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Abstract. Recently, deep learning (DL) has emerged as a revolutionary and versatile tool transforming industry applications 

and generating new and improved capabilities for scientific discovery and model building. The adoption of DL in water science 

has so far been gradual, but the related fields are now ripe for breakthroughs. This paper proposes that DL-based methods can 

open up a viable, complementary avenue toward knowledge discovery in hydrologic sciences. In the new avenue, machine-

learning algorithms present competing hypotheses that are consistent with data for scientists to further evaluate. Interrogative 30 

studies are then invoked to interpret DL models. However, hydrology presents many challenges to DL-power scientific 

advances, such as data limitations, model diversity and variability, and the general inexperience of the hydrologic field with 
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DL. The roadmap toward DL-powered scientific advances will need the coordinated effort from a large community involving 

scientists and citizens. Integrating process-based models with DL ones will help alleviate data limitations. The sharing of data, 

data pipelines, and baseline models will improve the efficiency of the community as a whole. Open competitions will greatly 

propel growth in hydrology and. Grass-root collaboration could overcome barriers on data science education. There are a great 

number of research opportunities in this new area which may stimulate advances in machine learning as well. 5 

1. Overview 

Deep learning (DL), which has gained widespread attention since 2012, is a suite of tools centering around artfully-designed 

large-size artificial neural networks. Compared to non-deep networks, DL is characterized by the large size to accommodate 

the complexities of information contained in big data, multiple levels of hidden representations, the addition of unsupervised 

learning units, and effective, large-scale regularization techniques. As a foundational component of modern artificial 10 

intelligence (AI), DL has made substantial strides in recent years and helped solve problems that have resisted AI for decades 

(LeCun et al., 2015). DL models have repeatedly been shown to outperform simpler models by large margins and generalize 

better to unseen instances (Schmidhuber, 2015; Shen, 2017). 

Deep networks may be more robust than simpler models despite their large size, if they are regularized properly and are chosen 

based on validation errors in a two-stage approach (Kawaguchi et al., 2017). Effective regularization techniques include (i) 15 

early stopping: monitor the training progress on a separate validation set and stop the training once validation metrics start to 

deteriorate; and/or (ii) novel regularization techniques such as dropout (Srivastava et al., 2014). DL models can be easier to 

train than previous networks, as their architectures and new stochastic gradient techniques (Kingma and Ba, 2014) address 

issues like vanishing gradient (Hochreiter, 1998). Training large networks as used today was computationally implausible until 

scientists started to exploit the parallel processing power of graphical processing units (GPUs). Nowadays new application-20 

specific integrated circuits have also been created to specifically tackle DL, although DL architectures are rapidly evolving. 

To be expanded:  more discussion of the attractive features of DL. Reduce jargons and improve readability. Citations 

In contrast to many older-generation nonlinear regression and classification methods like Support Vector Machine (SVM) 

(Cortes and Vapnik, 1995), genetic programming (Koza, 1992), Classification and Regression Tree (CART) (Bae et al., 2010; 

Breiman et al., 1984) or random forest (Ho, 1995), just to name a few, deep networks are differentiable from outputs to inputs, 25 

giving them practical advantages in efficient parameter optimization via backpropagation (training). This efficiency, which is 

shared by some other older-generation methods like non-deep neural networks and Gaussian Processes (Snelson and 

Ghahramani, 2006), etc., allows DL to be used as powerful engineering and scientific design tools, whereby the often 

complicated effect of inputs on output variables can be estimated in a data-driven way. Moreover, the differentiable nature 

allows for greater success for interpolation and mild extrapolation, contributing to the strong generalization capability of DL. 30 

It has been shown that deep networks can continue to improve when the number of training instances (e.g., images) is increased 
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to hundreds of millions, albeit at a logarithmic rate (Sun et al., 2017). Simpler networks would have long stalled in performance 

prior to reaching this amount of data because they are unable to represent the complexity of the data. Lastly, like some older-

generation methods, DL offers the possibility of transfer learning (Mesnil et al., 2012), where a complex deep model trained 

to perform a given task can be re-trained for a different but related purpose at a comparatively small computational cost. For 

DL, transfer learning is simple to implement: only the output layer needs to be re-trained, while the other network layers that 5 

encode a deep representation of the input data are left intact. 

While DL has stimulated exciting advances in many disciplines and has become the method of choice in some areas, water 

sciences so far have only had a very limited set of DL applications. Despite scattered early reports of promising DL results 

(Fang et al., 2017; Laloy et al., 2017, 2018; Tao et al., 2016; Vandal et al., 2017; Zhang et al., 2018), water scientists seemed 

to have reservations about these new tools, perhaps with good reasoning. This opinion paper, endorsed by the cohort of authors, 10 

argues that there are many opportunities in water sciences where DL can help provide both stronger predictive capabilities and 

a complementary avenue toward scientific discovery. Readers who are less familiar with machine learning or deep learning 

are referred to a companion review paper (Shen, 2017) (hereafter referred to as Shen17), which provides a more comprehensive 

and technical background.  

