Reply to Reviewer 1 comments

Manuscript number: hess-2018-165

Title of the manuscript: Multimodel assessment of climate change-induced hydrologic impacts for a
Mediterranean catchment.

Authors: E. Perra, M. Piras, R. Deidda, C. Paniconi, G. Mascaro, E.R. Vivoni, P. Cau, P.A. Marras, R.
Ludwig, S. Meyer.

We thank Reviewer 1 for her/his comments on our manuscript. In the following, the specific comments
by Reviewer 1 are copied in bold font, followed by our replies to each point.

1) On page 6, lines 187-193 the authors introduce the climate models used in their analysis and
later they specify the spatial and temporal resolution of the models (25 km, 24 h) and of the
downscaled variables (5 km, 1 h). However, we do not know if the analyses presented on section
4.1 were carried out on the original model output at coarse resolution or on the downscaled
variables. If the analyses were carried out directly on model output, model resolution (25 km) is
similar to basin size, and the process of computing basin averages should be explained in better
detail. If the analyses were carried out on the downscaled variables, I think a discussion of the
possible influence of bias correction and downscaling on the results should be added.

The analyses presented on section 4.1 were carried out using the downscaled and bias-corrected
variables of precipitation and temperature, since we need accurate estimations of the hydrologic
variables to run the hydrologic models. This information is now better conveyed in the revised
manuscript (lines 258-259). With reference to the last suggestion, we agree on the importance of
studying the effect of bias correction and downscaling on the results. This issue was examined for the
Rio Mannu catchment by Piras et al. (2014), cited in the paper, and we are currently conducting a
separate study on the effect of different downscaling techniques on the hydrologic cycle of another
Sardinian basin.

2) I think model calibration also deserves additional discussion. On page 4, lines 112- 114, the
authors say: “The hydrologic models were independently calibrated and validated against
observed data, with each modelling group using the type of data most suitable to that model, such
as field-scale soil moisture, evapotranspiration patterns, and discharge”. I have the impression
that some of the differences observed in model behaviour, like the discrepancies in the monthly
distribution of soil water content shown in Figure 8, may be explained by how the different
models were calibrated. Perhaps the authors should consider a brief discussion of this issue.

We have added at the end of Section 3.1 further details on the calibration and validation procedures for
the five hydrological models (lines 193-209).

3) The authors provide a reference to Duveiller et al., 2016 to introduce their bias coefficient



“alpha”. I found it to be a very interesting paper and thank the authors for calling my attention to
it. From reading this paper, I gathered the impression that it was intended for comparison of
large data sets. However, the authors chose to apply it only to monthly averages, although they
had the full time series available for comparison. Perhaps they should explain the reasons for
their decision.

We agree with the reviewer that it would have been interesting to apply these performance indices to
the time series at their original resolution. However we are using climate model outputs, and the results
must be averaged to have projections of climate variability. For this reason we decided to apply the
Pearson and Duveiller coefficients using the monthly averages.

4) Following on the same argument, I think Figure 3 would be more useful if it included examples
of scatter plots corresponding the four cases shown. This would allow the reader to grasp the kind
of agreement obtained in each of the four cases.

We have added the scatter plots in the revised Figure 3.

5) The shift in the seasonal distribution of actual evapotranspiration between SWAT and WASIM
observed in Figure 9 and the rest of the models may also deserve additional discussion. Could it
be due to limited water availability in the summer? May it be due to spring vegetation growth?

The SWAT and WASIM models anticipate the peak of actual evapotranspiration during spring months:
this could be explained by the fact that these models incorporate also vegetation processes, and also by
limited water availability in the summer. As we can see from Fig. 8¢, SWAT and WASIM simulate

very low soil water content during July and August. This point is now added in the revised manuscript
(lines 350-352).

TECHNICAL CORRECTION From the formal standpoint, the paper is very well written,
correctly organized and adequately illustrated with tables and figures. Interpretation of Figure 5
is handicapped by the fact that the upper row contains four cases for comparison and the lower
row contains five cases. I would suggest resizing one of the two so that both rows plot on the same
scale.

We have resized the lower panel to better interpret Figure 5.
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Title of the manuscript: Multimodel assessment of climate change-induced hydrologic impacts for a
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We thank Reviewer 2 for her/his comments on our manuscript. In the following, the specific comments
by Reviewer 2 are copied in bold font, followed by our replies to each point.

1) Introduction: while describing the state of the art, it would be appropriate, in addition to listing
different sources of uncertainty, also highlight with appropriate bibliographic references that the
uncertainty is greater in the climatic modeling of future scenarios rather than in hydrological
models.

We have added a couple of references (Hawkins and Sutton, 2009; Pechlivanidis et al., 2017) in the
second paragraph of the Introduction that address this point.

2) L.187: According to the sentence “those [models] exhibiting the best performance” it may be
useful to provide some further explanations about the criteria involving the choice of climate
models.

When assessing a climate model’s skills, it is important to examine its ability to reproduce the annual
averages and seasonal variability of precipitation and surface temperature. This is stated in the revised
manuscript as follows (lines 211-215): “Deidda et al. (2013) analyzed the open-access outputs of
fourteen GCM-RCM combinations from the ENSEMBLES project to identify those exhibiting the best
performance in terms of representing the intra-annual variability of precipitation and temperature in the
present climate for the seven study sites of the precursor European project. For each study site, the
selected set of climate model data was validated using the E-OBS dataset, a high quality pan-European
gridded observational dataset of daily precipitation and temperature (Haylock et al., 2008).”

3) L.191: Although I am aware of the large amount of work done both in the calibration and
validation of hydrological models and for what concerns the determination of the climatic
scenarios, it is worth highlighting that the SRES scenarios used in the paper are now outdated
and that perhaps it would have been more useful to refer to the new RCP scenarios. It would be
appropriate to motivate this choice.

This study is based on data and model implementations that were part of a European-funded research
project that ran from 2010 to 2013 (Ludwig et al., 2010, cited on line 93; see also the
Acknowledgements for further details on this project). The new RCP scenarios were not available at the



time of the project.

4) L.205: The authors use a bias coefficient “alpha” proposed by Duveiller et al. (2016), which is
interesting from a statistical point of view, but in terms of graphic rendering it does not seem very
readable, especially if the number of models is expected to increase. In this sense, Figures 5, 10
and 11 provide summary indications not allowing to appreciate differences, not necessarily
macroscopic, between models. The use of tables could better integrate the information content of
the aforesaid figures.

We have added, as supplementary material to the paper, four tables that provide the actual values of the
Pearson and bias coefficients for the different analyses performed.

5) In the paper it would be useful a ""Discussion' section dedicated to a detailed description of the
causes of the main differences between the hydrological models, since they are only partially
hinted at when results are introduced and at the end of Conclusions.

We have moved the discussion on the differences that emerge in the analysis of agreement from the last
paragraph of the Conclusions to the last paragraph of Section 4.3 (Agreement analysis), and we have
added an additional consideration to this discussion (lines 412-413).

6) It would also be useful to evaluate such differences among the models also in the light of their
performances compared to the observed data, which is not evident in the manuscript.

See the next point.

