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Abstract. This work addresses the impact of climate change on the hydrology of a catchment in the Mediterranean, a region 15 

that is highly susceptible to variations in rainfall and other components of the water budget. The assessment is based on a 

comparison of responses obtained from five hydrologic models implemented for the Rio Mannu catchment in southern 

Sardinia (Italy). The examined models – CATchment HYdrology (CATHY), Soil and Water Assessment Tool (SWAT), 

TOPographic Kinematic APproximation and Integration (TOPKAPI), TIN-based Real time Integrated Basin Simulator 

(tRIBS), and WAter balance SImulation Model (WASIM) – are all distributed hydrologic models but differ greatly in their 20 

representation of terrain features and physical processes and in their numerical complexity. After calibration and validation, 

the models were forced with bias-corrected, downscaled outputs of four combinations of global and regional climate models 

in a reference (1971-2000) and a future (2041-2070) period under a single emission scenario. Climate forcing variations and 

the structure of the hydrologic models influence the different components of the catchment response. Three water 

availability response variables – discharge, soil water content, and actual evapotranspiration – are analyzed. Simulation 25 

results from all five hydrologic models show for the future period decreasing mean annual streamflow and soil water content 

at 1 m depth. Actual evapotranspiration in the future will diminish according to four of the five models due to drier soil 

conditions. Despite their significant differences, the five hydrologic models responded similarly to the reduced precipitation 

and increased temperatures predicted by the climate models, and lend strong support to a future scenario of increased water 

shortages for this region of the Mediterranean basin. The multimodel framework adopted for this study allows estimation of 30 

the agreement between the five hydrologic models and between the four climate models. Pairwise comparison of the climate 

and hydrologic models is shown for the reference and future periods using a recently proposed metric that scales the Pearson 

correlation coefficient with a factor that accounts for systematic differences between datasets. The results from this analysis 
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reflect the key structural differences between the hydrologic models, such as a representation of both vertical and lateral 

subsurface flow (CATHY, TOPKAPI, and tRIBS) and a detailed treatment of vegetation processes (SWAT and WASIM).  35 

1 Introduction 

Climate studies agree on the prediction that the Mediterranean area will be particularly affected by changes under global 

warming (IPCC, 2014). This region, in fact, has been singled out as one of the hotspots in future climate change predictions 

(Giorgi, 2006), due to higher susceptibility to more frequent and more intense extreme events. In addition, observations 

during the last decades indicate that mean and extreme temperatures have increased in several Mediterranean regions 40 

(Xoplaki et al., 2003; Del Río et al., 2011; El Kenawy et al., 2011; Acero et al., 2014) and that precipitation has diminished, 

especially in the warm season (Giorgi and Lionello, 2008; Sousa et al., 2011; Vicente-Serrano and Cuadrat-Prats, 2007).  

 

Climate change impact assessment at the catchment scale is usually conducted through a procedure that involves the 

following steps (e.g., Xu et al., 2005): (i) selection of global climate models (GCMs) and regional climate models (RCMs) 45 

for future climate predictions; (ii) correction of the discrepancies between simulated and observed climatological features; 

(iii) application of downscaling techniques to increase the coarse scale of climate model outputs to the finer resolutions 

required by hydrologic models; and (iv) use of downscaled outputs as forcing for the calibrated hydrologic models to 

simulate the basin hydrologic response (Sulis et al., 2011, 2012; Piras et al., 2014; Hawkins et al., 2015; Majone et al., 2016; 

Meyer et al., 2016). Each of these steps is affected by uncertainties (Xu and Singh, 2004), including the choice of emission 50 

scenarios and climate forcings (Giorgi and Mearns, 2002; Tebaldi et al., 2005; Pechlivanidis et al., 2017), the selection of 

downscaling techniques (Wood et al., 2004; Im et al., 2010) and hydrologic model (Clark et al., 2008; Jiang et al., 2007; 

Dams et al., 2015), and the availability of observed data required for calibration and validation of both downscaling 

techniques and hydrologic models. Hawkins and Sutton (2009) estimate that by the end of the century, the emission 

scenarios will represent the dominant source of uncertainty in climate projections. 55 

 

One approach to dealing with uncertainties is to use multiple climate and hydrologic models (Bosshard et al., 2013; 

Cornelissen et al., 2013; Gädeke et al., 2014; Najafi et al., 2011). For example, Bae et al. (2011) compared in a Korean basin 

three semi-distributed hydrologic models forced with outputs from thirteen GCMs and three greenhouse gas emission 

scenarios. Their results show that the hydrologic models can produce major differences in runoff change considering the 60 

same climate change scenarios, in particular during the dry season. Bastola et al. (2011) examined the role of hydrologic 

model uncertainties (parameter and structural uncertainty) using four conceptual hydrologic models and six climate change 

scenarios within the generalised likelihood uncertainty estimation (GLUE) and Bayesian model averaging (BMA) methods. 

The results for the four Irish catchments considered showed a tendency of increasing flow in winter and decreasing flow in 

summer. Thompson et al. (2013) demonstrated for the Mekong river in southeast Asia that GCM-related uncertainty in 65 
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climate change projections is generally larger than that related to the use of three hydrologic models, which simulate the 

same direction of change in mean discharge. However, hydrologic model related-uncertainty is not negligible and in some 

cases is of a similar magnitude to GCM-related uncertainty. Vansteenkiste et al. (2014) used an ensemble of hydrologic 

models, from lumped conceptual to distributed physically based, to assess the impact of climate change on the Grote Nete 

basin (Belgium). The uncertainty in the hydrologic impact results was evaluated by the relative change in runoff volumes 70 

and peak and low flow extremes from historical and future climate conditions. Large differences in model predictions were 

found, especially under low flow conditions Using an ANOVA approach, Bosshard et al. (2013) assessed the uncertainties 

induced by climate models, bias correction methods, and hydrological models using the output of eight RCMs for the Upper 

Rhine. The results indicate that some of the uncertainties are not attributable to individual modeling chain components but 

rather they depend on the interactions between these components, and that overall the greatest contribution to uncertainty 75 

derives from the climate models. Maurer et al. (2010) investigated the effect of hydrologic model structure by comparing a 

lumped and a distributed model driven by twenty-two climate model outputs for three California watersheds. The projected 

percent changes in monthly discharge did not significantly differ between the two models, except for extreme flows and 

during summer months.  