We first voice the opinions that elements of a complementary machine learning-based scientific discovery avenue are taking 15 

shape, and this avenue should at least be considered for problems with large data (section 2). Then, we propose several ways 

to accelerate this avenue (section 3). Finally, we argue that hydrology offers a unique set of challenges for DL research (section 

4).  

2. The emergence of a complementary avenue 

We have witnessed the growth of three pillars that support a complementary research avenue utilizing deep learning: big 20 

hydrologic data, powerful machine learning algorithms, and interrogative methods to extract interpretable knowledge from the 

trained networks. We discuss these aspects in the following sections. 

2.1. With more data, opportunities arise 

The fundamental supporting factor for emerging opportunities with DL is the growth of big hydrologic data. There are ever 

increasing amount of hydrologic data through remote sensing (see a summary in Srinivasan, (2013)) and data compilation. 25 

Large available datasets include satellite-based data products of precipitation, surface soil moisture (Entekhabi, 2010; Jackson 

et al., 2016; Mecklenburg et al., 2008), vegetation states and indices, e.g., (Knyazikhin et al., 1999),  and derived 

evapotranspiration products (Mu et al., 2011), terrestrial water storage (Wahr et al., 2006), snowcover (Hall et al., 2006), and 

planned mission for streamflows (Pavelsky et al., 2014), etc. On the data compilation side, there are now compilations of 

geologic (Gleeson et al., 2014) and soil datasets; centralized management of streamflow and groundwater data in the United 30 
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States, Europe, parts of South America and Asia, or globally for some large rivers (GRDC, 2017); water chemistry, 

groundwater samples and other biogeophysical datasets.  

One of the 10 Big Ideas for Future Investments from U.S. National Science Foundation is “Harnessing data for 21st-century 

science and engineering” (NSF, 2018). With these emerging datasets, DL models can be built and trained to learn features, 

organizational patterns and relationships and predict outputs given new input instances. However, we are not advocating a 5 

whole transition to DL: not all problems can be suitably formulated as DL problems – they could be best tackled by specifically-

designed earlier-generation methods, and for many problems, there are just not enough data to train DL-based models. 

2.2. DL: A big step forward 

The field of hydrology has witnessed flows and ebbs of several generations of machine learning methods in the past few 

decades. From regularized linear regression (Tibshirani and Tibshirani, 1994) to Support Vector Regression  (Drucker et al., 10 

1996), from genetic programming (Koza, 1992) to artificial neural networks (Chang et al., 2014; Chen et al., 2018; Hsu et al., 

1995, 1997, 2002), from classification and regression tree to random forest, from Gaussian Process (Snelson and Ghahramani, 

2006) to Radial Basis Function Network (Moradkhani et al., 2004), each algorithm offered useful solutions to a set of problems, 

but each also faces its own limitations. As a result, over time, some may have grown dispassionate about progress in machine 

learning, and some may have concerns about whether DL is a real progress or just a “hype”. A frequent limitation with 15 

conventional neural network study is that they are trained in a geographic region or site and typically cannot be transferred out 

of the training region. Large-size neural networks may be overfitted and are prohibitively expensive to train in terms of 

computation. 

The progress brought forth by DL to the information technology industry is revolutionary (Section 4 in Shen17) and can no 

longer be ignored. Primary types of successful deep learning architectures include convolutional neural networks (CNN) for 20 

image recognition (Krizhevsky et al., 2012b; Ranzato et al., 2006), Long short-term memory (LSTM) (Greff et al., 2015; 

Hochreiter and Schmidhuber, 1997) for time series modeling, variational  auto-encoders (VAE) (Kingma and Welling, 2013), 

and deep belief networks for pattern recognition and data (typically image but also text or sound, etc) generation (section 3.2 

in Shen17). CNNs and LSTMs have earned major recognition from the industry in research spearheaded by the information 

technology industry. Besides these new architectures, a novel generative model concept called generative adversarial networks 25 

(GANs) has become an active area of research. The key characteristic of GANs is that they are learned by creating a 

competition between the actual generative model or ‘‘generator’’ and a discriminator in a zero-sum game framework 

