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Abstract 

 

Over the past two decades, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks 

(PERSIANN) products have been incorporated in a wide range of studies. Currently, PERSIANN offers several precipitation 5 

products based on different algorithms available at various spatial and temporal scales, namely, PERSIANN, PERSIANN-

CCS and PERSIANN-CDR. The goal of this article is to first provide an overview of the available PERSIANN precipitation 

retrieval algorithms and their differences. Secondly, we offer an evaluation of the available operational products over the 

Contiguous United States at different spatial and temporal scales using Climate Prediction Center (CPC) Unified gauge-based 

analysis as a benchmark. Finally, the available products are intercompared at a quasi-global scale. Furthermore, we highlight 10 

strength and limitations of the PERSIANN products and briefly discuss the expected future developments.   

1 Introduction  

1.1 Precipitation and Satellite-based observation 

Precipitation is an integral part of the Earth’s hydrologic cycle, playing a foremost role in its water and energy balance. 

Accurate, uninterrupted and uniform observation of precipitation represent important inputs for research and operational 15 

applications. The resilience and capacity of societies to react and adapt to climate extremes such as storms, floods and droughts 

are greatly enhanced with a long term historical record of precipitation. Practical applications include use of precipitation 

Intensity-Duration-Frequency (IDF) information for infrastructure design and use of near real-time precipitation data in 

development of early warning systems and disaster management planning. Moreover, the observation of precipitation is 

essential for understanding Earth’s climate, its underlying variabilities and trends. In turn, climatic understanding can improve 20 

our ability to forecast extreme events and enables informative strategic planning and decision making on issues related to water 

supply, both in quantity and quality.  

Precipitation measurement continues to represent a great challenge for the scientific community mainly due to its 

spatiotemporal variations in intensity and duration (Sorooshian et al., 2011). The three primary instruments used for 

measurement of precipitation are gauges, radar and satellite. Rain gauges provides direct measurement of precipitation; 25 

however, it suffers from intermittent coverage over most continents. Radar technology is not available in many countries and 

even in places where the technology is available, radar blockage by mountains is a major challenge. Both rain gauges and radar 

do not provide measurements over oceans. On the other hand, satellite-based precipitation measurements seem to be the most 

promising method to accurately observe precipitation over both land and ocean. 
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Satellite-based precipitation estimation techniques are mainly based on information from Geostationary Earth Orbiting (GEO) 

satellites and/or Low Earth Orbiting (LEO) satellites. GEO satellites are capable of providing images every 5-30 minutes in 

multiple spectral bands, but their spectral coverage is limited to visible and infrared wavelengths.  On the other hand, LEO 

satellites are able to provide passive microwave (PMW) information about the hydrometeors directly relevant to surface 

precipitation rates. Early techniques for developing satellite-based estimates of rainfall are briefly described in Hsu et al. (1997) 5 

which includes the analysis of individual pixel information such as (Arkin & Meisner 1987) and the analysis of cloud image 

types and their variations in time (Scofield et al., 1987). In 1997, the Tropical Rainfall Measurement Mission (TRMM) was 

launched. It carried the first orbital rainfall radar, which was used to calibrate passive microwave sensors on other satellites, 

resulting in significant improvements to rainfall retrievals over the tropical regions of the globe (Kummerow et al., 1998; 

Kummerow et al., 2000; Simpson et al., 1988). The follow-up to the TRMM mission is the Global Precipitation Measurement 10 

(GPM). The GPM mission deploys an enhanced dual-frequency radar sensor. The GPM program aims to combine observations 

from multiple passive microwave sensors mounted on both pre-existing and newly-deployed satellites. The GPM satellite 

constellation has global coverage in the range (68°S - 68°N) with a return interval of 3 hours (Hou et al., 2014). 

Today, several agencies and institutes provide satellite-based datasets which have been derived using different algorithms such 

as the Climate Prediction Center (CPC) morphing technique CMORPH (Joyce et al., 2004), TRMM Multi-Satellite 15 

Precipitation Analysis TMPA (Huffman et al. 2007), NASA Integrated Multi-satellitE Retrievals for GPM (IMERG) (Huffman 

et al., 2015), NRL-Blend satellite rainfall estimates from the Naval Research Laboratory (NRL) (Turk et al., 2010) and 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN; Hsu et al., 1997, 

1999; Sorooshian et al., 2000). Both PERSIANN and CMORPH algorithms employ GEO and LEO satellite information to 

estimate rainfall. However, while CMORPH uses GEO-IR cloud motion vectors to linearly interpolate PMW rainfall estimates 20 

between sensor overpasses (Joyce et al., 2004), PERSIANN algorithm determines a relationship between GEO infrared 

imagery and precipitation and adjusts the estimates using PMW rainfall estimates form LEO satellites.   