7) To this end, at least it is necessary to recall in detail the results related to the performances of
the single models, not only reporting citations (1l. 114-115), among which there is a manuscript in
preparation.

We have added at the end of Section 3.1 more details on the single model performances against
observed data during the calibration procedures (lines 193-209).

8) The Conclusions should be improved. For example, it is said (I, 418-420) "CATHY, for
instance, has the most detailed subsurface representation of the five models, and as such will tend
to retain more water in subsurface storage, making some of this water available for subsequent
evaporation'. Is it possible to achieve a more general conclusion from this statement? Is it
possible to state only that a more detailed model increases the subsurface storage or one can infer
that a more detailed model is more credible and therefore the forecast of increased subsurface
storage is to be considered more likely? The same is true for models with a more detailed
description of vegetation. This question can be answered only considering also the performances
with respect to the observations (see previous point).

This is a holy grail question that is difficult to answer. As the reviewer points out, assessing the actual



worth or correctness, even in likelihood terms, of the different models would require much more
extensive comparison against observations. This was not the intent of our study, and indeed, as noted in
the added section on the calibration procedures, two of the model parameterizations, CATHY’s and
TOPKAPTI’s, were in large part based directly on the tRIBS calibration results. Since we are dealing
with hydrologic models that represent watershed processes at very different levels of detail, and since
the best climate/hydrologic model coupling for our specific study site is not known a priori, our focus
instead was on using a multimodel platform to provide a range of possible hydrologic responses for
climate change scenarios, while at the same time quantifying in some way the level of interagreement
between models based on these different responses.
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We thank Reviewer 3 for her/his comments on our manuscript. In the following, the specific comments
by Reviewer 3 are copied in bold font, followed by our replies to each point.

1) Lines 187-190: Since the climate models ensemble adopted in the study is limited to four
members, I believe that a deeper discussion of the criteria adopted in this selection could be
beneficial.

When assessing a climate model’s skills, it is important to examine its ability to reproduce the annual
averages and seasonal variability of precipitation and surface temperature. This is stated in the revised
manuscript as follows (lines 211-215): “Deidda et al. (2013) analyzed the open-access outputs of
fourteen GCM-RCM combinations from the ENSEMBLES project to identify those exhibiting the best
performance in terms of representing the intra-annual variability of precipitation and temperature in the
present climate for the seven study sites of the precursor European project. For each study site, the
selected set of climate model data was validated using the E-OBS dataset, a high quality pan-European
gridded observational dataset of daily precipitation and temperature (Haylock et al., 2008).”

2) I think that the paper could benefit from the inclusion of a sub-section (or Supplementary
Material) in which the calibration methods, metrics, and observations adopted are shortly
described for each hydrological model setup.

We have added at the end of Section 3.1 further details on the calibration and validation procedures for
the five hydrological models (lines 193-209).

3) Since a robust calibration and validation of each hydrological model is required for ad-
dressing the research questions here proposed, I feel that the manuscript could benefit of a more
detailed discussion of the differences between simulated and observed streamflow time series.

See the additional paragraph on model calibration mentioned above.

4) Section 4.3. In line with the previous comment, I also think that the performances of the
different models in reproducing soil water content and ET should be presented (even in a concise
way or as Supplementary Material).



The only model that used soil water content was WASIM, while tRIBS and SWAT were calibrated
against discharge observations. See again the new paragraph on model calibration.

5) Finally, I feel that the discussion section could be improved trying to understand if the
discrepancies between the models are epistemic in their nature (i.e., related to the different
representation of the various hydrological processes) or may be related to other factors, like e.g.
calibration methods and type of observational data used for evaluating model performances.

In our study epistemic differences are important since the models are structurally quite different from
each other, representing critical processes (subsurface flow, evapotranspiration, etc) in very different
ways and to varying levels of complexity. The possible contribution of these structural factors in
explaining the performance results obtained is highlighted in the paper. The comparative performance
between models will also depend on the response variables or observation data being examined, in part
because of the structural differences just mentioned, but also for other reasons not explored in our study.
The important issue of the role of calibration methods is also not explored, given that the five models
were independently calibrated and that the paper is mainly focused on assessing possible hydrologic
response impacts to climate change based on a multimodel platform.
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Abstract. This work addresses the impact of climate change on the hydrology of a catchment in the Mediterranean, a region
that is highly susceptible to variations in rainfall and other components of the water budget. The assessment is based on a
comparison of responses obtained from five hydrologic models implemented for the Rio Mannu catchment in southern
Sardinia (Italy). The examined models — CATchment HYdrology (CATHY), Soil and Water Assessment Tool (SWAT),
TOPographic Kinematic APproximation and Integration (TOPKAPI), TIN-based Real time Integrated Basin Simulator
(tRIBS), and WAter balance SImulation Model (WASIM) — are all distributed hydrologic models but differ greatly in their
representation of terrain features and physical processes and in their numerical complexity. After calibration and validation,
the models were forced with bias-corrected, downscaled outputs of four combinations of global and regional climate models
in a reference (1971-2000) and a future (2041-2070) period under a single emission scenario. Climate forcing variations and
the structure of the hydrologic models influence the different components of the catchment response. Three water
availability response variables — discharge, soil water content, and actual evapotranspiration — are analyzed. Simulation
results from all five hydrologic models show for the future period decreasing mean annual streamflow and soil water content
at 1 m depth. Actual evapotranspiration in the future will diminish according to four of the five models due to drier soil
conditions. Despite their significant differences, the five hydrologic models responded similarly to the reduced precipitation
and increased temperatures predicted by the climate models, and lend strong support to a future scenario of increased water
shortages for this region of the Mediterranean basin. The multimodel framework adopted for this study allows estimation of
the agreement between the five hydrologic models and between the four climate models. Pairwise comparison of the climate
and hydrologic models is shown for the reference and future periods using a recently proposed metric that scales the Pearson

correlation coefficient with a factor that accounts for systematic differences between datasets. The results from this analysis
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reflect the key structural differences between the hydrologic models, such as a representation of both vertical and lateral

subsurface flow (CATHY, TOPKAPI, and tRIBS) and a detailed treatment of vegetation processes (SWAT and WASIM).

1 Introduction

Climate studies agree on the prediction that the Mediterranean area will be particularly affected by changes under global
warming (IPCC, 2014). This region, in fact, has been singled out as one of the hotspots in future climate change predictions
(Giorgi, 2006), due to higher susceptibility to more frequent and more intense extreme events. In addition, observations
during the last decades indicate that mean and extreme temperatures have increased in several Mediterranean regions
(Xoplaki et al., 2003; Del Rio et al., 2011; El Kenawy et al., 2011; Acero et al., 2014) and that precipitation has diminished,

especially in the warm season (Giorgi and Lionello, 2008; Sousa et al., 2011; Vicente-Serrano and Cuadrat-Prats, 2007).