(Goodfellow et al., 2014), in which these components are learned jointly. Compared to other generative models, GANs 

potentially offer much greater flexibility in the patterns to be generated. The power of GANs has been recognized recently in 

the geoscientific community, especially in machine learning research inspired by physics, where deep generative models have 30 

been used for certain complicated physical, environmental, and socio-economic systems with deep generative models (Albert 

et al., 2018; Laloy et al., 2018).  
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The evidence is mounting that when given enough data, DL can provide the unique ability to automatically extract features, 

sometimes better than human experts do: 

 The ImageNet Challenges is an open competition to evaluate algorithms for object detection and image classification 

(Russakovsky et al., 2014). Topics change during each contest, and a dataset of ~14M tagged images and videos were 

cumulatively compiled, with convenient and uniform data access provided by the organizers. The 2010 was won by 5 

a large-scale SVM. CNNs first won this contest in 2012 (Krizhevsky et al., 2012a). Since then, and till 2017 (the last 

contest), the vast majority of entrants and all contest winners used CNNs, which edges out other methods by large 

margins (Schmidhuber, 2015).  

 The IJCNN traffic sign recognition contest, which is composed of 50,000 images (48 pixels x 48 pixels), witnessed 

superhuman visual recognition performance from CNN-based methods (Stallkamp et al., 2011). The superhuman 10 

performance was also scored by CNNs on recognition of cancers from medical images (Yu et al., 2016). 

 The TIMIT speech corpus is a dataset that holds the recordings from 630 English speakers. LSTM-based models 

showed a large edge over Hidden Markov Model (HMM) results (Graves et al., 2013) in recognizing the speeches. 

Similarly, LSTM-based methods won with large margin over all statistical approaches on keyword spotting 

(Indermuhle et al., 2012), optical character recognition (Breuel et al., 2013), language identification (Gonzalez-15 

Dominguez et al., 2014), text-to-speech synthesis, social signal classification, machine translation and Chinese 

handwriting recognition (Schmidhuber, 2015). 

 An LSTM-based speech recognition system has achieved “human parity” in conversational speech recognition on the 

Switchboard corpus (Xiong et al., 2016). A parallel version achieved best-known pixel-wise brain image 

segmentation results on the MRBrainS13 dataset (Stollenga et al., 2015). The improvement in language translation 20 

software can be witnessed by ordinary web users. 

 A time series forecasting contests, Computational Intelligence in Forecasting Competition, was won by a combination 

of fuzzy and exponential models in 2015 when no LSTM was present, but LSTM won it in 2016 (CIF, 2016). 

In sciences, DL models are quickly becoming the method of choice in analyzing data in high energy physics, chemistry, 

biology, astrophysics, and remote sensing (section 4.3 in Shen17), let alone medical applications such as neurosciences.  25 

In addition to utilizing big data, DL is able to create valuable, big datasets that could not have been otherwise possible. For 

example, utilizing DL, researchers were able to generate new datasets for Tropical Cyclones, Atmospheric Rivers and Weather 

Fronts (Liu et al., 2016; Matsuoka et al., 2017) by tracking them. DL was employed to achieve dynamical climate downscaling 

(Vandal et al., 2017), remote sensing of precipitation (Tao et al., 2017, 2018), estimate crop yield (You et al., 2017), prolong 

satellite-sensed soil moisture (Fang et al., 2017) and crop diseases (Pryzant et al., 2017). All these datasets are for abstract 30 

variables which can now be reliably retrieved by DL. We agree that, just like other methods, DL may eventually be replaced 

by newer ones, but that is not a reason to hold out on possible progress. 
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For revision: here, we will provide summaries of trans-disciplinary reviews (most already described in our companion review 

paper) for both hydrology and other disciplines. These examples, in our opinion, strongly demonstrate the advantage of DL 

when there are sufficient data. There aren’t many big data examples in hydrology yet, but it’s already showing promise. From 

other disciplines, the contrast is more apparent. 

2.3. Network interrogative methods to enable knowledge gain from deep networks 5 

Conventionally, neural networks were primarily used to approximate mappings between inputs and outputs. The focus was 

put on improving predictive accuracy. In terms of the use of neural networks in scientific research, then, there have been 

concerns: (1) DL and more generally machine learning (ML) are referred to as black boxes that cannot be understood by 

humans and thus, cannot serve to advance scientific understanding; and (2) Data-driven research lacks clearly-stated 

hypotheses. There has been significant pressure from inside and outside the deep learning community to make the network 10 

decisions more explainable. For example, European laws dictate that automated individual decision making which significantly 

influences the algorithm’s users must provide a “right to explanation” where a user can ask for an explanation of an algorithmic 

decision (Goodman and Flaxman, 2016).  

