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Abstract. Sufficient and accurate hydro-meteorological data are essential to manage water resources. Recently developed

global re-analysis datasets have significant potential in providing these data, especially in regions such as Southern Africa that

are both vulnerable and data poor. These global re-analysis datasets have, however, not yet been exhaustively validated and

it is thus unclear to what extent these are able to adequately capture the climatic variability of water resources, in particular

for extreme events such as floods. This article critically assesses the potential of a recently developed global Water Resource5

Re-analysis (WRR) dataset developed in the EU FP7 eartH2Observe project for identifying floods, focussing on the occurrence

of floods in the Limpopo River basin in Southern Africa. The discharge outputs of seven global models and ensemble mean

of those models as available in the WRR dataset are analysed and compared against two benchmarks of flood events in the

Limpopo River basin. The first benchmark is based on observations from the available stations, while the second is developed

based on flood events that have led to damages as reported in global databases of damaging flood events. Results show that10

while the WRR dataset provides useful data for detecting the occurrence of flood events in the Limpopo River basin, variation

exists amongst the global models regarding their capability to identify the magnitude of those events. The study also reveals

that the models are better able to capture flood events at stations with a large upstream catchment area. Improved performance

for most models is found for the 0.25 degrees resolution global model, when compared to the lower resolution 0.5 degrees

models, thus underlining the added value of increased resolution global models. The skill of the global hydrological models15

in identifying the severity of flood events in poorly gauged basins such as the Limpopo can be used to estimate the impacts of

those events using the benchmark of reported damaging flood events developed at the basin level, though could be improved

if further detail on location and impacts are included in disaster databases. Large-scale models such as those included in the

WRR dataset are used by both global and continental forecasting systems, and this study sheds light on the potential these have

in providing information useful for local scale flood risk management. In conclusion, this study offers valuable insights in the20

applicability of global re-analysis data for identifying impacting flood events in data sparse regions.
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1 Introduction

Floods are among the most common and destructive natural hazards globally (Jongman et al., 2015). Approximately 90% of

disasters worldwide in the last decades were caused by weather-related events. Among them, floods are the most frequent,

and affected 2.3 billion people between 1995 and 2015 (UNISDR & CRED, 2015). It is generally acknowledged that due to

projected climate and socio-economic changes, extreme events such as floods may further increase in frequency, magnitude5

and intensity (IPCC, 2012, 2014; UNISDR, 2015, 2016). In order to minimise the negative effects of floods, disaster risk

reduction is increasingly important (Trigg et al., 2016). The urgency of mitigating flood risks is also recognised by international

agreements, such as the Sendai Framework for Disaster Risk Reduction (UNISDR, 2015), which underlines the understanding

of disaster risk including the hazard characteristics as a first priority. Developing adequate knowledge of past flood events is

essential in order to sufficiently address this global problem (Dottori et al., 2016; Spaliviero et al., 2011) and to further reduce10

the consequences of future disastrous events.

Accurate data is key to developing a reliable representation of floods. While hydro-meteorological data are collected and

made available in many places, most developing countries still struggle with limited availability due to inconsistent method-

ologies and datasets (Pozzi et al., 2013; Smith et al., 2015; Trigg et al., 2016). This may for example be because of the lack of

rain and discharge gauges due to insufficient resources as a consequence of socio-economic issues (Hughes, 2006; Spaliviero15

et al., 2011). One of the regions where data availability is poor is (Southern) Africa (Kundzewicz et al., 2002; Naumann et al.,

2014; Trigg et al., 2016; UNISDR, 2016). Not only is there a general lack of data, but the available data and resources are

also not evenly distributed across the riparian countries, with most gauges in South Africa (Thiemig et al., 2011). While the

country of South Africa is relatively rich in terms of data, technology and knowledge, many of its neighbouring countries are

not (Spaliviero et al., 2011). This lack of spatially consistent datasets is a particular issue in this region, as many of the larger20

river basins are transboundary, and extreme events are often linked to phenomena on a wider, regional scale, such as cyclones

(Biswas, 1999; Patt and Schro, 2008).

To address the issue of floods in data poor regions, increasingly available global datasets, such as global re-analysis data,

may have significant potential. Re-analysis datasets are the result of a combination of earth observations, as well as various

models and datasets containing in-situ measurements (Schellekens et al., 2017). Currently there are several re-analysis datasets25

available at a global scale and applicable to water resources, such as ERA-Interim/Land (Balsamo et al., 2015), GLDAS (Rodell

et al., 2004), Global Water Cycle Reanalysis (van Dijk et al., 2014), GSWP-2 (Dirmeyer et al., 2006), WATCH (Haddeland

et al., 2011) and WRR (Schellekens et al., 2017). These datasets provide consistent hydro-meteorological data with a global

coverage, spanning several decades. Hence, they have significant potential to fill data gaps in regions such as Southern Africa

(Sood and Smakhtin, 2015; Trigg et al., 2016; Ward et al., 2013; Wood et al., 2011). Datasets containing different global model30

outputs have thus far been used to determine climatic extremes as well as its uncertainties at the global or continental scale. For

instance, Zhao et al. (2017) evaluated the influence of different river routing schemes in the various global hydrological models

on peak discharge simulation. Dankers et al. (2014) compared the 30-year return period level of river discharge calculated

using nine different global models regarding their projections of climate change impacts on flood hazards worldwide. Trigg
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et al. (2016) assessed the ability of six global models regarding their skill to produce hazard maps for the African continent.

However, they note that there has thus far been limited validation of these global flood models against observed floods.