 80 

In this study, we characterize the agreement between both climate and hydrologic predictions in the Rio Mannu catchment, a 

small Mediterranean basin located in a semiarid region in Sardinia (Italy). For this aim, we use an ensemble of climate and 

hydrologic models, including four combinations of GCMs and RCMs and a set of five hydrologic models of varying 

structural complexity, from conceptual to physically-based. This is the first study wherein a wide range of distributed 

hydrologic models forced with outputs of different climate models is applied to a Mediterranean catchment to assess the 85 

impact of climate change. Moreover, unlike many previous studies, we focus on a set of variables characterizing and 

affecting the water balance at the catchment scale, including precipitation, air temperature, discharge, soil water content in 

the first meter, and actual evapotranspiration. The results are discussed in the context of the process representations for each 

model and within a rigorous analysis of agreement framework. For the latter a new metric, proposed by Duveiller et al. 

(2016), will be used to compare model results for reference and future periods using correlation and bias coefficients.  90 

2 Study area 

The study site is the Rio Mannu di San Sperate at Monastir basin, located in southern Sardinia, Italy (Fig. 1). The Rio Mannu 

basin was one of the seven study sites of a European-funded climate change research project (Ludwig et al., 2010). Amongst 

the reasons for selecting the Rio Mannu site for this project is the presence of an agricultural research station within its 

boundaries, where extensive field characterization studies could be undertaken, and the vulnerability of this region to 95 

climatic extremes (e.g., several prolonged drought periods over the past decades). Over the course of the European project, 
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several field and modeling activities of relevance to this study were undertaken (Cassiani et al., 2012; Marras et al., 2014; 

Filion et al., 2016; Meyer et al., 2016).  

 

The Rio Mannu catchment drains an area of 473 km2 and is characterized by a gently rolling topography, with an elevation 100 

range from 66 to 962 m a.s.l. and a mean slope of 17 %. The mean annual precipitation is 600 mm and the mean temperature 

ranges from 9 °C in January to 25 °C in July-August. The climate is typically Mediterranean, with about 90 % of the annual 

rainfall falling from October to April. The discharge regime is characterized by low flows (less than 1 m3/s) for most of the 

year (Mascaro et al., 2013a). Precipitation, temperature, and discharge within and around the Rio Mannu catchment have 

been collected at a daily time scale, albeit intermittently and not always coincidentally, since 1925. As shown in Fig 2, soil 105 

texture in the Rio Mannu catchment is dominated by three classes, including clay loam–clay (37 %), sandy loam–loam (32 

%), and sandy loam–sandy clay loam (20 %). Agriculture (∼ 48 %) and sparse vegetation (∼ 26 %) are the dominant land use 

classes. A more detailed description of the basin land surface properties can be found in Mascaro et al. (2013b).  

3 Methods 

 An impact assessment framework was developed during the precursor European project wherein the best performing four 110 

GCM-RCM combinations from the ENSEMBLES project (van der Linden and Mitchell, 2009) were selected for each study 

site. The daily GCM-RCM outputs at 25 km resolution for a reference (1971-2000) and a future (2041-2070) period were 

bias corrected and statistically downscaled. For the Rio Mannu site, the downscaled data were then used to force five 

hydrologic models for the reference and future periods. The hydrologic models were independently calibrated and validated 

against observed data, with each modeling group using the type of data most suitable to that model, such as field-scale soil 115 

moisture, evapotranspiration patterns, and discharge. More details on the model calibration are given after the model 

descriptions below.  

3.1 Hydrologic models  

The five hydrologic models examined in this study are: CATchment HYdrology (CATHY), Soil and Water Assessment Tool 

(SWAT), TOPographic Kinematic APproximation and Integration (TOPKAPI), TIN-based Real time Integrated Basin 120 

Simulator (tRIBS), and WAter balance SImulation Model (WASIM). The models differ greatly in their representation of 

terrain features and physical processes and in their numerical complexity, but they are all able to account for the spatial 

variability of meteorological inputs and land surface properties, albeit at different levels of detail. Table 1 summarizes the 

characteristics of each hydrologic model, highlighting the main differences between them. For more detail, the reader is 

referred to the references provided below in the description of each model. 125 
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CATHY is a physically based numerical model that resolves in a detailed manner the interaction between subsurface and 

surface water (Camporese et al., 2010). The surface module is based on the resolution of a one-dimensional diffusion wave 

approximation of the Saint Venant equation for overland and channel routing (Orlandini and Rosso, 1996). The subsurface 

module solves the three-dimensional Richards equation that describes flow in variably saturated porous media (Paniconi and 130 

Wood, 1993). The surface grid, catchment boundaries, and rill and channel flow paths are delineated via topographic 

analysis of digital elevation maps. Model inputs consist of spatially variable or homogeneous meteorological data and 

surface properties for each zone and layer of the basin. CATHY outputs include time series of actual fluxes and discharge 

and at any location in the stream network and spatial maps of several hydrological variables (e.g., pressure, saturation, 

ponding) at specified times.  The CATHY model has been used in many exploratory studies, benchmarking exercises, and 135 

real catchment applications, including the assessment of climate change impacts (e.g., Gauthier et al., 2009; Sulis et al., 

2011; Gatel et al., 2016; Kollet et al., 2017; Scudeler et al., 2017). 