Some recent progress in DL research focused on addressing these concerns. Notably, a new sub-discipline, known as “AI 

neuroscience” has produced useful interrogative techniques to help scientists interpret the knowledge by deep networks from 15 

data (see literature in Section 5.2 in Shen17). Such methods include (i) attributing deep network decisions to input features or 

a subset of inputs. For example, for image recognition tasks, the decision of the network can be traced to some regions on the 

image that led to the decision (Montavon et al., 2017); (ii) transferring knowledge from deep networks to interpretable, 

reduced-order models. For example, a trained deep vision network can be used to train simpler models such as classification 

trees (Ribeiro et al., 2016); (iii) visualization of network activations, e.g., (Samek et al., 2017; Yosinski et al., 2015). For 20 

example, activations of recurrent neural networks can be visualized to show the control domain of certain cells, which explains 

its functioning (Karpathy et al., 2015); and (iv) problem-specific, ad-hoc analytic methods. For example, certain signals from 

the inputs can be added or removed to examine the impacts of such features (Alipanahi et al., 2015). Among these, (i)-(iii) are 

mostly developed in the computer science domain, while (iv) requires the most effort and collaboration between domain 

scientists and computer scientists.  25 

Here: to give 2 concrete examples of how DL models were interpreted to help with understanding, with some overlap with 

Shen17 but also a new example. 

2.4. The complementary research avenue 

As the interrogative methods further grow, there emerges a complementary avenue toward attaining knowledge, as shown in 

Figure 1. The data-driven research avenue can be divided into four steps: (i) hypotheses are generated by machine learning 30 

algorithms from data; (ii) the validation step is where data withheld from training, and different from training, are employed 
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to evaluate the machine-learning-generated hypotheses; (iii) interpretive methods are employed to extract data-consistent and 

human-understandable hypotheses (described in Section 2.3); and (iv) the retained hypotheses are presented to scientists for 

analysis and further data collection, and the process iterates.  

The classical avenue faces non-uniqueness and subjectivity. To give a concrete example, consider a classical problem of 

rainfall-runoff modeling. Suppose a hydrologist found that hydrologic responses in several nearby basins are different. Some 5 

basins produce flashier peaks while others have smaller peaks in summer, large seasonal fluctuation and large peak streamflows 

only in winter. Taking a modeling approach, the hydrologist might invoke a conceptual hydrologic model, e.g., Topmodel 

(Beven, 1997), however,  the model results may not adequately describe the observed heterogeneity in the rainfall-runoff 

response. The hydrologist might hypothesize that the different behaviors are due to heterogeneity in soil texture which is not 

well represented in the model. The hydrologist may add in processes that represent soil spatial heterogeneity, such as modified 10 

soil pedo-transfer functions that can differentiate between the soil types in different regions. Perhaps with some parameter 

adjustment, this model can provide streamflow predictions that are qualitatively similar to the observations. This procedure 

then increases the hydrologist’s confidence that the heterogeneity in soil hydraulic parameters is responsible for their different 

hydrologic responses. However, this improvement is not conclusive due to process equifinality: there can be alternative 

processes that can also result in similar outcomes, e.g., the influence of soil thickness, terrain or drainage density. The 15 

identification of potential improvement might be dependent on the hydrologist’s intuition or pre-conceptions, which are 

nonetheless important but potentially biased. Furthermore, incorporating all the physics into the model may prove technically 

challenging or too time-consuming. 

Compared to the classical avenue, the data-driven approach may help scientists more efficiently explore a larger set of 

hypotheses. Although it cannot be said that the machine learning algorithms present no human bias (because inputs are human-20 

defined and some hyperparameters are empirically adjusted), the larger set of hypotheses presented will at least reduce that 

risk greatly. First, let us examine a CART-based data-driven approach. We could start with physiographic data for many basins 

in this region, including terrain, soil type, soil thickness, etc. We can use CART to model the process-based model’s errors, 

which allows us to separate out the conditions under which these errors occur more frequently. We let the pattern emerge out 

of data without enforcing a strong human pre-conceived hypothesis. Attention must be paid to the robustness of the data mining 25 

and utilize holdout dataset or cross-validation to verify the generality of the conclusion. Data may suggest that soil thickness 

is the main reason for the error. Or, if data do not prefer one hypothesis over the other, then all hypotheses are equally possible 

and cannot be ruled out: summarized in a short phrase, “an algorithm has no ego.” On a practical level, this approach can more 

efficiently and simultaneously examine multiple competing hypotheses. 

One example of such analyses was carried out in Fang and Shen, (2017) where differences in basin storage-streamflow 30 

correlations were explained by physical factors using CART, an earlier-generation data mining method (Figure 2). The data 

mining analysis allowed patterns to emerge, which inspired hypotheses about key factors that control the hydrologic 
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functioning of different systems, such as soil thickness and soil bulk density are important controls of drought recovery, while 

biodiversity only showed secondary importance (Schwalm et al., 2017). Scientists need to define the predictors and general 

model types, but they do not pose strongly constraining hypotheses about the controlling factors, and instead “let the data 

speak”. The key to this approach is a large amount of data from which pattern emerge.  