Climate change impact assessment at the catchment scale is usually conducted through a procedure that involves the
following steps (e.g., Xu et al., 2005): (i) selection of global climate models (GCMs) and regional climate models (RCMs)
for future climate predictions; (ii) correction of the discrepancies between simulated and observed climatological features;
(iii) application of downscaling techniques to increase the coarse scale of climate model outputs to the finer resolutions
required by hydrologic models; and (iv) use of downscaled outputs as forcing for the calibrated hydrologic models to
simulate the basin hydrologic response (Sulis et al., 2011, 2012; Piras et al., 2014; Hawkins et al., 2015; Majone et al., 2016,
Meyer et al., 2016). Each of these steps is affected by uncertainties (Xu and Singh, 2004), including the choice of emission
scenarios and climate forcings (Giorgi and Mearns, 2002; Tebaldi et al., 2005; Pechlivanidis et al., 2017), the selection of
downscaling techniques (Wood et al., 2004; Im et al., 2010) and hydrologic model (Clark et al., 2008; Jiang et al., 2007,
Dams et al., 2015), and the availability of observed data required for calibration and validation of both downscaling
techniques and hydrologic models. Hawkins and Sutton (2009) estimate that by the end of the century, the emission

scenarios will represent the dominant source of uncertainty in climate projections.

One approach to dealing with uncertainties is to use multiple climate and hydrologic models (Bosshard et al., 2013;
Cornelissen et al., 2013; Gadeke et al., 2014; Najafi et al., 2011). For example, Bae et al. (2011) compared in a Korean basin
three semi-distributed hydrologic models forced with outputs from thirteen GCMs and three greenhouse gas emission
scenarios. Their results show that the hydrologic models can produce major differences in runoff change considering the
same climate change scenarios, in particular during the dry season. Bastola et al. (2011) examined the role of hydrologic
model uncertainties (parameter and structural uncertainty) using four conceptual hydrologic models and six climate change
scenarios within the generalised likelihood uncertainty estimation (GLUE) and Bayesian model averaging (BMA) methods.
The results for the four Irish catchments considered showed a tendency of increasing flow in winter and decreasing flow in

summer. Thompson et al. (2013) demonstrated for the Mekong river in southeast Asia that GCM-related uncertainty in
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climate change projections is generally larger than that related to the use of three hydrologic models, which simulate the
same direction of change in mean discharge. However, hydrologic model related-uncertainty is not negligible and in some
cases is of a similar magnitude to GCM-related uncertainty. Vansteenkiste et al. (2014) used an ensemble of hydrologic
models, from lumped conceptual to distributed physically based, to assess the impact of climate change on the Grote Nete
basin (Belgium). The uncertainty in the hydrologic impact results was evaluated by the relative change in runoff volumes
and peak and low flow extremes from historical and future climate conditions. Large differences in model predictions were
found, especially under low flow conditions Using an ANOVA approach, Bosshard et al. (2013) assessed the uncertainties
induced by climate models, bias correction methods, and hydrological models using the output of eight RCMs for the Upper
Rhine. The results indicate that some of the uncertainties are not attributable to individual modeling chain components but
rather they depend on the interactions between these components, and that overall the greatest contribution to uncertainty
derives from the climate models. Maurer et al. (2010) investigated the effect of hydrologic model structure by comparing a
lumped and a distributed model driven by twenty-two climate model outputs for three California watersheds. The projected
percent changes in monthly discharge did not significantly differ between the two models, except for extreme flows and

during summer months.

In this study, we characterize the agreement between both climate and hydrologic predictions in the Rio Mannu catchment, a
small Mediterranean basin located in a semiarid region in Sardinia (Italy). For this aim, we use an ensemble of climate and
hydrologic models, including four combinations of GCMs and RCMs and a set of five hydrologic models of varying
structural complexity, from conceptual to physically-based. This is the first study wherein a wide range of distributed
hydrologic models forced with outputs of different climate models is applied to a Mediterranean catchment to assess the
impact of climate change. Moreover, unlike many previous studies, we focus on a set of variables characterizing and
affecting the water balance at the catchment scale, including precipitation, air temperature, discharge, soil water content in
the first meter, and actual evapotranspiration. The results are discussed in the context of the process representations for each
model and within a rigorous analysis of agreement framework. For the latter a new metric, proposed by Duveiller et al.

(2016), will be used to compare model results for reference and future periods using correlation and bias coefficients.

2 Study area

The study site is the Rio Mannu di San Sperate at Monastir basin, located in southern Sardinia, Italy (Fig. 1). The Rio Mannu
basin was one of the seven study sites of a European-funded climate change research project (Ludwig et al., 2010). Amongst
the reasons for selecting the Rio Mannu site for this project is the presence of an agricultural research station within its
boundaries, where extensive field characterization studies could be undertaken, and the vulnerability of this region to

climatic extremes (e.g., several prolonged drought periods over the past decades). Over the course of the European project,
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several field and modeling activities of relevance to this study were undertaken (Cassiani et al., 2012; Marras et al., 2014;

Filion et al., 2016; Meyer et al., 2016).

The Rio Mannu catchment drains an area of 473 km? and is characterized by a gently rolling topography, with an elevation
range from 66 to 962 m a.s.l. and a mean slope of 17 %. The mean annual precipitation is 600 mm and the mean temperature
ranges from 9 °C in January to 25 °C in July-August. The climate is typically Mediterranean, with about 90 % of the annual
rainfall falling from October to April. The discharge regime is characterized by low flows (less than 1 m*/s) for most of the
year (Mascaro et al., 2013a). Precipitation, temperature, and discharge within and around the Rio Mannu catchment have
been collected at a daily time scale, albeit intermittently and not always coincidentally, since 1925. As shown in Fig 2, soil
texture in the Rio Mannu catchment is dominated by three classes, including clay loam—clay (37 %), sandy loam—loam (32
%), and sandy loam—sandy clay loam (20 %). Agriculture (~ 48 %) and sparse vegetation (~ 26 %) are the dominant land use

classes. A more detailed description of the basin land surface properties can be found in Mascaro et al. (2013b).

3 Methods

An impact assessment framework was developed during the precursor European project wherein the best performing four
GCM-RCM combinations from the ENSEMBLES project (van der Linden and Mitchell, 2009) were selected for each study
site. The daily GCM-RCM outputs at 25 km resolution for a reference (1971-2000) and a future (2041-2070) period were
bias corrected and statistically downscaled. For the Rio Mannu site, the downscaled data were then used to force five
hydrologic models for the reference and future periods. The hydrologic models were independently calibrated and validated
against observed data, with each modeling group using the type of data most suitable to that model, such as field-scale soil
moisture, evapotranspiration patterns, and discharge, More details on the model calibration are given after the model

descriptions below.

3.1 Hydrologic models

The five hydrologic models examined in this study are: CATchment HY drology (CATHY), Soil and Water Assessment Tool
(SWAT), TOPographic Kinematic APproximation and Integration (TOPKAPI), TIN-based Real time Integrated Basin
Simulator (tRIBS), and WAter balance SImulation Model (WASIM). The models differ greatly in their representation of
terrain features and physical processes and in their numerical complexity, but they are all able to account for the spatial
variability of meteorological inputs and land surface properties, albeit at different levels of detail. Table 1 summarizes the
characteristics of each hydrologic model, highlighting the main differences between them. For more detail, the reader is

referred to the references provided below in the description of each model.

