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Abstract. There is a growing desire for reliable 21st-century projections of water availability at the regional scale. Global

climate models (GCMs) are typically used together with global hydrological models (GHMs) to generate such projections.

GCMs alone are unsuitable, especially if they have biased representations of aridity. The Budyko framework represents how

water availability varies as a non-linear function of aridity and is used here to constrain projections of runoff from GCMs,

without the need for computationally expensive GHMs. Considering a Chinese case study, we first apply the framework to5

observations to show that the contribution of direct human impacts (water consumption) to the significant decline in Yellow

river runoff was greater than the contribution of aridity change by a factor of approximately 2, although we are unable to rule

out a significant contribution from the net effect of all other factors. We then show that the Budyko framework can be used to

narrow the range of Yellow river runoff projections by 34 %, using a multi-model ensemble and the high end RCP8.5 emissions

scenario. This increases confidence that the Yellow river will see an increase in runoff due to aridity change by the end of the10

21st century. Yangtze river runoff projections change little, since aridity biases in GCMs are less substantial. Our approach

serves as a quick and inexpensive tool to rapidly update and correct projections from GCMs alone. This could serve as a

valuable resource when determining the water management policies required to alleviate water stress for future generations.

1 Introduction

Climate change is a global problem, but the impacts and associated vulnerability are not homogeneous. There is therefore a15

demand for robust projections of changes in regional climate, particularly water availability. At the largest scales, the majority

of literature on projected changes in aridity suggests a global land drying tendency (Dai, 2013; Cook et al., 2014; Scheff and

Frierson, 2015); a consequence of ubiquitous increases in potential evapotranspiration (Ep), but mixed signals in precipitation

(P ). This has been challenged, however, by some recent studies (Roderick et al., 2015; Greve et al., 2017; Scheff et al., 2017).

At the river catchment scale, direct human impacts (non-climatic, human interventions directly affecting the partitioning of P20

into runoff (Q) and evapotranspiration (E)) are already having a significant, but poorly quantified, effect on water availability

(Nilsson et al., 2005; Gerten et al., 2008; Destouni et al., 2013; Haddeland et al., 2014). For the Indus river catchment Haddeland

et al. (2014) showed that current direct human impacts on water availability (decreases due to water consumption for irrigation)

are expected to be greater in magnitude than end-of-21st-century climatic impacts on water availability. Increasing E due to
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irrigation is commonly observed in heavily populated catchments, especially across southern and eastern Asia (Gordon et al.,

2005).

Literature on future water availability projections has typically been framed around the net atmospheric supply of water

versus the net demand for water resulting from direct human impacts (land-use change, dam construction and reservoir oper-

ation, and surface water and groundwater consumption for irrigation). Recent studies have considered either: 1) the projected5

human water demand using integrated assessment models, with water supply fixed to present conditions (Hejazi et al., 2014a);

2) the projected water supply using global climate models (GCMs) to force offline global hydrological models (GHMs), with

human water demand fixed to present conditions (Cook et al., 2014; Schewe et al., 2014); or 3) both projected water supply

and projected human water demand (Haddeland et al., 2014; Hejazi et al., 2014b).

Using GCM output alone in hydrological projections is not considered suitable, because GCMs have coarse resolution,10

simplified land surface schemes and, crucially, biases in simulating hydrological cycle components. The usual approach for

generating hydrological projections is to use bias corrected and downscaled GCM output to force offline GHMs (Wood et al.,

2004). Using GHMs in addition to GCMs greatly increases the computational expense of a study. Here, we propose an approach

for refining projections of water availability from GCM models participating in phase 5 of the Coupled Model Intercomparison

Project (CMIP5). We use Q as a measure of water availability. The term “refine” is used in the sense that we expect to generate15

projections ofQ on an improved physical footing, compared to using GCM output directly. The approach uses model simulated

aridity and a bias correction, within the Budyko framework (Budyko, 1974). We do not consider future human water demand,

only future net atmospheric supply of water, of which aridity is a key determinant.

We consider a simple water balance and assume that changes in storage are negligible:

P =Q+E. (1)

GCM variables require bias correction to be of value at catchment scales (Schewe et al., 2014). Bias correcting a GCM20

simulated future Q or E is a complex process. To illustrate this point we introduce the Budyko framework (Budyko, 1974).