1.2 PERSIANN products  

Over the last two decades, the PERSIANN system of precipitation products have been developed at the Center for 

Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine in collaboration with NASA, NOAA 25 

and the UNESCO programme for the Global Network on Water and Development Information for Arid Lands (G-WADI) 

program. The PERSIANN family includes three satellite-based precipitation estimation products namely PERSIANN, 

PERSIANN-CCS and PERSIANN-CDR. The products are accessible through several web-based interfaces to serve the needs 

of researchers, professionals and general public including: CHRS iRain (http://irain.eng.uci.edu), Data Portal 

(http://chrsdata.eng.uci.edu) and RainSphere (http://rainsphere.eng.uci.edu). These web-based interfaces provide different 30 

visualization, analysis and download capabilities.  

PERSIANN products have also been used frequently for different studies by researchers in the fields of hydrology, water 

resources management and climate. These include evaluation of PERSIANN products against ground observations, other 
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satellite-based products and model simulations (Sorooshian et al., 2002; Yilmaz et al., 2005; Li et al., 2003; Miao et al., 2015; 

Nguyen et al., 2017; Mehran et al., 2014), application of PERSIANN products for modeling soil moisture (Juglea et al., 2010), 

prediction of runoff (Behrangi et al., 2011; Ashouri et al., 2016; Liu et al., 2017; AghaKouchak et al., 2010; Hsu et al., 2013), 

rainfall frequency analysis (Gado et al., 2017), tracking typhoons (Nguyen et al., 2014), monitoring drought (Katiraie-

Boroujerdy et al., 2016; AghaKouchak & Nakhjiri, 2013), assimilation into climate models (Yi, 2002), precipitation 5 

forecasting (Zahraei et al., 2013), and trend analysis (Nguyen et al., 2016; Damberg et al., 2014).   

The main objective of this paper is to provide a concise and clear summary of the similarities and differences between the 

three products in terms of attributes and algorithm structure. Moreover, the paper aims to provide an evaluation of the 

performance of the products over the Contiguous United States (CONUS) using the Climate Prediction Center (CPC) 

precipitation dataset as a baseline of comparison. Also, an assessment of the behaviour of PERSIANN family products over 10 

the globe (60°S - 60°N) is performed. The subsequent sections of this paper are organized as follows: Sect. 2 presents a brief 

description and comparison of the algorithm and attributes of each product. Sect. 3 and Sect. 4 provide the results of evaluation 

of the PERSIANN products over the CONUS and the globe respectively. In Sect. 5, conclusions are provided to pinpoint future 

development areas.   

 15 

2. Attributes and algorithms structures of PERSIANN products   

In this section, general descriptions of the attributes and algorithm structures of the PERSIANN products are provided and 

compared. A comparison of the attributes of the three products is shown in Table 1.  The percentage of missing data is shown 

over the period (2003-2015) and its spatial distribution can be seen in Fig. 1 for each of the products. It should be noted that 

missing data will be due to input geostationary satellite data unavailability. 20 

 

2.1 Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) 

The PERSIANN algorithm, developed in 1997, is based on the synergy between the sparsely sampled information from low 

Earth orbiting (LEO) satellites and the high frequency samples from geostationary (GEO) satellites. With regard to GEO 

imagery, PERSIANN originally used longwave infrared imagery as the primary input to the algorithm; however, it was later 25 

extended to include daytime visible imagery as well. The passive microwave imagery from low earth orbiting (LEO) satellites 

is used to continuously adapt the parameters of the model. 

The PERSIANN algorithm is an artificial neural network (ANN) model based on a multilayer neural feedforward network 

(MFN) known as the Modified Counter Propagation Network (Hsu, 1996). This hybrid model consists of two processes: firstly, 

the infrared (10.2-11.2 μm) images are transformed into the hidden layer through an automatic clustering process to form what 30 

is known as a self-organizing feature map (SOFM). The purpose of this process is to detect and classify patterns in the input 
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data. Then, the discrete SOFM clusters in the hidden layer are mapped to the continuous space of outputs (i.e. rainfall rate). 