Enrica Perra 30/5/18 11:27

Deleted: (Cau et al., 2005; Mascaro et al., 2013b;
Meyer et al., 2016; Perra et al., manuscript in
preparation).
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CATHY is a physically based numerical model that resolves in a detailed manner the interaction between subsurface and
surface water (Camporese et al., 2010). The surface module is based on the resolution of a one-dimensional diffusion wave
approximation of the Saint Venant equation for overland and channel routing (Orlandini and Rosso, 1996). The subsurface
module solves the three-dimensional Richards equation that describes flow in variably saturated porous media (Paniconi and
Wood, 1993). The surface grid, catchment boundaries, and rill and channel flow paths are delineated via topographic
analysis of digital elevation maps. Model inputs consist of spatially variable or homogeneous meteorological data and
surface properties for each zone and layer of the basin. CATHY outputs include time series of actual fluxes and discharge
and at any location in the stream network and spatial maps of several hydrological variables (e.g., pressure, saturation,
ponding) at specified times. The CATHY model has been used in many exploratory studies, benchmarking exercises, and
real catchment applications, including the assessment of climate change impacts (e.g., Gauthier et al., 2009; Sulis et al.,

2011; Gatel et al., 2016; Kollet et al., 2017; Scudeler et al., 2017).

SWAT is a conceptual, semi-distributed model that allows the evaluation of climate and land use impacts on water resources,
sediments, and agriculture through a physical representation of hydrologic processes, soil temperature, plant growth,
nutrients, pesticides, and land use (Arnold et al., 1998). In SWAT, a watershed is divided into multiple subwatersheds, which
are then further divided into hydrologic response units (HRUs) that consist of homogeneous land use, management,
topographic, and soil characteristics. The HRUs are represented as a percentage of the subwatershed area and need not be
contiguous or spatially identified. A daily time step is adopted in the simulation of hydrologic processes. Surface runoff is
estimated using the Soil Conservation Service (SCS) curve number procedure, and the movement of soil moisture vertically
within the soil profile is simulated using a one-dimensional tipping bucket approach. Model inputs consist of meteorological
data and surface and vegetation properties. SWAT outputs include time series of discharge at any location in the stream
network and actual evapotranspiration and soil water content integrated over the basin. Its applications range from
engineering/practical aims to research studies (e.g., Arnold et al., 1999; Cau et al., 2005; Mausbach and Dedrick, 2004; Volk
et al., 2007).

TOPKAPI is a physically based distributed rainfall-runoff model that combines basin topography with the kinematic
approach (Ciarapica and Todini, 2002). The model consists of five modules that simulate the main hydrologic processes
including subsurface flow, overland flow, channel flow, evapotranspiration, and snowmelt. These can be simulated at an
hourly time step. Four nonlinear reservoir differential equations solved using a two-dimensional finite difference method are
used to describe subsurface, overland, and channel flow. The model uses a regular grid to represent the terrain and is
computationally efficient and thus suitable to be applied for real-time flood forecasting. Model inputs consist of
meteorological data and spatial maps of surface properties (e.g., soil texture and land cover maps). TOPKAPI outputs
include time series of discharge at any location in the stream network and actual evapotranspiration and soil water content

integrated over the basin. TOPKAPI has been successfully implemented as a research and operational hydrologic model in
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several catchments worldwide (e.g., Liu and Todini, 2002; Bartholomes and Todini, 2005; Liu et al., 2005; Martina et al.,
2006).

tRIBS is a physically based spatially distributed model that reproduces a range of hydrologic processes (Ivanov et al. 2004)
including canopy interception and transpiration, evaporation from bare and vegetated soils, infiltration and soil moisture
redistribution, shallow subsurface transport, and overland and channel flows (Mascaro et al., 2013b). Terrain features are
represented via triangulated irregular networks (TINs). In each Voronoi polygon derived from TINs the coupled energy and
water balances are computed, while the infiltration scheme is based on the resolution of the two-dimensional modified
Green-Ampt model. A kinematic wave routing model is used to simulate transport of water in the channel network. Model
inputs include spatial maps of surface properties (e.g., soil texture and land cover maps). tRIBS outputs include time series
of discharge at any location in the stream network and spatial maps of several hydrological variables (e.g., actual
evapotranspiration, soil water content at different depths) at specified times or integrated over the simulation period (Piras,
2014). The model has been applied across a large range of scales in the areas of hydrometeorology, climate change, and
ecohydrology (e.g., Liuzzo et al., 2010; Mascaro et al., 2010, 2015; Mahmood and Vivoni, 2014). Recently, Piras (2014) and

Piras et al. (2014) applied tRIBS in the Rio Mannu catchment to evaluate the hydrologic impact of climate change.

WASIM is a physically based and fully distributed hydrologic model (Schulla, 2015) originally developed to evaluate the
influence of climate change on water balance and runoff regime in pre-alpine and alpine river catchments (Schulla, 1997).
WASIM runs in a grid-based structure and represents vertical fluxes in the unsaturated zone by the one-dimensional
Richards equation, which is solved with a finite difference scheme. Discharge routing is performed by a kinematic wave
approach. After the translation of the wave for all channels, a single linear storage is applied to the routed discharge
considering the effect of diffusion and retention (Schulla and Jasper, 2001). Sub-modules are available for various
hydrologic variables such as interception, discharge, runoff, snowmelt, and evapotranspiration. Model inputs consist of
meteorological data and spatial maps of surface properties (e.g., soil texture and land cover maps). WASIM outputs include
time series of discharge at any location in the stream network and spatial maps of several hydrological variables (e.g., actual
evapotranspiration, soil water content) at specified times or integrated over the simulation period. WASIM has been
previously applied for hydrologic issues such as impact analysis for river basins and hydrologic forecasting (e.g.,

Cornelissen et al., 2013; Jasper et al., 2002; Kunstmann et al., 2006; Meyer et al., 2016).

The calibration procedures varied from one model to the next, owing to the significant structural differences between the
models, and to the fact that each modeling group worked independently of the others, within different project frameworks
and timelines. tRIBS was calibrated manually against discharge observations at the outlet for the year 1930, and validated for
the 1931-1932 period (Mascaro et al., 2013b). The calibration focused on its two most sensitive parameters, saturated

hydraulic conductivity at the surface and the decay parameter that models the variation of conductivity with soil depth.
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Model performance was assessed based on a comparison between observed and simulated discharge and flood duration

curves, quantified using the Nash-Sutcliffe index. For WASIM, Meyer et al. (2016) conducted a soil sampling campaign on
the Rio Mannu catchment in 2010-2011. They tested the performance of different regionalization methods for soil texture

against soil moisture field measurements, and derived a new soil texture map based on the best of these methods. WASIM

was then run with two different soil configurations — the new map and the available regional soil map — and the sensitivity to

model outputs was examined. The model was validated with spatially distributed evapotranspiration rates using the triangle

method (Jiang and Islam, 1999), and performances were quantified using the coefficient of determination. The SWAT model
parameterization was based on a regional scale calibration of the model’s soil parameters against discharge observations

(Cau et al., 2005). Model performances were quantified using the correlation coefficient computed from the simulated and

observed discharge for all basins in Sardinia with at least 10 years of continuous streamflow data. For CATHY and

TOPKAPI, the same dataset and parameter settings as the tRIBS model were used for common parameters, in order to

investigate parameter transferability between these three models (Perra et al., manuscript in preparation).