 

SWAT is a conceptual, semi-distributed model that allows the evaluation of climate and land use impacts on water resources, 

sediments, and agriculture through a physical representation of hydrologic processes, soil temperature, plant growth, 140 

nutrients, pesticides, and land use (Arnold et al., 1998). In SWAT, a watershed is divided into multiple subwatersheds, which 

are then further divided into hydrologic response units (HRUs) that consist of homogeneous land use, management, 

topographic, and soil characteristics. The HRUs are represented as a percentage of the subwatershed area and need not be 

contiguous or spatially identified. A daily time step is adopted in the simulation of hydrologic processes. Surface runoff is 

estimated using the Soil Conservation Service (SCS) curve number procedure, and the movement of soil moisture vertically 145 

within the soil profile is simulated using a one-dimensional tipping bucket approach. Model inputs consist of meteorological 

data and surface and vegetation properties. SWAT outputs include time series of discharge at any location in the stream 

network and actual evapotranspiration and soil water content integrated over the basin. Its applications range from 

engineering/practical aims to research studies (e.g., Arnold et al., 1999; Cau et al., 2005; Mausbach and Dedrick, 2004; Volk 

et al., 2007).  150 

 

TOPKAPI is a physically based distributed rainfall-runoff model that combines basin topography with the kinematic 

approach (Ciarapica and Todini, 2002). The model consists of five modules that simulate the main hydrologic processes 

including subsurface flow, overland flow, channel flow, evapotranspiration, and snowmelt. These can be simulated at an 

hourly time step. Four nonlinear reservoir differential equations solved using a two-dimensional finite difference method are 155 

used to describe subsurface, overland, and channel flow. The model uses a regular grid to represent the terrain and is 

computationally efficient and thus suitable to be applied for real-time flood forecasting. Model inputs consist of 

meteorological data and spatial maps of surface properties (e.g., soil texture and land cover maps). TOPKAPI outputs 

include time series of discharge at any location in the stream network and actual evapotranspiration and soil water content 

integrated over the basin. TOPKAPI has been successfully implemented as a research and operational hydrologic model in 160 
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several catchments worldwide (e.g., Liu and Todini, 2002; Bartholomes and Todini, 2005; Liu et al., 2005; Martina et al., 

2006).  

 

tRIBS is a physically based spatially distributed model that reproduces a range of hydrologic processes (Ivanov et al. 2004) 

including canopy interception and transpiration, evaporation from bare and vegetated soils, infiltration and soil moisture 165 

redistribution, shallow subsurface transport, and overland and channel flows (Mascaro et al., 2013b). Terrain features are 

represented via triangulated irregular networks (TINs). In each Voronoi polygon derived from TINs the coupled energy and 

water balances are computed, while the infiltration scheme is based on the resolution of the two-dimensional modified 

Green-Ampt model. A kinematic wave routing model is used to simulate transport of water in the channel network. Model 

inputs include spatial maps of surface properties (e.g., soil texture and land cover maps). tRIBS outputs include time series 170 

of discharge at any location in the stream network and spatial maps of several hydrological variables (e.g., actual 

evapotranspiration, soil water content at different depths) at specified times or integrated over the simulation period (Piras, 

2014). The model has been applied across a large range of scales in the areas of hydrometeorology, climate change, and 

ecohydrology (e.g., Liuzzo et al., 2010; Mascaro et al., 2010, 2015; Mahmood and Vivoni, 2014). Recently, Piras (2014) and 

Piras et al. (2014) applied tRIBS in the Rio Mannu catchment to evaluate the hydrologic impact of climate change.  175 

 

WASIM is a physically based and fully distributed hydrologic model (Schulla, 2015) originally developed to evaluate the 

influence of climate change on water balance and runoff regime in pre-alpine and alpine river catchments (Schulla, 1997). 

WASIM runs in a grid-based structure and represents vertical fluxes in the unsaturated zone by the one-dimensional 

Richards equation, which is solved with a finite difference scheme. Discharge routing is performed by a kinematic wave 180 

approach. After the translation of the wave for all channels, a single linear storage is applied to the routed discharge 

considering the effect of diffusion and retention  (Schulla and Jasper, 2001). Sub-modules are available for various 

hydrologic variables such as interception, discharge, runoff, snowmelt, and evapotranspiration. Model inputs consist of 

meteorological data and spatial maps of surface properties (e.g., soil texture and land cover maps). WASIM outputs include 

time series of discharge at any location in the stream network and spatial maps of several hydrological variables (e.g., actual 185 

evapotranspiration, soil water content) at specified times or integrated over the simulation period. WASIM has been 

previously applied for hydrologic issues such as impact analysis for river basins and hydrologic forecasting (e.g., 

Cornelissen et al., 2013; Jasper et al., 2002; Kunstmann et al., 2006; Meyer et al., 2016). 

 

The calibration procedures varied from one model to the next, owing to the significant structural differences between the 190 

models, and to the fact that each modeling group worked independently of the others, within different project frameworks 

and timelines. tRIBS was calibrated manually against discharge observations at the outlet for the year 1930, and validated for 

the 1931-1932 period (Mascaro et al., 2013b). The calibration focused on its two most sensitive parameters, saturated 

hydraulic conductivity at the surface and the decay parameter that models the variation of conductivity with soil depth. 
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Model performance was assessed based on a comparison between observed and simulated discharge and flood duration 195 

curves, quantified using the Nash-Sutcliffe index. For WASIM, Meyer et al. (2016) conducted a soil sampling campaign on 

the Rio Mannu catchment in 2010-2011. They tested the performance of different regionalization methods for soil texture 

against soil moisture field measurements, and derived a new soil texture map based on the best of these methods. WASIM 

was then run with two different soil configurations – the new map and the available regional soil map – and the sensitivity to 

model outputs was examined. The model was validated with spatially distributed evapotranspiration rates using the triangle 200 

method (Jiang and Islam, 1999), and performances were quantified using the coefficient of determination. The SWAT model 

parameterization was based on a regional scale calibration of the model’s soil parameters against discharge observations 

(Cau et al., 2005). Model performances were quantified using the correlation coefficient computed from the simulated and 

observed discharge for all basins in Sardinia with at least 10 years of continuous streamflow data. For CATHY and 

TOPKAPI, the same dataset and parameter settings as the tRIBS model were used for common parameters, in order to 205 

investigate parameter transferability between these three models (Perra et al., manuscript in preparation). 