Both processes of input-hidden and hidden-output transformations involve parameter estimation which is routinely performed 

by incorporating Passive Microwave (PMW) rainfall from Low Earth Orbiting satellites. It should be noted that parameter 

estimation in each process can be performed separately by training the model for the former while a supervised learning 

strategy is used for the latter. PERSIANN data is available for public use through the CHRS Data Portal 5 

http://chrsdata.eng.uci.edu. For a comprehensive description of the original PERSIANN algorithm and the several 

enhancements added to it, interested readers should refer to (Hsu et al., 1997, 1999, 2007), (Sorooshian et al., 2000, 2002).   

2.2 PERSIANN-Cloud Classification System (PERSIANN-CCS) 

PERSIANN-CCS, (Hong et al., 2004), is an example of cloud-patch-based algorithms where the features are extracted from 

the cloud coverage under specified temperature thresholds. Algorithms with a similar concept were developed earlier such as 10 

the Griffith-Woodley technique (Griffith et al., 1978) (Woodley et al., 1980), the Convective-Stratiform technique (Adler & 

Negri, 1988) and the method proposed by Xu (Xu et al., 1999). The PERSIANN-CCS algorithm utilizes more information 

from the infrared cloud images compared to PERSIANN by performing segmentation of the cloud image under different 

temperature thresholds. The algorithm involves four steps: firstly, the infrared cloud image is segmented based on different 

temperature thresholds using an incremental temperature threshold (ITT) approach. Next, features such as coldness, geometry 15 

and texture are extracted from the segmented images in an attempt to distinguish between different cloud types and the cloud 

patch is identified as one of 400 classified cloud types. In the third step, the SOFM clustering algorithm described earlier in 

the PERSIANN algorithm is used to classify the cloud extracted features into distinct categories. Finally, for each feature 

group resulting from the previous step, a relationship between brightness temperature and rainfall rate is developed using 

histogram matching and nonlinear exponential function fitting (Hong et al., 2004). A PMW rainfall calibrated PERSIANN-20 

CCS algorithm was developed beginning in 2014 and has been implemented as part of the NASA GPM IMERG algorithm 

(Karbalaee et al., 2017). At this time, the PMW calibrated PERSIANN-CCS products are available after 2014. PERSIANN-

CCS data is available for public use through the CHRS Data Portal http://chrsdata.eng.uci.edu. For a comprehensive 

description of PERSIANN-CCS and PMW calibrated algorithms, interested readers should refer to (Hong et al., 2004) and 

(Karbalaee et al., 2017).     25 

 

2.3 PERSIANN-Climate Data Record (PERSIANN-CDR) 

PERSIANN-CDR uses a modified PERSIANN algorithm in order to produce a historical record of precipitation estimates 

dating back to 1983. As mentioned earlier, the PERSIANN algorithm relies primarily on infrared imagery from GEO satellites 

as an input to the ANN model. Similarly, PERSIANN-CDR uses infrared imagery data from different international GEO 30 

satellites which is available starting from 1979 at 10 km spatial resolution and 3hr temporal resolution (Rossow & Schiffer, 

1991; Rossow & Garder, 1993; Knapp, 2008) and maintained by NOAA under the International Satellite Cloud Climatological 
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Project (ISCCP). However, unlike the PERSIANN algorithm where Passive Microwave imagery is used to update the 

parameters of the network, PERSIANN-CDR alternatively uses the National Centers for Environmental Prediction (NCEP) 

stage IV hourly precipitation to train the ANN model. Then, the algorithm is run with fixed parameters to estimate the historical 

data. An additional processing step is performed to reduce the bias in the PERSIANN-CDR estimates by incorporating Global 

Precipitation Climatology Project (GPCP) monthly 2.5° precipitation data. The resulting PERSIANN-CDR estimates maintain 5 

monthly total precipitation consistent with the GPCP data (Ashouri et al., 2015). PERSIANN-CDR data is available for public 

use through the NOAA National Centers for Environmental Information (NCEI) at 

https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-persiann-cdr and the CHRS Data Portal http://chrsdata.eng.uci.edu. 

For a comprehensive description of the PERSIANN-CDR algorithm, interested readers should refer to (Ashouri et al., 2015).       