Within this framework the partitioning of (annual to long-term mean) P into Q and E scales as a non-linear function of aridity.

Aridity, within the Budyko framework, is the dimensionless ratio of Ep to P . The evaporative index, the dimensionless ratio

of E to P , is dependent on Ep/P . The relationship is represented by the non-linear Budyko curve, which is constrained by the

physical limits of the atmospheric demand for water (E <Ep; the red dashed 1:1 line in Fig. 1) and the atmospheric supply of25

water (E < P ; the blue dashed horizontal line in Fig. 1).

The original deterministic and non-parametric Budyko formula was developed using data mainly from European river catch-

ments (Budyko, 1974):

E

P
=

{
Ep

P
tanh

(
P

Ep

)[
1− exp

(
−Ep

P

)]}1/2

. (2)

The trajectory taken in the Budyko space due to a change in P , Ep or E is dependent on the initial values of these three fluxes

(the mean state) (van der Velde et al., 2014). Therefore, an accurate representation of the observed climatology is important30

in any modelling study looking at hydrological projections, especially since changes in variables are typically small compared
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Figure 1. The traditional Budyko curve (solid black curve), corresponding to ω = 2.6 in Eq. (3). The ω = 2.6± 1 curves are also shown

(dot-dashed gray curves bounding the shaded region). The atmospheric supply limit (E < P ; horizontal dashed blue line) and atmospheric

demand limit (E <Ep; diagonal dashed red line) are shown. Energy-limited conditions are represented to the left of the vertical dashed

black line (Ep/P < 1) and water-limited conditions are represented to the right (Ep/P > 1).

with climatology. If the present-day aridity is biased then the future-minus-present changes in runoff (∆Q) and evapotranspi-

ration (∆E) will also be biased, even if the future-minus-present changes in precipitation (∆P ) and evapotranspiration (∆Ep)

are correctly simulated. Supplementary Sect. S1 further demonstrates this point with an example that, although arbitrary, is

illustrative of the magnitude of aridity biases in CMIP5 models.

Recent work has shown that aridity can only explain part of the differences between catchments (e.g., Zhang et al., 2001).5

This has led to the derivation of a number of parametric forms of the Budyko curve. One of the more popular forms is the Fu

equation (Fu, 1981; Zhang et al., 2004), a one-parameter function expressed as:

E

P
= 1 +

Ep

P
−
[
1 +

(
Ep

P

)ω]1/ω
, (3)

where ω is an empirical parameter that is calibrated against local data. The traditional Budyko curve (Eq. (2)), corresponds to

ω = 2.6 in Eq. (3) (Yang et al., 2008).

Here, an attempt is made to utilize biased but plentiful GCM output without the need for GHMs. We apply our approach to10

two major catchments in China, the Yangtze and the Yellow. There is a wealth of literature that uses the Budyko framework

to understand water changes in other Chinese basins (Yang et al., 2007; Xu et al., 2014; Liang et al., 2015). The Yangtze and

Yellow rivers dominate the wetter south and drier north, respectively (Fig. 2). The spatial variability in P means that the north
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of the country, which is poleward of the East Asian monsoon rains, is more water-stressed than the south. This is exacerbated

by the fact that the north has 65 % of the total arable land in China (Piao et al., 2010).
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Figure 2. Precipitation climatology for 1961–1990 using the CRU precipitation dataset. This dataset is spatially interpolated, using available

in situ observations, to give complete global land coverage. The location of the Yangtze and Yellow catchments within China is shown.

The mismatch in water supply versus water demand could be the reason behind the stark decline in Yellow river streamflow

(the temporally lagged, spatial integral of upstream Q) seen in recent years (Yang et al., 2004). The contributions of climate

change (which incorporates aridity change, but also changes in seasonality, snow dynamics, storminess and many other factors5

(Gudmundsson et al., 2016)) and direct human impacts to this “drying up” are widely discussed in recent literature (Wang et al.,

2006; Piao et al., 2010; Miao et al., 2011). Most studies suggest a significant contribution of direct human impacts, including

afforestation and land-use change (Huang et al., 2003; Liu et al., 2008; Zhang et al., 2008; Qiu et al., 2011), although methods

and attributed contributions vary.