3.2 Climate models, bias correction, and statistical downscaling  

Deidda et al. (2013) analyzed the open-access outputs of fourteen GCM-RCM combinations from the ENSEMBLES project 

to identify those exhibiting the best performance in terms of representing the intra-annual variability of precipitation and 

temperature in the present climate for the seven study sites of the precursor European project. For each study site, the 210 

selected set of climate model data was validated using the E-OBS dataset, a high quality pan-European gridded observational 

dataset of daily precipitation and temperature (Haylock et al., 2008). The models (and their acronyms: ECH-RCA, ECH-

REM, ECH-RMO, and HCH-RCA) selected for the Rio Mannu site are listed in Table 2. For these models, outputs were 

extracted for a reference (1971-2000) and a future (2041-2070) period under the A1B emission scenario (Nakićeović et al., 

2000), which was considered one of the most realistic and provided the most complete dataset within the ENSEMBLES 215 

models. A large-scale bias correction was applied to precipitation and temperature fields using the daily translation method 

(Wood et al., 2004; Maurer and Hildago, 2008) with the E-OBS dataset as reference. In addition, downscaling techniques 

were applied to disaggregate precipitation and temperature from the coarse resolution of the climate models (~25 km, 24 h) 

to finer resolutions (5 km, 1 h) suitable for hydrologic modeling. For precipitation, the multifractal downscaling model of 

Deidda et al. (1999) and Deidda (2000) was utilized, while temperature was interpolated in space through lapse rate 220 

corrections as in Liston and Elder (2006). More details on the bias correction and downscaling techniques are provided in 

Piras et al. (2014). For the models tRIBS, CATHY, and TOPKAPI, temperature grids were used to derive hourly grids of 

potential evapotranspiration according to the method described in Mascaro et al. (2013b). 

3.3 Metrics to compare climate and hydrologic models  

To compare the outputs of (i) the four climate models, and (ii) the five hydrologic models forced by the four climate models 225 

in the reference and future periods, we first derived the climatological monthly means. Next, we quantified the difference 
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between each pair of climate or hydrologic models by using the Pearson correlation coefficient r and the bias coefficient 𝛼, 

proposed by Duveiller et al. (2016), defined as:  

r=
Xi − X( ) Yi −Y( )

i=1
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where 𝑋!   and 𝑌!  are the 30-year mean monthly values of a given response variable simulated by a pair of models, 𝑋 and  𝑌 are 

their means, 𝜎!  and 𝜎!  are their standard deviations, and n = 12 is the number of months per year.  

 

The Pearson coefficient, which can range between -1 and 1, is a widely used measure of the degree of linear dependence 235 

between two datasets, but it does not give any indication of how similar they are in magnitude. In contrast, the bias 

coefficient, ranging from 0 (full bias, no agreement) to 1 (no bias, perfect agreement), evaluates possible additive or 

multiplicative biases between the model outputs. These two indices were recently used in a hydrologic model 

intercomparison study (Kollet et al., 2017) to evaluate the agreement between seven integrated surface-subsurface models 

for a series of benchmark test cases. Here, the two indices r and α were computed for all pairs of both climate and 240 

hydrologic representative variables. The results are presented in matrix pictures where each element represents the index 

value for a single model pair, thus allowing easy comparison of each combination of model pairs with all the others. In Fig. 

3, an example of a matrix picture between two models A and B is shown: the circles represent correlation r and the squares 

bias α, with the color and size of the markers proportional to the value of the metric. Four possible levels of model 

agreement are reported: high, medium, low, and no agreement.  245 

4 Results and discussion 

In this section the main meteorological forcing, precipitation, and temperature projected by the climate models are first 

presented and analyzed in terms of variations between the future and reference periods, in order to establish the expected 

climate change trends for the Rio Mannu catchment. The level of agreement between climate models is then evaluated for 

the reference and future periods using Pearson correlation values and Duveiller biases. Subsequently, the impact of projected 250 



 

9 
 

climate change is investigated through application of the five hydrologic models. Water availability and fluxes in terms of 

discharge, soil water content, and actual evapotranspiration are analyzed for trends and inter-model agreement. 

4.1 Climate models: projected changes and comparison/agreement analysis  

Climate model outputs were bias-corrected and downscaled to provide more reliable inputs to the hydrologic models. 

Specifically, for each climate model, the climatological means of precipitation (P) and temperature (T) averaged over the 255 

catchment were computed at annual and monthly scales. Figure 4 compares results for the reference and future periods. All 

models predict a decrease of mean annual P, with percent changes ranging from -7 % to -21 %, and an increase of T from 1.9 

ºC to 3 ºC. All models predict negative changes in P for all months except winter (December–February), where the models 

simulated an increase in P, and also June for ECH-REM and October for ECH-RMO. T is projected to rise in all months for 

all models, with the RCMs forced by ECH predicting comparable magnitudes in change, and HCH-RCA simulating the 260 

largest increment.  

 

To quantify the agreement of the monthly climatologies of P and T predicted by the models, the correlation coefficient, r, 

and the bias, α, are plotted in Fig. 5. The left and right panels show the results for, respectively, P and T for the reference 

(top) and future (bottom) periods. In each panel, circles represent r and squares α, while color and size of the markers are 265 

proportional to the metric value. The actual values of the Pearson and bias coefficients are reported in the supplementary 

Table S1. The metrics indicate a general high level of agreement of the climatologies simulated by all models, with r and α 

for each pair of models always larger than 0.9 for both variables and in both periods. Comparing the same climate model for 

the reference and future periods, the values of r and α (last row and last column, respectively, of the bottom panels) are also 

high for both variables: for P and the HCH-RCA model, which is the model that slightly differs from the others, both 270 

Pearson and bias coefficients are close to 1 (r = 0.918 and α = 0.912). As a result, the agreement of seasonal cycles is high, 

especially in the case of temperature, suggesting that the uncertainty due to climate models can be considered low, although 

a small bias is found when comparing the three climate models forced by ECH with HCH-RCA, as expected since it is 

recognized that GCMs exert the major influence on the projected climate change (Graham et al., 2007; Kay et al., 2009). 