3.2 Climate models, bias correction, and statistical downscaling

Deidda et al. (2013) analyzed the open-access outputs of fourteen GCM-RCM combinations from the ENSEMBLES project
to identify those exhibiting the best performance in terms of representing the intra-annual variability of precipitation and
temperature in the present climate for the seven study sites of the precursor European project. For cach study site, the
selected set of climate model data was validated using the E-OBS dataset, a high quality pan-European gridded observational
dataset of daily precipitation and temperature (Haylock et al., 2008). The models (and their acronyms: ECH-RCA, ECH-
REM, ECH-RMO, and HCH-RCA) selected for the Rio Mannu site are listed in Table 2. For these models, outputs were
extracted for a reference (1971-2000) and a future (2041-2070) period under the A1B emission scenario (Naki¢eovi¢ et al.,

2000), which was considered one of the most realistic and provided the most complete dataset within the ENSEMBLES
models. A large-scale bias correction was applied to precipitation and temperature fields using the daily translation method
(Wood et al., 2004; Maurer and Hildago, 2008) with the E-OBS dataset as reference. In addition, downscaling techniques
were applied to disaggregate precipitation and temperature from the coarse resolution of the climate models (~25 km, 24 h)
to finer resolutions (5 km, 1 h) suitable for hydrologic modeling. For precipitation, the multifractal downscaling model of
Deidda et al. (1999) and Deidda (2000) was utilized, while temperature was interpolated in space through lapse rate
corrections as in Liston and Elder (2006). More details on the bias correction and downscaling techniques are provided in
Piras et al. (2014). For the models tRIBS, CATHY, and TOPKAPI, temperature grids were used to derive hourly grids of

potential evapotranspiration according to the method described in Mascaro et al. (2013b).

3.3 Metrics to compare climate and hydrologic models

To compare the outputs of (i) the four climate models, and (ii) the five hydrologic models forced by the four climate models

in the reference and future periods, we first derived the climatological monthly means. Next, we quantified the difference
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between each pair of climate or hydrologic models by using the Pearson correlation coefficient » and the bias coefficient a,
proposed by Duveiller et al. (2016), defined as:

S(x-%)7-7)

= M
noyo,

a={ [+t @

where X; and Y; are the 30-year mean monthly values of a given response variable simulated by a pair of models, X and ¥ are

their means, oy and oy are their standard deviations, and n = 12 is the number of months per year.

The Pearson coefficient, which can range between -1 and 1, is a widely used measure of the degree of linear dependence
between two datasets, but it does not give any indication of how similar they are in magnitude. In contrast, the bias
coefficient, ranging from 0 (full bias, no agreement) to 1 (no bias, perfect agreement), evaluates possible additive or
multiplicative biases between the model outputs. These two indices were recently used in a hydrologic model
intercomparison study (Kollet et al., 2017) to evaluate the agreement between seven integrated surface-subsurface models
for a series of benchmark test cases. Here, the two indices » and a were computed for all pairs of both climate and
hydrologic representative variables. The results are presented in matrix pictures where each element represents the index
value for a single model pair, thus allowing easy comparison of each combination of model pairs with all the others. In Fig.
3, an example of a matrix picture between two models A and B is shown: the circles represent correlation » and the squares
bias o, with the color and size of the markers proportional to the value of the metric. Four possible levels of model

agreement are reported: high, medium, low, and no agreement.

4 Results and discussion

In this section the main meteorological forcing, precipitation, and temperature projected by the climate models are first
presented and analyzed in terms of variations between the future and reference periods, in order to establish the expected
climate change trends for the Rio Mannu catchment. The level of agreement between climate models is then evaluated for

the reference and future periods using Pearson correlation values and Duveiller biases. Subsequently, the impact of projected
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climate change is investigated through application of the five hydrologic models. Water availability and fluxes in terms of

discharge, soil water content, and actual evapotranspiration are analyzed for trends and inter-model agreement.

4.1 Climate models: projected changes and comparison/agreement analysis

Llimate model outputs were bias-corrected and downscaled to provide more reliable inputs to the hydrologic models.
Specifically, for each climate model, the climatological means of precipitation (P) and temperature (T) averaged over the
catchment were computed at annual and monthly scales. Figure 4 compares results for the reference and future periods. All
models predict a decrease of mean annual P, with percent changes ranging from -7 % to -21 %, and an increase of T from 1.9
°C to 3 °C. All models predict negative changes in P for all months except winter (December—February), where the models
simulated an increase in P, and also June for ECH-REM and October for ECH-RMO. T is projected to rise in all months for
all models, with the RCMs forced by ECH predicting comparable magnitudes in change, and HCH-RCA simulating the

largest increment.

To quantify the agreement of the monthly climatologies of P and T predicted by the models, the correlation coefficient, r,
and the bias, a, are plotted in Fig. 5. The left and right panels show the results for, respectively, P and T for the reference
(top) and future (bottom) periods, In each panel, circles represent » and squares o, while color and size of the markers are
proportional to the metric value. The actual values of the Pearson and bias coefficients are reported in the supplementary
Table S1. The metrics indicate a general high level of agreement of the climatologies simulated by all models, with » and «
for each pair of models always larger than 0.9 for both variables and in both periods. Comparing the same climate model for
the reference and future periods, the values of 7 and « (last row and last column, respectively, of the bottom panels) are also
high for both variables: for P and the HCH-RCA model, which is the model that slightly differs from the others, both
Pearson and bias coefficients are close to 1 (»=0.918 and a = 0.912). As a result, the agreement of seasonal cycles is high,
especially in the case of temperature, suggesting that the uncertainty due to climate models can be considered low, although
a small bias is found when comparing the three climate models forced by ECH with HCH-RCA, as expected since it is

recognized that GCMs exert the major influence on the projected climate change (Graham et al., 2007; Kay et al., 2009).

4.2 Hydrologic impact

A summary of the annual and monthly climatologies of basin-averaged potential evapotranspiration (ETP), runoft (Q), soil
water content (SWC), and actual evapotranspiration (ET,) simulated by the five hydrologic models, forced by four climate
models, is reported in Fig. 6-9. Each figure shows: the annual simulated variable in each period, including the percent
change from reference to future (panel a); the relative change in mean annual values between reference and future periods

forced by the four climate models (panel b); the seasonal distribution of mean monthly values of each variable during
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reference and future periods and corresponding standard deviations (panel ¢); and finally the seasonal distribution of relative

change of mean monthly values between reference and future periods (panel d).

