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Abstract. In recent year, flood becomes a serious issue in Tibetan Plateau (TP) due to climate change. Many studies have 

shown that ensemble flood forecasting based on numerical weather predictions can provide early warning with extended lead 

time. However, the role of hydrological ensemble prediction in forecasting flood volume and its components over the Yarlung 10 

Zangbo River (YZR) Basin, China, hasn’t been investigated. This study adopts Variable Infiltration Capacity (VIC) model to 

forecast annual maximum floods and annual first floods in YZR based on precipitation, maximum and minimum temperature 

from European Centre for Medium-Range Weather Forecasts (ECMWF). N-simulations is proposed to account for parameter 

uncertainty in VIC. When trade-offs between multiple objectives are significant, N-simulations is recommended for better 

simulation and forecasting. This is why better results are obtained for Nugesha and Yangcun stations. Ensemble flood 15 

forecasting system can skilfully predict maximum floods with a lead time of more than10 days, and about 7 days ahead for 

melt-water related components. The accuracy of forecasts for first floods is inferior with a lead time of only 5 days. The 

baseflow components for first floods are insensitive to lead time except at Nuxia Station, whilst for maximum floods an obvious 

deterioration in performance with lead time can be perceived. The meltwater-induced surface runoff is the most poorly captured 

component by the forecast system, and the well-predicted rainfall-related components are the major contributor for good 20 

performance. The performance in 7-day accumulated flood volumes is better than the peak flows. 

1. Introduction 

The Tibetan Plateau (TP) as the source of many major rivers is known as “the world water tower” (Xu et al., 2008). Due to its 

special geological, topographic and meteorological conditions, the ecosystem in this area is vulnerable and susceptible to 

climate changes (Zhao et al., 2006). According to previous studies, it is confirmed that the atmospheric and hydrological cycle 25 

in TP have undergone significant changes. Evident climate warming (Guo and Wang, 2012; Wang et al., 2014; Yang et al., 

2014), increased precipitation (Kuang and Jiao, 2016, Wang et al., 2017), glacier retreat and permafrost degradation (Cheng 

and Wu, 2007) can be perceived, and these impacts are expected to be exacerbated by future climate change (Su et al., 2013). 

As a result, frequent natural disasters, such as flooding and debris flow, take place, with an estimated direct economic loss 

amounting to 100 million RMB per year (Zhang et al., 2001). Thus, seeking advanced techniques to improve the accuracy of 30 

flood forecasts plays a critical important role in enhancing disaster resilience (Kalra et al., 2013; Yucel et al., 2015; Girons et 

al., 2017).  
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It is now a routine practice to introduce the Numerical Weather Prediction (NWP) products into research and operational flood 

forecasting system to generate ensemble streamflow forecasts (Cloke and Pappenberger, 2009). Compared with traditional 

single-value deterministic flood forecasts, forecasts based on Hydrological Ensemble Prediction System (HEPS) outperform 

the traditional deterministic ones with higher accuracy and longer lead time (Bartholmes et al., 2009; Cloke et al., 2013; 2017; 

Li et al., 2017; Pappenberger et al., 2015; Todini, 2017). Flood forecasting is one of the most important topics applying HEPS 5 

(Arheimer et al., 2011; Shi et al., 2015), but most of the studies only focus on peak flows (Alvarez-Garreton et al., 2015; 

Valeriano et al., 2010; Dittmann et al., 2009), and few studies have investigated the suitability of HEPS forecasts in typical 

accumulated flood volumes and the respective components contributed to the flood volumes, especially the snowmelt-induced 

component. It is shown that snow water availability and snow dynamics are issues of fundamental importance in high mountain 

hydrology (Bavera et al., 2012). Investigating the components constituting the total runoff facilitates the understanding of 10 

runoff generation mechanism and furtherly improving flood forecasting in high mountains where our study area is located. 

Investigating the skill of HEPS in streamflow component simulation requires effective methods to separate total runoff into 

different components of interest. Numerous researchers have studied the methods to achieve hydrograph separation. Some 

researchers are interested in separating baseflow or groundwater component from total runoff. For example, Partington et al. 

(2011) developed a hydraulic mixing-cell method to determine the groundwater component and Luo et al. (2012) utilized the 15 

digital filter program to separate baseflow from streamflow. However, many of the hydrological models per se have the ability 

to separate streamflow into baseflow and surface runoff, like SWAT (Luo et al., 2012) and VIC (Liang et al., 1994), thus the 

separation of snow/glacier-induced component from rainfall-induced component gains increasing interests. The most common 

and historical practice to separate snowmelt and glaciermelt components is to conduct stable isotope analysis (Isotopic 

hydrograph separation, HIS) (Laudon et al., 2002). Sun et al. (2016) applied HIS in the Aksu River and successfully calculated 20 

the relative contribution of the glacier and snow meltwater to total runoff. Besides the experimental approaches, considerable 

studies obtain snowmelt component via a simple ratio of rainfall and snowmelt from hydrological model simulation (Cuo et 

al., 2013a; Siderius et al., 2013), whereas these methods are often primitive and neglect the physical processes that affect the 

transformation from snow to runoff, such as evapotranspiration, sublimation, and infiltration. Li et al. (2017) developed a new 

snowmelt tracking algorithm in the VIC model to compute the ratio of the snow-derived runoff to the total runoff with 25 

consideration of systematic analyses, demonstrating promising performance in applications over western United States.   

Generally, evaluating model performance should be performed based on in-situ observations. However, observed streamflow 

components are usually unavailable, making the evaluation of streamflow component simulations/forecasts intractable. 

Meanwhile, with limited or unavailable observations, it is impossible to achieve rigorous calibration, and thus accounting for 

hydrological parameter uncertainty is necessary (Pappenberger et al., 2005). Yapo et al. (1998) showed that there is no single 30 

objective function that can represent all the features of runoff hydrographs such as time to peak, peak flow and runoff volume. 

Increasing investigators have realized that multiple objectives optimization can bring out better results than single ones, and 

currently majority of the hydrological models are calibrated based on multi-objective optimization algorithms (Kamali et al., 

2013; Troy et al., 2008; Voisin et al., 2011; Yuan et al., 2013). Multi-objective formulation will result in a set of Pareto optimal 
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solutions that represent trade-offs among different objectives (Wöhling et al., 2013). Thus, compromise is necessary (Gong et 

al., 2015). Most of the studies eventually select only one value from the Pareto front to represent the model parameter set for 

their simulation (Troy et al., 2008; Voisin et al., 2011; Yuan et al., 2013; Liu et al., 2017). This value is usually the compromise 

point that balances the diverse and sometimes conflicting requirements. However, these solutions provided by multi-objective 

optimization algorithms have the feature that moving from one objective to another along the trade-off surface results in the 5 

improvement of one objective while causing deterioration in at least one other objective. Additionally, as mentioned by Kollat 

et al. (2012), it is difficult, in some cases, to cause the two-objective trade-off to collapse to one single point. Due to this 

limitation, utilizing an ensemble of parameter sets to represent uncertainty from hydrological model is necessary. Pappenberger 

et al. (2005) used six different parameter sets to identify uncertainty from hydrological model. Teutschbein and Seibert (2012) 

employed 100 different optimized parameter sets in HBV to simulate streamflow in order to consider parameter uncertainty. 10 

The basic principle in ensemble forecasts is using ensemble spread to quantify forecast uncertainty and thus provide essential 

information to users (Bauer et al., 2015). Analogous to this concept, the benefit of adopting an ensemble of parameter sets 

from Pareto optimal front by multi-objective optimization algorithm for flood forecasting with consideration of hydrological 

parameter uncertainty remains unresolved and is noteworthy to investigate.  