4.2 Hydrologic impact 275 

A summary of the annual and monthly climatologies of basin-averaged potential evapotranspiration (ETP), runoff (Q), soil 

water content (SWC), and actual evapotranspiration (ETa) simulated by the five hydrologic models, forced by four climate 

models, is reported in Fig. 6-9. Each figure shows: the annual simulated variable in each period, including the percent 

change from reference to future (panel a); the relative change in mean annual values between reference and future periods 

forced by the four climate models (panel b); the seasonal distribution of mean monthly values of each variable during 280 
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reference and future periods and corresponding standard deviations (panel c); and finally the seasonal distribution of relative 

change of mean monthly values between reference and future periods (panel d). 

 

ETP is predicted to rise by all models on an annual basis (Fig. 6a), mostly due to the projected increment of T. The values of 

annual and monthly (Fig. 6c) ETP differs among the hydrologic models, due to the different computation methods adopted. 285 

For SWAT and WASIM, ETP was computed at a daily time scale by internal routines based on Hargreaves (Hargreaves et 

al., 1994, 2003) and Penman-Monteith (Penman, 1948; Monteith, 1965) formulas, respectively, producing an annual mean of 

about 1100 mm for SWAT and 1400 mm for WASIM. For CATHY, TOPKAPI, and tRIBS, a common reliable diurnal cycle 

for ETP was derived at hourly time scale using an approach based on Penman-Monteith and Hargreaves formulas, detailed in 

Mascaro el al. (2013b), producing an annual mean of about 650 mm, which is consistent with previous estimates for this 290 

region (Pulina et al., 1986).  From Fig. 6c we can also observe the slight increase of ETP predicted by all hydrologic models 

in the future period, except for the WASIM model and especially during summer and spring months. Furthermore, notice 

that the highest increase of ETP is predicted with all hydrologic models under HCH-RCA forcing (Fig. 6b), as expected 

since this GCM-RCM combination also projects the highest increase in temperature, as already discussed. Among the 

hydrologic models, WASIM is the one that predicts the higher increase. We can observe also from Fig. 6d that relative 295 

changes in potential evapotranspiration are predicted to increase much more during summer and spring. 

 

Results in terms of Q are analyzed in Fig. 7: it is apparent that all models predict decreasing values in the future. Figure 7a, 

reporting mean annual Q obtained for each hydrologic model in the reference and future periods obtained as an average 

among the four climate models, shows a reduction that ranges from -12 % according to SWAT to -69 % according to 300 

CATHY. Figure 7b reports the relative change between future and reference periods computed for each climate model 

configuration: we can observe that the reduction varies within the same hydrologic model considering different climate 

forcing. The largest decrease is always given by configurations forced with HCH-RCA, ranging from -23 % for the SWAT 

model to -91 % for the CATHY model, followed by the climate model ECH-RCA, for which the reduction varies from -16 

% for SWAT to -67 % for CATHY. A summary in terms of change (%) between reference and future periods for mean 305 

annual Q, simulated by the five hydrologic models and the four climate models, is provided in Table 3. Figure 7c refers to 

mean monthly Q, showing the mean seasonality in reference (solid line) and future (dotted line) periods with bars indicating 

the standard deviations within each model. Figure 7d details the monthly variations during the two periods according to the 

five hydrologic models: the seasonality is quite similar among them even if some differences hold also in this case. The five 

hydrologic models predict diminished mean monthly Q in the future period throughout the year with the exception of 310 

January and February, when SWAT and WASIM simulate a slight increase. 

 

Figure 8 shows mean values and changes of SWC in the first meter depth of soil. All simulations predict a decreasing trend 

of SWC, but again we can notice some differences among the hydrologic models. For instance Fig. 8a clearly shows that 
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CATHY presents the highest soil humidity (35 %) and WASIM the lowest (17 %), while the highest and lowest decrements 315 

in the future are observed, respectively, for TOPKAPI (-13 %) and tRIBS (-5 %). Figure 8b details the relative change 

between future and reference periods for each configuration of hydrologic and climate models. As for Q, each hydrologic 

model simulates the maximum SWC reduction under the HCH-RCA configuration. The reduction with this climate forcing, 

ranging from -9 % for tRIBS to -22 % for TOPKAPI, can in fact be double with respect to the one obtained with the other 

climate models. A summary in terms of change (%) between reference and future periods of mean annual SWC, simulated 320 

by the five hydrologic models and the four climate models, is provided in Table 3. The mean monthly seasonal distribution 

of SWC reported in Fig. 8c is quite different among the five hydrologic models. SWAT presents the highest variations from 

winter/spring to summer month values, while the annual range is more limited in the CATHY and tRIBS simulations. The 

mean monthly relative changes between reference and future periods represented in Fig. 8d are always negative. CATHY 

simulates a quite constant diminution (of about 0.035) throughout the year, which is always larger than the other models. The 325 

changes exceed 0.03 in May for TOPKAPI and SWAT, which instead predict the lowest reduction in winter months. These 

reductions during spring months can be related to the higher vegetation activity combined with moderate values of 

temperature and potential evapotranspiration. 

 

The differences among the hydrologic models in representing soil–vegetation–atmosphere transfers are reflected also in 330 

simulations of ETa processes (Fig. 9). The mean annual values reported in Fig. 9a are predicted to decrease in the future by 

four models (tRIBS presents the lowest reduction, -2 % on average, SWAT the highest, -12 % on average), with CATHY 

being the only one projecting a slight increase. The reason for this is that CATHY simulates the highest soil water content in 

the first meter depth, as can be appreciated in Fig. 8a and 8c, and it is the model that simulates the minimum discharge (Fig. 