ETP is predicted to rise by all models on an annual basis (Fig. 6a), mostly due to the projected increment of T. The values of
annual and monthly (Fig. 6¢) ETP differs among the hydrologic models, due to the different computation methods adopted.
For SWAT and WASIM, ETP was computed at a daily time scale by internal routines based on Hargreaves (Hargreaves et
al., 1994, 2003) and Penman-Monteith (Penman, 1948; Monteith, 1965) formulas, respectively, producing an annual mean of
about 1100 mm for SWAT and 1400 mm for WASIM. For CATHY, TOPKAPI, and tRIBS, a common reliable diurnal cycle
for ETP was derived at hourly time scale using an approach based on Penman-Monteith and Hargreaves formulas, detailed in
Mascaro el al. (2013b), producing an annual mean of about 650 mm, which is consistent with previous estimates for this
region (Pulina et al., 1986). From Fig. 6¢c we can also observe the slight increase of ETP predicted by all hydrologic models
in the future period, except for the WASIM model and especially during summer and spring months. Furthermore, notice
that the highest increase of ETP is predicted with all hydrologic models under HCH-RCA forcing (Fig. 6b), as expected
since this GCM-RCM combination also projects the highest increase in temperature, as already discussed. Among the
hydrologic models, WASIM is the one that predicts the higher increase. We can observe also from Fig. 6d that relative

changes in potential evapotranspiration are predicted to increase much more during summer and spring.

Results in terms of Q are analyzed in Fig. 7: it is apparent that all models predict decreasing values in the future. Figure 7a,
reporting mean annual Q obtained for each hydrologic model in the reference and future periods obtained as an average
among the four climate models, shows a reduction that ranges from -12 % according to SWAT to -69 % according to
CATHY. Figure 7b reports the relative change between future and reference periods computed for each climate model
configuration: we can observe that the reduction varies within the same hydrologic model considering different climate
forcing. The largest decrease is always given by configurations forced with HCH-RCA, ranging from -23 % for the SWAT
model to -91 % for the CATHY model, followed by the climate model ECH-RCA, for which the reduction varies from -16
% for SWAT to -67 % for CATHY. A summary in terms of change (%) between reference and future periods for mean
annual Q, simulated by the five hydrologic models and the four climate models, is provided in Table 3. Figure 7c refers to
mean monthly Q, showing the mean seasonality in reference (solid line) and future (dotted line) periods with bars indicating
the standard deviations within each model. Figure 7d details the monthly variations during the two periods according to the
five hydrologic models: the seasonality is quite similar among them even if some differences hold also in this case. The five
hydrologic models predict diminished mean monthly Q in the future period throughout the year with the exception of

January and February, when SWAT and WASIM simulate a slight increase.

Figure 8 shows mean values and changes of SWC in the first meter depth of soil. All simulations predict a decreasing trend

of SWC, but again we can notice some differences among the hydrologic models. For instance Fig. 8a clearly shows that
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CATHY presents the highest soil humidity (35 %) and WASIM the lowest (17 %), while the highest and lowest decrements
in the future are observed, respectively, for TOPKAPI (-13 %) and tRIBS (-5 %). Figure 8b details the relative change
between future and reference periods for each configuration of hydrologic and climate models. As for Q, each hydrologic
model simulates the maximum SWC reduction under the HCH-RCA configuration. The reduction with this climate forcing,
ranging from -9 % for tRIBS to -22 % for TOPKAPI, can in fact be double with respect to the one obtained with the other
climate models. A summary in terms of change (%) between reference and future periods of mean annual SWC, simulated
by the five hydrologic models and the four climate models, is provided in Table 3. The mean monthly seasonal distribution
of SWC reported in Fig. 8c is quite different among the five hydrologic models. SWAT presents the highest variations from
winter/spring to summer month values, while the annual range is more limited in the CATHY and tRIBS simulations. The
mean monthly relative changes between reference and future periods represented in Fig. 8d are always negative. CATHY
simulates a quite constant diminution (of about 0.035) throughout the year, which is always larger than the other models. The
changes exceed 0.03 in May for TOPKAPI and SWAT, which instead predict the lowest reduction in winter months. These
reductions during spring months can be related to the higher vegetation activity combined with moderate values of

temperature and potential evapotranspiration.

The differences among the hydrologic models in representing soil-vegetation—atmosphere transfers are reflected also in
simulations of ET, processes (Fig. 9). The mean annual values reported in Fig. 9a are predicted to decrease in the future by
four models (tRIBS presents the lowest reduction, -2 % on average, SWAT the highest, -12 % on average), with CATHY
being the only one projecting a slight increase. The reason for this is that CATHY simulates the highest soil water content in
the first meter depth, as can be appreciated in Fig. 8a and 8c, and it is the model that simulates the minimum discharge (Fig.
7a and 7c), thus it retains more water within the soil zone available for evaporation. Figure 9b shows that the highest
variations (both positive and negative) in actual evapotranspiration are again reached in simulations forced by the HCH-RCA
model, ranging from -17 % for SWAT and WASIM and +16 % for CATHY. A summary in terms of change (%) between
reference and future periods of mean annual ET,, simulated by the five hydrologic models and the four climate models, is
provided in Table 3. Mean monthly ET, reported in Fig. 9c presents different patterns, with the hydrologic models divided
into two groups: CATHY, TOPKAPI, and tRIBS reach the highest values during summer months, when temperature and
potential evapotranspiration are higher; SWAT and WASIM anticipate the seasonal peak in spring when moderate
temperatures coincide with vegetation activity, a component that these two models incorporate more fully than the other
three models. The different patterns may also be due to limited water availability during the summer: as can be seen from
Fig. 8¢, SWAT and WASIM simulate quite low soil water content during July and August. Figure 9d, reporting relative
changes in monthly values, shows that the increase predicted by CATHY is highest in spring; in fact relative changes in
monthly temperatures (Fig. 4d) and potential evapotranspiration (Fig. 6d) during spring are predicted to increase much more
than during summer months. The other four models predict instead a future diminution more pronounced in summer,

exceeding -10 mm for the WASIM model. This can be related to the fact that these models in the future simulate during
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summer months lower soil water content with respect to the reference period (Fig. 8d). In winter months the future

evapotranspiration reduces negligibly, or even increases slightly in the case of WASIM.

4.3 Agreement analysis

The agreement among the hydrologic models forced with the different climate configurations is evaluated using the Pearson
correlation and Duveiller bias coefficients in Fig. 10-12. The actual values of the Pearson and and bias coefficients are
reported in the supplementary Tables S2-S4. Figure 10 shows the results for Q, and each panel summarizes the agreement
among hydrologic models forced by a specific GCM-RCM configuration for the reference (top panels) and future (bottom
panels) periods. Following the same graphical representation of Fig. 3, Pearson coefficients are displayed as circles in the
lowest-left part of each panel, while the bias coefficients are represented with squares in the upper-right part. In both cases
the size of symbols is proportional to the magnitude of the corresponding coefficient. We can notice that during the reference
period the agreement in terms of both indices between any pair of hydrologic models is high, with the HCH-RCA
performance slightly better than for the other climate forcing configurations. The values of the Pearson coefficient r,
comparing the hydrologic models in pairs, range from 0.70 (CATHY-WASIM under ECH-RMO forcing) to 0.99
(TOPKAPI-tRIBS under ECH-RMO forcing) for the reference period and from 0.67 (CATHY-WASIM and CATHY-SWAT
under ECH-REM forcing) to 0.99 (SWAT-TOPKAPI under HCH-RCA forcing) for the future period. Looking at the bias
coefficient we can observe a general agreement (a > 0.7) regardless of the climate forcing among the hydrologic models,
except for CATHY, which shows in the future period the highest differences with the other models, as expected from Fig. 5,
with the lowest agreement occurring for the HCH-RCA configuration. CATHY generates the lowest Q in the future, and this
result is reflected in the values of the bias parameter o, which exceeds the value of 0.7 only when CATHY is compared
under ECH-REM with tRIBS and WASIM, which use the same equations as CATHY to represent subsurface and surface
dynamics, albeit simplified in some way (e.g., lower dimensionality). Bias parameters values range from 0.53 (CATHY-
TOPKAPI forced by ECH-RMO) to 0.99 (SWAT-tRIBS forced by ECH-RMO) for the reference period and from 0.09
(CATHY-SWAT under HCH-RCA forcing) to 0.99 (SWAT-TOPKAPI under ECH-RMO forcing) for the future period.