We can also use the Budyko framework to quantify the contribution of aridity change alone (changes in P andEp only) to the10

20th century decrease in Q in the Yellow catchment. Qualitative agreement with previous studies will serve to validate the use

of the Budyko framework in refining 21st-century projections, while hopefully shedding new light on 20th-century observed

changes. The 20th-century Budyko framework estimate is compared with an estimate of Q simulated by an offline land surface

model (LSM) that does not include a representation of direct human impacts, with the exception of land-use change. If these

estimates reconcile it suggests that the Budyko framework is suitable for this attribution, since Q simulated by the LSM should15

largely reflect changes in P and Ep only. Further, we ask if the difference between the total change in Q and the component
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attributed to aridity change, for the Yellow catchment, is in close agreement with a simple estimate of the change in Q due to

direct human impacts.

Section 2.1 details the observed and modelled data used and Sect. 2.2 describes the methodology. Results are presented in

Sect. 3, first applying the Budyko framework to the 20th century observed water availability (Sect. 3.1), before extending the

approach to constrain 21st-century model projections of water availability (Sect. 3.2). We finish with a discussion (Sect. 4) and5

conclusions (Sect. 5) The two-pronged approach of this paper is summarised in Fig. 3. It shows how the approaches share the

same theory and use many of the same equations, but are independent in their objectives. However, the 20th century application

of the Budyko framework supports the suitability of the 21st century application, as indicated (Fig. 3).

Introducing	ideas	
Section	1	

	
The	partitioning	of	precipitation	
(Eq.	(1))	and	the	non-parametric	
and	one-parameter	versions	of	

the	Budyko	curve	(Eqs.	(2)	and	(3),	
respectively).	

20th	century	historical	changes	
Sections	2.1.1,	2.2.1	and	3.1	

	
1)  Use	Eq.	(5)	to	calibrate	ω,	
using	observed	P,	Ep	and	E	(E	is	
calculated	using	observed	P	

and	Q	(Eq.	(1)).		

2)  Calculate	Qa	using	Eq.	(6).	

3)  Estimate	Qh	using	time	series	
of	water	consumption	derived	
from	time	series	of	Chinese	

irrigated	area.	

4)  Separate	the	measured	runoff	
changes	into	Qa,	Qh	and	a	
residual	term	using	Eq.	(7).	

5)  Use	Q	as	simulated	by	a	LSM,	
to	test	the	calculation	of	Qa.	

Applying	the		
Budyko	framework	

21st	century	projected	changes	
Sections	2.1.2,	2.2.2	and	3.2	

	
1)  Estimate	Ep	in	CMIP5	models	

from	net	surface	radiation	(Eq.	
(4))	.	

2)  Use	Eq.	(5)	to	calibrate	ω,	
using	observed	P,	Ep	and	E	(E	is	
calculated	using	observed	P	

and	Q	(Eq.	(1)).		

3)  Bias	correct	P	and	Ep	using	Eq.	
(10).	

4)  Use	bias	corrected	P	and	Ep,	
together	with	the	calculated	ω	

values	to	calculate	Q*,	a	
Budyko	corrected	runoff.	This	

uses	Eq.	(8).	

Agreement	of	20th	century	changes	with	
existing	literature	will	validate	the	use	
of	the	Budyko	framework	in	refining	

21st-century	projections	

Figure 3. Schematic of how the Budyko framework is used to improve our understanding of 20th-century historical changes and 21st-century

projected changes.
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2 Data and methods

2.1 Data

2.1.1 20th-century historical changes

We use the Dai et al. (2009) Global River Flow and Continental Discharge Dataset to calculate observed Q for the Yangtze

and Yellow catchments. This dataset aimed to use the farthest downstream gauging station (to maximise spatial representation)5

that had good temporal coverage. Q is calculated by dividing river discharge at a gauging station by the upstream catchment

area. In keeping with many other hydrological studies we use annual mean values throughout, but consider the water year

(October-September). Data are available for October 1950 to September 2000.

