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Abstract. The main objective of this study was to calibrate and validate the eco-hydrological model Soil and Water 

Assessment Tool (SWAT) with satellite based actual evapotranspiration (AET) data (Global Land Evaporation Amsterdam 

Model (GLEAM_v3.0a) and Moderate Resolution Imaging Spectroradiometer Global Evaporation (MOD16) for the Ogun 

River Basin (20 292 km
2
) located in southwestern Nigeria. The novelty of the study is the use of freely available satellite 20 

derived AET data for calibration/validation of each of the SWAT delineated subbasins, thereby obtaining a better performing 

model at the local scale as well as at the whole watershed level. The Sequential Uncertainty Fitting technique (SUFI-2) in the 

SWAT-Calibration and Uncertainty Program was used for the sensitivity analysis, model calibration, validation, and 

uncertainty analysis. Three different structures of the SWAT model were used in which each model structure was a set-up of 

SWAT with a different potential evapotranspiration (PET) equation. The two global AET products (GLEAM_v3.0a and 25 

MOD16) were subsequently used to calibrate the SWAT simulated AET outputs from each model structure resulting in six 

calibration/validation procedures at a monthly time scale.  The model performance for the three SWAT model structures was 

evaluated for each of the 53 subbasins through the six calibrations/validations, which enabled the best model structure with 

the highest performing AET product to be chosen. A verification of the simulated AET variable was carried out by: (i) 

comparing the simulated AET of the calibrated model to GLEAM_v3.0b AET, this is a product that has a different forcing 30 

data to version of GLEAM used for the calibration, and (ii) assessing the long-term average annual and average monthly 

water balances at the outlet of the watershed. Overall, the SWAT model structure composed of Hargreaves PET equation and 

calibrated using the GLEAM_v3.0a data performed well for the simulation of AET and provided a good level of confidence 

for using the SWAT model as a decision support tool. The 95% uncertainty of the SWAT simulated variable bracketed most 
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of the satellite based AET data in each subbasin. The SWAT model also proved efficient in capturing the seasonal variability 

of the water balance components at the outlet of the watershed. This study demonstrated the potential to use remotely sensed 

evapotranspiration data for hydrological model calibration and validation in a sparsely gauged large river basin with 

reasonable accuracy.  

1. Introduction 5 

Hydrological modelling in data sparse catchments has always been a challenging task due to lack of ground observations, 

and insufficient or poor quality data. Data scarcity is the main limitation in tropical regions for setting up hydrological 

models for watershed simulations, which could be used as significant decision support tools for sustainable water resources 

management. Water resources globally are becoming increasingly vulnerable as a result of escalating water demand arising 

from population growth, expanding industrialisation, increased food production and pollution due to various anthropogenic 10 

activities, climate and land use change impacts (Carroll et al., 2013; McDonald et al., 2014; Goonetilleke et al., 2016). The 

situation is more evident and critical in many developing countries where no water resources monitoring plans or water 

management strategies are in place for the future. Like many developing countries, Nigeria cannot satisfy its domestic water 

needs as only 47% of the total population have access to water from improved sources (Ishaku et al., 2012).  

The Ogun River is the main source of public water supply for the people living in the States of Lagos and Ogun in 15 

southwestern Nigeria. The prevalent situation of insufficient hydrological data associated with lack of up to date streamflow 

data (Sobowale and Oyedepo, 2013) and the poor level of data quality in this watershed can be attributed to a  gradual 

decline in hydrological stations number and their management. Water management planners are facing considerable 

uncertainties in terms of future availability and quality of the water resource. Therefore, a clear understanding of the on-

going challenges and innovative management approaches are needed. One of the many ways to tackle this task is by using 20 

hydrological models as tools coupled with the use of increasingly available global and regional datasets to run the models.  

Numerous mechanistic, continuous, physically based distributed (PBD) models are available to simulate water quality 

variables for example, among others: the Soil and Water Assessment Tool (SWAT;  Arnold et al., 1998), which is able to 

represent detailed agricultural management practices and simulate water quality and quality variables; the  Hydrologic 

Simulation Program Fortran (HSPF, Bicknell et al., 1997) that is used in predicting hydrology with in-stream nutrient 25 

transport processes; and SHETRAN (Ewen et al., 2000) which has capabilities for modelling subsurface flow and transport. . 

These PBD models attempt to explain hydrological phenomena through their underlying physical mechanisms, and explicitly 

represent (through mathematical equations) the biological, chemical and physical processes of a basin.    

At the African continental level, Schuol et al. (2008)  have successfully applied the hydrological model SWAT to quantify 

the freshwater availability for the whole of Africa at a detailed subbasin level and on a monthly time scale. Using the SUFI-2 30 

(Sequential Uncertainty Fitting Algorithm) program with three different objective functions, the model was calibrated and 

validated at 207 discharge stations. They reported the models’ inability to simulate runoff adequately in some areas in the 
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East and South Africa, but also reported that the model results were quite satisfactory for such a large-scale application 

although containing large prediction uncertainties in some areas. Many of the limitations reported within this continental 

modelling study in Africa were data related. Abaho et al. (2009) applied an uncalibrated SWAT model to evaluate the 

impacts of climate change on river flows and groundwater recharge in Sezibwa catchment, Uganda. They observed a 40% 

increase in groundwater recharge for the period of 2070-2100 and a 47% increase in average river flow. However, there are 5 

high levels of uncertainty associated with the model predictions since the model was not calibrated due to insufficient data.  

In West Africa, the SWAT model has been widely applied to different river basins with satisfactory results. For example, 

Schuol and Abbaspour (2006) applied SWAT to model a 4 × 10
6
 km

2
 area; mainly the basins of the Niger, Volta and 

Senegal, addressing calibration and uncertainty issues. Measured river discharges at 64 stations to which many of these 

stations available data doesn’t cover the whole simulation period were used for annual and monthly calibration using SUFI-2 10 

algorithm.  Although the results obtained are preliminary with basis for discussion of further improvement, Schuol and 

Abbaspour (2006) reported that the annual and monthly simulations with the calibrated SWAT model for West Africa 

showed promising results for the freshwater quantification despite the modelling shortcomings of  lack of  dams  

management operation long-term dataset. They also pointed out the importance of evaluating the conceptual model 

uncertainty as well as the parameter uncertainty.  Laurent and Ruelland  (2010)  successfully calibrated SWAT for the Bani 15 

catchment (1 × 10
6
 km²) in Mali, a major tributary of the upper Niger River. The calibration and validation results were 

satisfactory at the catchment outlet and also in various gauging stations located in tributaries. They showed the model 

performance by reporting discharge and biomass calibration results, but did not assess the model prediction uncertainty.  

In northwestern Nigeria, Xie et al. (2010) evaluated the SWAT model performance in a large watershed (30 300 km
2
). Due 

to the short data period available, all the data obtained were used for calibration. In their study, the model parameters were 20 

first optimized with a genetic algorithm, and the uncertainty in the calibration was further analysed using the generalized 

likelihood uncertainty estimation (GLUE) method; the study presented a reasonably good calibrated model performance 

without validation. Adeogun et al. (2014) successfully calibrated and validated the SWAT model for the prediction of 

streamflow at the upstream watershed of Jebba reservoir (area 12 992 km
2
) located in north central Nigeria. The model 

results showed a good Nash-Sutcliffe efficiency (NSE) and Coefficient of determination (R
2
) value for monthly average 25 

streamflow as well as for water balance components, but the model prediction uncertainty was not quantified.  