The two purposes of this study are therefore to investigate the suitability of HEPS in forecasting flood volume and its 15 

components (rainfall-induced and meltwater-induced streamflow) over cold and mountainous area, and the impact of an 

ensemble of selected pareto optimal solutions on model simulation and forecasting compared to a single parameter set. To this 

end, the paper is structured as follows: Section 2 describes the information of study area and data used. Methodology 

description is in Section 3. Section 4 provides the result analysis, and Section 5 discusses the main findings and points for 

future research directions, and conclusion is presented in Section 6. 20 

2. Study area and data 

2.1 Study area 

We focus our analysis on the Yarlung Zangbo River (YZR) Basin, located at the upper reaches of Brahmaputra River basin, 

which stretches across the southern part of TP from the west to the east, with a drainage area of 2.1 × 105 𝑘𝑚2 controlled by 

Nuxia hydrological station in China. The basin is selected for the greatest population density in TP, increasing runoff and 25 

glacier/snow melt (Wang et al., 2009; Liu et al., 2014), making it an ideal region to investigate flood forecasting and its 

components. YZR is one of the highest great rivers in the world with a mean elevation exceeding 4000 𝑚 a.s.l. The climate 

from upstream to downstream regions of the basin exhibits an obvious difference due to the location and topographical feature 

of TP (Liu et al., 2014). The downstream area has a warm and humid subtropical climate; the midstream area has a temperate 

forest-grassland climate and the upstream valley has a cold and dry temperate steppe climate (Liu et al., 2007; Shen et al., 30 

2012). The average annual temperature in this basin is about 6.27 ℃. The average annual precipitation is about 560 𝑚𝑚, most 
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of which occurs during the wet season from May to September (Li et al., 2014). Approximately 1/3 of the basin area is covered 

by snow and glacier, resulting in a significant glacier-snow melt induced floods in late spring and early summer.  

[Figure 1] 

2.2 Data 

The gauged meteorological data, including daily precipitation, minimum and maximum temperature, wind speed and relative 5 

humidity, from 1998 to 2015 are collected from 27 National Meteorological Observatory stations located in and around the 

YZR basin as shown in Fig.1. Daily streamflow from three hydrological stations are utilized in this study, i.e. Nugesha Station, 

Yangcun Station and Nuxia Station from the most upstream to downstream region. Except data missing in 2009, the record 

period of observed streamflow at Nugesha and Nuxia is consistent with that of the meteorological data. The period of observed 

streamflow at Yangcun is shorter, spanning from 1998 to 2012. The first year is used as warm-up period. Periods from 1999 10 

to 2005, 2006 to 2008 and 2010 to 2012/2015 are adopted for calibration, validation and evaluation purpose respectively. 

The daily Quantitative Precipitation Forecasts (QPF) and Maximum/Minimum Temperature (MXT/MNT) from 2007 to 2015 

are obtained from European Centre for Medium-Range Weather Forecasts (ECMWF) with lead time from 24h to 360h. To be 

consistent with the observations, the data issued at 0000 UTC is downloaded. ECMWF is selected in this study due to the well-

known fact that forecasts from ECMWF are more skilful than other Ensemble Prediction Systems in TIGGE database 15 

(Aminyavari et al., 2018; Louvet et al., 2016; Hamill and Scheuerer, 2018).  

Snow depth data provided by Cold and Arid Regions Science Data Center at Lanzhou, China (http://westdc.westgis.ac.cn/) are 

used to evaluate snow depth simulations. The data is derived from passive microwave remote sensing at a resolution of 0.25° 

×0.25° (Che et al., 2008; Dai et al., 2015). The digital elevation model (DEM) data used in the hydrological model is 

downloaded from Geospatial Data Cloud (http://www.gscloud.cn) at the resolution of 90 m×90 m. The vegetation and soil 20 

parameters in the model are defined according to 1 km China soil map based on Harmonized World Soil Database (Fischer et 

al., 2008) and 1 km land cover products of China (Ran et al., 2010). 

3. Methodology 

3.1 Hydrological model 

The Variable Infiltration Capacity model (VIC, Liang et al., 1994; 1996) is employed in this study to investigate the suitability 25 

of ensemble flood forecasting in YZR. VIC is a well-established and extensively used rainfall-runoff model, especially in areas 

with existence of snowmelt and frozen soil (Tang and Lettenmaier, 2010; Cuo et al., 2013a; Su et al., 2016). A two-layer snow 

model is embodied in VIC, which considers snow accumulation and ablation in a ground pack and an overlying forest canopy 

based on energy balance (Andreadis et al., 2009). The frozen soil algorithm makes it possible to represent the effects of 

seasonally frozen ground on surface water and energy fluxes (Cherkauer and Lettenmaier, 1999; 2003). These are two of the 30 

critical elements in VIC that are particularly relevant to our research.  

http://westdc.westgis.ac.cn/
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In this study, VIC is operated at a six-hourly time step in both water and energy balance model with a spatial resolution of 

0.125° × 0.125°. The snow and frozen soil algorithms are active. Gauged and forecasted meteorological data are interpolated 

into the required resolution using the Inverse Distance Weighted (IDW) method coupled with an elevation-based lapse rate. 

The lapse rate in this study is set as 0.6 𝑚𝑚𝑘𝑚−1 for precipitation and −6.5 °𝐶𝑘𝑚−1 for temperature. These two lapse rates 

are determined by a cross-validation process based on records from the 27 meteorological stations. Our results are roughly 5 

consistent with the findings in Cuo et al. (2013b), who performed the least squares fitting on daily temperature and precipitation 

over the TP area to gain the best lapse rate for interpolation. 

Model calibration is conducted by a parallel-programmed Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II 

(ε-NSGA Ⅱ) as proposed by the authors (Liu et al. 2017). The ε-NSGA Ⅱ is coupled with Message Passing Interface (MPI) to 

achieve parallel autocalibration with high efficiency. As snow and frozen soil algorithms are activated, two additional 10 

parameters related to snow modelling, namely the maximum temperature at which snow can fall (𝑇𝑠𝑛𝑜𝑤) and the minimum 

temperature at which rain can fall (𝑇𝑟𝑎𝑖𝑛 ), are optimized together with other seven conventional calibration parameters 

(Detailed descriptions about the calibration of these seven typical parameters can be found in our previous studies (Liu et al., 

2017)). The roles of those two temperature parameters in VIC are to determine what fraction of incoming precipitation is solid 

(snow) and liquid (rain). 𝑇𝑠𝑛𝑜𝑤 and 𝑇𝑟𝑎𝑖𝑛  are originally fixed for a given vegetation type. Considering glacier ablation and 15 

accumulation are simulated as snow in this study due to the absence of glacier module in the current VIC model, the ratio of 

solid and liquid precipitation is different from the original value. We tend to adjust them via calibration. The parameter ranges 

are defined as [-5,5] according to Chen et al. (2017), who used similar parameters in the CREST model for snow and glacier 

melting simulation. 

