic

conductivity can be clearly identified, as well as the exponent n of the van Genuchten retention function, while parameters θr

and α are more difficult to estimate. As for the clay, posterior uncertainty is large for all the parameters and the mean value of

Ks shows again a bias with respect to the prior value, although in this case the final value is more consistent with the actual

soil type and this could explain why the water content model predictions improve significantly compared to scenario S10. The30

results of parameter updating for the clay point out once more that data are needed in all the soil layers and an integrated

measurement such as the subsurface outflow is not sufficient to compensate for this lack of representativeness.

Lastly, we analyze the tradeoffs in system state predictions associated to multi-source data assimilation for scenarios S15,

S16, and S17. Figure 9 shows pressure head in P2, water content in W6, and subsurface outflow as simulated in the data
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assimilation and open loop scenarios, in terms of ensemble mean and 90% confidence bands, compared to the measurements.

In scenario S15 (Figures 9a, 9d, 9g), where water content and subsurface discharge were assimilated, model results are very

good for these variables but not so for pressure head (see alsoNRMSE values in Table 4). On the other hand, in scenario S16,

where pressure head and subsurface outflow were assimilated, pressure head and discharge are well simulated, but not water

content (Figures 9b, 9e, 9h, and Table 4). Finally, in scenario S17, where all the available data were assimilated, the model5

predicts well both pressure head and water content, but at the cost of a slightly degraded prediction of subsurface outflow

compared to scenarios S15 and S16 (Figures 9c, 9f, 9i, and Table 4). This is another example of tradeoff that can be expected

in multi-source data assimilation, especially when, for some reasons, not all the different layers or zones of the hillslope or

catchment are monitored.

6 Summary and Conclusions10

In this study, a Richards equation-based hydrological model, CATHY, has been used with the ensemble Kalman filter to as-

similate pressure head, water content, and subsurface outflow data in a real-world test case, represented by an experimental

artificial hillslope. A total of 17 data assimilation simulations have been presented and described to provide a comprehen-

sive overview of possible scenarios. Univariate scenarios with the assimilation of water content or pressure head alone were

compared to multivariate cases where water content and pressure head were combined with outflow discharge or where water15

content, pressure head and outflow discharge were jointly assimilated. Regarding the updating strategies, single (state variable)

and joint (state variables plus saturated hydraulic conductivity with and without van Genuchten parameters) updating scenarios

were considered.

Overall, the capabilities of the ensemble Kalman filter to jointly correct the system states and soil parameters in physically-

based hydrological models were confirmed, even in a real-world test case such as the one presented here, characterized by20

dominant unsaturated dynamics and hence strong nonlinearities. Updating of the saturated hydraulic conductivity brought sig-

nificant improvements in the prediction of pressure head and subsurface outflow, while updating the van Genuchten parameters

proved to be highly beneficial to the prediction of the water content dynamics. On the other hand, multivariate data assimilation

may lead to significant tradeoffs. For instance, the assimilation of soil moisture in addition to pressure head and subsurface

outflow improved water content, but slightly degraded the prediction of the outflow discharge. Moreover, our results suggest25

that high-quality and representative data are essential for a proper and effective use of data assimilation in physically-based

hydrological models, as shown by the relatively poor performance of the EnKF in scenarios when pressure head was assimi-

lated, due to temperature disturbances of the data, and by biased estimates of clay parameters, due to the lack of data in this

soil layer.

In future studies, more representative data, including observations in the clay, will be assimilated and the possibility to apply30

bias-aware filters will be considered to compensate for the effect of temperature in the tensiometric data.
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Table 1. Perturbation parameters for the generation of the ensemble initial conditions, hydraulic conductivities and atmospheric forcing.