The findings from these past studies call for continued improvement in the SWAT model performances in Africa, especially 

in data sparse regions. One solution is to use freely available global datasets to improve the model performance. 

Recently, Ha et al. (2017) used remotely sensed precipitation, actual evapotranspiration (AET) and leaf area index (LAI) 

from open access data sources to calibrate the SWAT model for the Day Basin, a tributary of the Red River in Vietnam. The 30 

calibration was performed in SWAT-CUP using the Sequential Uncertainty Fitting algorithm (SUFI-2). In this study 

simulated monthly AET correlations with remote sensing estimates showed an R
2 
of 0.71. Remote sensing technologies offer 

large scale spatially distributed observations and have opened up new opportunities for calibrating hydrologic models. This 

advancement enables several global evapotranspiration products to be used. Extensive reviews of earth observation based 
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methods for deriving AET have been carried out by several research groups (Anderson et al., 2012; Bateni et al., 2013; Li et 

al., 2013; Savoca et al., 2013; Senay et al., 2013; Nouri et al., 2015; Wang-Erlandsson et al., 2016). 

Two global-scale AET products derived from satellite observation have become available. The Global Land Evaporation 

Amsterdam Model (GLEAM, http://www.gleam.eu) is an evapotranspiration product developed by the VU University of 

Amsterdam (Miralles et al., 2011a, 2011b) and contains a set of algorithms that separately estimate the different components 5 

of terrestrial evaporation (i.e. transpiration, interception loss, bare soil, evaporation, snow sublimation and open water 

evaporation), as well as variables such as the evaporative stress, potential evaporation, root-zone soil moisture and surface 

soil moisture based on  daily satellite observations of meteorological drivers of terrestrial evaporation, vegetation 

characteristics and soil moisture (Miralles et al., 2011a; Martens et al., 2017). Recently, the GLEAM_v3.0 AET has been 

validated against measurements from 64 eddy-covariance towers and 2338 soil moisture sensors across a broad range of 10 

ecosystems with varying level of success (Martens et al., 2017). In this study GLEAM_v3.0a and v3.0b were used and the 

datasets differ only in their forcing variables and spatial-temporal coverage. GLEAM_v3.0a is a dataset spanning the 35-year 

period 1980-2014 and is based on reanalysis net radiation and air temperature, a combination of gauged-based, reanalysis 

and satellite-based precipitation and satellite-based vegetation optical depth. GLEAM_v3.0b is a dataset spanning the 13-

year period 2003-2015 and is driven by satellite data only (Miralles et al., 2011a; Martens et al., 2017).. 15 

The MOD16 global evapotranspiration data is based on a  1 km
2
 grid of land surface AET that was developed  with an 

energy balance model using satellite data as input (Mu et al., 2011).  The MOD16 product estimates actual 

evapotranspiration using Moderate Resolution Imaging Spectroradiometer, landcover, albedo, LAI, an Enhanced Vegetation 

Index (EVI), and a daily meteorological reanalysis data set from NASA’s Global Modelling and Assimilation office. The 

non-satellite input data are NASA’s MERRA GMAO (GEOS-5) daily meteorological reanalysis data from 2000 to 2010. 20 

MOD 16 has been validated using measurement from eddy covariance station in different tropical sites ( Ruhoff et al., 2013; 

Ramoelo et al., 2014).  Ruhoff et al. (2013) validated MOD16 AET using ground-based measurements of energy fluxes 

obtained from eddy covariance sites installed in tropical sites in the Rio Grande basin Brazil. Likewise, Ramoelo et al. 

(2014) validated MOD16 using data from two eddy covariance flux towers installed in a savannah and woodland ecosystem 

within the Kruger National Park, South Africa.  25 

The objective of our study was to obtain a high performing eco-hydrological model for the Ogun River basin in southwestern 

Nigeria that can be used as a decision-support tool. To this effect, the specific objectives were to calibrate/validate the Soil 

and Water Assessment Tool model with remotely sensed actual evapotranspiration products; namely the Global Land 

Evaporation Amsterdam Model (GLEAM_v3.0a) and the Moderate Resolution Imaging Spectroradiometer Global 

Evaporation (MOD16), and also to verify the results of the model AET simulations and the water balance components.  30 

The novelty of this study include: (i) the use of satellite based actual evapotranspiration data for calibration/validation of the 

SWAT hydrological model in each of the SWAT delineated subbasins and (ii) the calibration/validation of SWAT simulated 

AET from the three SWAT model structures using the satellite derived AET data sets. 
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2. Materials and methods 

2.1 Description of the study site 

The study area is a sub-watershed (20 292 km
2
) of the Ogun River basin (23 700 km

2
) located in southwestern Nigeria (Fig. 

1), bordered geographically by latitudes 7
o
 7’ N and 8

o
 59’ N and longitudes 2

o
 4’ E and 4

o
 9’ E. About 2 % of the catchment 

area is located in the Benin Republic. The study area encompasses the Sepeteri, Iseyin, Olokemeji, Oyan and Abeokuta 5 

catchments and cut across the Oyo and Ogun state administrative boundaries. The Ogun River, which literarily means the 

River of Medicine, springs from Igaran Hills in Oyo state, near Saki, at an elevation of about 624 m above the mean sea 

level. The elevation ranges from 624 m to 23 m. The mean annual rainfall for the watershed is 1224 mm year-
1
 and the mean 

annual temperature is about 27
o
C. Mean annual potential evapotranspiration (PET) estimated by Hargreaves method 

(Hargreaves and Samani, 1985) is 1720 mm year-
1
 and the mean AET is about 692 mm year

-1
. Two seasons are 10 

distinguishable in the watershed, a dry season from November to March and a wet season between April and October. The 

watershed area is characterized by strong climatic variation and an irregular rainfall (Eruola et al. 2012). The geology of the 

study area can be described as a rock sequence that starts with Precambrian Basement; which consists of quartzites and 

biotite schist, hornblende-biotite, granite and gneisses (Bhattacharya and Bolaji, 2010). The major soils of the basin are 

sandy clayey loam, sandy loam, clayey loam and silt loam. The landuse in the watershed is primarily forest (75 %), cropland 15 

(24 %), and urban (1 %).  The basin, in which two large dams (Oyan and Ikere Geroge dams) are located, is of great 

importance for the economic advancement both at the federal and state level. The dams are the main principal provider of 

water to Lagos and Ogun States Water Corporation for municipal drinking water production. The Oyan reservoir is located 

at the confluence of Oyan and Ofiki rivers at an elevation of 43.3 m above mean sea level and was built in 1984, it has a 

surface area of 4 ×10
3
 ha, and a catchment area of 9 × 10

3
 km

2
, with a dead storage capacity of 16 × 10

6
 m

3
, a gross storage 20 

capacity of 270 × 10
6
 m

3
, an embankment crest length of 1044 m, a height of 30.4 m, four spillway gates (each 15 m wide 

and 7 m high) and three outlet valves (each 1.8 m diameter). The Ikere Gorge is an uncontrolled dam, which started 

operation in 1991. The dam crosses Ogun River in Iseyin local government area of Oyo state. Ikere Gorge has a capacity of 

690 × 10
6
 m

3
. The reservoir is adjacent to the Old Oyo National Park, providing recreational facilities for tourists, and the 

river flows through the park (Oyegoke and Sojobi, 2012). Twenty-five local government areas fall within the study area. In 25 

densely populated areas, the Ogun River is used for bathing, washing and drinking.  