This study assesses the potential of a recently developed state-of-the-art global water resource re-analysis dataset in identify-

ing damaging flood events for data poor regions such as the Limpopo River basin. The Limpopo River basin is a transboundary

Southern African basin typical of the aforementioned data issues, including a general lack of data as well as an asymmetrical5

distribution of data availability across the riparian countries. The dataset used in this study is the open source global Water

Resources Re-analysis (WRR) dataset developed in the eartH2Observe (E2O) research project, a collaborative project funded

under the European Union’s 7th Research Framework (Schellekens et al., 2017). The WRR dataset is assessed against two

benchmarks. The first benchmark is developed using observed discharges from reliable gauges available in the region. As the

upstream catchment area of these gauges varies, this provides insight into the skill of the global dataset in identifying the10

occurrence and magnitude of flood events in the basin, and how this skill is related to catchment scale. The second benchmark

considers reported damaging flood events in the basin. Reported events from three disaster databases, including the Emergency

Events Database (EM-DAT); the Global Active Archive of Large Flood Events (GAALFE); and the Natural Catastrophe Ser-

vice (NatCatSERVICE), were collated to develop a chronology of damaging events. The ability of the global model datasets in

identifying such damaging events provides insight into the potential of the global models to be able to predict the occurrence15

of impacting flood events. There is a critical need for both higher resolution re-analysis supporting data and flood forecasting

systems to properly capture timing, intensity, and location of flood impacts. Global models such as those considered in this

study are employed by several global and continental flood forecasting systems, such as the Global Flood Awareness System

GloFAS (Alfieri et al., 2013) and the African Flood Forecasting System (Thiemig et al., 2011), and this assessment sheds light

on the potential these have in providing information that is useful to managing floods at the regional and sub-basin scale. We20

also consider of scientific interest that for both the coarser and the finer resolution models, the threshold up to which the models

are still able to capture the hydrology is on the order of the cell size. This holds promise for the continuing effort of modelling

research groups in developing increased resolution (global models).

The remainder of this paper is structured as follows. Section 2 provides the materials and methods used, a description of the

study area, data as well as verification methods. The results (Section 3) reveal the skill of the models in capturing the reported25

as well as modelled flood events. Section 4 provides a discussion of those results, as well as limitations and suggestions for

further research. Conclusions are provided in Section 5.

2 Materials and methods

2.1 Study area

The Limpopo River basin is a transboundary river basin located in the east of Southern Africa, between latitudes 20°S – 26°S30

and longitudes 25°E – 35°E. With a length of approximately 4,000 km and a total drainage area of nearly 413,000 km2, it is

one of the largest basins in Southern Africa (Aich et al., 2014a; Maposa et al., 2014; Trambauer et al., 2015). The basin is

shared by four riparian countries: South Africa, Botswana, Mozambique and Zimbabwe, as shown on Figure 1. The climate
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in the basin is predominantly dry, semi-arid and hot (FAO, 2004; Trambauer et al., 2015). The upstream part is located in the

Kalahari Desert, while further downstream, the climate transitions from an arid desert to a hot and dry steppe and eventually

to a dry tropical savannah.

Precipitation in the basin varies significantly and is highly seasonal (FAO, 2004). Mean annual rainfall is approximately 530

mm, ranging between circa 270 and 1,160 mm (Beck et al., 2017). Some 95% of the rainfall falls during the austral summer5

months between October and March, with the monsoonal rainfall events interspersed with dry spells. Precipitation events

during the wet season are spatially as well as temporary isolated (FAO, 2004). The runoff ratio of the Limpopo River basin

is low (Trambauer et al., 2014), which is characteristic for arid and semi-arid regions (Aich et al., 2014a), and is exacerbated

in the Limpopo basin by water abstractions for irrigation and domestic use. The basin faces significant transmission losses,

resulting in a decline of flow along the length of the river (WMO, 2012). Large sections of the main stem, especially near the10

mouth, have a dry river bed during the dry season (LBPTC, 2010). However, flood waters can rise quickly, especially in the

floodplains around Chokwé in Mozambique, where the mean flood peak can raise water levels some five metres above normal

levels, with levels twelve metres above normal observed during the severe floods of the year 2000 (WMO, 2012). Furthermore,

the river basin has been modified to a large extent, with many dams, irrigation schemes, and storage reservoirs (Aich et al.,

2014a; Ashton et al., 2001; LBPTC, 2010; Silva et al., 2010).15

2.2 Input data

Input data in this research were provided by the publicly available WRR dataset that was developed within the E2O research

initiative (Arduini et al., 2017; Dutra et al., 2015, 2017; Schellekens et al., 2017). This dataset includes the outputs of ten

different global models that are available at two resolutions and time ranges; denoted WRR1 and WRR2. WRR1 has a 0.5

degree resolution (approximately 50 km at the equator) from 1979 to 2012 with the models forced by the Watch Forcing Data20

applied to ERA-Interim data (WFDEI) meteorological re-analysis dataset (Weedon et al., 2014). WRR2, on the other hand, has

a 0.25 degree resolution from 1980 to 2014, and all models were forced using the Multi-Scale Weighted-Ensemble Precipitation

(MSWEP) dataset (Beck et al., 2017). Apart from the different forcing and spatial resolution, the model algorithms were also

improved, such as by a better representation of hydrological processes and by integrating earth observation data (Arduini et al.,

2017; Dutra et al., 2017). More information on the WRR dataset and the improvements can be found in Arduini et al. (2017),25

Dutra et al. (2015, 2017), Schellekens et al. (2017) and Table 1.

As this research focusses on the occurrence of floods, simulated discharges of the ensemble of models included in the

WRR datasets were used. Of the ten models, seven models provide daily discharge values, both Global Hydrological Models

(GHMs) and Land Surface Models (LSMs). All apply different routing schemes to compute the discharges, see Table 1 for

further information. The remaining three models do not include routing schemes and were therefore not considered. Discharge30

data for both WRR1 and WRR2 were downloaded at the locations of the river gauging stations in the model-grid. While

modelled discharges were available for evenly spaced grid cells, river gauging stations are not equally distributed across the

Limpopo River basin, resulting in multiple gauging stations in the same model cell in some cases. The daily modelled river

discharges for each cell in the model-grid where one or multiple discharge gauging stations is located were downloaded from

4



the E2O Water Cycle Integrator portal (https://wci.earth2observe.eu/). Modelled discharge data from the period 1980-2012

were used in this study as a common period in order to compare the differences between WRR1 and WRR2. Note that for three

models simulated discharges were available for the higher 0.25 degrees resolution models, and for the SURFEX-TRIP model

the discharge in WRR2 were only available at 0.5 degrees resolution (see Table 1).