As flood peaks and volumes are our focuses in this study, more weights are given to high flows during calibration. Four 20 

objective functions are used for model calibration at three hydrological stations: the Nash–Sutcliffe efficiency and relative bias 

for all flows and for the top 10% flows. Detailed formulas are defined as: 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜𝑏𝑠(𝑖)−𝑄𝑠𝑖𝑚(𝑖))2𝑁

𝑖=1

∑ (𝑄𝑜𝑏𝑠(𝑖)−𝑄𝑜𝑏𝑠(𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝑁
𝑖=1

      (1) 

𝐵𝑖𝑎𝑠 =
∑ [𝑄𝑠𝑖𝑚(𝑖)−𝑄𝑜𝑏𝑠(𝑖)]𝑁

𝑖=1

∑ 𝑄𝑜𝑏𝑠(𝑖)𝑁
𝑖=1

100%       (2) 

𝑁𝑆𝐸10% = 1 −
∑ (𝑄𝑜𝑏𝑠,10%(𝑖)−𝑄𝑠𝑖𝑚,10%(𝑖))2𝑀

𝑖=1

∑ (𝑄𝑜𝑏𝑠,10%(𝑖)−𝑄𝑜𝑏𝑠,10%(𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2𝑀
𝑖=1

       (3) 25 

𝐵𝑖𝑎𝑠10% =
∑ [𝑄𝑠𝑖𝑚,10%(𝑖)−𝑄𝑜𝑏𝑠,10%(𝑖)]𝑀

𝑖=1

∑ 𝑄𝑜𝑏𝑠,10%(𝑖)𝑀
𝑖=1

100%       (4) 

in which 𝑁 and 𝑀 are the number of all daily flows and top 10% flows, respectively; 𝑄𝑜𝑏𝑠  and 𝑄𝑠𝑖𝑚 are the observed and 

simulated daily flows; and 𝑄𝑜𝑏𝑠,10% and 𝑄𝑠𝑖𝑚,10% are the observed and corresponding simulated top 10% flows, respectively. 
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3.2 N-Pareto-optimal parameter sets 

After calibration, a series of feasible solutions are produced by ε-NSGA Ⅱ. An inevitable challenge for users of automatic 

calibration routines is to face the task of selecting a set of suitable model parameters (preferred solution set) from numerous 

Pareto-optimal sets. The method of Preference Ordering Routine (POR), developed by Khu (2005), is exactly designed to solve 

this kind of problem by sorting out a small number of preferred solutions. POR has been successfully applied for calibration 5 

of MIKE11/NAM rainfall-runoff model and is able to provide the best estimated parameter sets with good overall model 

performance. Therefore, POR is selected in this study to pick out the desired N-Pareto-optimal parameter sets. 

There are two key attributes for this method. The first is the efficiency of 𝑘 order (or 𝑘-Pareto-optimal points). Considering all 

the possible 𝑘-dimensional subspace of the original 𝑚-dimensional objective functions provided by ε-NSGA Ⅱ (1 ≤ 𝑘 ≤

𝑚, 𝑚 = 4 in this study), a point is defined as being efficient of order 𝑘 if this point is not dominated by any other points in any 10 

of the 𝑘-dimensional subspaces. The second attribute is the efficiency of order 𝑘 with degree 𝑝 (or [𝑘, 𝑝]-Pareto-optimal 

points). A point is defined as being efficient of order 𝑘 with degree 𝑝 if it is not dominated by any other points for exactly 𝑝 

out of the possible 𝑘-dimensional subspaces. By reducing the efficiency of order 𝑘 and increasing the degree of order 𝑝 in a 

sequential manner, POR is able to achieve the reduction of the number of possible solutions and to short-list the most relevant 

ones for retention as preferred parameters. The essence of POR is to tighten the criteria of Pareto optimality, and thus enables 15 

to determine the limited preferred solutions. Detailed procedures and examples to apply POR are omitted here, and interested 

readers can refer to Khu (2005).  

In this study, the POR is performed throughout all possible subspaces, and the parameter which is not dominated by any of the 

subspaces is retained. Additionally, some other points on the Pareto front are also retained: the extreme value for each objective 

function (indicated by filled circles in Fig. 2) and the compromise value in the two-objective trade-off (indicated by filled star 20 

in Fig. 2). In this way, limited number of parameter sets is picked out to represent different scenarios of model state. For 

convenience, the simulations driven by the N-Pareto-optimal parameter sets are referred as N-simulations, and the simulation 

by single parameter set (the compromise point) is indicated by S-simulation thereafter. 

3.3 Hydrograph separation 

In this study, we are more interested in meltwater and rainfall induced components. Thus, glacier is modelled together with 25 

snow, as glacier only contributes about 2% to the area in the YZR basin (Zhang et al., 2013) and to total runoff less than 10% 

(Chen et al., 2017). The Snowmelt Tracking Algorithm (STA), proposed by Li et al. (2017), is thus an appropriate method to 

achieve the needed hydrograph separation. In order to obtain the streamflow derived from meltwater, 𝑄𝑠𝑛𝑜𝑤,𝑡, STA calculates 

the meltwater-induced streamflow in surface runoff (𝑅𝑡 ) and baseflow (𝐵𝑡 ) separately. For surface runoff derived from 

meltwater, 𝑅𝑠𝑛𝑜𝑤,𝑡), STA assumes that meltwater and rainfall exhibit identical infiltration and runoff ratio. In his way, 𝑅𝑠𝑛𝑜𝑤,𝑡 30 

is computed as a function of the ratio of meltwater 𝑀𝑡 to meltwater + rainfall, 𝑀𝑡 + 𝑅𝑎𝑖𝑛𝑡: 

𝑅𝑠𝑛𝑜𝑤,𝑡 =  𝑀𝑡 − 𝑖𝑠𝑛𝑜𝑤,𝑡 = 𝑀𝑡 − 𝑖𝑡𝑓𝑖,𝑠𝑛𝑜𝑤,𝑡 = 𝑀𝑡 − 𝑖𝑡
𝑀𝑡

𝑀𝑡+𝑅𝑎𝑖𝑛𝑡
                  (5) 
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in which 𝑖𝑡 is the infiltration, and it is calculated by mass balance on the ground surface: 𝑅𝑎𝑖𝑛𝑡 + 𝑀𝑡 = 𝑖𝑡 + 𝑅𝑡; 𝑓𝑖,𝑠𝑛𝑜𝑤,𝑡  is the 

ratio of meltwater induced infiltration in total infiltration.  