7a and 7c), thus it retains more water within the soil zone available for evaporation. Figure 9b shows that the highest 335 

variations (both positive and negative) in actual evapotranspiration are again reached in simulations forced by the HCH-RCA 

model, ranging from -17 % for SWAT and WASIM and +16 % for CATHY. A summary in terms of change (%) between 

reference and future periods of mean annual ETa, simulated by the five hydrologic models and the four climate models, is 

provided in Table 3. Mean monthly ETa reported in Fig. 9c presents different patterns, with the hydrologic models divided 

into two groups: CATHY, TOPKAPI, and tRIBS reach the highest values during summer months, when temperature and 340 

potential evapotranspiration are higher; SWAT and WASIM anticipate the seasonal peak in spring when moderate 

temperatures coincide with vegetation activity, a component that these two models incorporate more fully than the other 

three models. The different patterns may also be due to limited water availability during the summer: as can be seen from 

Fig. 8c, SWAT and WASIM simulate quite low soil water content during July and August. Figure 9d, reporting relative 

changes in monthly values, shows that the increase predicted by CATHY is highest in spring; in fact relative changes in 345 

monthly temperatures (Fig. 4d) and potential evapotranspiration (Fig. 6d) during spring are predicted to increase much more 

than during summer months. The other four models predict instead a future diminution more pronounced in summer, 

exceeding -10 mm for the WASIM model. This can be related to the fact that these models in the future simulate during 
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summer months lower soil water content with respect to the reference period (Fig. 8d). In winter months the future 

evapotranspiration reduces negligibly, or even increases slightly in the case of WASIM.  350 

4.3 Agreement analysis  

The agreement among the hydrologic models forced with the different climate configurations is evaluated using the Pearson 

correlation and Duveiller bias coefficients in Fig. 10-12. The actual values of the Pearson and and bias coefficients are 

reported in the supplementary Tables S2-S4. Figure 10 shows the results for Q, and each panel summarizes the agreement 

among hydrologic models forced by a specific GCM-RCM configuration for the reference (top panels) and future (bottom 355 

panels) periods. Following the same graphical representation of Fig. 3, Pearson coefficients are displayed as circles in the 

lowest-left part of each panel, while the bias coefficients are represented with squares in the upper-right part. In both cases 

the size of symbols is proportional to the magnitude of the corresponding coefficient. We can notice that during the reference 

period the agreement in terms of both indices between any pair of hydrologic models is high, with the HCH-RCA 

performance slightly better than for the other climate forcing configurations. The values of the Pearson coefficient r, 360 

comparing the hydrologic models in pairs, range from 0.70 (CATHY-WASIM under ECH-RMO forcing) to 0.99 

(TOPKAPI-tRIBS under ECH-RMO forcing) for the reference period and from 0.67 (CATHY-WASIM and CATHY-SWAT 

under ECH-REM forcing) to 0.99 (SWAT-TOPKAPI under HCH-RCA forcing) for the future period. Looking at the bias 

coefficient we can observe a general agreement (α > 0.7) regardless of the climate forcing among the hydrologic models, 

except for CATHY, which shows in the future period the highest differences with the other models, as expected from Fig. 5, 365 

with the lowest agreement occurring for the HCH-RCA configuration. CATHY generates the lowest Q in the future, and this 

result is reflected in the values of the bias parameter α, which exceeds the value of 0.7 only when CATHY is compared 

under ECH-REM with tRIBS and WASIM, which use the same equations as CATHY to represent subsurface and surface 

dynamics, albeit simplified in some way (e.g., lower dimensionality). Bias parameters values range from 0.53 (CATHY-

TOPKAPI forced by ECH-RMO) to 0.99 (SWAT-tRIBS forced by ECH-RMO) for the reference period and from 0.09 370 

(CATHY-SWAT under HCH-RCA forcing) to 0.99 (SWAT-TOPKAPI under ECH-RMO forcing) for the future period.  

 

Figure 11 shows a similar comparison for SWC. The agreement among the hydrologic models generally diminishes with 

respect to the discharge intercomparison. Again the CATHY model presents the lowest correlation with the others, followed 

by tRIBS. CATHY and tRIBS are in fact the two models that show limited variations of SWC from winter/spring to summer 375 

month values with respect to the others, as shown in Fig. 8b. The values of the Pearson coefficient r range from 0.65 

(CATHY-tRIBS in HCH-RCA configuration) to 0.98 (SWAT-tRIBS forced by ECH-RCA) for the reference period and 

from 0.57 (CATHY-tRIBS in ECH-RCA simulations) to 0.97 (CATHY-TOPKAPI forced by HCH-RCA) for the future 

period. The value of the bias coefficient α is near zero when the models are compared with CATHY and also quite low 

(about 0.2) when compared with tRIBS. The values of α range from 0.01 (CATHY versus tRIBS and WASIM in both ECH-380 
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RCA and ECH-REM configurations) to 0.86 (TOPKAPI versus WASIM forced by ECH-RMO) for the reference period and 

from 0.01 (CATHY-WASIM in ECH-REM simulations) to 0.94 (TOPKAPI versus WASIM forced by ECH-RMO) for the 

future period. 

 

The analysis of agreement presents the lowest Pearson correlation values in the case of ETa (Fig. 12). The values of r range 385 

from -0.21 (CATHY-WASIM in ECH-REM configuration) to 0.98 (CATHY-tRIBS for all climate model configurations) for 

the reference period and from -0.29 (CATHY-WASIM in ECH-REM simulations) to 0.99 (CATHY-tRIBS for all 

configurations) for the future period. Despite the high values of the Pearson coefficient between CATHY and tRIBS for both 

the reference and future periods regardless of the GCM-RCM forcing, the Duveiller index displays a worsening (α ≈ 0.6 – 

0.8). Considering overall results, the values of the bias coefficient α range from 0 (CATHY and tRIBS versus WASIM in 390 

ECH-REM configuration) to 0.99 (TOPKAPI versus tRIBS for all configurations) for the reference period and from 0 

(CATHY-WASIM in ECH-RMO simulations) to 0.99 (TOPKAPI versus tRIBS for all configurations) for the future period. 

From this figure it can be noted that, notwithstanding the differences, Pearson and bias indices for the reference period are 

similar for CATHY, tRIBS, and TOPKAPI (which are forced with the same ETP values). Furthermore, these models reach 

the highest values of ETa during the summer months (Fig. 9c), when the temperature is highest. For the future period this 395 

agreement is maintained, with a strong correlation between tRIBS and TOPKAPI. Referring to the pair SWAT-WASIM, 

they anticipate the peak of ETa in spring when moderate temperatures coincide with vegetation activity (Fig. 9c). This can be 

seen for the reference period and less for the future one, when α is slightly lower.  