 10 

3. Evaluation of PERSIANN products over the CONUS 

The three products PERSIANN, PERSIANN-CCS and PERSIANN-CDR have been evaluated over the CONUS for the period 

starting from 2003 to 2015. The main dataset used as a reference for evaluation is NOAA Climate Prediction Center (CPC) 

Unified Gauge-Based Analysis of Daily Precipitation over CONUS (retrieved from ftp://ftp.cdc.noaa.gov/datasets), 

hereafter will be referred to as CPC. CPC data has a spatial resolution of (0.25° x 0.25°), it was used as a baseline for evaluation 15 

in this study because it combines all ground-based information sources.  

Figure 2 shows the average annual precipitation during (2003-2015) for the four datasets. The average annual precipitation of 

PERSIANN, PERSIANN-CCS, PERSIANN-CDR and CPC over the CONUS in mm is 793, 979, 916 and 852 respectively.  

 It can be clearly seen in Fig. 2 that PERSIANN-CDR better mirrors the precipitation patterns observed in the CPC data. This 

is not surprising since PERSIANN-CDR, as detailed in Table 2, is a bias adjusted product utilizing the GPCP data. Over the 20 

Gulf States, PERSIANN and PERSIANN-CCS both tend to underestimate the mean annual precipitation, whereas 

PERSIANN-CDR has captured those patterns. The average annual precipitation of PERSIANN generally matches the pattern 

of PERSIANN-CDR and CPC although an underestimation over the northwestern United States (Washington, Oregon and 

North California) and a spurious overestimation in midwestern states are observed. With regard to PERSIANN-CCS, the 

pattern and values of average annual rainfall differ considerably from the other products.  25 

 

The above results represent comparison over a large time scale, as a result, errors in short time scale may cancel each other 

which may obscure important information. Therefore, a comparison based of daily precipitation data is needed to obtain a 

more insightful view about the data sets. In order to make PERSIANN data consistent with CPC in a daily scale, PERSIANN 

data have been accumulated from 12z to 12z instead of the default (0-24) accumulation. This daily comparison is shown with 30 

both continuous metrics (correlation coefficient (CORR), root mean squared error (RMSE) and bias) in Fig. 3 and categorical 

metrics (probability of detection (POD) and false alarm ratio (FAR)) in Fig. 4. A general conclusion to be inferred from Fig. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-177
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 12 April 2018
c© Author(s) 2018. CC BY 4.0 License.



7 
 

3 is the disparity of correlation coefficient with relatively low values over the western states and high values extending from 

Gulf States in the south toward the northern part of the country for the three products. On the contrary, it can be seen that 

RMSE has better values over the western US and poor values over Gulf States and the eastern US. It is important to state that 

these two results don’t provide a diagnosis about the products performance but rather can be attributed to differences in climatic 

zones. The western states on average receive less precipitation compared to Gulf and eastern states, and, RMSE will often 5 

have higher values where precipitation is higher. Additionally, results over the western US might have also been affected by 

lack of sufficient gauge data used in the interpolation process of creating the CPC gridded product. As for RMSE and bias, 

PERSIANN-CDR shows the best performance among all the PERSIANN products.  In particular, the bias is almost zero across 

the country (except in some areas in Nevada, Washington, and parts of the central valley in California). As shown in Fig. 2, 

on average heavier rainfall events occur over Gulf states and the states along the east coast. With that in mind and based on 10 

the statistics shown in Fig. 3, one can see that PERSIANN-CDR captures such patterns with high correlation coefficient and 

very low bias. See Table 3 for a summary of the continuous metrics over the CONUS. 

On the other hand, the categorical indices shown in Fig. 4 illustrate that the three PERSIANN products, PERSIANN, 

PERSIANN-CCS and PERSIANN-CDR have similar performance in terms of FAR with average values over the CONUS 

equivalent to 0.22, 0.29 and 0.29 respectively. However, PERSIANN has considerably lower probability of detection (POD) 15 

with an average value of 0.8 compared to 0.9 for both PERSIANN-CCS and PERSIANN-CDR. See Table 3 for a summary of 

the categorical metrics over the CONUS. It is noted that categorical indices do not distinguish between light and heavy rains. 

An alternative approach would be considering volumetric indices for evaluation of satellite products including Volumetric Hit 

Index (VHI) and Volumetric False Alarm (VFA) (AghaKouchak and Mehran, 2013). These indicators are based on volume of 

captured rain rather than counts. Previous studies show that while PODs of PERSIANN products might be rather low in some 20 

regions, the VHI is much higher indicating that PERSIANN products capture most of the volume of rain in reference products 

(see AghaKouchak and Mehran, 2013).  