Working with DL models, we need to further resort to interrogative methods to make the results more interpretable (Figure 1 5 

Right). For example, we can construct DL models to predict the errors of the process-based model, and then use visualization 

techniques to see which variable, under which condition, lead to the error. Because DL can absorb a large amount of data, it 

can find commonality among data as well as identify differences. Whereas CART models are limited by the amount of data 

and face stability problems in lower branches (data are exponentially less at lower branches), DL models may produce a more 

robust interpretation.  10 

 

Figure 1. Comparing two alternative avenues toward gaining knowledge from data. In the classical avenue, scientists interpret data, 
form hypotheses, (optionally) build models to describe data and hypotheses, and then compare model results with data to affirm or 
reject the hypotheses. In the data-driven avenue, deep-learning models are created to learn from data to model a general, human-
directed target. Then interpretive methods are employed to extract data-consistent and human-understandable hypotheses, which 15 
are presented to scientists for analysis and further data collection. There must be a hypotheses validation step where data withheld 
from training is used to evaluate or reject the hypotheses.  

 

The machine learning paradigm lends us to finding “unrecognized linkages” (Wagener et al., 2010) or find complex patterns 

in the data that humans could not easily realize or capture. Owning to the strong capability of DL, it can better approximate 20 

the “best achievable model” (BAM) for the mapping relations between inputs and output. As such, it lends support to measuring 

the information content contained in the inputs about the output. Nearing et al., (2016) utilized Gaussian Process regression to 

approximate the BAM. DL can play similar roles and can also allow for modelling, perhaps in a more thorough way.  
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Outputs from the hidden layers of deep networks can now be visualized to gain insights about the transformations performed 

on the input data by the network (Samek et al., 2017). For image recognition tasks, one can invert the DL model to find out 

the parts of the inputs that led the network to make a certain decision (Mahendran and Vedaldi, 2015). There are also means 

to visualize outputs from recurrent networks, e.g., showing the conditions under which certain cells are activated (Karpathy et 

al., 2015). These visualizations can illustrate the relationships that the data-driven model has identified. 5 

Considering the above potential benefits, the data-driven avenue should at least be considered or given an opportunity to play 

a role in water sciences discovery. However, this avenue may be uncomfortable to some researchers. In the classical avenue, 

the scientist must originate the hypotheses before constructing models; in the data-driven avenue, one needs to set up the 

algorithm to model a certain target. Then, the data mining/knowledge discovery process is a precursor step to the main 

hypotheses formation-- hypotheses cannot be generated before the data mining analysis. This feature is a natural consequence 10 

of handing part of the work to an algorithm but may cause some disarray for those who follow what has been perceived as 

structured scientific methods. Especially, hypotheses can no longer be unequivocally stated during the proposal stage of 

research.  

Granted, the interrogative methods as a whole are new and time is required for them to grow. We need to note that the nascent 

“DL neuroscience” literature did not exist until 2015. However, if we outright reject the complementary avenue based on our 15 

habitual thinking that neural networks are black boxes, we may deny ourselves opportunities for breakthroughs. 

3. Hydrology provides unique challenges and opportunities for DL 

Compared to classical DL problems such as image/speech recognition that DL techniques have been applied to, hydrology has 

a unique set of challenges that are also research opportunities for DL. Mostly, DL research has not covered these questions 

extensively, but they exist across disciplines. Importantly, many of these stiff challenges cannot be sufficiently or efficiently 20 

tackled by individual research groups.Water scientists and computer scientists can work together to address these questions, 

which may lead to advances in machine learning. 

(1) Observations in hydrology and water science, in general, are often regionally imbalanced. For example, while streamflow 

data are relatively dense in the United States, it is very sparse in many other parts of the world. In some parts of the world, 

observations have been made, but data are not made available to the public. Even for variables that can be remotely sensed, 25 

e.g., soil moisture, dense canopies often prevent uniform observations of the variable. For many hydrologic applications, there 

may be a dearth of observations that can be used as the supervising data. Few applications have the magnitude of data on the 

order of training datasets for AI tasks.  A body of literature studying this problem between different geographic regions can be 

loosely summarized under the topic of “prediction in ungauged basins” (PUB) (Hrachowitz et al., 2013). However, PUB 

problems pose a significant challenge to data-driven methods..  30 
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(2) Global change is altering the hydrologic and related cycles, and hydrologists must now make predictions in anticipation of 

changes, beyond previously observed ranges (Wagener et al., 2010). Especially, more frequent extremes have been observed 

for many parts of the world and have been projected to occur in the future. Data-driven methods often face a higher chance of 

failure when applied out of the range of training dataset.  