2.3 Verification data5

2.3.1 Discharge Data

Daily observed discharges from selected river gauging stations in the Limpopo River basin were used to verify the modelled

discharges. Discharge records were collected from multiple sources and collated, including the Global Runoff Data Centre

(GRDC), the South African Department of Water and Sanitation (DWAF) and the Regional Water Administration of Southern

Mozambique (ARA Sul). In the entire Limpopo River basin, there are 196 accessible stations that contain data in the 198010

to 2012 time span. However, only 75 of these have daily data available for at least 25 years and passed the goodness of fit

test by calculating the Kolmogorov Smirnoff statistic (Massey Jr., 1951) for the Gumbel Extreme Value Distribution (Gumbel,

1941) at the 5% significance level. These 75 stations are shown in Figure 1, and a detailed list is included in the Supplementary

material (S1). The stations have upstream catchment areas that vary between 4 and 342,000 km2.

2.3.2 Disaster data15

Data from three disaster databases were compiled in order to determine a singular chronology of damaging flood events in the

Limpopo River basin to be used as a benchmark: EM-DAT (CRED and Guha-Sapir, 2017), GAALFE (Brakenridge, 2017) and

NatCatSERVICE (Munich-Re, 2017). This combined reference database contains the 48 damaging flood events that occurred

in the basin over the time span that coincides with the period of record of the E2O dataset; from 1980 to 2012. A summary

of this benchmark dataset is included in the Supplementary material (S2). To allow comparison of the reported events to the20

simulated and observed discharges, the severity or intensity levels of the reported damaging flood events were assessed. This

was completed following the criteria from NatCatSERVICE (Kron et al., 2012), which are based on the number of fatalities

and overall losses, and amended for the total number of fatalities in the entire basin. This resulted in severity levels ranging

from 0 (natural events) to 5 (devastating catastrophes).

The basin is both affected by large-scale basin-wide flood events, as well as by smaller scale flood events that do not affect25

the whole basin at once. The three disaster databases are structured differently. Whereas EM-DAT and NatCatSERVICE report

the flood events on a country basis, the GAALFE is ordered on an event basis. Apart from that, the level of detail regarding

the location of where the flood took place varies, also within one database. Especially the flood events that occurred earlier

often have only a broad administrative descriptions, rather than the (sub-)basin of where the flood occurred. The study area

was therefore subdivided into seven administrative regions in order to be able to make a spatial distribution in areas exposed to30

flooding. These regions are the Limpopo basin with the riparian countries Botswana (BW), Mozambique (MZ) and Zimbabwe

(ZW), and four regions within South Africa (ZA). South Africa was split into multiple regions since roughly half of the total
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basin area is located within South Africa, while nearly all of the available stations are within this part of the basin, allowing a

higher level of detail in identifying the spatial occurrence of flood events. The four different regions in South Africa identified

are the North West Province (ZA1), the Gauteng Province (ZA2), and the combined provinces of Limpopo and Mpumalanga,

subsequently divided into a western (ZA3) and an eastern part (ZA4). The different regions can be seen in Figure 1.

2.4 Evaluating the model performance5

2.4.1 Hydrological performance

Hydrological performance of the daily simulated discharges from all models was assessed using commonly used model eval-

uation statistics, considering Nash-Sutcliffe Efficiency (NSE), Percent Bias (PBIAS) and Pearson’s correlation coefficient (r).

For a fuller description of these statistics and their application see Moriasi et al. (2007). NSE ranges between –∞ to 1, where 1

indicates a perfect representation of observed discharges, with values above zero meaning the simulated discharges have better10

skill than simply taking the average of the observed. PBIAS determines the tendency of the simulated discharge to underes-

timate or overestimate observed discharges (Gupta et al., 1999), normalised with the mean discharge. Ideal values of PBIAS

are zero, with acceptable values considered to be below ±25 percent (Moriasi et al., 2007). Pearson’s correlation coefficient (r)

provides an indication of the linear relationship between simulated and observed discharges data. Ranging from –1 to 1, which

indicate a perfect negative or perfect positive relationship respectively, a correlation coefficient of 0 shows no relationship15

whatsoever. Correlation coefficients are widely used to describe the proportional decrease or increase of two variables, and

have the advantage to be sensitive to large values (Beck et al., 2017; Legates and McCabe Jr., 1999), which is important for

analysing hydrological extremes (we use the term extremes in this paper to indicate the high river flows).

2.4.2 Hydrological extremes

Flood Frequency Analysis20

Flood frequency analysis was performed in order to obtain the magnitudes of the hydrological extremes (Mujere, 2011).

By fitting a Gumbel distribution using the method of moments, the daily river discharge values were converted to annual

exceedance probabilities or return periods (Ward et al., 2011). This allows the occurrence and severity of flood events to be

identified in both the observed and modelled discharge time series. Observed flood events were identified as events with a low

annual exceedance probability (or high return period) at the river gauging stations, with discharges associated to progressively25

smaller probability thresholds used to identify increasingly severe flood events. Flood events in the modelled discharge time

series were identified in two ways; using either the model climatology or the observed climatology. When using the model

climatology, the discharge values for the selected probability thresholds were derived using the Gumbel distribution applied to

the modelled discharges, providing the skill of the model in simulating the variability of extreme discharges. When using the

observed climatology, the discharge values for the thresholds were derived using the observed discharges, which represents the30

skill of the model in determining the absolute discharges. The severity of the reported damaging flood events retrieved from
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the three disaster databases (Section 2.3.2) are then compared to the severity of the flood events identified in observed and

modelled time series. To allow this comparison, the reported damaging flood events, the annual exceedance probabilities or

return periods were converted to flood intensity levels, according to Table 2. In order to determine the possible added value of

the higher resolution global models, modelled flood events were assessed both for WRR1 and WRR2, as well as for each of

the individual models, and the model ensemble.5

Skill Scores

The ability of the models to detect the flood severity was assessed using a contingency table in combination with three skill

scores that were based on the model climatology and derived from the table as performance measures. The annual exceedance

probabilities (or return periods) for both the observed and modelled discharges extracted from the model-grid cell correspond-

ing to the location of the gauge, were computed using the Gumbel distribution which was estimated using the method of10

moments. A moving window of seven days for both the observed as well as the modelled discharge was applied to select the

maximum discharge of a given event. This window was chosen to disregard possible small time lags between the modelled and

observed discharges (Thiemig et al., 2012). The annual exceedance probability thresholds were then used to assess whether or

not the modelled discharge is able to capture the timing and intensity of the extreme discharge events. To compare the relative

performance of the models, different annual exceedance probability thresholds were used for the modelled as well as for the15

observed discharges, ranging between 0.342 and 0.005, equivalent to return periods of 1.5-year and 200 years, respectively.