The fraction of meltwater induced baseflow (𝑓𝐵,𝑠𝑛𝑜𝑤,𝑡) is assumed to be equal to the proportion of soil moisture that originated 

from meltwater in all soil moisture layers (𝑓𝑊,𝑠𝑛𝑜𝑤,𝑡). Thus: 

𝐵𝑠𝑛𝑜𝑤,𝑡 =  𝐵𝑡𝑓𝑊,𝑠𝑛𝑜𝑤,𝑡      (6) 5 

Then, 𝑓𝑊,𝑠𝑛𝑜𝑤,𝑡 is obtained by an iteration process. The formula used to obtain 𝑓𝑊,𝑠𝑛𝑜𝑤,𝑡 is defined as follows: 

𝑓𝑊,𝑠𝑛𝑜𝑤,𝑡𝑊𝑡 = 𝑓𝑊,𝑠𝑛𝑜𝑤,𝑡−1𝑊𝑡−1 + 𝑓𝑖,𝑠𝑛𝑜𝑤,𝑡−1𝑖𝑡∆𝑡 −  𝑓𝑊,𝑠𝑛𝑜𝑤,𝑡−1(𝐸𝑇𝑡 −  𝑆𝑢𝑏𝑡)∆𝑡 − 𝑓𝑊,𝑠𝑛𝑜𝑤,𝑡−1𝐵𝑡∆𝑡       (7) 

where 𝑊𝑡 and 𝐸𝑇𝑡 are soil moisture and evapotranspiration outputs from VIC, respectively. Sublimation 𝑆𝑢𝑏𝑡 is calculated 

from the evolution of the snow water equivalent (SWE).  

A similar equation to Eq. (7) can be written for rain (𝑓𝑊,𝑟𝑎𝑖𝑛,𝑡). At each time step, 𝑓𝑊,𝑠𝑛𝑜𝑤,𝑡 + 𝑓𝑊,𝑟𝑎𝑖𝑛,𝑡 + 𝑓𝑊,𝑢𝑛𝑘𝑜𝑤𝑛,𝑡 = 1. At 10 

step time 𝑡 = 1, 𝑓𝑊,𝑢𝑛𝑘𝑜𝑤𝑛,𝑡 = 1, indicating that the source of runoff (meltwater or rainfall) is unknown at initial time step. 

After the tracking system performed, 𝑓𝑊,𝑢𝑛𝑘𝑜𝑤𝑛,𝑡 decreases to 0, and sum of 𝑓𝑊,𝑠𝑛𝑜𝑤,𝑡 and 𝑓𝑊,𝑟𝑎𝑖𝑛,𝑡 is equal to 1 with fully 

explained soil moisture sources. 

Unlike Li et al. (2017), all the aforementioned variables are integrated values over the entire basin in units of millimetre. When 

performing hydrograph separation, one-year warming up is used to achieve fully explained soil moisture sources. Total runoff 15 

is separated into four components, that is, the surface runoff derived from meltwater (𝑅𝑠𝑛𝑜𝑤,𝑡) and from rainfall (𝑅𝑟𝑎𝑖𝑛,𝑡); the 

baseflow derived from meltwater (𝐵𝑠𝑛𝑜𝑤,𝑡) and from rainfall (𝐵𝑟𝑎𝑖𝑛,𝑡). 

3.4 Post-processing of forecasts from ECMWF 

In order to improve the raw forecasts from ECMWF, we propose a post-processing method by coupling parameterized Quantile 

Mapping (QM) with Schaake Shuffle (hereafter referred to QM-SS). QM is adopted in this study for it is a simple yet effective 20 

statistical bias correction method in hydrological applications (Li et al., 2010; Xu et al., 2014; Salathé et al., 2015). In most 

cases, the empirical cumulative distribution function is used to present the data distribution in QM. However, many studies 

(Viste et al., 2013; Stauffer et al., 2017; Tao et al., 2014) have demonstrated that it is more appropriate to use fitted parametric 

distributions as no frequent interpolation or extrapolation would be requested (Li et al., 2010). For QPFs, due to the strongly 

positively skewed distribution in rainfall (Stauffer et al., 2017), QM based on single gamma distribution is recommended and 25 

utilized for bias correction in this study, although some studies found that a combination of double-gamma (Yang et al., 2010) 

or gamma-GEV distribution (Smith et al., 2014) can be more effective. There are two reasons for our choice here. Firstly, we 

compared the single gamma with double gamma and gamma-GEV distributions, and obtained almost similar performance 

scores according to Mean Squared Error. Secondly, the bias correction in this study is performed for each grid, each lead time 

and each variable. Given the heavy computation labour, the single gamma distribution is selected here for timesaving and 30 

efficiency. For MXT and MNT, four-parameter beta distribution is utilized as suggested by Li et al. (2010). Owing to the 
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limited record of ECMWF forecast, the data excluded the forecast year is used as training data to determine the parameters of 

QM. 

Since forecasts are post-processed for individual lead time, grid and variable, the forecast ensembles therefore tend to be 

inappropriately space-time correlated. To generate ensemble members with appropriate space-time correlations, Schaake 

shuffle (Clark et al., 2004) is applied to link historical data to ensemble members and to create sequences with realistic 5 

temporal-spatial patterns. 38 years of historical data from 1978onward is used to apply the Schaake Shuffle procedure. Details 

to conduct Schaake Shuffle can be found in Clark et al. (2004) and Schepen et al. (2017). 

3.5 Evaluation indicators 

The annual maximum flood is picked out as typical flood events. Meanwhile, the first flood event in each year is also selected. 

Maximum flood is determined by the maximum daily streamflow in a year. For first flood, the definition seems to be slightly 10 

subjective. Nevertheless, first flood is just introduced as an example to verify the skill of VIC/ECMWF system to forecast the 

meltwater components. There are three criterions for us to define the first flood: (1) the peak flow should be more than twice 

of the average daily streamflow during dry period (November to March); (2) the duration for the flood event should be longer 

than 7 days; (3) the observed snowpack is present. Forecasts are issued for each chosen event. Considering that maximum 

flood events in YZR usually last for several months, flood volume over the entire flood event is impossible to be covered by 15 

medium-range weather forecasts. Four typical flood volumes are therefore chosen to represent the volume performance, i.e. 

the peak flow (Q1), the accumulative 3-days flows centred on peak flow (Q3), the accumulative 5-days flows centred on peak 

flow(Q5), the accumulative 7-days flows centred on peak flow (Q7). Term “duration” is adopted to represent the number of 

days used to generate flood volumes. 

The Continuous Ranked Probability Skill Score (CRPSS) (Hersbach, 2000) is adopted to indicate the overall performance of 20 

the forecasts as a comprehensive evaluation metric, which is calculated via normalizing the Continuous Ranked Probability 

Score (CRPS) by a reference forecast. The reference forecast in this study is an ensemble of hydrological forecasts simulated 

by the VIC model using sampled historical meteorological observations at the same calendar day as input to the model (Bennett 

et al., 2014). For deterministic forecasts, the CRPS score reduces to Mean Absolute Error (MAE), and can be directly compared. 