Variable Units Nominal value(s) Perturbation type Mean Standard deviation

ψ0 m -0.67 additive 0 0.2

Atmospheric forcinga mm/h 58.8; 47.5; -0.0284 multiplicative 1 0.2

Sand

Ks m/s 10−4 multiplicative 1.17 1.53

Ss m−1 10−3 not perturbed

φ - 0.58 not perturbed

θr - 0.065 see Section 4.2 0.25b

α cm−1 0.070 see Section 4.2 0.25b

n - 1.88 see Section 4.2 0.25b

Clay

Ks m/s 10−7 multiplicative 1.17 1.53

Ss m−1 5× 10−3 not perturbed

φ - 0.40 not perturbed

θr - 0.067 see Section 4.2 0.25b

α cm−1 0.017 see Section 4.2 0.25b

n - 1.40 see Section 4.2 0.25b

a Rainfall (positive) and evaporation (negative) rates.

b σV G as described in Section 4.2.
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Table 2. Factored covariance matrices used for the perturbation of van Genuchten parameters (from Carsel and Parrish, 1988)).

θr α n

Sandy loam θr 0.538 0.017 -0.194

α 0.014 0.019

n 0.108

Silt loam θr 0.522 0.030 -0.17

α 0.082 0.234

n 0.158

Table 3. Overview of the open loop and data assimilation scenarios.

Scenario1 Assimilation interval Assimilated variables2 Updated variables3 σV G

OL1 - - - 0.1

OL2 - - - 0.25

S1 3 h WC St. var., Ks 0.1

S2 3 h PH St. var., Ks 0.1

S3 3 h WC, Q St. var., Ks 0.1

S4 3 h PH , Q St. var., Ks 0.1

S5 3 h WC, PH , Q St. var., Ks 0.1

S6 1 h WC St. var. 0.1

S7 1 h WC, Q St. var. 0.1

S8 1 h WC St. var., Ks 0.1

S9 1 h PH St. var., Ks 0.1

S10 1 h WC, Q St. var., Ks 0.1

S11 1 h PH , Q St. var., Ks 0.1

S12 1 h WC, PH , Q St. var., Ks 0.1

S13 1 h WC St. var., Ks, V.G. 0.25

S14 1 h PH St. var., Ks, V.G. 0.25

S15 1 h WC, Q St. var., Ks, V.G. 0.25

S16 1 h PH , Q St. var., Ks, V.G. 0.25

S17 1 h WC, PH , Q St. var., Ks, V.G. 0.25

1 OL1 and OL2 indicate open loop scenarios, i.e., simulations without data assimilation.

2 WC, PH , andQ denote water content, pressure head, and subsurface outflow, respectively.

3 St. var.,Ks, and V.G. indicate state variables (in terms of pressure head), saturated hydraulic conductivity, and van

Genuchten parameters, respectively.
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Table 4. Normalized root mean square errors (NRMSE) for the 17 data assimilation scenarios under analysis and two open loop (OL)

simulations. The table reports theNRMSE for three variables, water content, pressure head and outflow discharge, both for the assimilation

and the validation periods. The last three columns report the mean values calculated over the three variables (WC, PH andQ) and the global

average between assimilation and validation. Bold values indicate exceedance of the corresponding open loop errors.

NRMSEWC NRMSEPH NRMSEQ Mean NRMSE

Scenario Assimilation Validation Assimilation Validation Assimilation Validation Assimilation Validation Global