 

(Fig.1) 

2.2 SWAT model description 

The Soil and Water Assessment Tool (Arnold et al., 1998) is an open source eco-hydrological model developed for the 30 

USDA Agricultural Research Services. SWAT is a semi-distributed, process based, continuous model that uses weather, soil, 

topography and landuse for hydrologic modelling of a basin and runs at a daily time step. It was developed to predict the 
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impact of agricultural land management practices on discharge, sediments, nutrients, bacteria, pesticides and biomass in 

large complex watersheds with varying soils, land use and management conditions over long periods of time.   For modelling 

purpose in SWAT, the watershed is divided into subwatersheds which are then further subdivided into hydrologic response 

units (HRUs) that consist  of homogeneous landuse, soil types and slope (Arnold et al., 1998). The soil water balance (WB) 

is conducted for each HRU and the equation comprises six variables and is estimated in SWAT using the following Eq. (1) 5 

                  ∑ (                       )
 

   
             (1)                                   

Where SWt is the final soil water content (mm of water), SWo is the initial soil water content on day i (mm of water), t is the 

time (days), Rday is the amount of precipitation on day i (mm of water), Qsurf  is the amount of surface runoff on day i (mm of 

water),  Ea is the amount of evapotranspiration on day i (mm of water),  Wseep is the amount of water entering the vadose 

zone from the soil profile on day i (mm of water), and Qgw is the amount of return flow  on day i (mm of water) 10 

2.2.1 Evaporation estimation in SWAT  

Evapotranspiration is a key process of the water balance and one of the more difficult components to determine. Although 

different empirical methods for the estimation of PET are widely adopted, AET is difficult to quantify and it usually requires 

the reduction of PET through a factor that describes the level of stress experienced by plants. This relationship has been 

described in detail by several researches (e.g. Morton, 1986; Hobbins et al., 1999; Wang et al., 2006). Numerous methods 15 

have been developed to estimate PET (Lu et al., 2005) and SWAT offers three PET estimation options from which the user 

can choose one depending on e.g the data availability: the Penman-Monteith method (Monteith, 1965; Allen, 1986), the 

Priestley-Taylor method (Priestley and Taylor, 1972), and the Hargreaves method (Hargreaves and Samani, 1985). Any one 

of these three PET equations can be chosen to run in SWAT, but they vary in the amount of required input data. Hargreaves 

method (HG) is temperature-based and requires only average daily air temperature as input. The Penman-Monteith method 20 

(P-M) requires air temperature, solar radiation, relative humidity and wind speed as input. The Priestley-Taylor (P-T) 

equation is a radiation-based method and it provides PET estimates for low advective conditions. The P-T method requires 

solar radiation, air temperature and relative humidity as input. Once the total PET is determined, AET must be estimated in 

SWAT, whereby first, SWAT evaporates any rainfall intercepted by the plant canopy. Second, it calculates the maximum 

amount of transpiration and sublimation/soil evaporation. Finally, the actual amount of sublimation and evaporation from the 25 

soil surface is calculated. If snow is presented in the HRU, sublimation can occur. When there is no snow (such as this case 

study), only evaporation from the soil surface is calculated. A complete description of the SWAT  model and the model 

equations can be found in  Neitsch et al. (2002, 2005) and in Arnold et al. (1998). 

 

( Table 1) 30 
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2.3 Model set-up 

The ArcView GIS interface for SWAT2012 (Winchell et al., 2013) was used to configure and parameterize the SWAT 

model. SWAT model inputs included a 30 m spatial resolution digital elevation model (DEM), 17 soil classes, 17 landuse 

classes, 3 slope categories, meteorological data and landuse with its management (Table 1). After the SWAT model set-up, 

the watershed was delineated into 53 subbasins, with the main outlet in Abeokuta. Daily precipitation data (1984-2012) and 5 

minimum and maximum temperature data (1984-2012) at four weather stations (Fig. 1) were used as observed input data. 

The missing values of daily precipitation and minimum and maximum temperatures, along with solar radiation, wind speed 

and relative humidity were simulated by the ArcSWAT CSFR_World weather generator. The CFSR_World weather 

database contains monthly weather data covering for the entire globe that can be used with ArcSWAT. The topHRU 

program (Strauch et al., 2017) was used to determine the optimum number of HRUs to use in the watershed. The topHRU 10 

program allows the identification of a pareto-optimal threshold which minimizes the spatial error to 0.01 ha for a given 

number of HRUs and thereby minimizes the trade-off between SWAT computation time and number of HRUs. In this case, 

topHRU determined the optimum number of HRUs to be 1397 for the Ogun River basin. Thresholds of 0 ha for landuse, 150 

ha for soil and 250 ha for slope were used in the SWAT set-up.  

The surface runoff in SWAT was estimated using the modified Soil Conservation Society Curve Number method. The 15 

SWATfarmR program (Schürz et al., 2017)  was used to write the management files in SWAT. All SWAT simulations 

included a warm-up period of 5 years for the simulation period from 1984 to 2012. The SWAT model was set-up three times 

(each set-up is henceforth referred to as a model structure). In each model structure, a different PET equation available in 

SWAT (HG, P-M or P-T) was used for the simulation. The three SWAT model structures (SWAT_HG, SWAT_P-T, and 

SWAT_P-M) were used to evaluate the model performance by comparing the calibrations/validations implemented with two 20 

global AET products (GLEAM_3.0a and MOD16), thus allowing for six calibrations of SWAT (GS1 through MS6). 

Structure SWAT_HG represents the SWAT set-up using the Hargreaves PET equation to simulate AET and that was 

calibrated and validated with the AET from GLEAM_v3.0a (GS1) and MOD16 (MS4).  Structure SWAT_P-T represents the 

SWAT set-up using the Priestley-Taylor PET equation to simulate AET and that was calibrated and validated with the AET 

from GLEAM_v3.0a (GS2) and MOD16 (MS5). Structure SWAT_P-M represents the SWAT set-up using the Penman-25 

Monteith PET equation to simulate AET and that was calibrated and validated with the AET from GLEAM_v3.0a (GS3) and 

MOD16 (MS6) (Fig. 2). The three SWAT structures calibrated and validated with the two AET data products enabled the 

most efficient model structure with the highest performing simulated AET product to be chosen for further use. 

 

(Fig. 2) 30 
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2.5 Satellite evaporation dataset 

Due to the unavailability of sufficient long-term recorded gauging station data for discharge measurements in the watershed, 

two satellites based AET products (GLEAM_v3.0a and MOD16) were used for the SWAT calibration and validation. The 

criteria for choosing GLEAM and MOD16 products are based on their spatial-temporal coverage and resolution and the fact 

that they are freely available and because these two AET data sets have been validated in several countries in Africa. 5 

2.5.1 GLEAM  

The Global Land Evaporation Amsterdam Model (GLEAM) developed in 2011, has been continuously revised and updated. 