Figure 11 shows a similar comparison for SWC. The agreement among the hydrologic models generally diminishes with
respect to the discharge intercomparison. Again the CATHY model presents the lowest correlation with the others, followed
by tRIBS. CATHY and tRIBS are in fact the two models that show limited variations of SWC from winter/spring to summer
month values with respect to the others, as shown in Fig. 8b. The values of the Pearson coefficient » range from 0.65
(CATHY-tRIBS in HCH-RCA configuration) to 0.98 (SWAT-tRIBS forced by ECH-RCA) for the reference period and
from 0.57 (CATHY-tRIBS in ECH-RCA simulations) to 0.97 (CATHY-TOPKAPI forced by HCH-RCA) for the future
period. The value of the bias coefficient « is near zero when the models are compared with CATHY and also quite low

(about 0.2) when compared with tRIBS. The values of o range from 0.01 (CATHY versus tRIBS and WASIM in both ECH-
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RCA and ECH-REM configurations) to 0.86 (TOPKAPI versus WASIM forced by ECH-RMO) for the reference period and
from 0.01 (CATHY-WASIM in ECH-REM simulations) to 0.94 (TOPKAPI versus WASIM forced by ECH-RMO) for the
future period.

The analysis of agreement presents the lowest Pearson correlation values in the case of ET, (Fig. 12). The values of » range
from -0.21 (CATHY-WASIM in ECH-REM configuration) to 0.98 (CATHY-tRIBS for all climate model configurations) for
the reference period and from -0.29 (CATHY-WASIM in ECH-REM simulations) to 0.99 (CATHY-tRIBS for all
configurations) for the future period. Despite the high values of the Pearson coefficient between CATHY and tRIBS for both
the reference and future periods regardless of the GCM-RCM forcing, the Duveiller index displays a worsening (o0 = 0.6 —
0.8). Considering overall results, the values of the bias coefficient  range from 0 (CATHY and tRIBS versus WASIM in
ECH-REM configuration) to 0.99 (TOPKAPI versus tRIBS for all configurations) for the reference period and from 0
(CATHY-WASIM in ECH-RMO simulations) to 0.99 (TOPKAPI versus tRIBS for all configurations) for the future period.
From this figure it can be noted that, notwithstanding the differences, Pearson and bias indices for the reference period are
similar for CATHY, tRIBS, and TOPKAPI (which are forced with the same ETP values). Furthermore, these models reach
the highest values of ET, during the summer months (Fig. 9¢), when the temperature is highest. For the future period this
agreement is maintained, with a strong correlation between tRIBS and TOPKAPI. Referring to the pair SWAT-WASIM,
they anticipate the peak of ET, in spring when moderate temperatures coincide with vegetation activity (Fig. 9c). This can be

seen for the reference period and less for the future one, when « is slightly lower.

v

The differences that emerge from the analysis of agreement are consistent with the key structural differences between the

making some of this water available for subsequent evaporation. An additional factor contributing to greater subsurface

storage in CATHY is that all the lateral and bottom boundaries of the simulation domain are considered impermeable. Jn the

agreement metrics CATHY tends to align most with TOPKAPI and tRIBS, which, although with a more simplified

representation, also account for both vertical and lateral subsurface flow, unlike SWAT and WASIM, which resolve flow

only in the vertical direction. These latter two models, on the other hand, show strong agreement, to the exclusion of the

other models, for some of the evapotranspiration responses, consistent with the fact that both these models include a quite

detailed representation of vegetation processes.

5 Conclusions

Five hydrologic models forced with the outputs of four combinations of global and regional climate models were compared

to evaluate climate change consequences on the response of a medium-sized Mediterranean basin, the Rio Mannu catchment.
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In order to evaluate the agreement between model pairs, a new metric based on Pearson correlation and Duveiller bias
coefficients has been used. The hydrologic models, independently calibrated and validated, were applied in cascade with
climate models for a reference (1971-2000) and a future (2041-2070) period. Temporal series of different response variables
simulated by the hydrologic models were used to evaluate the impacts on the basin of the predicted climate change in terms

of water resource availability.

In a first step, climate model outputs, suitably bias corrected and downscaled, were analyzed for the reference and future
periods by comparing mean monthly and annual values of precipitation and temperature and by examining the agreement
metrics. All of the GCM-RCM combinations agree that in the future period there will be decreasing mean annual
precipitation (average differences of about -12%), whereas on a monthly basis the sign of the variation depends on the month
and the model. As regards the temperature trend, all of the GCM-RCM combinations predict increasing mean annual T
values that vary from 11 % (1.9 °C) to 19 % (3 °C) depending on the model. A similar behavior for the four GCM-RCM
combinations is also found for the mean monthly temperature trend, with positive variations in every season for the future
period, from about 7 % (ECH-REM in June) to 30 % (HCH-RCA in March). The correlation and bias coefficients show
favorable agreement when analyzing mean monthly precipitation and temperature for the reference and future periods. The
uncertainty due to climate models can thus be considered low and is due principally to the GCM component that is

recognized to exert the major influence on projected climate change.

In a second step, hydrologic model outputs related to water availability (namely discharge, soil water content, and actual
evapotranspiration) were analyzed. Simulation results show decreasing mean annual runoff and a reduction of the soil water
content at 1 m depth for the future period (average decreases of 31 % and 9 %, respectively). Actual mean annual
evapotranspiration in the future will diminish according to four of the five hydrologic models due to drier soil conditions
(average decrease of 8 %), while it will rise (by 10 %) in the prediction of the CATHY model, which retains the highest
water content in its soil profile. For all response variables the biggest decrease is always predicted with the HCH-RCA
model. Analyzing hydrologic model outputs at monthly scale, we can observe variations not perceptible at the annual scale.

Discharge for instance is predicted to decrease in the future period in all months except for January and February.