 

The differences that emerge from the analysis of agreement are consistent with the key structural differences between the 400 

hydrologic models. CATHY, for instance, has the most detailed subsurface representation of the five models (fully three-

dimensional Richards equation; soil and aquifer zones), and as such will tend to retain more water in subsurface storage, 

making some of this water available for subsequent evaporation. An additional factor contributing to greater subsurface 

storage in CATHY is that all the lateral and bottom boundaries of the simulation domain are considered impermeable. In the 

agreement metrics CATHY tends to align most with TOPKAPI and tRIBS, which, although with a more simplified 405 

representation, also account for both vertical and lateral subsurface flow, unlike SWAT and WASIM, which resolve flow 

only in the vertical direction. These latter two models, on the other hand, show strong agreement, to the exclusion of the 

other models, for some of the evapotranspiration responses, consistent with the fact that both these models include a quite 

detailed representation of vegetation processes. 

5 Conclusions 410 

Five hydrologic models forced with the outputs of four combinations of global and regional climate models were compared 

to evaluate climate change consequences on the response of a medium-sized Mediterranean basin, the Rio Mannu catchment. 
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In order to evaluate the agreement between model pairs, a new metric based on Pearson correlation and Duveiller bias 

coefficients has been used. The hydrologic models, independently calibrated and validated, were applied in cascade with 

climate models for a reference (1971-2000) and a future (2041-2070) period. Temporal series of different response variables 415 

simulated by the hydrologic models were used to evaluate the impacts on the basin of the predicted climate change in terms 

of water resource availability.  

 

In a first step, climate model outputs, suitably bias corrected and downscaled, were analyzed for the reference and future 

periods by comparing mean monthly and annual values of precipitation and temperature and by examining the agreement 420 

metrics. All of the GCM-RCM combinations agree that in the future period there will be decreasing mean annual 

precipitation (average differences of about -12%), whereas on a monthly basis the sign of the variation depends on the month 

and the model. As regards the temperature trend, all of the GCM-RCM combinations predict increasing mean annual T 

values that vary from 11 % (1.9 °C) to 19 % (3 °C) depending on the model. A similar behavior for the four GCM-RCM 

combinations is also found for the mean monthly temperature trend, with positive variations in every season for the future 425 

period, from about 7 % (ECH-REM in June) to 30 % (HCH-RCA in March). The correlation and bias coefficients show 

favorable agreement when analyzing mean monthly precipitation and temperature for the reference and future periods. The 

uncertainty due to climate models can thus be considered low and is due principally to the GCM component that is 

recognized to exert the major influence on projected climate change. 

 430 

In a second step, hydrologic model outputs related to water availability (namely discharge, soil water content, and actual 

evapotranspiration) were analyzed. Simulation results show decreasing mean annual runoff and a reduction of the soil water 

content at 1 m depth for the future period (average decreases of 31 % and 9 %, respectively). Actual mean annual 

evapotranspiration in the future will diminish according to four of the five hydrologic models due to drier soil conditions 

(average decrease of 8 %), while it will rise (by 10 %) in the prediction of the CATHY model, which retains the highest 435 

water content in its soil profile. For all response variables the biggest decrease is always predicted with the HCH-RCA 

model. Analyzing hydrologic model outputs at monthly scale, we can observe variations not perceptible at the annual scale. 

Discharge for instance is predicted to decrease in the future period in all months except for January and February.  

 

In terms of model agreement, for the reference period we can observe a good concordance between each pair of hydrologic 440 

models, while more significant differences emerge for the future period. The model that most differs from the others is 

CATHY, which generates the lowest discharge in the future, and this result is reflected in the values of the bias parameter. 

The five hydrologic models confirm the reduction of soil water content throughout the year, and the magnitude of variation 

depends on the hydrologic model considered. Again the CATHY model yields the lowest correlation with the other models, 

followed by tRIBS. Both models, in fact, show limited variation of soil water content from winter/spring to summer months 445 

with respect to the others, and this as well is reflected in the bias value. Actual evapotranspiration could rise in the future 
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period according to the CATHY model and, during January and February, also according to WASIM, which instead predicts 

the strongest reductions in summer months. As regards the analysis of agreement for actual evapotranspiration, Pearson and 

bias indices are similar for CATHY, tRIBS, and TOPKAPI (which are forced with the same values of potential 

evapotranspiration). Moreover, these models reach the highest values of actual evapotranspiration during summer months. 450 

For the future period this agreement is maintained, with a strong correlation between tRIBS and TOPKAPI. The model pair 

SWAT-WASIM anticipates the peak of actual evapotranspiration in spring when moderate temperatures coincide with 

vegetation activity. This behavior is more pronounced for the reference period than for the future one, due to the higher bias. 

Overall the five hydrologic models show good agreement, responding similarly to the climate model predictions of reduced 

precipitation and increased temperatures and lending strong support to a future scenario of increased water shortages for this 455 

region of the Mediterranean, with negative consequences especially for the agricultural sector. 
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Model Discretization 

scheme 

Infiltration/Subsurface 

flow 

Surface 

flow 

Topographic 

representation 

     

CATHY Finite element Richards’ equation 

 

Diffusive wave Regular grid 

SWAT Subwatershed Tipping bucket Soil Conservation 

Service (SCS)  

Homogeneous 

hydrologic units 

 

TOPKAPI 

 

Finite difference 

 

Kinematic wave 

 

 

Kinematic wave  

 

Regular grid 

 

tRIBS 

 

Finite difference 

control volume 

 

Modified  

Green-Ampt 

 

 

Kinematic wave 

 

Triangulated irregular 

network  

WASIM Finite difference Richards’ equation 

 

Kinematic wave Regular grid 

 680 
Table 1: Comparison of the structure and characteristics of the five hydrologic models. 
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 Climatological center and model Acronym 