Two (GLEAM_v3.0a and GLEAM_v3.0b) of the three datasets produced in 2016 using GLEAM v3.0 were downloaded for 

this study. The overview of the different forcing variables used to produce GLEAM_v3.0a and GLEAM_v3.0b dataset can 

be found in  Martens et al. (2017). GLEAM_v3.0a was used for SWAT calibration and validation while GLEAM_v3.0b was 10 

used for the verification of the SWAT simulated AET. The Priestley and Taylor equation used in GLEAM calculates 

potential evaporation (mm/day) based on observations of surface net radiation and near-surface air temperature. The 

estimates of potential evaporation for the land fractions of bare soil, tall canopy and short canopy are converted into actual 

evaporation using a multiplicative evaporative stress factor (S) based on observations of microwave Vegetation Optical 

Depth (VOD) and estimates of root-zone soil moisture. The datasets are provided on a 0.25
0
 by0.25

0
 regular grid. For more 15 

information on GLEAM the reader is referred to Miralles et al. (2011b) and  Martens et al. (2017). 

2.5.2 MOD16 

The MOD16 retrieval algorithm (Mu et al., 2007, 2011) is based on the Penman–Monteith framework (Monteith, 1965) with 

modifications to account for parameters not readily available from space (Cleugh et al., 2007).  Mu et al. (2011) estimated 

PET with the Penman-Monteith equation driven by NASA’s MERRA GMAO (GEOS-5) daily meteorological reanalysis 20 

data and MODIS derived vegetation data. Mu et al. (2007) derived actual evaporation from potential evaporation data by 

using multipliers to halt plant transpiration and soil evaporation. MOD16 is described in detail by Mu et al. (2007, 2011).  

2.6   SWAT calibration, validation and uncertainty analysis  

A multi-objective calibration and validation of SWAT simulated AET using satellite derived AET from GLEAM_v3.0a and 

MOD16 was implemented in SWAT-CUP. SWAT-CUP (Abbaspour, 2015) is a package used to carry out sensitivity 25 

analysis, calibration and validation of the SWAT model. SUFI-2 (Abbaspour et al., 2004)  is one of the programs available in 

SWAT-CUP that  is a multi-site, semi-automated, inverse modelling procedure used for calibrating parameters. SUFI-2 is 

based on a stochastic procedure for drawing independent parameter sets using Latin Hypercube sampling (LHS). An initial 

pre-selection of  parameters based on literature research (Bicknell et al., 1997; Wang et al., 2006; Rafiei Emam et al., 2016; 

Ha et al., 2017; Lopez Lopez et al., 2017) was undertaken to choose the most sensitive parameters to AET. The initial 30 
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parameter ranges were based on  Neitsch et al.(2002, 2005, 2011). Furthermore, a global sensitivity analysis based on 

multiple regression method (Abbaspour, 2015) was carried out in which parameter sensitivities are determined by numerous 

rounds of LHS (each comprising of 1000 simulations) to obtain the most sensitive parameters by examining the resulting p-

value and the t-stat value. The t-stat provides a measure of parameter sensitivity (a larger absolute values is more sensitive) 

and p-value determines the significance of the sensitivity (a value close to zero has more significance). Based on the 5 

sensitivity analysis, 11 of the most sensitive parameters were selected for further calibration using SUFI-2.  

In this study, the first three calibration/validation procedures GS1, GS2 and GS3 use the AET from GLEAM_v3.0a for 

SWAT calibration (1989-2000) and validation (2001-2012) while the last three calibration/validation procedures MS4, MS5 

and MS6 use the AET from MOD16 for SWAT calibration (2000-2006) and validation (2007-2012). The three model 

structures were run at the monthly time step for each of the 53 subbasins. The three model structures were calibrated (GS1 10 

through MS6) by adjusting the 11 most sensitive parameters found in SUFI-2. In the calibration of SWAT with the AET 

from GLEAM a sample size of 1000 was chosen for the first iteration and a sample size of 500 for the second iteration, 

resulting in 1500 simulations. In the calibration of SWAT with AET from MOD16 a sample size of 1000 was chosen for two 

iterations of LHS, resulting in 2000 simulations. The validation process involved running the model using parameters that 

were determined during the calibration process and comparing the SWAT AET simulations to satellite based AET data.  15 

The three SWAT model set-ups calibrated and validated using six procedures (GS1 through MS6) were evaluated with four 

objective functions, in which their mathematical formulations are described below.  The statistics used in the evaluation of 

each SWAT structure performance were: Nash-Sutcliffe efficiency (NSE, (Nash and Sutcliffe, 1970)), Kling-Gupta 

efficiency (KGE,(Gupta et al., 2009)), Percent bias (PBIAS) and Coefficient of determination (R
2
).  

The NSE quantifies the relative magnitudes of the residual variance (“noise”) compared to the measured data variance. NSE 20 

ranges from ─∞ to 1, where NSE > 0.5 indicates a good agreement (Moriasi et al., 2007, 2015) between simulated and 

satellite based evapotranspiration and NSE of 1 being the optimal value.  NSE is computed as shown in Eq.2: 

 

                  
∑     
 
          

  

∑     
 
            

            (2) 

Where   and    are the ith simulated and observed AET, O is the mean value of observed AET, and n is the total number of 25 

observations. 
The R

2
 is the percent of variance explained by the model. It is a statistical measure of how close the data are to the fitted 

regression line (Eq. 3). R
2   

ranges from 0 to 1 with higher values indicating less error variance. R
2
 is computed as shown in 

Eq.3: 

 30 
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Where   and    are the ith simulated and observed AET, P and O are the mean value of simulated and observed AET, 

respectively and n is the total number of observations.  5 

Percent bias (PBIAS)  is the deviation of data being evaluated expressed as a percentage  It measures the average tendency of 

the simulated data to be larger or smaller than the observations (Gupta et al., 1999) (Eq. 4). Negative values indicate model 

overestimating (overprediction) and positive values indicate model underestimating (underprediction). It ranges from - ∞ to 

∞, where low magnitude values indicate better simulations. The optimum value of PBIAS is 0.  It is computed in percentage 

terms as shown in Eq.4: 10 

                    
∑     
 
           

∑    
 
    

                             ( 4)        

Where   and    are the ith simulated and observed AET, and n is the total number of observations.  

The KGE goodness-of-fit measure provides an analysis of the relative importance of different components (correlation, bias 

and variability) in hydrologic simulations. KGE is calculated as shown in Eq.5: 

                   √                                (5)                        15 

Where   is the Pearson product moment correlation coefficient between observed AET and the simulated AET,   is the 

standard deviation of the simulated AET over the standard deviation of the observed AET (measure of variability), and     is 

the mean of simulated AET over the mean of observed AET. KGE ranges from 0 to 1, where KGE of 1 is the optimal value.  

In this paper, the  model performance ratings criteria for recommended statistics for a monthly time step are based on Kouchi 

et al.( 2017) and Moriasi et al.( 2007, 2015). NSE>0.50, R
2
>0.60, KGE≥0.50 and PBIAS ≤ ±25% are the required 20 

satisfactory threshold (Kouchi et al., 2017; Moriasi et al., 2007, 2015) used in this study for assessing the model 

performance. 