(3) Hydrologic observations also tend to be incomplete in space and time, but there are multiple sources of observations 5 

focusing on different aspects of the water cycle. For example, top 5-cm surface soil moisture only reflects a very small fraction 

of the water cycle, but we can also observe terrestrial water storage, which is related to soil moisture. The most prevalent 

observation, streamflow, integrates the signal of the whole landmass. Thus, how to merge inter-related information from 

different sources and to improve the prediction of each other is an important question that DL have not studied extensively. 

(4) Compared to standard IT applications, such as speech recognition or image recognition, water data are accompanied by a 10 

large amount of strongly heterogeneous “contextual variables” such as land use, climate, geology, and soil. Heterogeneity 

needs to be adequately represented without radically bloating the parameter space of the models. They covary and exert 

complicated controls on hydrologic responses, but we have limited knowledge of some of them, especially subsurface 

properties like geology. There are significant uncertainties with respect to input datasets, . In addition, these heterogeneous 

factors co-vary due to co-evolution (Troch et al., 2013), which makes it difficult for data-driven models to distinguish between 15 

causal and associative relationships. Especially, training with insufficient data may result in many alternative DL models that 

cannot be rejected. 

(5) Hydrologic problems fit poorly into the template of problems that the standard network structures (Section 3.2 in Shen17) 

are designed for. While some direct applications such as soil moisture hindcasting (Fang et al., 2017) and precipitation retrieval 

from images (Tao et al., 2016) are possible, we envision many new types of problems may require customized structures. For 20 

example, catchment hydrologic problems have both spatial but static (topography and groundwater flow) and temporal 

(atmospheric forcing) dimensions. 

(6) Because large and diverse datasets are needed, the access to datasets, their pre-processing, and appropriate formatting 

present practical challenges. These steps often occupy too much unnecessary time for researchers. Many of the processing 

tasks for images cannot be handled by a single research group. Compared to the deep learning community in AI and chemistry, 25 

etc., the machine learning in hydrology community is not sufficiently coordinated, resulting in significant waste of effort and 

“recreation of wheels”.  

(7) DL model performances can vary widely depending on model architecture, modification of network designs, training 

methods, use of data, data preparation, hyper-parameter setups, etc. There are a large variety of different configurations, with 

many options beyond what could be explored by automated algorithms. Individual research groups are often limited in only 30 

exploring part of these possibilities. Thus, it is difficult to reliably reproduce reported results and learn the advantages and 
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disadvantages of each model design. There are also often training “tricks” that were critical in terms of achieving the desired 

performance. 

(8) under-coordinated community 

(9) Multi-point physics challenge: needs more flexible objective function 

4. A community roadmap toward DL-powered scientific advances in hydrology 5 

Facing the above challenges, we share the vision of a community-shared roadmap toward advancing hydrologic sciences using 

DL. A well-coordinated community is much more efficient and powerful in resolving the abovementioned challenges. We see 

that several steps are crucial in this roadmap: devising ways to integrate physical knowledge, PBMs and DL, community 

approaches in sharing and accessing data, open and transparent model competitions, and baseline models and visualization 

packages. (a Figure to illustrate the roadmap) 10 

4.1. Integrating physical knowledge, process-based models, and DL models  

To address data limitations mentioned in the last section (Points 1 through 3), we envision that an inevitable step is to more 

organically integrate hydrologic knowledge, process-based models, and deep learning. Process-based models, as they are 

derived to from underlying physics, require less data for calibration and can fill the gaps in different regions and for 

unobservable hydrologic processes. Given well-constructed, fundamentally-sound PBMs, they should also be able to represent 15 

the temporal changes and trends. However, because data-driven models directly target observations, they may have higher 

accuracy where data are available. Also, as discussed earlier, they are less prone to a priori model structural error. We should 

aim to maximally utilize the best features of each type of models. 

This integration will undoubtedly be highly diversified as there can be many ways it can occur. Karpatne et al., (2017) compiled 

a list of approaches in the literature they collectively call “theory-guided data science” : (i) using knowledge to design data-20 

driven model; (ii) using knowledge to initialize network states; (iii) using physical knowledge to construct priors to constrain 

the data-driven models; (iv) using knowledge-based constrained optimization (although this may be difficult to implement in 

practice); (v) using theory as regularization terms for the data-driven model, which will force the model to respect these 

constraints; (vi) learn hybrid models, where data-driven method is used as surrogate for certain part of the physical model. 