CRPS and MAE are negatively oriented and tend to increase with forecasts bias or poor reliability (Shrestha et al., 2015). The 25 

value of CRPSS ranges from -∞ to 1, with best score equal to 1. 

Two specialized indicators for flood events are utilized according to works by Smith et al. (2004), i.e., the percent absolute 

flood volume error 𝐸𝑞  and percent absolute peak time error 𝐸𝑡. The definitions are in formulas (8)-(9): 

𝐸𝑞 =
∑ |𝐵𝑖|𝑁

𝑖=1

𝑁𝑌𝑎𝑣𝑔
× 100      (8) 

𝐸𝑡 =
∑ |𝑇𝑝𝑖−𝑇𝑝𝑠𝑖|𝑁

𝑖=1

𝑁
× 100      (9) 30 
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where 𝐵𝑖  is the volume bias for 𝑖𝑡ℎ flood event; 𝑌𝑎𝑣𝑔 is the average observed flood volume for 𝑁 selected flood events. 𝑇𝑝𝑖 

and 𝑇𝑝𝑠𝑖 are the observed and simulated time to 𝑖𝑡ℎ peak. 

4. Results 

In this study, the performance of N-simulations and S-simulation in simulating and forecasting floods is analysed. Moreover, 

the results for forecasting different streamflow components are also shown.  5 

4.1 Hydrological model performance 

Fig. 2 shows an example of two-dimensional Pareto plots for Bias and NSE at Nugesha Station. The performance of the 

selected N-Pareto-optimal parameter sets and single compromise parameter set during calibration and evaluation periods for 

three hydrological stations are listed in Table 1. Generally speaking, the model performance during evaluation is more 

satisfactory than that during calibration. It is probably caused by the existence of considerable extraordinary flood events 10 

during the calibration period. The relatively shorter timespan during evaluation may be also one of the reasons. It is noticeable 

that simulation at Nugesha is better than that at other two stations with NSE greater than 0.77 for daily streamflow and NSE 

near 0.5 for top 10% streamflow. Performance at Nuxia is inferior with bias greater than 30%, which is similar to the previous 

studies by Tong et al. (2014) and Zhang et al. (2013). They both claimed that the underestimation in streamflow simulation at 

Nuxia was highly likely to be caused by the largely underestimated CMA observations in this area. We also guess that within 15 

downstream regions the hydrological process becomes too complicated due to human activities to be simulated by models (Li 

et al., 2013; Liu et al., 2014). It is obvious that S-simulation generally performs well during calibration, whilst during the 

evaluation period S-simulation loses the advantage to some degree.  

[Figure 2] 

The observed and simulated hydrographs during the evaluation period at Nuxia are presented in Fig. 3. An obvious 20 

underestimation can be observed in low flow periods, which is similar to previous studies by Tong et al. (2014) and Zhang et 

al. (2013). The absence of glacier module in VIC is believed to has limited influence on this underestimation, for similarly 

underestimated low flow was found when glacier modelling was embedded in VIC (Zhang et al., 2013). For our study, the 

underestimation is, in the meanwhile, caused by the fact that the objective functions used for calibration have the tendency to 

give more attention to high flows, as the flood is the focus of our investigation. As revealed in Fig. 3, the flood peaks are well 25 

captured by S-simulation in most cases. N-simulations are able to cover all the extreme values while sometimes slight 

overestimation exists.  

[Figure 3] 

The indicators for typical flood volumes simulated by VIC for first floods and maximum floods during the whole study period 

are listed in Table 2. Two statistical indictors are adopted here, i.e., CRPS for N-simulations and MAE for S-simulation. For 30 

Nugesha and Yangcun, CRPS is consistently smaller than MAE, indicating better simulation by N-simulations. The 
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improvement is about 10% compared with S-simulation and tends to be greater for longer durations. On the contrary, S-

simulation at Nuxia consistently provides better performance than N-simulations, for the selected single parameter set for S-

simulation at this station is actually the best parameter set for three of the objective functions, which can be viewed in Table 

1. The different behaviours at three stations imply that N-simulations is preferable when the trade-offs between multi-objective 

functions are significant (no single parameter set behaves well in most of the objectives like Nuxia Station). In order to present 5 

more detailed performance of flood volume, Fig. 4 exhibits simulated flood volumes versus observations for maximum floods 

during the evaluation period at three stations. It is noticeable that the majority of the flood events can be captured by N-

simulations, and volumes tend to be better covered with duration increasing. The flood volume at Yangcun is better simulated 

than that at the other two stations. It is consistent to the highest NSE for top 10% streamflow at this station as shown in Table 

1. The floods at Nuxia are obviously underestimated. In most cases, the N-simulations even fail to cover the observations. 10 

Similar but better behaviours exist for first floods and thus omit here. 

[Table 1] [Table 2] [Figure 4] 

VIC simulated snow cover is compared with snow depth derived from passive microwave remote-sensing data. Fig. 5 shows 

the spatial distribution of observed and simulated daily average snow depths during evaluation. For simplicity, only the results 

at Nuxia is displayed. An acceptable agreement (Correlation Coefficient = 0.63) can be found over the entire domain, especially 15 

for the middle reaches. Some overestimation exists in the upstream and downstream regions. Explanation for these errors in 

snow depth will be furtherly described in Section 5. We also compare the fraction of meltwater-induced components to total 

runoff with previous studies (Liu, 1999; Cuo et al., 2014) as shown in Table 3. It is noticeable that the results by S-simulation 

are quite close to the records, except Yangcun with about 5% overestimation. Most of the records are covered by N-simulations. 

However, all the parameter sets slightly underestimate the meltwater streamflow at Nuxia.  20 

[Figure 5] [Table 3] 

4.2 Flood volumes forecasts 

Streamflow forecasts are driven by QM-SS post-processed QPF and temperature data. A preliminary analysis of raw and post-

processed ECMWF forecasts reveals that QM-SS is effective for reducing errors and the post-processed forecasts are skilful 

enough for streamflow forecasting (seeing S.1 in supporting information). Fig.6 displays the CRPSS values of different flood 25 

volumes at three hydrological stations. Lead times of day 3, 5, 7, 10, 12 and 14 are chosen as representative to trace the forecast 

quality. Generally, flood volumes tend to be better captured with the increase of duration. One reason is that there are often 

larger errors in simulated flood peak, making the single day flood volume more prone to bias. Another reason is that when the 

duration increases, the bias in streamflow for this relatively long period can offset with each other. Performance of the 

VIC/ECMWF system deteriorates with increasing lead time as expected. The lead time of skilful forecasts for first floods is 30 

shorter than maximum floods. This can be explained by the generation mechanism of first floods. First floods are usually 

dominated by baseflow and meltwater. Compared with maximum floods, first floods normally occur in the same period within 

one year, so historical meteorological observations on the same calendar day can provide skilful input. This fact results in a 
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reference forecast which is hard to beat. As for maximum floods, streamflow can be predicted at least 10 days ahead. Similar 

to Table 2, forecasts driven by S-simulation gain higher CRPSS at Nuxia, while for the other two stations, performance of S-

simulation and N-simulations varies with lead time and duration. It seems that N-simulations gradually lose the advantage with 

increasing lead times, which may have something to do with the superposition of interaction of model parameter errors and 

meteorological forecasts uncertainty.  5 

[Figure 6] 