SUFI-2 was also used for the uncertainty analysis of the AET modelling process. In this step, the procedure depicts the 95% 

prediction uncertainty (95PPU) of the model compared with satellite based AET. The 95PPU was estimated at the 2.5% and 

97.5% levels of the cumulative distribution of the AET simulated output variable derived through LHS. The uncertainties 25 

were quantified by two indices referred to as P-factor and R-factor (Abbaspour et al., 2004). The P-factor represents the 
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percentage of observed data plus its error bracketed by the 95% predictive uncertainty (95PPU) band and varies from 0 to 1. 

Where 1 indicates a 100% bracketing of the observed data within model prediction uncertainty. While the R- factor is the 

ratio of the average width of the 95PPU and the standard deviation of the observed variable, this value ranges between 0 and 

infinity. These two indices were also used to judge the strength of the calibration and validation in which the ideal situation 

would be to account for 100% of the satellite AET data in the 95PPU while at the same time have an R-factor close to zero. 5 

2.7 SWAT Model Verification  

In some modelling studies (EPA, 2013; Faramarzi et al., 2017), the term model verification is used to refer to the 

examination of the numerical technique and computer code to ascertain that it truly represents the conceptual model and that 

there are no inherent numerical problems with obtaining a solution. In this study, to further examine the accuracy of the 

calibrated SWAT model, a verification of the simulated variables was carried out by: (i) a graphical comparison of AET of 10 

the calibrated and validated model to GLEAM_v3.0b AET time-series (2003-2012), and (ii) assessment of the long-term 

average annual and average monthly water balances at the outlet of the watershed. The SWAT water balance equations used 

for the assessment are: 

WYLD = SURQ + LAT_Q + GW_Q – Q_TLOSS        (6) 

Water Balance: PRECIP = WYLD + AET + ∆SW + PERC - GW_Q                      (7) 15 

Where PRECIP is the observed precipitation; AET is the actual evapotranspiration; WYLD is the net amount of water that 

leaves the subbasin and contributes to stream flow in the reach; SURQ is the surface runoff contribution to stream flow; 

GW_Q is the groundwater contribution to stream flow; PERC is the water percolating past the root zone; LAT_Q is the 

lateral flow contribution to stream flow; Q_TLOSS is the transmission loss and ∆SW is the change in soil water content. The 

soil water content for both monthly and annual output is the average soil water content for the time period. Hence, the initial 20 

soil water content is the average for the time period of 25 years.  

3. Results 

The results of global sensitivity analysis revealed that the SCS runoff curve number (CN2.mgt) is the most sensitive to 

SWAT’s simulations of AET for all the three SWAT model structures in this study.  The sensitivity ranking of the remaining 

10 parameters varies significantly according to the model structure through procedures GS1 to MS6 (Table 2). In this paper, 25 

only the spatial representation of  the SWAT structure SWAT_HG with the highest (GS1) and SWAT structure SWAT_P-M 

with the lowest (MS6) model performance  are included  for the purpose  of   showing the two extreme results obtained (Fig. 

3, Fig. 4, Fig. 5 and Fig. 6).  Figure 7 and 8 show the overall model performance results of the three SWAT model structures 

when calibrated/validated with GLEAM_v3.0a (GS1, GS2 and GS3) and MOD16 AET (MS4, MS5 and MS6). 

 30 
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Results indicate that the SWAT model structure SWAT_HG of calibration/validation procedure GS1 exhibits a model 

performance superior to the remaining two model structures for AET simulation (through GS2 to MS6). 

Result from each subbasin for model structure SWAT_HG of procedure GS1 show a model performance of Nash-Sutcliffe 

efficiency NSE>0.50, Kling-Gupta efficiency KGE>0.50, coefficient of determination R
2
 >0.6 in more than half of the 53 

subbasins with a percent bias PBIAS < ±15% in all of the 53 subbasins (Fig.3 and Fig 4). In summary, the results of model 5 

structure SWAT_HG performance in both calibration/validation (GS1) for the entire catchment were satisfactory (GS1, Fig.7 

and Fig. 8) except for the validation period, where a lower NSE (average value of 0.45) was obtained (GS1, Fig. 8). 

   

(Fig.3) 

(Fig 4) 10 

For the SWAT model structure SWAT_P-T of procedure GS2, a model performance NSE<0.50, KGE>0.50, R
2
 ≥0.60 and 

PBIAS < ±10% was achieved in more than half of the 53 subbasins (see Fig. S1 and Fig. S2). The overall result of model 

structure SWAT_P-T  performance in both calibration/validation (GS2) for the entire catchment were satisfactory judging by 

the KGE, PBIAS, and R
2
 criteria and unsatisfactory with a lower NSE average values of 0.43 in calibration and 0.32 in 

validation (GS2, Fig. 7 and Fig.8).  15 

For the SWAT model structure SWAT_P-M of procedure GS3, a model performance NSE<0.50, KGE>0.50, R
2
<0.60 and 

PBIAS < ±10% was achieved in more than half of the 53 subbasins (see Fig. S3 and Fig. S4).  The overall result of model 

structure SWAT_P-M performance in both calibration/validation (GS3) for the entire catchment were satisfactory judging by 

the KGE, and PBIAS criteria and unsatisfactory assessing the performance of the NSE and R
2
 criteria (GS3, Fig. 7 and Fig. 

8).  20 

For the SWAT model structure SWAT_HG of procedure MS4 a model performance of NSE<0.50, R
2
<0.60 and PBIAS < 

±25% was achieved in more than half of the 53 subbasins (see Fig.S5 and Fig.S6). A KGE >0.50 was obtained in in more 

than half of the 53 subbasins during the calibration and a KGE<0.50 was obtained in more than half of the 53 subbasins 

during the validation. The overall result of model structure SWAT_HG (MS4) performance for the entire catchment was 

merely satisfactory judging by the KGE and PBIAS metrics in the calibration period and was also only satisfactory in the 25 

validation period assessing the performance with the PBIAS criteria (MS4, Fig. 7 and Fig. 8).  

For the SWAT model structure SWAT_P-T of procedure MS5 a model performance of KGE >0.50 and PBIAS < ±25% was 

achieved in more than half of the 53 subbasins in the calibration (see Fig.S7). A PBIAS< ±25% was obtained in more than 

half of the 53 subbasins during the validation (see Fig. S8). The overall result of model structure SWAT_P-T (MS5) 

performance for the entire catchment was merely satisfactory judging by R
2
, and PBIAS metrics in the calibration period and 30 

was also only satisfactory in the validation period assessing the performance with PBIAS (MS5, Fig. 7 and Fig. 8) 

For the SWAT model structure SWAT_P-T of MS6 a model performance of KGE >0.50 and PBIAS < ±25% was achieved 

in more than half of the 53 subbasins in the calibration (Fig.5). A PBIAS< ±25% was obtained in more than half of the 53 
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subbasins during the validation (Fig. 6) The overall result of model structure SWAT_P-M (MS6) performance for the entire 

catchment in both calibration/ validation (MS6) were unsatisfactory judging with NSE, KGE, and R
2
 metrics but the PBIAS 

value obtained in the validation and calibration period were satisfactory (MS6, Fig. 7 and Fig.8). 