One may also impose multiple learning objectives based on the knowledge of the problem. d 25 

This list can be further expanded to accommodate varied objectives. First, we can focus on PBM errors (difference between 

PBM simulation and observations). Non-deep machine learning has already shown promise in correcting PBM errors. 

Abramowitz et al. (2006) developed an ANN to predict the error in net ecosystem exchange from a land surface model, and 

achieved 95% reduction in annual error. More importantly, an ANN trained to correct the error at one biome completely 
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corrects the PBM for another, which is in a different temperature regime (Abramowitz et al., 2007). In the context of weather 

forecasts, machine learning methods were used to learn the patterns from past forecasting errors (Delle Monache et al., 2011, 

2013). Then, through looking for similarity between the present situation and the past, error correction is advised, leading to 

20% gain in performance (Junk et al., 2015). Their results suggest PBMs make structural errors that are independent of the 

state-variable regimes they operate in. We envision that PBMs can better resolve the impacts of regime changes, while DL can 5 

better capture state-independent error patterns and do mild state-dependent extrapolations. A co-benefits of modelling PBM 

error is insights about the PBM: if we are able to use interrogative methods to reverse engineer what DL has learned about 

these errors, it provides possible explanations to when and where our PBMs are wrong. It also provides clues as to how to fix 

these errors mechanistically. However, there lacks a theoretical framework for separately estimating aleatory uncertainty 

(resulting from data noise), and epistemic uncertainty (resulting from PBM error and training data paucity) and uncertainty 10 

due to regime-shift. There are significant research opportunities in this regard. 

Second, PBMs can provide training data for DL models, alleviating point 1 raised in Section 3. PBMs can be used to either 

directly create supervising data or apply perturbations to augment existing data. Furthermore, if the DL training is limited by 

available data, there would be many alternative DL models that could not be rejected (point 4 in the last section). Some of 

these alternative DL models generate unphysical outputs. Providing PBM simulations as either training data or regularization 15 

terms help to nudge DL models to generate physically meaningful outputs. 

Here, two additional ways of PBM-DL integration will be proposed. 

In summary, there is substantial potential in combining the benefits of DL and PBMs. There are myriad possible approaches, 

yet guiding theories are lacking. On top of these alternatives, different hydrologic problems, e.g., soil moisture or streamflow, 

have different system properties. The advantages and disadvantages of these approaches could be systematically and efficiently 20 

evaluated in community-coordinated fashion. 

4.2. Community-coordinated hydrologic modeling competitions to pursue both performance and explainability 

As mentioned in Section 4.1 and points 6 and 7 in Section 3, there are many possible approaches and many alternative model 

structures. In the light of these challenges, Wwe argue that open, fast and standardized competitions are a very effective way 

of accelerating the progress in an area. In addition to commonly employed metrics, we can formulate competitions that are 25 

evaluated based on the attainment of understanding.  

As discussed earlier, the effectiveness of competitions is best demonstrated in the community-coordinated challenges in 

computer science. These competitions have strongly propelled advances in artificial intelligence. New methods can be 

evaluated objectively and disseminated rapidly, with reduced subjectivity in the evaluation. Because the problems are 

standardized, they remove significant variability in terms of data sources and pre-processing. In the case of deep learning, DL 30 

models have emerged as a dominant force in almost every contest where it was applicable since 2012. Despite substantial 
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manual efforts spent on earlier methods such as SVM and Hidden Markov Model (HMM), deep neural networks repeatedly 

show advantages. Via these competitions, the community can quickly learn advantages and disadvantages of alternative some 

network designs. They encourage results to be reproducible and comparable. The advantages and disadvantages of different 

methods can be thoroughly explored and laterally compared. However, these results do not suggest other statistical methods 

have no value. Rather, data limitations and various constraints often make simpler methods valuable. However, an undeniable 5 

and increasingly apparent trend is that deep learning shows unrivaled predictive performance.  

We envision multi-faceted hydrologic modeling competitions where various models ranging from process-based ones to deep 

learning ones are evaluated and compared. The coordinators will provide a set of standard atmospheric forcings, landscape 

characteristics, and observed variables. The participants should submit results driven by the standard inputs, but they may 

optionally also use their own inputs. Target observations may be soil moisture, streamflow records and/or groundwater levels. 10 

Importantly, the evaluation criteria include not only performance-type criteria such as model efficiency coefficients and bias 

but also qualitative/explanatory ones such as explanations for control variables and model errors. Over-simplified or poorly-

constructed models may provide more accessible explanations, but they might be misleading because the models may be 

overfitted to a given situation. Their simplicity may also constrain their ability to digest large datasets as a way of reducing 

uncertainty. Multi-faceted competitions allow us to also identify a “Pareto front” of explainability and performance and help 15 

rule out “false explanations”. The objective of the competition is not only to seek the best simulation performance, but also 

those methods that offer deeper insight into hydrologic dynamics.  