Another statistical indicator computed from forecasted flood volumes driven by S-simulation and N-simulations is illustrated 

by boxplots in Fig. 7 for first floods and Fig. 8 for maximum floods. For simplicity, only Q1 and Q7 are displayed, and an 

overall progressive improvement can be found from Q1 to Q7. As can be perceived, 𝐸𝑞increases with lead time, but for longer 

lead times a decrease exists. The decrease begins from day +10for first floods and day +12 for maximum floods. Meanwhile, 10 

whiskers of boxplots become wider and wider with the increase of lead time, indicating larger degree of variability over lead 

times. For Nugesha, the percent absolute flood volume error is found to be 40% on average. Greater 𝐸𝑞  in Yangcun is highly 

likely to be caused by insufficient modelling ability of VIC at this station for the NSE value for entire streamflow is only up 

to 0.65. Lower variances can be found for Nuxia Station. Regarding comparisons between S-simulation and N-simulations, 

we can observe that for first floods (Fig. 7) S-simulation outperforms N-simulations with smaller median and narrower 15 

whiskers, and in terms of Q7, the difference becomes minor especially for longer lead times. 

[Figure 7]  

As demonstrated in Fig. 8, 𝐸𝑞  for maximum floods is smaller than that for first floods, with majority of the streamflow errors 

confined within 40%. Unlike first floods, maximum floods are dominated by the precipitation inputs during a relevant period. 

Accordingly, the influence from hydrological errors becomes minor. Additionally, maximum floods as high flow events are 20 

intensively calibrated. For Nugesha (Fig.8 (a)-(b)), the most upstream station, 𝐸𝑞  is greater in the beginning which is possibly 

caused by the shorter response time and thus greater influence from hydrological errors. Undeniably, model with NSE<=0.48 

for high flows indeed impairs skilful forecasts. The smallest 𝐸𝑞  at Yangcun in short lead time is attributed to the minor 

hydrological errors for VIC with NSE up to 0.73 for top 10% streamflow. Although on average performance level, forecasts 

derived from S-simulation certainly have smaller errors, certain cases exist where part of the members in N-simulations have 25 

the ability to provide forecasts with the smallest errors. Moreover, the differences for two simulation modes become smaller 

compared to first floods, for the errors in streamflow forecasts are dominated by errors in ECMWF forecasts for maximum 

flood events. 

[Figure 8] 

The errors in peak time prediction are displayed in Fig. 9. The left sides are subplots for first floods, and the results for 30 

maximum floods are shown in right-hand subplots. Similar to 𝐸𝑞 , 𝐸𝑡deteriorates with lead time and peaks at lead time of 10 

day. The peak time errors at three stations are about 1-5 days for both first floods and maximum floods, yet errors in maximum 

floods are larger than that of first floods. An average of 2 days in 𝐸𝑡 is found for first floods at Yangcun and larger errors are 
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present in other two stations.𝐸𝑡 of first floods at Nugesha is the largest, and the cause is similar to 𝐸𝑞 . As for maximum flood 

events, an obvious increase in 𝐸𝑡 from day +7 can be perceived. Performance of S-simulation and N-simulations in this round 

varies with flood categories and stations, but generally smaller errors are found in peak times forecasted by N-simulations, 

especially for maximum floods.   

[Figure 9] 5 

4.3Streamflow components forecasts 

This subsection presents results of N-simulations and S-simulation in forecasting streamflow components. Figures 10-12 show 

CRPSS of meltwater-induced and rainfall-induced volumes at three hydrological stations. The reference forecasts used to 

compute CRPSS are forecasts driven by the same parameter set with inputs of historical observations at the same calendar day. 

Thus, CRPSS here is an indicator to show the forecast skill against lead time and to present the errors only from meteorological 10 

data. Only the results for Q1 are presented, as the results show no obvious correlations with duration.   

From Fig. 10, it is noticeable that for first floods at Nugesha, errors in forecasting surface runoff components is the main source 

contributing to errors in forecasting total runoff. Forecast skill for baseflow components seems to be insensitive to lead time 

(Figs. 10 a-b). On one hand, these components are mainly generated by available water storage in the catchment. On the other 

hand, the baseflow process often evolves slowly, possibly making the forecast lead time not able to cover the base flow 15 

variability. As for maximum floods, the errors derived from surface runoff forecasts are similarly the main contributor to errors 

in total runoff forecasts, but the baseflow exhibits a similar tendency with surface runoff and total runoff, deteriorating with 

lead times as shown in Figs. 10 c-d. This means during the period of maximum floods the infiltration is substantial in VIC and 

makes the moisture in bottom soil layer vary with the rainfall and meltwater inputs. The information in Figs. 10c-d is in good 

agreement with results displayed in Fig.6. Fluctuating CRPSS in 𝑄𝑠𝑛𝑜𝑤  and 𝑄𝑟𝑎𝑖𝑛 results in similarly fluctuating CRPSS in 20 

𝑄 .The well-predicted 𝑄𝑟𝑎𝑖𝑛  component is the critical factor for high CRPSS for total runoff. The meltwater-induced 

components can be predicted with 7 days in advance for first floods, and the lead time is much shorter for maximum floods. 

The rainfall-induced components can be skilfully forecasted up to day +14 compared with reference forecasts.  

[Figure 10] 

Similar performance can be found at Yangcun as shown in Fig. 11. Baseflow components for first floods are consistently well 25 

reproduced by the system with CRPSS greater than 0.8 for all the lead times. The variation in total runoff is fairly consistent 

with surface runoff. However, higher CRPSS in both 𝑄𝑠𝑛𝑜𝑤  and 𝑄𝑟𝑎𝑖𝑛  fails to give birth to higher CRPSS in 𝑄 (shown in 

Fig.6b). According to Table 1, the MAE value for S-simulation is 258.64 𝑚3/𝑠 for Q1, and the average observed peaks during 

this period is about 630 𝑚3/𝑠. Hence, the errors in hydrological model are too large to capture the actual flood process. The 

high CRPSS here is caused by the exclusion of hydrological errors. With regard to maximum floods, errors in surface runoff 30 

is still the main contributor to errors in total runoff. The meltwater-related components are forecasted with short lead time as 
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Nugesha. Results from S-simulation totally fall out of the 95% confidence interval, while for rainfall-induced components, S-

simulation produces higher CRPSS for lead time longer than 10 days. 

The most noticeable phenomenon at Nuxia is that baseflow components for first floods at this station exhibit an obvious 

deterioration with lead times (Fig. 12a-b). Nuxia is located in the most downstream reaches, and concentrates water from 

hundreds of tributaries. Some tributaries are fairly small with rapid response of baseflow and surface runoff and some 5 

tributaries may have intensive interactions between entire soil layer, causing the baseflow in the outlet to vary with lead time. 