To ensure an accurate comparison between observed P and Q we produce high-resolution catchment masks on a 0.5◦ ×
0.5◦ grid to match that of the P dataset used (Fig. 2). We select the latest Climatic Research Unit (CRU) high-resolution10

P dataset, CRU TS3.23 (Harris et al., 2014). The interpolated version of the dataset is used, which offers complete global

terrestrial coverage. This allows for direct comparison with the spatial and temporal coverage of observed Yangtze and Yellow

Q. By restricting our analysis of observations to 1951–2000 we find that our conclusions are not sensitive to using either the

interpolated version or raw version of the precipitation dataset (see supplementary Sect. S2 and Fig. S1). We then calculate E

as P −Q (Eq. (1)).15

Likewise, we use the CRU TS3.23 Ep dataset (0.5◦ × 0.5◦ resolution), which is estimated from variables such as temper-

ature, vapour pressure, cloud cover and wind speed, using a variant of the Penman-Monteith equation. This Ep estimator is

computed from variables that are often poorly observed, both spatially and temporally. An energy-only Ep estimator would be

preferable (Sheffield et al., 2012; Milly and Dunne, 2016), but required observations are not available.

We also use Q output from the Lund-Potsdam-Jena (LPJ) LSM (Sitch et al., 2003; Osborne et al., 2015). This is forced over20

the 1951–2000 historical period with observed CRU P , as well as other observed CRU climate variables (Harris et al., 2014)

and changing CO2 concentrations (more details are given in supplementary Sect. S3). The run used in our primary analyses

was also driven by historical land-use changes, calculated from the History Database of the Global Environment (HYDE)

(Klein Goldewijk and Verburg, 2013). A separate run excludes the HYDE dataset, so that we are able to test the sensitivity

to land-use changes. Assuming that any sensitivity is minimal, we only comment on this separate run briefly. Simulated Q is25

available at a monthly frequency at 0.5◦ × 0.5◦ resolution. The LPJ LSM is chosen from a multi-model ensemble that forms the

TRENDY intercomparison project (Sitch et al., 2013) because it simulates a long-term mean (1951–2000) runoff coefficient

(Q/P ) that is closest to that observed for both major Chinese river catchments (not shown).

2.1.2 21st-century projected changes

We use data from 34 GCMs participating in CMIP5 (Taylor et al., 2012). These are listed in supplementary Sect. S4. We30

consider data for historical (1951–2005) and two 21st-century RCP emissions scenarios (RCP4.5 and RCP8.5; 2006–2100)
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experiments. Only one ensemble member was used for each model and experiment (the first; r1i1p1). Simulated data are

regridded to 0.5◦ × 0.5◦ resolution and masked to the two Chinese river catchments. We calculate Q as P −E (Eq. (1)).

An energy-only Ep estimator is used for CMIP5 models. Ep, being a hypothetical construct, is not a standard output of

CMIP5 models. We follow recent work (e.g., Greve et al., 2014; Greve and Seneviratne, 2015; Milly and Dunne, 2016) and

estimate Ep directly from net surface radiation (Rn):5

Ep =
Rn

λ
, (4)

where λ is the latent heat of vapourisation (λ≈ 2.45 MJ kg−1). This simple energy-only Ep estimator has been shown to

perform well compared to more complicated estimators, particularly under significant climate change (Sheffield et al., 2012).

2.2 Methods

2.2.1 20th-century historical changes

The Budyko framework can be used to estimate the aridity change contribution to the overall change in Q. We have to first10

calibrate ω against local data for each catchment. Using the observed annual mean P , E and Ep for 1951–1960, ω is calculated

as the value that minimises the mean squared errors between the observed annual mean E/P ratios and those modelled using

Eq. (3), for each catchment. Following Li et al. (2013) the objective function is:

Obj =min
∑
i

{
Ei

P
i

−

{
1 +

(Ep)i

P
i

−
[
1 +

(
(Ep)i

P
i

)ω]1/ω}}2

, (5)

where i is the year. The period 1951–1960, in this context, is considered to be representative of natural Q (minimal water

consumption or regulation by human activities). There will be some direct human impacts on Q at this time, with a substantial15

Chinese land area equipped for irrigation even in the 1950s (Freydank and Siebert, 2008), although it does pre-date major dam

construction; the Sanmenxia dam was the first major dam in the Yellow catchment and was completed in 1960. In calculating

the Ep/P (aridity change) contribution to the change in E/P (Eq. (3)) we take ω to be constant over the period 1951–2000.