 

(Fig. 5) 5 

(Fig. 6) 

The results of the AET calibration  for SWAT model structures carried out at the monthly time step for the period 1989-2000 

and the validation for the period 2001-2012 was better when performed with GLEAM_v3.0a (GS1, GS2 and GS3) than 

calibration (2000-2006) and validation (2007-2012) with MOD16 satellite based AET (MS4, MS5 and MS6). The results of 

the performance metrics revealed that the calibration period gives a higher model performance than the validation period 10 

(Fig. 7 and Fig. 8). 

The validation results of model structure SWAT-HG of procedure GS1 showed a satisfactory SWAT predictive capability 

judging by the four objective functions except for the average NSE value of 0.45.  Considering that NSE>0.50 was achieved 

in 32 (60%) subbasin, meaning that, more than half of the 53 subbasin  have a satisfactory model performance, therefore the 

average NSE value of 0.45 obtained in the validation period can be considered acceptable.  15 

 

(Fig.7) 

(Fig.8) 

3.3 Uncertainty analysis of SWAT model structure  

The SWAT model performance results of the SWAT-HG structure when calibrated/validated with the AET from 20 

GLEAM_v3.0a (GS1) proved to be the most efficient of the three structures (through GS1 to MS6), therefore, this model 

structure was used to further predicted the uncertainty associated with the AET simulations (GS1) for each of the 53 

subbasin to map error sources. In the calibration period, the values of the P-factor obtained were between 0.50 and 0.90 and 

the values of the R-factor were between 1.40 and 2.4.  In the validation period, the values of P-factor were between 0.6 and 

0.88, and that of the R-factor were between 1.43 and 2.5. The P-factor values revealed that more than half of the earth 25 

observation derived AET plus its error are bracketed by the 95% predictive uncertainty. The predictive uncertainty were 

adequate in the 53 subbasins and had a satisfactory performance for monthly AET simulations using the Hargreaves 

equation, though the R-factor was quite large in all the 53 subbasins indicating large model uncertainties. Extracts of the 

monthly calibration/validation results showing the 95% prediction uncertainty intervals along with the satellite based AET 

(GLEAM_v3.0a) are presented in Fig.9.  30 

 

(Fig.9) 
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3.4 Model verification result 

It was found that the AET from GLEAM_v3.0b was bracketed within the 95 percent uncertainty prediction (Fig. 10). The 

long-term average monthly water balance assessment performed at the outlet of the watershed shows a seasonal fluctuation 

which agrees with previous water balance studies conducted within and at the outlet of the of the study area located in 

Abeokuta (Ufoegbune et al., 2011; Eruola et al., 2012; Ufoegbune et al., 2012; Sobowale and Oyedepo, 2013), namely: (i) 5 

the study area is characterized by bimodal rainfall pattern, (ii) the AET increases in February from 55mm to 76mm as the 

wet season approaches and decreases in October from 72 mm to 54 mm in November as the dry season approaches 

(Ufoegbune et al., 2011), (iii) rainfall commences in March (66 mm) and is plentiful in June (165 mm) and September (167 

mm), (iv) in August there is a decrease in precipitation to 96 mm  and a decrease in AET to 94 mm, the dry spell often 

experienced in August is termed “August break” (Ufoegbune et al., 2011), (iii) The dry period extends from November to 10 

March, the months of low rainfall, AET, and soil moisture values (Ufoegbune et al., 2011), (v) with moderate rain in March 

soil water increases from 83 mm to 200 mm in July (Ufoegbune et al., 2011), (vi)  as dry season commences, the soil water 

gradually declines.  

The differences in the long term mean monthly water balance values obtained in the past studies conducted within the 

catchment are due to the variation in duration of years considered. Also, Eruola et al. (2012) revealed the two peak rainfalls 15 

in July and September agree with the current study, while Ufoegbune et al. (2011) showed the two peak rainfall to be in  the 

month of June and September. All these previous studies and the current study water balance results are in the same range. 

Figure 11 shows the seasonal fluctuation of the SWAT estimated water balance components at the outlet of watershed, 

located in Abeokuta town. Our results show, the average long-term annual water balance estimated by SWAT to be within a 

reasonable percentage error of closure of ±15% (Table 3).  20 

 

(Table 3) 

(Fig. 10) 

(Fig. 11) 

4. Discussion 25 

The global sensitivity analysis revealed that for the three SWAT model structure calibrations (GS1 to MS6), the same 

SWAT hydrologic parameters governing AET were sensitive. However, when different PET equations were applied to 

SWAT, different simulated AET values were obtained and the overall sensitivity ranking of the parameters varied 

significantly. The CN2.mgt is the most sensitive parameter of the three structures, indicating that it is the dominant 

parameter controlling the AET processes in SWAT in the Ogun River basin. 30 

Assessing the model performance with the objective function and their optimal threshold values used in this study and as 

described in Moriasi et al. (2007, 2015) and Kouchi et al. (2017), the calibration/validation with the AET from 
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GLEAM_v3.0a showed an overall satisfactory SWAT model performance when the Hargreaves PET equation was used in 

SWAT to simulate AET (GS1), compared to the other model structures (GS2 to MS6). The calibration/validation with the 

AET from MOD16 yielded a lower SWAT model performance regardless which of the three PET equations was applied to 

SWAT.  

Using the guidelines in Moriasi et al. (2007, 2015) and Kouchi et al. (2017) for evaluating the SWAT model performance at 5 

a monthly time step, the PBIAS values showed a satisfactory model performance (PBIAS ≤±25) in the six 

calibrations/validations of the three SWAT model structures (Fig. 7). The positive PBIAS obtained in the 

calibration/validation of the three SWAT model structures using the AET from MOD16 (MS4, MS5 and MS6) indicated a 

tendency for the SWAT model to underestimate monthly AET, or the MOD16 algorithm overestimated AET at the Ogun 

River Basin site. The positive PBIAS result obtained using MOD16 for calibrating agrees with previous studies conducted at 10 

a site in tropical region. Ruhoff et al. (2013) validated MOD16 AET using ground-based measurements of energy fluxes 

obtained from eddy covariance sites installed in tropical sites in the Rio Grande basin Brazil and from a hydrological model 

(MGB-IPH) at both local and regional scales and found that at the natural savannah vegetation site, the annual AET estimate 

derived by the MOD16 algorithm was 19% higher than the measured amount. Ruhoff et al. (2013) found that 

misclassification of land use and land cover was identified as the largest contributor to the error from the MOD16 algorithm. 15 

Ramoelo et al. (2014) validated MOD16 using data from two eddy covariance flux towers installed in a savannah and 

woodland ecosystem within the Kruger National Park, South Africa and found that, one flux tower results showed 

inconsistent comparisons with MOD16 AET and the other site achieved a poorer comparison with MOD16 ET. In their 

study, they found that, the inconsistent comparison of MOD16 and flux tower-based AET can be attributed to the 

parameterization of the Penman-Monteith model, flux tower measurement errors, and flux tower footprint vs MODIS pixel. 20 

From our results, we agree that the AET from MOD16 tends to overestimate AET. 