 

To further investigate the performance of the PERSIANN products, we narrowed down our analysis to extreme precipitation 

events. We looked at three classes of extreme indices, namely absolute threshold, percentile, and maximum indices; these 25 

indices are defined in Table 4. Results for SDII, CDD and CWD are shown in Fig. 5. With regard to SDII which is defined as 

the ratio of annual rainfall to the number of rainy days, PERSIANN and PERSIANN-CDR show close agreement with CPC 

over Western US except along the west coast and over the Sierra Nevada Mountains. Over Eastern US, PERSIANN-CCS and 

PERSIANN-CDR underestimate SDII values. This result is of particular interest to PERSIANN-CDR because it is bias 

adjusted using ground observations and while it maintains the same patterns and quantities of rainfall as CPC data (See Fig. 30 

2), SDII results indicate that while PERSIANN-CDR maintains similar accumulated rainfall depths as CPC in a monthly scale, 

it overestimates the number of rainy days. It should be noted that PERSIANN captures SDII values over Gulf states but depicts 

a spurious overestimation over central US. As for CDD, all the three products reasonably mirror the patterns observed in CPC 

with PERSIANN-CDR outperforming the other two products. CWD results were similar to those of CDD, with PERSIANN-
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CDR outperforming PERSIANN and PERSIANN-CCS while overestimating CWD over Florida and showing a slight 

underestimation along the Rocky Mountains. 

 

With respect to R10mm, PERSIANN-CDR outperforms PERSIANN and PERSIANN-CCS, mirroring the patterns observed 

in CPC. PERSIANN shows close performance to CPC but with underestimation. PERSIANN-CCS shows overestimation in 5 

R10mm over the Northwestern states. Results obtained for R99pTOT and R95pTOT are similar. PERSIANN shows an 

overestimation in the Midwestern states, consistent with SDII. Among the three products, PERSIANN-CDR outperforms the 

other. PERSIANN-CDR mirrors similar patterns as those of observed in CPC though with underestimation. It can be seen that 

PERSIANN-CDR underestimation in R10mm, R95pTOT and R99pTOT is increasing as the quantile is increased. This 

behaviour should be taken into consideration when using PERSIANN-CDR for extreme value analysis in engineering 10 

applications. The results of extreme indices analysis are summarized in Table 5. Previous studies show that the capabilities of 

satellite precipitation datasets to estimate heavy precipitation rate improves at higher temporal accumulations (Mehran & 

AghaKouchak, 2014). 

 

4. Global comparison of PERSIANN products  15 

Several studies have been devoted to the evaluation of the PERSIANN products against ground-based observations over 

different regions of the globe. Evaluation studies conducted over Iran showed that PERSIANN adequately captures the 

precipitation patterns of mean annual and seasonal precipitation although underestimating the amount of rainfall (Baranizadeh 

et al., 2012). Evaluation performed at a daily temporal scale (Katiraie-Boroujerdy et al., 2013) showed that PERSIANN and 

GPCP-adjusted-PERSIANN exhibit a good performance over the mountainous regions while underperforming over the coastal 20 

region of the Caspian Sea. A Recent study (Alijanian et al., 2017) which was conducted over a longer time period (2003-2012) 

showed that PERSIANN-CDR outperforms other satellite-based products in detecting heavy rainfall events over Iran. Similar 

conclusions were reported from evaluation studies performed over China which highlighted that PERSIANN-CDR accurately 

captures the spatial and temporal patterns of extreme rainfall, in particular, the eastern China monsoon region. However, it has 

been shown that PERSIANN-CDR underperforms in dry regions such as the Tibetan Plateau and the Taklamakan desert (Miao 25 

et al., 2015).   

 

Global assessment of satellite-based products is complicated primarily due to the non-existence of ground-based measurements 

over oceans. Additionally, the paucity of dense rain gauge networks over land in many regions around the world is a major 

challenge given that precipitation variability over land is more complicated than over oceans because of topographic effects. 30 

Therefore, unlike the previously mentioned studies where a specific PERSIANN product is evaluated against ground-based 

observations, this section aims to provide a comparison between the three PERSIANN products, PERSIANN, PERSIANN-
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CCS and PERSIANN-CDR, over the (60°S - 60°N) globe for the period (2003-2015). It should be noted that none of the 

products is used as a baseline for comparison but rather the performance of each product is compared against others in order 

to obtain insight into the properties of each product over different geographical and climatological regions. 