CRPSS of all the flood components has similar changes to scores of total runoffs in Fig.6. Generally, the 𝑄𝑠𝑛𝑜𝑤  and 𝑄𝑟𝑎𝑖𝑛  

forecasts are skillful in lead time of 7 day and 10 day, respectively. Surface runoff remains the toughest part for forecasts, in 

which the meltwater-induced components can be predicted in only 5 days ahead. 

[Figure 11] [Figure 12] 10 

5. Discussion 

In this study, N-Pareto-Optimal parameter sets were adopted to solve the multiple feasible solutions by multi-objective 

optimization. Before NWP was introduced into the flood forecasting system, the streamflow driven by N-simulations was 

better simulated than that by S-simulation as shown in Table 2, although the NSE and Bias value are more favourable for S-

simulation during calibration. When it comes to flood forecasting, neither of the outputs by these two simulation modes has 15 

overwhelming advantages over every aspect of forecasting, which coincides with the conclusion from a previous study by Zhu 

et al. (2016b). Three preliminary findings were made for N-simulations. Firstly, N-simulations generally behave better when 

the trade-offs in multi-objectives are significant. In this case, the N-simulations can synthesize advantages from different 

components. This is why N-simulations can provide more desirable skill at Nugesha than Yangcun. Secondly, N-simulations 

indeed improves the streamflow simulation as shown in Table 1 and 2, but when it comes to forecasting, the interaction of 20 

errors in hydrological model parameters and meteorological forecast may degrade the forecast skill at longer lead time (Fig. 

6). Last, N-simulations may fail to provide better results on average model performance level, but individual member in N-

Pareto-Optimal parameter sets can capture the events with the lowest errors.  

As there is no glacier module in the current VIC model, similar to previous studies (Li et al., 2014; Liu et al., 2014; Sun et al., 

2013), the glacier-related process was considered together with the snow in this study. In other words, the rainfall input into 25 

VIC is separated into only two components, the liquid(rainfall) and solid parts (snow), and the portion of rainfall which is 

supposed to turn to glacier/ice is treated as snow instead. That is why the snow depth simulated by VIC is somewhat higher 

than that of remote sensing data shown in Fig. 5 while the melt water proportion is close to the records (Table 3). Additionally, 

comparing with the distribution of used meteorological stations shown in Fig. 1, we can infer that these positive biases were 

also induced by the interpolation using data from stations at which there are more snow/glacier present. To verify our 30 

conclusion, we plot the VIC-simulated snow depth together with the distribution of glacier in the YZR basin. The glacier data 

is downloaded from The Second Glacier Inventory Dataset of China (http://westdc.westgis.ac.cn/data/f92a4346-a33f-497d-

http://westdc.westgis.ac.cn/data/f92a4346-a33f-497d-9470-2b357ccb4246
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9470-2b357ccb4246). From Fig. 13, it is noticeable that the locations of overestimation do coincide with the locations of 

glacier. For Zone 1 and Zone 2, the overestimation is exacerbated by interpolating with gauges at which more snow and glacier 

exist. To relieve this problem, there are generally two ways to consider glacier-melt separately: temperature-index models to 

quantify an empirical relationship between air temperature and melt rate (Su et al., 2016; Zhang et al., 2013), and energy 

balance models to calculate melt as residual in the heat balance equation (Zhao et al., 2013). However, the error, as a result of 5 

overly sparse meteorological network, will consistently and largely hamper the application of those complicated methods 

(Tong et al., 2014). 

[Figure 13] 

For streamflow components forecast, the biggest challenge is the absence of data series of in-situ streamflow components. 

Therefore, in this study the simulation driven by observed forcing becomes an alternative to act as proxy and thus the error 10 

stemming from hydrological model is avoided. This is a common practice when observation is absent (Arnal et al., 2018; 

Harrigan et al., 2018). Without calibration of specific streamflow components, conclusion simply based on simulation of single 

parameter set may be risky, and ensemble from multi-parameter sets is believed to be more confident with consideration of 

hydrological uncertainty. From our results, different parameter sets behave similarly in streamflow components forecast, i.e. 

deteriorating with increasing lead time. However, when it comes to specific skill score, slight differences can be viewed from 15 

Figs. 10-12. Sometimes, S-simulation provides skilful forecasts with longer lead time, while in some other cases, performance 

of S-simulation becomes inferior and falls out of the 95% CI. Single parameter set may present overestimation or 

underestimation to some degree.  

The meltwater-induced components in streamflow are found to be difficult for the system to forecast, in which those in surface 

runoff are the toughest part. This is reasonable since the surface runoff is the most susceptible variable to various 20 

hydrometeorological factors. Specifically, 𝑅𝑠𝑛𝑜𝑤 in the study area is mainly determined by the amount of snowfall and the 

temperature at which the snowpack begins to melt. In VIC, the input precipitation is separated into snowfall and rainfall 

according to a predefined temperature. In consequence, errors from all the ECMWF forecasts would affect the 𝑅𝑠𝑛𝑜𝑤 forecasts 

whilst 𝑅𝑟𝑎𝑖𝑛 is merely influenced by one meteorological input, QPF. This is also the reason why rainfall-induced streamflow 

forecasts are the major contributor to satisfactory forecasting. This illustrates the importance of components study. 25 

6. Conclusion 

In this study, a hydrological ensemble prediction system composed by VIC and ECMWF medium-range precipitation and 

temperature forecasts was developed and applied in the YZR Basin to investigate the forecasting performance of flood volumes 

and streamflow components. Two different simulation modes were adopted. One is S-simulation which is driven by 

conventional single parameter set, and the other one is N-simulations which is driven by an ensemble of parameter sets selected 30 

from the Pareto front using the Preference Ordering Routine method. A newly published hydrograph separation algorithm was 

http://westdc.westgis.ac.cn/data/f92a4346-a33f-497d-9470-2b357ccb4246


15 

 

employed to separate the streamflow into four individual components: the surface runoff and baseflow induced by rainfall and 

meltwater respectively. The findings are summarized as following: 

(1) N-simulations was proven to be superior in model simulation. For flood forecasting, the performance of N-simulations and 

S-simulation varies with lead time and basin scale, and N-simulations is recommended when the multi-objective trade-offs are 

significant. When lead time extends, the differences between N-simulations and S-simulation become minor. 5 

(2) Flood forecast skill deteriorates with lead time. The forecast skill of flood volume increases with duration. Q7 can be better 

captured than Q1. The forecasting system provides better forecasts for maximum floods than first floods. The flood volume of 

first floods can be predicted in 7-14 days in advance. The lead time for maximum floods is 10-14 days. 

(3) At Nugesha and Yangcun stations, base flow components tend to be insensitive to increase of lead time due to the slowly-

evolved baseflow process. At Nuxia Station, baseflow exhibits similar patterns to total runoff. 10 

(4) Meltwater-induced component in surface runoff is the most difficult part for the proposed system to forecast compared 

with reference forecasts, which can only be captured in 4-7 days. Well-forecasted rainfall-induced streamflow is the main 

contributor for successful flood forecasting. 
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Figure1. Location of the study area, and distribution of hydrological and meteorological stations used in this study. 