These thresholds were used to establish the contingency table for the observed discharge at each gauging station with the

discharge from its matching model cell, as shown in Table 3. The table identifies the hits (H, flood events are both modelled

and observed in the gauged data), misses (M, flood events are observed but not modelled), false alarms (FA, flood events are

modelled but not observed) and correct negatives (CN, flood events are neither observed nor modelled).20

Skill scores to quantify the ability of the models to identify flood events were derived from these contingency tables, and

include the Critical Success Index (CSI), the Probability of Detection (POD) and the False Alarm Ratio (FAR). These were

assessed for each model using either the model or the observed climatology. The CSI and POD determine the percentage of

successfully forecasted events of all events observed, whereas the FAR identifies the percentage of incorrectly forecasted flood

events out of all events forecasted. The ideal value for CSI and POD is at 100%, while for FAR it is at 0%. The CSI, POD and25

FAR are calculated using Equations 1, 2 and 3:

CSI =
H

H +M +FA
∗ 100 (1)

POD =
H

H +M
∗ 100 (2)

FAR=
FA

H +FA
∗ 100 (3)

2.4.3 Damaging hydrological extremes30

The capability of the models in capturing the flood events that resulted in reported damages was illustrated graphically. The

relationship of the severity levels of the damaging flood events that were reported by the disaster databases, and the correspond-
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ing annual exceedance probabilities of the observed as well as the modelled discharges at the gauging stations was illustrated.

For each reported event, the corresponding maximum discharge (and thus the lowest annual exceedance probability) in either

the observed or simulated time series was determined with a moving average of three days before and after the start and end

date of the reported flood event (corresponding to a window of seven days for flood events reported to occur on a single date).

The reported damaging flood events are reported as occurring in one or more of the seven defined regions. However, as the5

disaster databases typically report only the broad administrative region of where the flood took place, there was often not

enough information available on the sub-basin scale. Therefore, to associate the reported flood events in a region to a flood

event being identified in either the observed or the modelled discharges, the lowest annual exceedance probability for every

event was determined for each observed river gauging station and corresponding model-grid cell in WRR1 for all stations with

an area larger than 2,500 km2, and in WRR2 for all stations with an area larger than 520 km2. These sizes of the catchment10

areas for WRR1 as well as WRR2 were assessed using the NSE statistic in Section 3.1, and are predominantly related to the

cell size in WRR1 and WRR2. This process was repeated for all events and for every region in the basin.

3 Results

3.1 Hydrological Performance

The relationship between the upstream catchment area of the river gauging stations in the Limpopo River basin and the error15

statistics for the models in WRR1 and WRR2, is illustrated in Figure 2 and Table 4. Figure 2 and Table 4a show the three

models that are available both in WRR1 and WRR2, whereas Table 4b also provides the performance statistics for the models

that are available only in WRR1, as well as the results using the mean of the seven-member ensemble based on the models in

WRR1. The different results demonstrate the improvement of model simulations for stations with a large upstream catchment

area, when compared to those with smaller ones. This can be best observed by looking at the NSE statistic, from which it20

is evident that the models are generally able to capture the hydrology for stations with an upstream catchment area that is

larger than 2,500 km2 for WRR1 (Figure 2a), and larger than 520 km2 for WRR2 (Figure 2d). This provides an indication of

the catchment size at which the models are capable of capturing the hydrology, and also illustrates the difference in forcing,

resolution and the improvements made in WRR2 as compared to WRR1. The NSE values in Table 4a show that for WRR1 as

well as for WRR2, the HTESSEL-CaMa and WaterGAP3 models both perform reasonably well and had roughly equal NSE25

values, even though the structure of the models is quite different, as the former is a land surface model, while the latter is a

global hydrological model.

PBIAS (Figure 2b and 2e, and Table 4) largely shows negative values, indicating an overestimation of the models compared

to the observed discharges. This overestimation is visible for all models, and is more dominant at the stations with the smallest

upstream catchment areas. This can be expected, as the models take the discharge accumulated over a large area (approximately30

2,600 km2 and 650 km2 for WRR1 and WRR2 respectively) as the value for one model-grid cell, whereas the true upstream

catchment areas of the stations may be as small as 4 km2. The models for which the overestimation is lower, and which thus

generally perform better, are again HTESSEL-CaMa and WaterGAP3, both in WRR1 and WRR2. Furthermore, HTESSEL-

8



CaMa is the only model that frequently under predicted the discharges, reflected by a positive PBIAS value. The seven models

and model ensemble mean that were available in WRR1 (Table 4) have quite distinct differences. The models in WRR1

ranked from best to worst for NSE and PBIAS for only the largest catchment areas were; HTESSEL-CaMa; SURFEX-TRIP;

WaterGAP3; the ensemble mean; ORCHIDEE; PCR-GLOBWB; LISFLOOD; and W3RA. The poor performance of W3RA

was attributed by consistent severe overestimation of modelled discharges.5

The last error statistic considered is Pearson’s correlation coefficient, r, displayed in Figure 2c, Figure 2f and Table 4. This

error statistic shows relatively consistent correlations for each model, irrespective of the upstream catchment areas. For WRR1,

the models that performed best are respectively; SURFEX-TRIP; LISFLOOD; the model ensemble mean; and WaterGAP3,

whereas the poorest performance is found for PCR-GLOBWB, and to a lesser extent HTESSEL-CaMa. For WRR2, Water-

GAP3 performs significantly better, and also the improvement of WRR2 over WRR1 is notable for both HTESSEL-CaMa10

and SURFEX-TRIP. LISFLOOD, on the other hand, has a lower r value for WRR2 compared to WRR2. The WRR1 models

scores differently for the r values when compared to ranking for NSE and PBIAS. The order, ranking from best to poorest

order is; SURFEX-TRIP; LISFLOOD; the ensemble mean; WaterGAP3; W3RA; ORCHIDEE; HTESSEL-CaMa; and lastly

PCR-GLOBWB.

Even though some models perform relatively well, the overall performance of the models is, however, quite poor. Average15

NSE remains negative for all models and upstream catchment areas. Average PBIAS was below 25% in only a few instances

for the models HTESSEL-CaMa and WaterGAP3, and the average r value rarely exceeded 0.5.