Our results are not qualitatively affected by the length of period chosen to represent natural Q (analyses are repeated with 5,

15 and 20-year periods, all starting in 1951).20

We use ω values of 1.74 and 2.29 for the Yangtze and Yellow, respectively. Combining Eq. (1) with Eq. (3) gives:

Qa = −Ep +P

{[
1 +

(
Ep

P

)ω]1/ω}
, (6)

whereQa is the runoff due to aridity change (changes in P and Ep only) and so ω is taken to be constant. This separates aridity

change from changes in all other climatic factors besides aridity change, as well as changes in all non-climatic factors. All other

climatic and non-climatic factors are integrated by ω. This aridity change component is sometimes referred to as the natural Q

in other studies (Wang et al., 2006). However, this can be misleading since changes in P and Ep include both changes due to25

natural variability and, potentially, human-induced changes (Zhang et al., 2007; Dai, 2013).
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We also estimate the runoff due to direct human impacts (Qh) for the Yellow catchment only, since previous work suggests

that Qh contributes significantly to the measured runoff (Qm) here (Wang et al., 2006; Miao et al., 2011). Time series of water

consumption are derived to estimate Qh. Water consumption is defined as the water withdrawn for human use that leaves a

catchment (Xu et al., 2010). Agricultural sector irrigation accounts for a large proportion of total water consumption and, in

turn,Qh. A year 2000 water consumption estimate of 0.082 mm day−1 for the Yellow catchment (48 % of the 1951–1960 mean5

Qm) (Xu et al., 2010) is scaled with a 1951–2000 time series of Chinese irrigated area (Freydank and Siebert, 2008). Irrigated

area in China increased three-fold between 1951 and 2000 and we assume that Yellow catchment irrigated area has changed in

proportion with national changes. Accurate quantification of past (and even present) water consumption is immensely difficult,

but using estimates of past irrigated area offers a means of making pseudo-quantitative statements about Qh.

Defining the change in runoff due to aridity change as ∆Qa, the measured change in runoff (∆Qm) can be approximated as10

the sum of ∆Qa, the change in runoff due to direct human impacts (∆Qh) and the change in runoff due to all other climatic

and non-climatic factors besides aridity change and direct human impacts (∆Qo):

∆Qm = ∆Qa + ∆Qh + ∆Qo, (7)

with changes over the historical period (1951–2000) calculated as the linear trend. We note that our conclusions are not

affected by using the difference between either 10 or 20-year means at the beginning and end of the historical period. The

Budyko framework can only separate the contribution of aridity change to the measured decrease in Yellow river runoff from15

the contribution of all other factors besides aridity change (time-varying ω), represented by the residual ∆Qh + ∆Qo in Eq.

(7). The parameter ω integrates all other factors, so a significant residual represents a significant net contribution from these

factors. Changes in climatic factors besides aridity, such as seasonality, snow dynamics and storminess, and non-climatic factors

besides direct human impacts, such as land surface characteristics and the physiological response of plants to increasing CO2

(CO2 fertilization, CO2 stomatal closure and water-use efficiency) could all play a role. However, previous literature suggests20

that ∆Qh has been significant in the Yellow catchment. We therefore decompose the residual in Eq. (7) into a component due

to direct human impacts and a component due to all other factors besides both aridity change and direct human impacts. Since

water is being diverted from the river and heavily consumed, we expect ∆Qh to be negative.

We reconcile Qa with Q simulated by the LPJ LSM. Although the LSM is unable to simulate water resources with the

complexity of a GHM, it does include a representation of some of the factors integrated by ω, particularly non-climatic factors25

such as changes in land-use and land cover, the response of stomata to rising CO2 concentrations, CO2 fertilization and soil

moisture controls on transpiration (see supplementary Sect. S3 and Sitch et al. (2013)). The representation of these other factors

means that we do not truly compare like-for-like when reconciling Qa with Q simulated by the LPJ LSM. However, we still

expect aridity change to be the dominant driver of runoff in the LPJ LSM and so define the change in runoff simulated by the

LPJ LSM as ∆Qal
. That is to say, ∆Qal

should be dominated by changes in P and Ep and show strong agreement with ∆Qa.30

We specifically test the sensitivity to land-use changes since they are excluded in a separate run of the LPJ LSM model. This

is the only change between the two runs, so we can elucidate the influence of land-use changes by simply taking the difference

between them.
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2.2.2 21st-century projected changes

Equation (6) is also used to constrain projections of Q in CMIP5 models, instead substituting P with a corrected P (P ′) and