The PBIAS result of the model structure SWAT-HG (GS1) showed the highest calibration/validation performance. The 

satisfactory SWAT model GS1 performance was achieved for all objective functions, except for the average NSE value 

obtained of 0.45 in the validation period. During the validation period (GS1), the Kling-Gupta efficiency especially revealed 

the SWAT model to be satisfactory (Fig 8). Also, the low PBIAS result of -0.02% and 0.45% (GS1, Fig 7 and Fig 8) 25 

corresponded to a performance rating “very good” indicating predictive capability of accurate model simulation. An 

NSE>0.50 was achieved in 32 (60%) subbasins, showing that over half of the 53 subbasins have a satisfactory model 

performance during the validation period. The Hargreaves PET equation uses the observed minimum and maximum 

temperature to calculate AET, whereas a limitation of GLEAM, is that is uses an algorithm to convert PET into AET using a 

multiplicative evaporation stress factor (S). The derivation of S is based on microwave observation of the vegetation optical 30 

depth-used as a proxy for the vegetation water content and simulations of root zone soil moisture. Therefore, the Hargreaves 

equation used in SWAT has high tendency to better represent the dynamic hydrological processes due to its connection to 

the observed meteorological data in the calibration and validation periods.  
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The SWAT model structures which were based on calibration/validation with AET from MOD16 (MS4, MS5 and MS6) had 

lower SWAT model performances, with a few exceptions. MOD16 estimation of PET is based on the Penman-Monteith 

equation which is also a function of its derived AET; yet the SWAT model run with the Penman-Monteith PET equation for 

the simulated AET also gave an unsatisfactory result both for the calibration and validation periods. 

The results of our study are in agreement with Trambauer et al. (2014) who found that MOD16 did not show good agreement 5 

in most parts of Africa with evaporation products such as Era-Land, GLEAM and AET derived from three alternative 

versions of the PCR-GLOBWB global hydrological model , while the aforementioned  products were more consistent. The 

differences in GLEAM and MOD16 products are due to their input and forcing data (Trambauer et al. 2014). Furthermore, in 

GLEAM, evaporation from open water is considered while in MOD16, the contribution of lakes and rivers is not (Trambauer 

et al. 2014). Hence, AET estimated from MOD16 accounts only for the land evaporation. Another study found that AET 10 

from GLEAM performed satisfactory for the calibration of a large-scale hydrological model set up in Morocco (Lopez et al., 

2017). 

The SWAT model structure using the Hargreaves equation had a superior model performance which might be linked with 

the climate variables that stem from the observed precipitation and maximum and minimum temperatures while the Penman 

Monteith and the Priestly-Taylor equations are driven by simulated variables (wind speed, relative humidity and solar 15 

radiation). The 95% predictive uncertainty of the best SWAT model performance was quantified, and the 95% predictive 

uncertainty bracketed most of the satellite based AET, although the R-factor was quite large in all of the subbasins signifying 

a large model uncertainty which can be ascribed to the uncertainty in satellite derived AET, the forcing climate data, the 

conceptual model and the model parameters. The 95PPU are the combined outcome of the uncertainties, these uncertainty 

sources are not separately evaluated in SUFI-2 but attributed as a total model uncertainty to the parameters which are 20 

visualized through the simulated model output ranges. The first verification of the SWAT model structure with the highest 

model performance was carried out using another version of GLEAM (GLEAM_v3.0b) as independent dataset and we found 

that the AET from GLEAM_v3.0b was bracketed within the 95PPU of our model. The second verification of the SWAT 

model structure with the highest model performance was carried out by assessing the output of SWAT water balance 

components. The result obtained from the long-term mean monthly water balance agrees with the previous water balance 25 

studies conducted within the study area. The differences in the water balance components values of the past and the current 

study are due to variation in the length of years considered. The average long-term annual of the water balance at the outlet 

of the study area shows a satisfactory percentage error of closure of ±15%. These we considered as our SWAT model 

verification which further raises our confidence in the predictive capability of SWAT as a decision support tool for further 

research. 30 
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5. Conclusion 

This study examined an alternative method to calibrate the SWAT hydrological model using a freely available satellite based 

product for the Ogun River Basin in southwestern Nigeria. Due to the scarcity of measured hydrological datasets in the 

region and different algorithms of the available satellite based AET products, the SWAT model was set-up three times, each 

time using a different PET equation. The three different structures of SWAT were used with two different global AET 5 

product to calibrate the SWAT simulated AET outputs from each model structure resulting in six calibration/validation 

procedures implemented on a monthly time scale. The performance of SWAT model in simulating AET in a data sparse 

tropical region was quantified. The results of this study revealed that, an alternative approach to calibrating the SWAT model 

can be the use of globally available GLEAM_v3.0a AET product; this yielded a satisfactory model performance in 

predicting monthly actual evapotranspiration in the Ogun River basin with an acceptable predictive uncertainty. 10 

Our analysis shows that the temperature based Hargreaves PET equation performed well when implemented in SWAT and is 

therefore the most efficient equation to use with the satellite based AET from GLEAM for the calibration and validation in a 

tropical region. Our findings suggest that the SWAT model structure using the Hargreaves equation can be used as a 

potential decision support tool for further studies and predictions on basin hydrology in the Ogun River Basin. 

There is still a need for further research on: (i) improving the model calibration performance in those subbasins where the 15 

performances are unsatisfactory and (ii) validation of other simulated variable (e.g. stream flow) of the calibrated SWAT 

model using observed datasets when these are available.   

The results from this research contribute to a better understanding of the ease and suitability of using freely available satellite 

based actual evapotranspiration datasets in a tropical sparsely gauged catchment for calibration/validation by subbasin of the 

SWAT hydrological model and thereby reducing the uncertainty associated with the long-established calibration on a limited 20 

number of observed streamflow datasets. Furthermore, a new contribution of this study is the better understanding of 

calibration of the three different estimated AET in SWAT to derive the model with the best goodness of fit and a satisfactory 

predictive capability. Therefore, we recommend testing the three available PET equations in SWAT to estimate simulated 

AET whenever SWAT calibration is carried out with any satellite based AET product. The work presented in this paper is a 

first step of hydrological modelling that will set the basis for future modelling applications within the study area. 25 
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Table 1. Description and sources of input data used to configure SWAT for the Ogun River Basin 

Data type Description/Resolution             Sources 

Topography Digital Elevation model (DEM). 

1 arc-second  global coverage 

 (approx. 30m resolution) 

      Shuttle Radar Topography Mission (SRTM)  

 

Soil Soil property map  

(250m resolution) 

     Soil property maps of Africa 

 

Landuse Landuse classification 

2010 (300m resolution) 

     European Space Agency global land cover map 

 

Weather Daily Precipitation, Max. and Min. 