3.2 Hydrological extremes

3.2.1 Flood Frequency Analysis

The ability of the models in predicting hydrological extremes was analysed by comparing the modelled hydrological extremes20

to the hydrological extremes that were observed at the river gauging stations (Spookspruit and Limpopo River), as well to

the chronology of reported damaging flood events. Results are illustrated for two stations selected as an example in Figure 3.

Modelled extremes were analysed using the discharge thresholds derived from either observed climatology or the modelled

climatology. The locations of the two river gauging stations are shown in Figure 1, and the model selected is the WaterGAP3

model. Similar patterns were observed at stations with similar sizes and for the other models. Comparing the pattern of flood25

events identified by MM1 (WRR1 using the modelled climatology), as well as by MM2 (WRR2 using the modelled climatol-

ogy) to the observed (Obs) or reported (Rep) flood events, it is clear that the WaterGAP3 model is relatively well capable of

capturing the variation of the discharge in the observed data, as well as the occurrence of reported damaging events, particu-

larly at the station with a large upstream catchment area, though even at the station with a small upstream catchment area the

correspondence in the patterns is reasonable.30

Another result derived from Figure 3 is the ability of the models to capture the actual intensity of the identified flood events.

This is indicated in the bottom two lines; MO1 and MO2, in which the severity thresholds were established using the observed

climatology. The frequency of flood events for WaterGAP3 is quite a bit higher than the observed frequency, with the severity
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when observed and simulated events do line up also being quite a bit higher. This is clearly the result of the over-prediction

of observed discharges. However, there is a marked improvement from the station situated in the river with a small upstream

catchment area to the station with a large upstream catchment area, as well as when comparing the higher resolution WRR2 to

WRR1. Similar results were found for other models and stations pairs, and accordingly also in the model performance statistics

discussed in the previous section.5

3.2.2 Skill scores

The upper panel in Figure 4 shows the CSI for each of the models in WRR1, as well as for the seven-model ensemble mean,

with discharge thresholds based on model climatology. The score for the models in WRR1 was found to be quite constant for

discharges that occur more frequently, i.e. Annual Exceedance Probabilities higher than 0.09, equivalent to a return period of 10

years. The relative performance of the models from best to worst for these discharges is W3RA; the ensemble mean; SURFEX-10

TRIP; LISFLOOD; WaterGAP3; PCR-GLOBWB; HTESSEL-CaMa; and ORCHIDEE. The pattern, however, changes for the

more extreme (low probability) discharges. The discharges with an annual exceedance probability that was less than 0.09

showed a greater spread, as well as changes in the order of performance of the models. For example, SURFEX-TRIP and

LISFLOOD now perform better, while W3RA performs worse for these more extreme discharge events. The model ensemble

mean though has a remarkably high CSI score which is independent of the return period.15

The differences in performance of WRR2 compared to WRR1 as a result of increased spatial resolution, different forcing

and model improvements becomes evident from the lower panel of Figure 4. For WaterGAP3, HTESSEL-CaMa and SURFEX-

TRIP, using WRR2 yields higher CSI values. For LISFLOOD, on the other hand, the performance of WRR1 is better than that

in WRR2. Again, it appears that WaterGAP3 WRR2 performs best overall. These same patterns are observed regarding the

error statistics, as shown in Figure 2 and discussed in Section 3.1.20

The underlying reason for the observed patterns of the CSI can be explained by taking a closer look at the POD and FAR.

The performances of all three skill scores with respect to the upstream catchment area of each individual station are shown in

Figure 5. Skill scores are shown here for events with an annual exceedance probability of 0.164, equivalent to a return period

of 5 years. As can be observed by looking at the models in WRR1 (upper panel), the average POD is around 25% and the

average FAR is around 70%, resulting in an average CSI of roughly 15%. The CSI, POD and FAR all have a relatively large25

spread, with little relationship to the upstream catchment area of the stations. Stations with a larger upstream catchment area

do not necessarily result in better skill scores. An explanation for the lack of a relationship with catchment areas is that the

three skill scores are based on model climatology, and thus the relative flood intensity, while the error statistics are based on

the observed climatology and thus the absolute intensities. This clarifies the notable difference with the error statistics, such

as the NSE (as shown in Figure 2a and d), where the improvement of stations with a larger upstream catchment area is clear.30

This suggests that the performance of the models in estimating the relative intensity, is not highly influenced by the upstream

catchment area of the river gauging stations. The difference in performance between WRR1 and WRR2 is, however, apparent.

Both HTESSEL-CaMa and WaterGAP3 display improved values for the CSI, POD and FAR. Again, the notable exception is

LISFLOOD, where WRR1 performs better than for WRR2, independent of the skill score. This again reflects the error statistics
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discussed in Section 3.1 and is in correspondence with Arduini et al. (2017) and Dutra et al. (2017). There are a number of

factors that could contribute to this observation, such as the model modifications (see Table 1) and that the same calibration

parameterization were used as in WRR1, even though the alterations to the model require an updated calibration (Arduini et

al., 2017).

3.3 Damaging hydrological extremes5

Scatter plots were used to demonstrate the relationship between the reported severity of the reported flood events with the

severity of the corresponding events identified in the observed as well as the modelled discharges. These scatter plots are shown

in Figure 6, illustrating the reported flood severity in discrete classes (x-axis), as well as the annual exceedance probability for

the events identified using the maximum of the modelled or observed discharges in a seven day window around the reported

event (y-axis). The exceedance probability found at each station is plotted. Ideally the events should be clustered along the10

diagonal from top left (higher probability, lower severity), to bottom right (lower probability, higher severity), reflecting that

lower impact flood events typically occur in only a few stations and have higher probabilities (low return periods), while

high impact severe flood events are often basin wide, occurring at most stations across the basin with lower probabilities. For

medium severity reported events, a wider scatter would be expected, as these events may occur only in a part of the basin.