 

Figure 7 illustrates that the PERSIANN products generally show similar global spatial distribution of mean annual 5 

precipitation. It can be seen that equatorial Pacific, the eastern Indian Ocean, the Amazon and western Sub-Saharan Africa are 

the wettest parts of the globe. However, differences are observed in the estimates of PERSIANN-CDR which are substantially 

lower over West Africa compared to PERSIANN and PERSIANN-CCS. Significant differences are also observed over the 

Amazon.     

Figure 10 (a) shows the average annual precipitation for the period (2003-2015) over continents and oceans as estimated by 10 

each of the three products. This comparison is intended to provide insightful conclusions about the (Land vs Ocean) 

performance. As shown in Fig. 10, PERSIANN-CDR is consistently estimating higher precipitation rates over the oceans than 

PERSIANN-CCS and PERSIANN.  On the other hand, PERSIANN-CCS estimates higher precipitation rates than PERSIANN 

and PERSIANN-CDR over most continents except Oceania. Additionally, it is clear that PERSIANN consistently estimates 

lower precipitation rates than the other two products over both oceans and land with the exception of Africa. 15 

 

Figures 8 and 9 show the mean annual zonal precipitation, i.e. across latitudes (60°S - 60°N), and the mean annual meridional 

precipitation, i.e. across longitudes (180°W - 180°E). While Fig. 8 may demonstrate differences in the algorithms due to 

climatological variations across latitudes, Fig. 9 is a mere reflection of the observations in Fig. 10 (a) as the proportion of land 

to ocean mass varies across longitudes.  The two figures corroborate the results observed from Fig. 10. It can be seen that 20 

PERSIANN-CDR estimates are higher over latitudes where oceans represent a larger proportion than land mass such as (60°S 

- 20°S) and similarly for longitudes such as (180°W - 120° W). On the other hand, PERSIANN-CCS estimates are equivalent 

or higher than PERSIANN-CDR across latitudes where land mass is larger than oceans such as (0 - 20°N) and similarly for 

longitudes such as (0 - 40°E). Moreover, it can be seen from Fig. 6 that the three products show an off-equatorial peak 

approximately at 8°N which represents the mean location of the Intertropical Convergence Zone (ITCZ). Analysis of Global 25 

Precipitation Climatology Project (GPCP) zonal precipitation for the period (1979-2003) demonstrated similar results with a 

peak rainfall to the north of the equator approximately at 8°N (Gruber & Levizzani, 2008). 

 

In order to provide better insight into the behaviour of the PERSIANN algorithms over land and oceans, the estimation of 

extreme precipitation events is examined using the same group of extreme indices used for the evaluation over the CONUS 30 

(See Table 4).   

As shown in Fig. 10, the three products maintain a similar SDII, with PERSIANN-CDR exhibiting generally lower values than 

the other two.  The largest divergence between the three products appears in the Mid Pacific and Mid Indian Ocean regions.  

Figure 11 maps the SDII index and shows this as well.  For CDD, the three products largely agree over land areas, but begin 
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to show differences over the oceans.  They do show similar spatial patterns in terms of areas with the highest CDD values (Fig. 

11), but PERSIANN tends to show more widespread areas of high CDD, followed by PERSIANN-CCS, then PERSIANN-

CDR.  Perhaps not surprising, the inverse behaviour is present for CWD (Fig. 10 and Fig. 11).  The R10mm index shows 

PERSIANN-CDR with the highest values of the three products over the oceans, but lower values than the other two over land 

(with the exception of Oceania and Europe). The three products generally show agreement on the extreme precipitation total, 5 

percentile-based indices (R95pTOT and R99pTOT).  The largest areas of disagreement over land appear over South America 

and Africa.  For oceans, these index values are most dissimilar between products over the Mid Pacific and Indian Ocean 

regions.  

 

5. Conclusions 10 

 

The objective of this article was to provide a summary of the differences between PERSIANN products algorithms, an 

evaluation of the products over the CONUS and a comparison between the products at a quasi-global scale.  

The evaluation results of PERSIANN products over the CONUS indicate that the three products have generally good 

correlation with Climate Prediction Center (CPC) ground-based data, and high values of Probability of Detection (POD) with 15 

averages of 0.8, 0.9 and 0.9, for PERSIANN, PERSIANN-CCS and PERSIANN-CDR respectively. The False Alarm Ration 

(FAR) of the three products are relatively low: 0.22 (PERSIANN), 0.29 (PERSIANN-CCS) and 0.29 (PERSIANN-CDR). 