 
Figure 2. Two-dimensional Pareto plots for Bias and NSE at Nugesha. The cross markers indicate all the non-dominated solutions 

and the circle ones are selected N-Pareto-optimal parameter sets. The conventional parameter set is denoted as star markers. 5 



24 

 

 
Figure 3. Daily time series of simulated and observed streamflow at Nuxia Station. The upper bar is the areal precipitation.  

 
Figure 4. Typical simulated flood volumes versus observed ones. The crosses in the figures are results by N-simulations and triangles 

are median values of N-simulations. Circles are results from S-simulation.The different colors are volumes for different durations, 5 
red for Q1, blue for Q3, magenta and cerulean for Q5 and Q7. (a) Nugesha, (b) Yangcun, and (c) Nuxia. 
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Figure 5. Spatial distribution of daily average snow depths derived from remote-sensing (a) and simulation by S-simulation (b) at 

Nuxia.  

 
Figure 6. CRPSS for different typical accumulated flood volumes against lead time. The upper panels are results for first floods and 5 
the lower ones are for maximum floods. Scores derived from S-simulation sets are marked in black while results for N-simulations 

are in grey. (a) Nugesha, (b) Yangcun, (c) Nuxia. 
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Figure 7. 𝑬𝒒 of first floods for Q1 and Q7 at (a)-(b) Nugesha, (c)-(d) Yangcun, and (e)-(f) Nuxia. The black-coloured boxplots are 

forecasts driven by S-simulation and forecasts derived from N-simulations are denoted by grey.  

 
Figure 8. 𝑬𝒒 of maximum floods for Q1 and Q7 at (a)-(b) Nugesha, (c)-(d) Yangcun, and (e)-(f) Nuxia. The black-coloured boxplots 5 

are forecasts driven by S-simulation and forecasts derived from N-simulations are denoted by grey.  
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Figure 9. 𝑬𝒕 for first flood and maximum flood at (a)-(b) Nugesha, (c)-(d) Yangcun, and (e)-(f) Nuxia. The black-coloured boxplots 

are forecasts driven by S-simulation and forecasts derived from N-simulations are denoted by grey.  

 
Figure 10. CRPSS of four different streamflow components against lead time at Nugesha. Meltwater-induced components for first 5 
floods (a) and maximum floods (c), rainfall-induced components in first floods (b) and maximum floods (d). The thick and solid lines 

are CRPSS by N-simulations with vertical bars showing 95% confidence intervals and the dashed lines with different markers are 

CRPSS by S-simulation. Black lines are meltwater/rainfall components in total runoff (Q). Red lines are CRPSS for components in 

surface runoff (R) and blue ones are in base flow (B). 
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Figure 11. CRPSS of four different streamflow components against lead time at Yangcun. Meltwater-induced components for first 

floods (a) and maximum floods (c), rainfall-induced components in first floods (b) and maximum floods (d). The thick and solid lines 

are CRPSS by N-simulations with vertical bars showing 95% confidence interval and the dashed lines with different markers are 

CRPSS by S-simulation. Black lines are snowmelt/rainfall components in total runoff (Q). Red lines are CRPSS for components in 5 
surface runoff (R) and blue ones are in base flow (B). 
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Figure 12. CRPSS of four different streamflow components against lead time at Nuxia. Meltwater-induced components for first 

floods (a) and maximum floods (c), rainfall-induced components in first floods (b) and maximum floods (d). The thick and solid lines 

are CRPSS by N-simulations with vertical bars showing 95% confidence intervals and the dashed lines with different markers are 

CRPSS by S-simulation. Black lines are snowmelt/rainfall components in total runoff (Q). Red lines are CRPSS for components in 

surface runoff (R) and blue ones are in base flow (B). 5 

 
Figure 13. Spatial distribution of VIC snow depth and glacier in YZR basin. 
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Table1. Information of N-simulations and S-simulation During Calibration and 

Evaluation at Three Hydrological Stations. 

Station Numbers Mode 
Calibration/Evaluation 

NSE Bias(%) NSE10% Bias10%(%) 

Nugesha 16 
N-simulations 

0.77~0.87/ 

0.77~0.88 

-27.75~-1.30/ 

-21.72~6.37 

0.06~0.51/ 

-0.05~0.48 

-8.83~8.05/ 

-9.29~16.38 

S-simulation 0.86/0.86 -7.55/-2.74 0.51*/0.48 -3.02/1.29 

Yangcun 15 
N-simulations 

0.71~0.88/ 

-0.07~0.65 

-34.03~-10.52/ 

-17.72~6.37 

-1.11~0.34/ 

-1.41~0.73 

-14.21~2.60/ 

-4.29~19.64 

S-simulation 0.88/0.56 -13.54/-8.81 0.32/0.73 -7.43/5.21 

Nuxia 11 
N-simulations 

0.65~0.77/ 

0.58~0.79 

-44.33~-34.82/ 

-46.53~-34.45 

-1.27~-0.45/ 

-0.87~0.23 

-27.83~-20.06/ 

-16.36~-4.17 

S-simulation 0.77/0.74 -35.03/-35.51 -0.45/0.06 -20.06/-5.33 

*The bolded values in the table are the cases where S-simulation behaves better than N-simulations according to the selected objective functions. 
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Table 2. CRPS and MAE for N-simulations and S-simulation on four typical flood 

volumes during the whole period. The results are displayed as MAE/CRPS. CRPS is 

the indicator used for N-simulations. MAE is used for S-simulation. 

Events Volumes 
MAE/CRPS 

Nugesha Yangcun Nuxia 

First floods 

Q1 107.65/96.42 258.64/230.82 315.74/379.21 

Q3 297.30/266.81 714.26/636.85 795.62/998.83 

Q5 461.82/409.22 1089.45/976.46 1181.44/1517.56 

Q7 611.13/530.84 1412.74/1274.65 1524.84/2010.17 

Maximum floods 

Q1 537.88/467.14 818.24/731.23 1824.27/2025.75 

Q3 1497.96/1267.92 2280.90/2021.00 5125.15/5608.94 

Q5 2304.14/1919.31 3471.46/3081.09 7820.15/8514.79 

Q7 3016.17/2514.06 4438.17/3975.66 10091.79/10940.98 
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Table 3. Fractions of meltwater-induced streamflow to total runoff during the 

evaluation period for three stations. 

Station Recorded 
Simulated 

N-simulation S-simulation 

Nugesha 18% 14%~25% 16% 

Yangcun 20% 11%~30% 25% 

Nuxia 38% 20%~37% 35% 
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Supporting information 

 

S1. Spatial patterns of CRPS for ECMWF QPF for lead time of 3 day during wet season (May to September). (a) CRPS for raw 

forecasts and (b) CRPS for post-processed QPF by QM-SS.  
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