The figure shows that when a reported flood event is classified at the most severe category 5, impacts were observed through-15

out the basin, as all observed as well as modelled probabilities indicate above normal river discharge, many of which with

extreme (low probability) discharges. Small-scale flood events that resulted in low as well as localised damages, on the other

hand, were classified either as category 0 or 1. As can be seen in Figure 6, the annual exceedance probabilities corresponding to

these events have a larger spread. The reason for this is that small-scale events are not noticeable throughout the entire region,

but only locally, as many gauges were still measuring normal flow, while those where the event does occur show more extreme20

discharges. It can be observed though that part of the gauges measured an above normal discharge, whereas this was frequently

not observed by the models. Only WaterGAP3 was able to detect extreme discharges for the floods with a severity level of

zero. Apart from that, the four different models displayed comparable results, although HTESSEL-CaMa generally had lower

annual exceedance probabilities for the same flood events when compared to the other models.

4 Discussion25

The potential of the global Water Resources Re-analysis dataset was assessed by studying the hydrological performance,

identification of hydrological extremes, as well as of damaging flood events, and was evaluated by means of commonly used

error statistics and verification skill scores (CSI, POD and FAR). The verification of the models within the WRR dataset was

largely dependent on the observed river discharge data. Access to these data proved to be quite challenging, and the quality of

the discharge data that was obtained was often insufficient. Only 75 of the 196 river gauging stations for which at least some30

data available in the Limpopo for the desired time range were used in this research, with most of these in South Africa. This has

implications for the conclusions drawn from the research, especially for the PBIAS as it is highly influenced by the uncertainty
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in the observed data (Moriasi et al., 2007). Despite these limitations, this research shows that the discharges that were estimated

by the different global models are to some extent able to capture the variability of observed discharges, as indicated by the

different error statistics. For instance, the NSE demonstrated that for WRR1 as well as WRR2, both the HTESSEL-CaMa

and the WaterGAP3 models performed well with roughly similar NSE values, despite the different structure of these models.

HTESSEL-CaMa is a LSM and does not include lakes and reservoirs or water usage, whereas WaterGAP3 is a GHM and does5

include both lakes and reservoirs, as well as water usage (Table 1). The differences between the model structures is illustrated

by the PBIAS and r values. HTESSEL-CaMa has reasonable PBIAS, while WaterGAP3 has a relatively good r. As noted in

Section 2.1, the basin is highly altered due to human influences, in particular by a large number of storage reservoirs. Models

that capture only natural flow conditions, and do not take the reservoirs and water usage into account, may be able to reasonably

estimate runoff volumes, though they do tend to largely overestimate the actual magnitude of the discharges. Not including10

human influences such as regulation, however, results in low correlations. The relative intensity of flood events, on the other

hand, can still be well captured by the same model when using the model climatology instead of the observed climatology as

a reference. An example of such a model is W3RA, which performs poorly when considering the error statistics, but relatively

well for the CSI.

Global models are best suited for the modelling of large-scale processes, but poorly represent the small-scale ones such as15

the variability associated with convection (Beck et al., 2017). These conclusions have been drawn in similar research, such

as Asante et al. (2008), Thiemig et al. (2015) and Trigg et al. (2016). This study indicates that the small-scale flood events

were generally not well captured by the global models that were analysed in this research. The results do show, however,

that the performance of these global models improves with model developments in terms of resolution, forcing and model

parameterization. The statistics for model performance measures for the higher resolution WRR2 starts to approach reasonable20

values for gauges with upstream areas of some 500 km2, while for the lower resolution WRR1 these same values are attained

only at areas of some 2,500 km2. The higher resolution WRR2 also shows for two of the three models better skill in identifying

reported flood events, represented in the chronology of reported flood events developed. Whether the improved performance of

the higher resolution is due to the improved and higher resolution MSWEP forcing data (Beck et al., 2017), or due to improved

representation of hydrological processes is unclear. However, as the improvements vary between the models, it is clear that25

model structure has an influence.

That there is skill in these global models in identifying flood events that have impacts, and that this skill improves as the

resolution of these large-scale models improves, is significant. Global scale forecasting systems (Alfieri et al., 2013) as well

as those at continental scale (Thiemig et al., 2011) typically employ such large-scale models for developing forecasts, using

thresholds based on model climatology to inform the severity of predicted events and subsequent issuing of flood warnings.30

Such warnings may be issued where there are no (reliable) river gauges, as is the case in much of the Limpopo basin, making

calibration of a local model difficult. The ability of these global and or continental models to predict the occurrence of flood

events that have impacts bolsters the confidence of using these warnings to initiate response, though the high false alarm rate

found could again diminish confidence.
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It is important to note, though, that likely not all small-scale flood events that occurred between 1980 and 2012 will have been

included in the chronology of reported flood events that was developed. As has more often found to be the case in the Global

South (Brakenridge, 2017), the availability of disaster data in the Limpopo River basin is fairly limited. In order to construct

a basin-wide timeline of historic damaging floods, events reported in the EM-DAT, GAALFE and NatCatSERVICE databases

were collated. Even though the three used here are currently the most comprehensive databases containing reported damaging5

historic flood events in Africa (Aich et al., 2014b), several shortcomings are noted. These include inconsistencies between

events reported, gaps, and limited reporting in some areas (Guha-Sapir et al., 2016). Additionally, most disaster databases

are available at the country scale, whereas flood events occur at the basin or finer scales. It is recommended to enhance the

reporting of flood disasters by providing more details on the losses that were incurred as well as a more precise description

of the location and extent of the floods. The basin-wide approach to identify past flood events by using empirical disaster10

databases used in this research has also been applied in other research (Aich et al. (2014b), Asante et al. (2008), Bischiniotis

et al. (2018), Huggel et al. (2015) and Thiemig et al. (2015)), noting similar deficiencies.

The flood classification that was used in this research is a discrete classification, taking the number of fatalities and overall

losses into account. However, it is expected that a continuous flood severity classification would be better able to reveal the

relationship between extreme river discharges and the intensity of reported damaging flood events. However, due to the gaps15

in the reported damaging flood event data as well as broad area descriptions, this could not be assessed at this point. In order

to identify the added value of such a classification, additional research is required in addition to improving disaster loss data.