Temperature (1984-2012) 

(24hrs temporal resolution) 

     Nigerian Metrological Agency 

 

Reservoir  

outflow 

Reservoir discharge 

(24hrs temporal resolution) 

Oyan:2007-2012 

    Ogun-Oshun River Basin Authority Nigeria 

 

Reservoir 

Water level 

Daily Water level 

Oyan:1984-2012 

    Ogun-Oshun River Basin Authority Nigeria 

Management 

practices 

Major crop management practices  Ogun state Agricultural Development Authority, 

Nigeria 

Oyo state  Agricultural Development Authority,  

Nigeria 
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Table 2. Sensitivity rank and calibrated parameters with their optimal value of the three SWAT model structures through the six procedures of 

calibration  

  Rank (optimal value) 

SWAT Parameter Description GS1 GS2 GS3 MS4 MS5 MS6 

r__CN2.mgt SCS runoff curve number 1 (-0.01) 1 (-0.13) 1 (0.08) 1 (-0.48) 1 (-0.48) 1 (-0.47) 

v__ESCO.hru Soil evaporation compensation factor 2 (0.02) 4 (0.20) 3 (0.20) 4 (0.23) 8 (0.33) 5 (0.50) 

v__CANMX.hru Maximum canopy storage 3 (6.96) 2 (0.61) 2 (3.86) 5 (82.11) 9 (33.9) 4 (15.6) 

r__SOL_BD.sol Moist bulk density 
 

4 (-0.19) 3 (0.11) 4 (-0.20) 3 (-0.82) 3(-0.005) 2 (-0.07) 

v__ALPHA_BF.gw Base flow alpha factor  5 (0.66) 5 (0.62) 7 (0.13) 6 (0.42) 6 (0.9) 8 (0.14) 

r__SOL_K.sol Saturated hydraulic conductivity  6 (0.23) 10 (-0.26) 8 (0.24) 10 (0.49) 10 (-0.19) 10 (0.26) 

v__EVRSV.res Lake evaporation coefficient 7 (0.59) 7 (0.55) 10 (0.62) 8 (0.22) 7 (0.23) 7 (0.74) 

v__GSI.plant.dat Maximum stomatal conductance  8 (4.7) 11 (1.66) 11 (3.4) 7 (2.34) 5 (1.9) 6 (0.34) 

v__FFCB.bsn Initial soil water storage expressed as a 

fraction of field capacity water content 

9 (0.59) 6 (0.82) 5 (0.15) 11 (0.99) 11 (0.4) 11 (0.83) 

v__EPCO.hru Plant uptake compensation factor 10 (0.47) 9 (0.61) 9 (0.07) 9 (0.95) 4 (0.88) 9 (0.47) 

r__SOL_AWC.sol Soil available water storage capacity  11 (0.8) 8 (0.92) 6 (0.77) 2 (0.96) 2 (0.89) 3 (0.93) 

 “v_” means a replacement (initial or existing parameter value is to be replaced by a given value); 

 “r_” means a relative change (initial or existing parameter value is multiplied by 1+ given value within the range) 5 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-170
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 23 April 2018
c© Author(s) 2018. CC BY 4.0 License.



26 

  

Table 3:  Average annual water balance at the outlet of the watershed in Abeokuta Town 

Year PRECP 

(mm) 

AET 

(mm) 

SW 

(mm) 

PERC 

(mm) 

SURQ 

(mm) 

GW_Q 

(mm) 

WYLD 

(mm) 

LAT_Q 

(mm) 

∆SW 

(mm) 

*Estimated 

PRECP 

Balance 

Year 

PBIAS 

(%) 

1989 1357 941 57 188 294 147 456 5 5 1442 -85 -6 

1990 1094 882 82 69 145 52 207 4 -25 1081 13 1 

1991 1161 881 54 117 228 84 321 4 27 1263 -101 -9 

1992 1066 806 57 113 177 86 274 4 -3 1104 -38 -4 

1993 1185 862 63 55 305 38 351 4 -5 1225 -41 -3 

1994 870 768 47 34 96 17 118 3 16 918 -48 -6 

1995 1166 858 55 116 225 83 317 4 -8 1200 -34 -3 

1996 1457 885 45 201 460 148 621 5 10 1569 -112 -8 

1997 1341 851 110 151 342 122 478 5 -65 1292 50 4 

1998 1107 767 81 124 290 93 394 4 29 1222 -114 -10 

1999 1515 900 100 223 458 183 656 5 -19 1577 -62 -4 

2000 1198 814 55 175 306 143 463 4 45 1355 -157 -13 

2001 841 738 35 27 108 12 128 3 20 900 -60 -7 

2002 1241 758 64 146 375 108 492 4 -29 1260 -19 -2 

2003 1456 845 56 216 488 177 681 5 8 1572 -117 -8 

2004 1156 922 44 90 186 69 265 4 12 1220 -64 -6 

2005 915 792 41 27 114 14 134 3 3 942 -27 -3 

2006 1153 804 46 128 263 94 365 4 -5 1198 -45 -4 

2007 1600 910 50 229 552 175 742 6 -4 1702 -103 -6 

2008 1395 832 55 221 416 174 605 5 -4 1480 -85 -6 

2009 1338 872 65 185 334 151 500 5 -10 1397 -59 -4 

2010 1609 928 91 232 519 189 722 6 -26 1667 -58 -4 

2011 1264 815 64 172 367 134 515 5 27 1395 -130 -10 

2012 1409 839 60 265 386 205 609 6 4 1512 -103 -7 

PRECIP: precipitation; AET: actual evapotranspiration; SW: soil water content; PERC: percolation; SURQ: surface runoff; GW_Q: groundwater 

recharge; WYLD: water yield; LAT_Q: lateral flow; ∆SW: change in soil water content; * Estimated PRECP is WYLD + AET + ∆S + PERC -

GW_Q, expressed in mm. 

 5 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-170
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 23 April 2018
c© Author(s) 2018. CC BY 4.0 License.



27 

  

Figure 1: The Ogun River Basin located in Nigeria showing the SWAT-delineated subbasins, weather stations and river network 
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Figure 2: Schematic diagram showing the three structures of the SWAT model, the two global AET products, and the resulting six 

calibration and validation procedures for the Ogun River Basin. 
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Figure 3: Performance metrics (NSE, KGE, R2, and PBIAS) of SWAT (SWAT_HG) when calibrated with GLEAM_v3.0a (GS1).  5 
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Figure 4: Performance metrics (NSE, KGE, R2, and PBIAS) of SWAT (SWAT_HG) when validated with GLEAM_v.3.0a (GS1) 5 
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Figure 5: Performance metrics (NSE, KGE, R2, and PBIAS) of SWAT (SWAT_P-M) when calibrated with MOD16 (MS6) 
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Figure 6: Performance metrics (NSE, KGE, R2, and PBIAS) result of SWAT   (SWAT_P-M) when validated MOD16 (MS6) 
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Figure 7: The plots of the performance result of SWAT in simulating actual evapotranspiration. The values and the black dot 

symbol (“•”) depicts the average value of, R2, NSE, KGE and PBIAS obtained for each of the calibration. 
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Figure 8: The plots of the performance result of SWAT in simulating actual evapotranspiration. The values and the black dot 

symbol (“•”) depicts the average value of, R2, NSE, KGE and PBIAS obtained for each of the validation. 
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Figure 9: Extracts of the monthly calibration and validation results (GSI) showing the 95% prediction uncertainty interval along 

with the best SWAT simulated actual evapotranspiration and the satellite based actual evapotranspiration (GLEAM-v3.0a) 
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Figure 10: SWAT model verification results showing the satellite based AET GLEAM_v3.0a used for the model 

calibration/validation, the best SWAT simulated actual evapotranspiration (GS1), and an independent GLEAM_v3.0b time series 30 
bracketed by 95% predictive uncertainty.  
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Figure   11: Seasonal fluctuation of water balance components at the outlet of the watershed located in Abeokuta Town 
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