PERSIANN-CDR surpasses the performance of the other two products in terms of replicating similar spatial precipitation 

patterns to those of CPC data. On the other hand, PERSIANN-CCS shows a slightly different pattern with overestimation in 

the Northwestern states. While PERSIANN both underestimates rainfall rates in the states of Washington, Oregon and north 20 

California and overestimates over the Midwestern states.  The superiority of PERSIANN-CDR is attributed to the bias 

adjustment of PERSIANN-CDR on a monthly scale using GPCP data. However, it is important to mention that while the 

results demonstrate the good performance of PERSIANN-CDR over long time scales compared to CPC, it tends to deviate 

(mostly underestimate) the amount of extreme rainfall on a daily scale. This emphasizes that careful attention must be paid to 

problems involving extreme value analysis using PERSIANN-CDR, in particular those related to engineering applications 25 

such as infrastructure design.         

 

Quasi-global comparison of precipitation products is important to assess the potential contrasts in products over land and 

ocean, and in different climatic zones. Overall, the results of global comparison indicate that the three products exhibit similar 

behaviour in terms of mean annual zonal precipitation between latitudes 20°S-20°N while deviate from each other out of this 30 

equatorial belt. As for the differences between the products over land and ocean, an interesting pattern is that in the context of 

mean annual rainfall, PERSIANN-CDR estimates higher rainfall than the other products over the oceans while PERSIANN-
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CCS estimates higher rainfall over continents except for Europe. Over both land and ocean, PERSIANN estimates of mean 

annual rainfall is the lowest. This comparison shall not be taken out of this context and be considered as an evaluation study 

because while PERSIANN and PERSIANN-CCS are purely derived from satellite observations, PERSIANN-CDR is bias 

adjusted using ground observations. This leads to expected deviations when comparing the products. The purpose of this 

relative intercomparison was to highlight the discrepancies and differences in data products. 5 

PERSIANN algorithms continue to improve and evolve. Recent developments including integrating deep learning approaches, 

adding water vapor channel information (Tao et al., 2017), using PMW data for bias adjustment of PERSIANN-CCS 

(Karbalaee et al., 2017), incorporating MODIS and CloudSat information (Nasrollahi et al., 2013), using probability matching 

methods to improve warm rainfall detection in PERSIANN-CCS. Preliminary results show that the application of deep learning 

techniques in precipitation estimation is enhancing the performance of the algorithm in the detection of Rain/No Rain events. 10 

Algorithm performance is further enhanced, especially during the winter season, by utilizing the water vapor channel as an 

additional input to the algorithm. As for probability matching method, it is used to make bias correction of PERSIANN-CCS 

estimates and improve warm rainfall detections. Results of this research indicate more significant improvement in high 

latitudes compared to low latitudes. Although not yet operational, these methods show potential for integration in the near real-

time PRESIANN products. 15 
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Figure 1: Percentage of missing data over the period (2003-2015) for PERSIANN, PERSIANN-CCS and PERSIANN-CDR. 5 
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Figure 2: Average annual precipitation (mm/year) for the period (2003-2015) over the CONUS. 
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Figure 3: Correlation (CORR), Root Mean Square Error (RMSE) and Bias of PERSIANN, PERSIANN-CCS and PERSIANN-CDR 
against CPC for the period (2003-2015) over the CONUS. 
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Figure 4: Probability of Detection (POD) and False Alarm Ratio (FAR) of PERSIANN, PERSIANN-CCS and PERSIANN-CDR 
against CPC for the period (2003-2015) over the CONUS. 
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Figure 5: Extreme Precipitation Indices (SDII, CDD and CWD) for PERSIANN, PERSIANN-CCS and PERSIANN-CDR over the 
CONUS (See Table 4 for definition of the indices). 
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Figure 6: Extreme Precipitation Indices (R10mm, R99pTOT and R95pTOT) for PERSIANN, PERSIANN-CCS and PERSIANN-
CDR over the CONUS (See Table 4 for definition of the indices). 
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Figure 7: Mean annual precipitation (mm) for PERSIANN, PERSIANN-CCS and PERSIANN-CDR. 
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Figure 8: Mean annual zonal precipitation (mm/year) for PERSIANN, PERSIANN-CCS and PERSIANN-CDR. 
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Figure 9: Mean annual meridional precipitation (mm/year) for PERSIANN, PERSIANN-CCS and PERSIANN-CDR. 
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Figure 10: Mean annual precipitation and Extreme Indices (SDII, CDD, CWD, R10mm, R99pTOT and R95pTOT) over continents 
and oceans for PERSIANN, PERSIANN-CCS and PERSIANN-CDR. 
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Figure 11: Extreme Precipitation Indices (R10mm, R99pTOT and R95pTOT) for PERSIANN, PERSIANN-CCS and PERSIANN-
CDR over the globe. (See Table 4 for definition of the indices). 
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Figure 12:  Extreme Precipitation Indices (R10mm, R99pTOT and R95pTOT) for PERSIANN, PERSIANN-CCS and PERSIANN-
CDR over the globe. (See Table 4 for definition of the indices). 
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Table 1: Basic attributes of the PERSIANN, PERSIANN-CCS and PERSIANN-CDR products. 