Another important value of competitions is that organizers will provide a standard input dataset and well-defined tasks, which 

greatly save the community resources and effort, so that participants can focus on the modeling aspects. A substantial amount 

of effort is required to establish such a dataset, which may only be possible under a specifically designed project. However, 20 

any effort in creating the dataset will return great value to the community. 

 

4.3. Community-shared data sources and processing pipelines 

The main approach to address the major obstacle of data limitation is to increase our data repositories. In addition, facilitating 

access to datasets is also an important aspect of increasing our data availability. Data collection can be greatly enhanced by 25 

centralized data compilation, a task many institutions are already undertaking. For example, the Consortium of Universities 

for the Advancement of Hydrologic Science, Inc. (CUAHSI) hosts large amounts of hydrologic data. For another example, in 

2015, a project called Collaborative Research Actions (Endo et al., 2015) was proposed in Belmont Forum, which is a group 

of the world's major and emerging funders of global environmental change research. Many scientists from different countries 

join the project and focus on the same issue, Food-Energy-Water Nexus. They shared their data (heterogeneous data) and 30 

research results from different regions.  
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The database organizers could help format data in a way that facilitates data mining and deep learning. However, it is unlikely 

that all data can be stored in one location, considering the volume of high-resolution remote sensing data. This coordination 

would require consulting with data scientists when designing the infrastructure. In addition, besides providing data, a 

concurrent role that databases can take is also to provide more channels to share experiences, scholarly discussions, and debates 

along with the generation of data.  5 

Another important area where deep learning is expected to deliver significant value is the analysis of big and sub-research-

quality data such as those collected by citizen scientists. A valuable feature of water sciences is that they are accessible to 

ordinary people. Citizen scientists could help gather data about precipitation, temperature, humidity, soil moisture, river stage, 

and potentially groundwater levels. These quantities can be measured by inexpensive instruments like pressure gauges and 

moisture sensors. To add: new remote sensing methods like CubeSat and drones. To cite McCabe et al. HESS 2017, etc.. 10 

Volunteer scientists can also be requested for results in an active learning framework (Settles, 2012), i.e., they can be queried 

for more data for instances that can best reduce the uncertainty of the predictions. Crowd-sourced data have played roles in 

deep learning research (Huang et al., 2016; Izadinia et al., 2015), even though there are problems related to data quality. An 

important co-benefits of involving citizen scientists is the education and outreach to the public. The active engagement is much 

more effective when the public has a stake in the research outcomes.  15 

4.4. Develop a base suite of shared models, interpretation and visualization software 

To be expanded: these shared models, analogical to GoogleNet, etc., could greatly facilitate newcomers in getting started. In 

addition, they improve reproducibility and the effectiveness of comparisons. The interpretation and visualization effort seem 

fragmented and adhoc. Compiling and collecting them into community-shared resources will greatly improve our growth. 

4.5. Education 20 

To be expanded: a huge barrier is our educational background. There is very little preparation for big data. Grass-root 

collaboration could overcome barriers e data science education. 

 

5. Concluding remarks 

In this opinion paper, we argue that scientists ought to give thoughts to a complementary research avenue, where DL-power 25 

data mining is used to generate hypotheses, which are subsequently testede. In the past there may have been strong reservations 

toward black-box machine learning algorithms. Significant efforts have been put in the interpretation and understanding of 

deep learning networks, and hydrologists have the opportunity to push research forward in this regard. Progress in hydrology 
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and other disciplines show that there is substantial promise in incorporating DL into hydrologists war chest. However, 

challenges such as data limitation and model variability demand a community-coordinated approach.  

We have also argued for open hydrologic competitions that emphasize both performance and explainability. These 

competitions, along with shared data, DL models and data pipelines, will greatly improve the growth of the field as a whole. 

DL has powered breakthroughs in other disciplines. We argue water sciencesHydrologists should make use of the big data 5 

andpotential of citizen science potential, and exploit DL as a valuable tool toward scientific discovery in water-related fields. 

 

 

 

Figure 2. (adapted from Fang and Shen 2017. Reprint permission obtained). We calculated storage-streamflow correlation patterns 10 
over continental United States (CONUS) and divided small or mesoscale basins into multiple classes. We studied what physical 
factors most cleanly separate different correlation patterns. In this case, what separates the blue class (storage and streamflow are 
highly correlated across all flow regimes) and the green class turned out to be soil thickness. It suggests the blue basins in the south 
has good correlation because they have thick soils, which facilitates infiltration, water storage, and groundwater-dominated 
streamflow. 15 
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