In terms of model agreement, for the reference period we can observe a good concordance between each pair of hydrologic
models, while more significant differences emerge for the future period. The model that most differs from the others is
CATHY, which generates the lowest discharge in the future, and this result is reflected in the values of the bias parameter.
The five hydrologic models confirm the reduction of soil water content throughout the year, and the magnitude of variation
depends on the hydrologic model considered. Again the CATHY model yields the lowest correlation with the other models,
followed by tRIBS. Both models, in fact, show limited variation of soil water content from winter/spring to summer months

with respect to the others, and this as well is reflected in the bias value. Actual evapotranspiration could rise in the future
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period according to the CATHY model and, during January and February, also according to WASIM, which instead predicts
the strongest reductions in summer months. As regards the analysis of agreement for actual evapotranspiration, Pearson and
bias indices are similar for CATHY, tRIBS, and TOPKAPI (which are forced with the same values of potential
evapotranspiration). Moreover, these models reach the highest values of actual evapotranspiration during summer months.
For the future period this agreement is maintained, with a strong correlation between tRIBS and TOPKAPI. The model pair
SWAT-WASIM anticipates the peak of actual evapotranspiration in spring when moderate temperatures coincide with
vegetation activity. This behavior is more pronounced for the reference period than for the future one, due to the higher bias.

Overall the five hydrologic models show good agreement, responding similarly to the climate model predictions of reduced

precipitation and increased temperatures and lending strong support to a future scenario of increased water shortages for this

region of the Mediterranean, with negative consequences especially for the agricultural sector.
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Model Discretization Infiltration/Subsurface Surface Topographic
scheme flow flow representation
CATHY Finite element Richards’ equation Diffusive wave Regular grid
SWAT Subwatershed Tipping bucket Soil Conservation Homogeneous
Service (SCS) hydrologic units
TOPKAPI Finite difference Kinematic wave Kinematic wave Regular grid
tRIBS Finite difference Modified Kinematic wave Triangulated irregular
control volume Green-Ampt network
WASIM Finite difference Richards’ equation Kinematic wave Regular grid

Table 1: Comparison of the structure and characteristics of the five hydrologic models.
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Climatological center and model Acronym

Hadley Centre for Climate Prediction, Met Office, UK

HCH
HadCM3 Model
GCM
Max Planck Institute for Meteorology, Germany ECH
ECHAMS / MPI Model
Swedish Meteorological and Hydrological Institute (SMHI), Sweden CA
R
RCA Model
Max Planck Institute for Meteorology, Hamburg, Germany
RCM REM
REMO Model
Koninklijk Nederlands Meteorologisch Instituut (KNMI), Netherlands o
RM

RACMO2 Model

755 Table 2: List of global and regional climate models used in this work. The four GCM-RCM combinations used are ECH-RCA,

ECH-REM, ECH-RMO, and HCH-RCA.
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Overall tendencies Overall tendencies

considering all climate models considering all hydrologic models
ALL ALL
CAT SWA TOP TRI WAS ERC ERE ERM HRC
H.M. C.M.
(%) (%) (%) (%) (%) (%) (%) (%) (%)
(%) (%)
u -68 -12 -25 -32 -19 -31 -32 -19 -24 -49 -31
Q
o 18 10 13 14 14 14 20 16 26 25 22
u -10 -8 -13 -5 -10 -9 -8 -6 -6 -16 -9
SwWC
o 5 5 6 3 4 5 2 2 3 5 3
u 10 -12 -8 2 -11 -5 -3 -3 -5 -7 -5
ET,
o 4 5 3 1 5 3 7 6 9 14 9

Table 3: Change (%) between future and reference periods of mean annual discharge (Q), soil water content (SWC) and actual

evapotranspiration (ET,) for the five hydrologic models (CAT = CATHY, SWA = SWAT, TOP = TOPKAPI, TRI = tRIBS, WAS =

WASIM), expressed as mean (u) and standard deviation (o) calculated for each and then all hydrologic models (H.M.) idering
all climate models (ERC = ECH-RCA, ERE = ECH-REM, ERM = ECH-RMO, HRC = HCH-RCA), and for each and then all

climate models (C.M.) considering all hydrologic models.
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Figure 1: Location of the Rio Mannu basin within Italy (a), and Sardinia (b). Boundaries in WGS84 UTM zone 32N coordinates,

800 elevation, and stream network of the basin (c).
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Figure 2: (a) Soil texture and (b) land cover maps used for the Rio Mannu basin.
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Figure 3: (2) Example of matrix picture between two models A and B. Correlation values (-1 < r <1) are represented with circles
below the diagonal, while bias (0 < a < 1) is plotted as squares above the diagonal. The size and color of symbols are proportional

to the coefficient values. White (blank) matrix entries correspond to r =0 or a = 0. (b) Scatterplot corresponding to the four cases

shown in panel (a).
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Figure 4: Mean annual precipitation P (a) and temperature T (c) predicted by the four climate models for the
reference (1971-2000), blue bars, and future (2041-2070), red bars, periods. Relative change in mean monthly

precipitation P (b) and temperature T (d) between the reference and future periods for the four climate models.
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Results of the analysis of agreement for mean monthly precipitation (left) and temperature (right) among the four

climate models (ERC = ECH-RCA, ERE = ECH-REM, ERM = ECH-RMO, HRC = HCH-RCA) for the reference (REF, 1971-
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Figure 6: Potential evapotranspiration (ETP) for each hydrologic model forced by the four selected climate models for the
reference (REF, 1971-2000) and future (FUT, 2041-2070) periods. (a) Mean annual ETP during REF and FUT periods, obtained as

an average among the four climate models. (b) Relative change in mean annual ETP between REF and FUT periods forced by the

four climat dels. (¢) S 1 distribution of mean monthly ETP during REF (solid line) and FUT (dotted line) periods and

corresponding standard deviations (vertical bars), obtained as an average among the four climat dels. (d) S 1

distribution of relative change in mean monthly ETP between REF and FUT periods, obtained as an average among the four

climate models.
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Figure 7: As Fig. 6, but for discharge (Q) simulated by each hydrologic model forced by the four selected climate models for the
850 reference (REF, 1971-2000) and future (FUT, 2041-2070) periods.
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Figure 8.: As Fig. 6, but for soil water content (SWC) simulated by each hydrologic model forced by the four selected climate
models for the reference (REF, 1971-2000) and future (FUT, 2041-2070) periods. For panel (d) colors for each model are the same
855 as panel (c).
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Figure 9: As Fig. 6, but for actual evapotranspiration (ET,) simulated by each hydrologic model forced by the four selected climate
models for the reference (REF, 1971-2000) and future (FUT, 2041-2070) periods.
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Figure 10: As Fig. 5, but for mean monthly discharge agreement between the five hydrologic models (CAT = CATHY, SWA =
865 SWAT, TOP = TOPKAPI, TRI = tRIBS, WAS = WASIM). Each panel displays the agreement under a specific GCM-RCM

forcing, for the reference (REF, top) and future (FUT, bottom) periods.
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Figure 11: As Fig. 10, but for mean monthly soil water content agreement between the five hydrologic models (CAT = CATHY,
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875 SWA =SWAT, TOP = TOPKAPI, TRI = tRIBS, WAS = WASIM) for the reference (REF, top) and future (FUT, bottom) periods.
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Figure 12: As Fig. 10, but for mean monthly actual evapotranspiration agreement between the five hydrologic models (CAT =

CATHY, SWA = SWAT, TOP = TOPKAPI, TRI = tRIBS, WAS = WASIM) for the reference (REF, top) and future (FUT,

bottom) periods.
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