   

GCM 

Hadley Centre for Climate Prediction, Met Office, UK 

HadCM3 Model  
HCH 

  Max Planck Institute for Meteorology, Germany 

ECHAM5 / MPI Model 
ECH 

   

RCM 

Swedish Meteorological and Hydrological Institute (SMHI), Sweden 

RCA Model 
RCA 

  Max Planck Institute for Meteorology, Hamburg, Germany 

REMO Model 
REM 

  Koninklijk Nederlands Meteorologisch Instituut (KNMI), Netherlands 

RACMO2 Model 
RMO 

    

Table 2: List of global and regional climate models used in this work. The four GCM-RCM combinations used are ECH-RCA, 700 
ECH-REM, ECH-RMO, and HCH-RCA. 
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Overall tendencies  

considering all climate models 

 

Overall tendencies  

considering all hydrologic models 

  
CAT 

(%) 

SWA 

(%) 

TOP 

(%) 

TRI 

(%) 

WAS 

(%) 

ALL 

H.M. 

(%) 

ERC 

(%) 

ERE 

(%) 

ERM 

(%) 

HRC 

(%) 

ALL 

C.M. 

(%) 

Q 
𝜇 -68 -12 -25 -32 -19 -31 -32 -19 -24 -49 -31 

𝜎 18 10 13 14 14 14 20 16 26 25 22 

SWC 
𝜇 -10 -8 -13 -5 -10 -9 -8 -6 -6 -16 -9 

𝜎 5 5 6 3 4 5 2 2 3 5 3 

ETa 
𝜇 10 -12 -8 -2 -11 -5 -3 -3 -5 -7 -5 

𝜎 4 5 3 1 5 3 7 6 9 14 9 

 

Table 3: Change (%) between future and reference periods of mean annual discharge (Q), soil water content (SWC) and actual 

evapotranspiration (ETa) for the five hydrologic models (CAT = CATHY, SWA = SWAT, TOP = TOPKAPI, TRI = tRIBS, WAS = 

WASIM), expressed as mean (𝝁) and standard deviation (𝝈) calculated for each and then all hydrologic models (H.M.) considering 725 
all climate models (ERC = ECH-RCA, ERE = ECH-REM, ERM = ECH-RMO, HRC = HCH-RCA), and for each and then all 

climate models (C.M.) considering all hydrologic models. 
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Figure 1: Location of the Rio Mannu basin within Italy (a), and Sardinia (b). Boundaries in WGS84 UTM zone 32N coordinates, 

elevation, and stream network of the basin (c). 745 
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Figure 2: (a) Soil texture and (b) land cover maps used for the Rio Mannu basin. 
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Figure 3: (a) Example of matrix picture between two models A and B. Correlation values (-1 ≤  r ≤1) are represented with circles 

below the diagonal, while bias (0 ≤  α ≤  1) is plotted as squares above the diagonal. The size and color of symbols are proportional 

to the coefficient values. White (blank) matrix entries correspond to r = 0 or α = 0. (b) Scatterplot corresponding to the four cases 

shown in panel (a). 760 
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 770 
Figure 4: Mean annual precipitation P (a) and temperature T (c) predicted by the four climate models for the 

reference (1971-2000), blue bars, and future (2041-2070), red bars, periods. Relative change in mean monthly 

precipitation P (b) and temperature T (d) between the reference and future periods for the four climate models. 
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Figure 5:  Results of the analysis of agreement for mean monthly precipitation (left) and temperature (right) among the four 

climate models (ERC = ECH-RCA, ERE = ECH-REM, ERM = ECH-RMO, HRC = HCH-RCA) for the reference (REF, 1971-

2000, top) and future (FUT, 2041-2070, bottom) periods.  
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 780 

Figure 6: Potential evapotranspiration (ETP) for each hydrologic model forced by the four selected climate models for the 

reference (REF, 1971-2000) and future (FUT, 2041-2070) periods. (a) Mean annual ETP during REF and FUT periods, obtained as 

an average among the four climate models. (b) Relative change in mean annual ETP between REF and FUT periods forced by the 

four climate models. (c) Seasonal distribution of mean monthly ETP during REF (solid line) and FUT (dotted line) periods and 

corresponding standard deviations (vertical bars), obtained as an average among the four climate models. (d) Seasonal 785 
distribution of relative change in mean monthly ETP between REF and FUT periods, obtained as an average among the four 

climate models. 
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Figure 7: As Fig. 6, but for discharge (Q) simulated by each hydrologic model forced by the four selected climate models for the 

reference (REF, 1971-2000) and future (FUT, 2041-2070) periods. 790 
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Figure 8.: As Fig. 6, but for soil water content (SWC) simulated by each hydrologic model forced by the four selected climate 

models for the reference (REF, 1971-2000) and future (FUT, 2041-2070) periods. For panel (d) colors for each model are the same 

as panel (c). 795 
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Figure 9: As Fig. 6, but for actual evapotranspiration (ETa) simulated by each hydrologic model forced by the four selected climate 

models for the reference (REF, 1971-2000) and future (FUT, 2041-2070) periods. 
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Figure 10: As Fig. 5, but for mean monthly discharge agreement between the five hydrologic models (CAT = CATHY, SWA = 

SWAT, TOP = TOPKAPI, TRI = tRIBS, WAS = WASIM). Each panel displays the agreement under a specific GCM-RCM 805 
forcing, for the reference (REF, top) and future (FUT, bottom) periods. 
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Figure 11: As Fig. 10, but for mean monthly soil water content agreement between the five hydrologic models (CAT = CATHY, 

SWA = SWAT, TOP = TOPKAPI, TRI = tRIBS, WAS = WASIM) for the reference (REF, top) and future (FUT, bottom) periods. 815 
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Figure 12: As Fig. 10, but for mean monthly actual evapotranspiration agreement between the five hydrologic models (CAT = 820 
CATHY, SWA = SWAT, TOP = TOPKAPI, TRI = tRIBS, WAS = WASIM) for the reference (REF, top) and future (FUT, 

bottom) periods. 

 