Ep with a corrected Ep (E′p):

Q∗ = −E′p +P ′

{[
1 +

(
E′p
P ′

)ω]1/ω}
, (8)

where Q∗, the Budyko corrected runoff, is calculated for the period 1951–2100. An asterisk (rather than a prime) is used to

show thatQ has been corrected using the Budyko framework and not directly using a simple bias correction. The bias correction5

technique chosen to calculate P ′ and E′p is covered in Sect. 3.2. This is because the results of exploratory data analyses on ∆P

and ∆Ep, and how these relate to climatology biases across the CMIP5 models, will inform the choice of correction technique.

In Eq. (8) we use ω values calculated using observed data and Eq. (5) for the 1951–2000 period (1.77 and 2.44 for the Yangtze

and Yellow, respectively).

We compare Q∗ with the original CMIP5 model simulated Q, calculated as P −E. Data for Q are also directly available for10

28 of the 34 GCMs. Conclusions should not be sensitive to using either direct Q output or water balance-derived Q if changes

in storage are negligible. Bring et al. (2015), however, showed evidence for long-term systematic changes in water storage in

some CMIP5 models. Although not a primary analysis, it is sensible to test the sensitivity of our results to the choice of Q.

3 Results

3.1 20th-century historical changes15

The drying of the Yellow river has been one of the most notable aspects of hydrological change in China over recent decades

(Yang et al., 2004; Piao et al., 2010). There has been a significant negative linear trend in Yellow river Q between 1951 and

2000 (-0.26 ± 0.06 mm day−1 century−1, p < 0.05; range is the 5–95 % range, taken as ± 1.64 standard deviations), while

the decrease in P over the equivalent period is not significant at the 95 % (p= 0.05) confidence level (-0.17 ± 0.21 mm day−1

century−1) (Fig. 4). The decrease in Q is particularly notable since about 1970. Despite a substantial human water demand in20

the second half of the 20th century there has been a slight, non-significant, increase inQ in the Yangtze catchment (0.04 ± 0.29

mm day−1 century−1) that is closely matched by a slight, non-significant, increase in P (0.02 ± 0.34 mm day−1 century−1).

The Yangtze river shows no tendency to shift towards a distinct new area of the Budyko space between 1951 and 2000 (Fig.

5). The Yellow river, however, seems to shift towards larger E/P values (smaller Q/P ). Within the Budyko framework this

could be expected under a shift towards greater aridity (larger Ep/P values), or increases in ω. A systematic shift towards25

greater aridity is not obvious in Fig. 5. There is a significant positive linear trend in Yellow river E/P between 1951 and 2000

(0.22 ± 0.05 per century), but the positive trend in Ep/P (0.52 ± 0.50 per century) is only significant at the 90 % (p= 0.10)

confidence level. This suggests that all other factors (ω) may also be a key driver of changes in E/P over this time period in

the Yellow catchment. Given this evidence and the significant negative linear trend in Yellow river Q, we investigate further

the contributions of aridity change and all other factors to the decrease in Q.30
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Figure 4. Observed runoff and precipitation anomalies for the Yangtze (top) and Yellow (bottom) river catchments for 1951–2000, relative

to 1961–1990. The dot-dashed lines show linear fits to the time series.
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Figure 5. The evaporative index against aridity for the Yangtze (red) and Yellow (blue) river catchments. The symbols represent observed

annual mean data for 1951–2000 with darker shades for the more recent years. The traditional Budyko curve is fitted, corresponding to

ω = 2.6 in Eq. (3).
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∆Qa is noticeably different to ∆Qm for the Yellow catchment (-0.07 ± 0.08 mm day−1 century−1 and -0.26 ± 0.06 mm

day−1 century−1, respectively), with a significantly less negative trend (∆Qa −∆Qm is equal to 0.19 ± 0.07 mm day−1

century−1, p < 0.05) (Fig. 6). We reconcile our ∆Qa calculations with ∆Qal
. The linear trends are statistically consistent