OL1 0.16 0.14 0.45 0.36 0.72 0.64 0.44 0.38 0.41

OL2 0.16 0.13 0.46 0.36 0.71 0.63 0.44 0.38 0.41

S1 0.09 0.11 0.33 0.27 0.58 0.53 0.33 0.30 0.32

S2 0.21 0.24 0.21 0.31 0.51 0.47 0.31 0.34 0.33

S3 0.10 0.16 0.31 0.21 0.63 0.56 0.34 0.31 0.33

S4 0.24 0.26 0.25 0.39 0.82 0.73 0.44 0.46 0.45

S5 0.18 0.22 0.23 0.26 0.70 0.64 0.37 0.37 0.37

S6 0.07 0.12 0.36 0.36 0.68 0.62 0.37 0.37 0.37

S7 0.08 0.12 0.33 0.33 0.55 0.50 0.32 0.31 0.32

S8 0.08 0.11 0.32 0.27 0.55 0.49 0.32 0.29 0.30

S9 0.22 0.24 0.17 0.29 0.46 0.42 0.29 0.32 0.30

S10 0.09 0.18 0.31 0.21 0.54 0.48 0.31 0.29 0.30

S11 0.24 0.33 0.22 0.83 0.59 0.54 0.35 0.57 0.46

S12 0.19 0.31 0.20 0.68 0.62 0.55 0.34 0.51 0.43

S13 0.07 0.06 0.32 0.28 0.52 0.49 0.30 0.28 0.29

S14 0.33 0.41 0.16 0.21 0.50 0.45 0.33 0.36 0.34

S15 0.07 0.05 0.31 0.29 0.53 0.51 0.31 0.28 0.29

S16 0.42 0.48 0.18 0.19 0.60 0.57 0.40 0.41 0.41

S17 0.10 0.05 0.22 0.29 0.69 0.66 0.34 0.34 0.34
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Figure 1. Plan view and longitudinal cross-section of the artificial hillslope, along with the position of the monitoring instruments. Ten-

siometers are indicated by the letter "P", while WCR probes are denoted by "W". All dimensions are in cm.
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Figure 2. Experimental data collected during the experiment: a) rainfall rate; b) water content as measured by the WCR probes; c) pressure

head as measured by the tensiometers; d) subsurface outflow. The black vertical dashed line marks the transition between the data assimilation

and the validation phases.
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Figure 3. Three-dimensional finite element grid of the hillslope.
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Figure 4. Normalized root mean square errors for water content, pressure head, and subsurface outflow of the data assimilation scenarios

versus corresponding values of the open loop. Symbols in magenta represent values calculated over the assimilation period, while symbols

in blue represent values calculated over the validation period.
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Figure 5. Ratios between RMSEs in scenarios S6, S8, S13 (panels a, c, e), and S7, S10, S15 (panels b, d, f) and the corresponding open

loop values, for water content, WC (a and b), pressure head, PH (c and d), and subsurface outflow, Q (e and f). The magenta bars refer to

the data assimilation period, while the blue ones to the validation period.
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Figure 6. Plots of the pressure head in P2, (a, b and c), water content in W6, (d, e, f) and outflow discharge (g, h, i) for scenarios S6 (a, d,

g), S8 (b, e, h), and S13 (c, f, i). Solid green lines represent experimental data while solid black and magenta lines indicate the ensemble

mean of the open loop and data assimilation scenarios, respectively. The simulated 90% confidence bands are also reported (dashed black

and magenta lines). The locations of the tensiometer P2 and water content probe W6 are shown in Figure 1.
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Figure 7. Relative frequency distributions of the saturated hydraulic conductivity, Ks, of sand and clay in scenario S10. Graphs in magenta

denote the prior Ks distributions, while the blue ones indicate the posterior distributions, i.e., at the end of the assimilation period.
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Figure 8. Relative frequency distributions of the saturated hydraulic conductivity, Ks, and van Genucthen parameters of sand and clay

in scenario S15. Graphs in magenta denote prior distributions, while the blue ones indicate posterior distributions, i.e., at the end of the

assimilation period.
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Figure 9. Plots of the pressure head in P2, (a, b and c), water content in W6, (d, e, f) and outflow discharge (g, h, i) for scenarios S15 (a, d,

g), S16 (b, e, h), and S17 (c, f, i). Solid green lines represent experimental data while solid black and magenta lines indicate the ensemble

mean of the open loop and data assimilation scenarios, respectively. The simulated 90% confidence bands are also reported (dashed black

and magenta lines). The locations of the tensiometer P2 and water content probe W6 are shown in Figure 1.
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