In this study, the Gumbel distribution is used to determine the annual exceedance probability thresholds of both the modelled

and observed discharge data. Different extreme value distribution, however, can significantly influence the probability of the

extreme discharges (Dankers and Feyen, 2008). The Gumbel distribution is a two-parameter distribution and was applied20

due its simplicity and robustness, though some authors (e.g. Ponce (1989), argue that a three-parameter distribution such

as the GEV or the Log Pearson type III should be used for flood frequency analysis. However, the goodness of fit of the

distributions found was tested using the Kolmogorov Smirnoff test, with stations that did not meet the 5% significance threshold

not considered. Further inspection of these stations revealed that these were often directly downstream of a dam, or otherwise

strongly influenced by human activities. Additional research could additionally explore the influence of using more complex25

extreme value distributions. This could also consider the influence of the length of the moving window that was used to identify

the maximum discharge in the observed and modelled time series. This moving window was chosen to allow for the travel time

from the upstream parts of the sub catchment. In reality, however, the catchment upstream of each gauging station has its own

time of concentration, and the window used could be made specific for each station accordingly.

Of the global models considered in this study, the higher resolution WaterGAP3 in WRR2 demonstrated the best perfor-30

mance, both for capturing the hydrological behaviour across the Limpopo basin, as indicated by good values for the error

statistics, as well as for identifying the occurrence and severity of hydrological extremes, which was indicated by the skill

scores. It was also observed that WaterGAP3 in WRR2 is reasonably good at estimating low annual exceedance probabilities

for the damaging flood events for the stations with a large upstream catchment area. One reason for this improved performance

may be the inclusion of lakes and reservoirs, as well as water abstractions in the model. However, results for other models,35
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such as W3RA, which has the worst model performance error statistics, may rank higher than other models when used to

identifying the occurrence of flood events, where these are identified using the model’s own climatology. It is also important

to note that if similar research would be applied elsewhere, the ranking of model performance may be quite different. The

ranking of the models also clearly depends on the aim of the research. WaterGAP3 for instance performed poorly in respect

to other global hydrological models in research focussing on a snowmelt driven catchment (Casson et al., 2018). Furthermore,5

when the key interest is the relative performance of the model for the Limpopo River basin, taking only the model climatology

into account, the W3RA model would be the preferred model, as it has a high CSI. However, when the main goal would be

the absolute magnitude of discharges, the W3RA model would not be considered, as it is found to severely overestimate the

discharges in the Limpopo River basin. The seven-model ensemble mean, on the other hand, proved to be quite consistent in

its performance. For the CSI values particularly it scores remarkably high, but it also scores relatively well for the Pearson’s10

correlation coefficient r. Though it should carefully be assessed which model would be the best applicable for each instance,

the model ensemble mean would be the safest bet in an area where no model clearly stands out.

5 Conclusion

The study explores the use of a global re-analysis dataset developed within the EU-FP7 EarH2Obverve (E2O) project, which

is constructed using a set of global hydrological and land surface models, to support flood risk analysis in data sparse regions,15

such as the Limpopo River basin. There is a necessity for such re-analysis data, since measured river discharge data in this

basin and others like it are currently insufficient, poorly spatially distributed, have an insufficient period of record, or are partly

inaccessible. The E2O re-analysis dataset provides hydro-meteorological data of sufficient length and coverage required for

statistical analysis. When the variability of the discharge results of the ensemble of models included in the re-analysis dataset

is evaluated, the error statistics found show that the models all have reasonable skill in capturing the variability of the observed20

discharges, though there may be significant bias in magnitude. This was indicated by strong correlations, low Nash-Sutcliffe

Efficiency and high percent-bias values. Furthermore, the error statistics revealed that the variability is better captured by the

models at hydrological gauging stations that have larger upstream catchment areas compared to those in smaller catchments.

The upstream catchment areas of the river gauging stations at which WRR1 and WRR2 are able to provide representation of

the hydrological behaviour that is better than the average of the observed is found for catchment areas of some 2,500 km225

and 520 km2 and above respectively, with significantly poorer performance for smaller catchment sizes. This shows that the

continued improvements in the global models with a higher resolution, either due to improved higher resolution forcing, or

due to improved model structures, can be expected to lead in most cases to better capabilities of capturing the variability of the

observed discharge as well as the magnitude of observed discharges.

A novel aspect of this study is in exploring the skill of the global models in identifying the occurrence and severity of flood30

events in two benchmark chronologies of flood events. The first was developed through flood frequency analysis, with flood

events identified to occur at selected probabilities, while the second was developed through collating reported flood events in

three disaster impact databases. This shows that the global models do have skill in capturing the observed as well as reported
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damaging floods. This is, however, only the case when the thresholds of the discharges corresponding to the flood events are

determined using the model climatology, and not the observed climatology. The simulated discharges of these global models

are thus found to better represent the variability of the observed discharges, than the magnitude; though this is less an issue for

the better performing higher resolution models of WRR2.

Despite the absence of high-quality data in the Limpopo River basin and the coarse resolution of the models in the global5

re-analysis dataset, this research shows that regardless these limitations, the global re-analysis dataset can provide valuable

information for flood risk assessment in data sparse regions. The skill of the models to predict flood events in the basin that

have led to flood damage, as recorded in the chronology of reported floods is an important finding, as global models such as

those assessed here are often used in global and continental forecasting systems to generate flood forecasts and issue warnings

in basins with little or no gauged data, but where floods and consequent impacts do occur. This indicates that openly available10

global scale hydro-meteorological data can provide valuable information regarding extreme events in data sparse regions and

may therefore be of use to local decision makers in mitigating the negative consequences of future flood events, and that this

may improve as the resolution of these global models improves.
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Figure 1. Map of Limpopo River basin with the riparian countries, major tributaries, and the seven regions in the basin that were identified

for this research. Also shown are the major dams (blue circle) and the river gauging stations with at least 25 years of data between 1980 and

2012 (black triangle). The stations used to illustrate the flood frequency analysis in Section 3.2.1 are shown by a square (located upstream in

the Spookspruit tributary; 252 km2), and a diamond (located at the main stem of the Limpopo River; 98,240 km2).
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Figure 2. Performance statistics for the four models available in both WRR1 (top) and WRR2 (bottom) for each of the 75 gauging stations

in the Limpopo River basin, ordered by upstream catchment area. The error statistics displayed include (a) the Nash Sutcliffe Efficiency

(NSE) for WRR1, (b) the Percent Bias (PBIAS) for WRR1, (c) Pearson’s r for WRR1, (d) NSE for WRR2, (e) the PBIAS for WRR2, and

(f) Pearson’s r for WRR2. For clarity, the lower limit of the y-axis of the PBIAS has been set to -1,000.
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Figure 3. Occurrence of flood events of increasing severity classes at the Spookspruit gauge (252 km2; upper panel) and in the main Limpopo

River (98,240 km2; lower panel). Model flood events were identified using model climatology (MM1 & MM2) or observed climatology (MO1

& MO2), and were compared to benchmarks based on a compiled disaster impact database (Rep) and observed river discharge data (Obs).