Product Availability Period  Spatial 
Coverage 

Temporal 
Resolution 

Spatial 
Resolution 

Time 
Delay 

PERSIANN Mar 2000 - Present  60°S - 60°N 1 hour  0.25° x 0.25° ~2 days 
PERSIANN-CCS Jan 2003 - Present 60°S - 60°N 1 hour  0.04° x 0.04° ~1 hour 
PERSIANN-CDR Jan 1983 - Present  60°S - 60°N 1 day 0.25° x 0.25° ~3months  
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Table 2: Algorithm attributes of PERSIANN, PERSIANN-CCS and PERSIANN-CDR products 

 PERSIANN PERSIANN-CCS PERSIANN-CDR 
Primary Input data GEO longwave 

infrared images  
(10.2-11.2 μm) 

GEO longwave 
infrared images  
(10.2-11.2 μm) 

ISCCP-B1 GEO satellite 
infrared gridded data 

Data for training of the 
model  
(parameter estimation) 

LEO Passive 
microwave information 

LEO Passive 
microwave information 

NCEP Stage IV 
precipitation data  
(0.04° x 0.04°) 

Use of Passive 
Microwave (PMW) 
Data 

Yes No No 

Batch mode  
(fixed parameters) vs 
Recursive mode (non-
fixed parameters) 

Recursive Mode  
(non-fixed parameters) 

Batch Mode  
(fixed parameters) 

Batch Mode  
(fixed parameters) 

Bias Correction No No Yes 
Data used for Bias 
Correction 

- - GPCP monthly 
precipitation data  
(2.5° x 2.5°) 
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Table 3: Summary of comparison metrics for the PERSIANN family of products against CPC for the period (2003 to 2015) over the 5 
CONUS. 

Metrics PERSIANN PERSIANN-CCS PERSIANN-CDR 

CORR 0.48 0.43 0.55 

RMSE (mm) 6.50 7.08 5.19 

Bias 0.10 0.72 0.14 

POD 0.80 0.90 0.90 

FAR 0.22 0.29 0.29 
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 5 
Table 4: Definition of extreme precipitation indices used in the analysis. 

Index Definition Unit 
R99pTOT Annual total precipitation when daily precipitation amount on a wet day > 99 

percentile 
mm  

R95pTOT Annual total precipitation when daily precipitation amount on a wet day > 95 
percentile  

mm  

SDII Simple daily intensity index mm day-1 
R10mm Annual count of days when daily precipitation amount ≥10 mm Days 
CWD Annual maximum number of consecutive days with daily precipitation amount 

≥1 mm 
Days 

CDD Annual maximum number of consecutive days with daily precipitation amount < 
1 mm 

days 
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Table 5: Statistics of the PERSIANN family of products for the period (2003 to 2015) over the CONUS. 

Index PERSIANN PERSIANN-CCS PERSIANN-CDR CPC 

Annual Precipitation (mm/year) 793.41 978.51 916.45 852.32 

SDII (mm/day) 7.58 7.98 5.80 8.41 

CDD (days) 27.44   22.23 24.22 34.19 

CWD (days) 6.36 7.38 9.27 6.72 

R10mm (days) 20.94 30.42 24.77 25.77 

R99pTOT (mm) 164.32 166.34 120.48 158.51 

R95pTOT (mm) 415.03 445.70 340.11 422.79 
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