The index value refer to models with 0.5 degree resolution (MM1 and MO1) and 0.25 degree resolution (MM2 and MO2). Results are shown

for the WaterGAP3 model, which is available in the eartH2Observe Water Resources Re-analysis dataset.
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Figure 4. The Critical Success Index (CSI) using different annual exceedance probability thresholds averaged over all gauging stations for

the seven models and ensemble mean available in WRR1 (upper panel), and the four models that are also available in WRR2 (lower panel).
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Figure 5. The Critical Success Index, Probability of Detection and False Alarm Ratio determined using the annual exceedance probability

threshold of 0.164 (return period of 5 years) for all gauging stations for the three models available in WRR1 (upper panel), and the models

that are also available in WRR2 (lower panel).
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Figure 6. The relationship of the flood event severity for the reported flood events, and the corresponding annual exceedance probabilities

that were observed and modelled for (a) HTESSEL-CaMa, (b) LISFLOOD, (c) SURFEX-TRIP and (d) WaterGAP3.
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Table 1. Overview of the seven global models in the Water Resources Re-analysis dataset that include daily river discharges.

Model
Model

Type
Changes in WRR2

Lakes-

Reservoirs
Water use Routing Reference

HTESSEL-CaMa LSM

Multi-layer snow

scheme, increased no

of soil layers.

No No CaMa-Flood
(Balsamo et al.,

2009)

LISFLOOD GHM

Increased no of soil

layers, groundwater ab-

straction.

Yes Yes
Double kinematic

wave

(van der Knijff

et al., 2008)

ORCHIDEE LSM N/A No No
Linear cascade of

reservoirs

(Krinner et al.,

2005)

PCR-GLOBWB GHM N/A
WRR1

only lakes

Not in

WRR1
Travel time

(van Beek and

Bierkens, 2009)

SURFEX-TRIP LSM

Ground water, flood

plains, land use, plant

growth, surface energy

and snow.

No No TRIP with stream
(Decharme et al.,

2010)

WaterGAP3 GHM

Assimilation of soil wa-

ter estimates, reservoir

management.

Yes Yes Manning-Strickler (Flörke et al., 2013)

W3RA GHM N/A No No
Cascading linear

reservoirs

(van Dijk et al.,

2014)

Ensemble of 7

models

GHM &

LSM
N/A Various Various Various N/A

[Source: Schellekens et al. 2017; Dutra et al., 2015, 2017]
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Table 2. Thresholds that were used to classify the exceedance probabilities according to flood severity levels.

Flood Severity Level Annual Exceedance Probability Return Period [years]

0 ≤ 0.303 ≥ 2

1 ≤ 0.164 ≥ 5

2 ≤ 0.090 ≥ 10

3 ≤ 0.038 ≥ 25

4 ≤ 0.010 ≥ 100

5 ≤ 0.005 ≥ 200

Table 3. Contingency table for flood events

Observed

Yes No

Modelled
Yes Hits (H) False Alarms (FA)

No Misses (M) Correct Negatives (CN)

[Source: Thiemig et al., 2015]
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Table 4. Performance statistics for the four models available in WRR1 and WRR2 (Table 4, upper panel) for each of the 75 gauging stations

in the Limpopo River basin, and the three models and ensemble mean only available in WRR1 (Table 4, lower panel). Statistics displayed for

WRR1 and WRR2 include the Nash Sutcliffe Efficiency (NSE), the Percent Bias (PBIAS) and Pearson’s r (r). The three different upstream

catchment areas indicate that an average is taken of the error statistics of the stations that are larger than indicated. Stations ≥ 4 km2 indicates

all 75 stations, ≥ 520 km2 are the largest 31 stations, and ≥ 2,500 km2 are the largest 11 stations.

Stations with

upstream

catchment HTESSEL-CaMa LISFLOOD SURFEX-TRIP WaterGAP3

area [km2] WRR1 WRR2 WRR1 WRR2 WRR1 WRR2 WRR1 WRR2

NSE

≥ 4 -734.77 -294.83 -6,473.49 -23,616.81 -2,938.32 -1,147.33 -1,445.34 -628.78

≥ 520 -16.38 -9.62 -107.99 -43.12 -31.33 -21.73 -21.94 -8.16

≥ 2,500 -0.16 -0.82 -7.31 -57.94 -0.54 -1.21 -1.27 -0.58

PBIAS

≥ 4 -595.10 -335.27 -6,359.73 -9,996.76 -2,415.21 -1,176.01 -1,680.21 -889.04

≥ 520 -17.96 -25.19 -987.01 -361.25 -243.26 -167.95 -143.29 -32.72

≥ 2,500 58.66 -5.18 -402.14 -476.37 -57.74 -74.57 -51.23 -9.59

r

≥ 4 0.24 0.38 0.47 0.35 0.45 0.50 0.39 0.54

≥ 520 0.26 0.42 0.51 0.37 0.50 0.56 0.43 0.60

≥ 2,500 0.26 0.47 0.51 0.41 0.52 0.60 0.45 0.66

Stations with

upstream

catchment ORCHIDEE PCR-GLOBWB W3RA Ensemble mean

area [km2] WRR1 WRR1 WRR1 WRR1

NSE

≥ 4 -4,301.50 -176,842.51 -35,536,946.62 -5,645.16

≥ 520 -576.83 -220.57 -44,933.26 -59.92

≥ 2,500 -1.30 -8.80 -1,878.46 -1.17

PBIAS

≥ 4 -7,049.09 -8,661.80 -235,229.53 -5,108.67

≥ 520 -1,954.28 -714.12 -21,748.70 -804.86

≥ 2,500 -103.64 -91.09 -5,014.81 -188.17

r

≥ 4 0.32 0.12 0.31 0.46

≥ 520 0.34 0.13 0.33 0.49

≥ 2,500 0.31 0.13 0.36 0.49
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