(-0.07 ± 0.08 mm day−1 century−1 and -0.05 ± 0.06 mm day−1 century−1 for ∆Qa and ∆Qal
, respectively). This also holds

when considering the LPJ LSM run without land-use changes, for which ∆Qal
is -0.06 ± 0.06 mm day−1 century−1. Our5

results are not sensitive to fixed or varying land-use.
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Figure 6. Runoff anomalies for the Yangtze (top) and Yellow (bottom) river catchments for 1951–2000, relative to 1961–1990. Shown are

measured runoff (Qm), runoff due to aridity change (Qa), runoff simulated by the LPJ LSM (Qal ) and (for the Yellow river only) the

difference between Qm and runoff due to direct human impacts (Qh). The dashed lines show linear fits to the time series.
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If aridity change and direct human impacts have dominated the measured change in Yellow river runoff, so that the change

in runoff due to all other factors is negligible, from Eq. (7) we get ∆Qa ≈ ∆Qm −∆Qh. We calculate ∆Qh as -0.11 ± 0.01

mm day−1 century−1 for the Yellow river (note that the uncertainty range is artificially small due to the limited temporal

resolution of the irrigated area time series of Freydank and Siebert (2008)). Therefore, ∆Qm−∆Qh (-0.15 ± 0.07 mm day−1

century−1) does not fully reconcile our estimates of ∆Qa and ∆Qal
(-0.07 ± 0.08 mm day−1 century−1 and -0.05 ± 0.065

mm day−1 century−1, respectively). ∆Qh only accounts for 59 % and 54 % of ∆Qm−∆Qa and ∆Qm−∆Qal
, respectively.

This imbalance could suggest a significant contribution from ∆Qo, or be explained by an underestimate of the year 2000 water

consumption. We calculate the year 2000 water consumption that balances ∆Qa = ∆Qm−∆Qh to be 0.140 mm day−1, a 70

% increase on the estimate of Xu et al. (2010). This closely matches a year 2000 water consumption estimate by Zhu et al.

(2003) of 0.137 mm day−1. Calculating the relative contribution of aridity change to the measured decrease in Yellow river10

runoff as (∆Qa/∆Qm)× 100% returns a value of 27 %. Using the two estimates of year 2000 water consumption of 0.082

mm day−1 and 0.137 mm day−1, the relative contribution of direct human impacts to the measured decrease in Yellow river

runoff ((∆Qh/∆Qm)× 100%) is 43 % and 71 %, respectively.

We account for between 70 % and 98 % of ∆Qm with ∆Qa + ∆Qh, using the low and high water consumption estimates,

respectively. Using this information with Eq. (7), we could suggest that the contribution from ∆Qo is either negligible (using15

the high water consumption estimate) or significant (using the low water consumption estimate). Instead, it shows that there is

considerable uncertainty in quantifying water consumption and, in turn, the contribution of ∆Qh to ∆Qm. Nevertheless, the

close agreement of ∆Qa and ∆Qal
suggests that direct human impacts have played a larger role than aridity change in causing

the water availability crisis in the Yellow catchment. The contribution of direct human impacts would appear to be greater, by

a factor of approximately 2, than the contribution of aridity change. It is worth remembering that ∆Qa will not only reflect20

natural variability, but also human-induced changes; Ep has increased due to human-induced warming (Dai, 2013) and P has

changed due to various anthropogenic forcings (Osborne and Lambert, 2014; Burke and Stott, 2017).

3.2 21st-century projected changes

From the Budyko framework, changes in Q are not only dependent on changes in P , Ep and E, but also the initial values

of these three fluxes. This means that we should view Q projections cautiously if there are biases in key hydrological cycle25

variables in CMIP5 models. Consistent with previous work (Chen and Frauenfeld, 2014), we find that the spatial pattern

of P over China is reproduced by CMIP5 models but annual mean P is overestimated in most regions, compared to CRU

climatology. This is evident in the multi-model mean P bias (Fig. 7), with the greatest wet biases seen in the the western parts

of the Yangtze and Yellow catchments (the eastern Tibetan Plateau).

As a result of these P biases most CMIP5 models do not fall in the same region of the Budyko space as observations for30

the Yellow catchment (Fig. 8). Although P is overestimated in the Yangtze catchment for 1951–2000 (3.78 ± 0.97 mm day−1

and 2.74 mm day−1 for CMIP5 and observations, respectively), there is little multi-model mean bias in Ep/P (0.88 ± 0.28

and 0.85 for CMIP5 and observations, respectively), implying that Ep is also overestimated (3.24 ± 0.47 mm day−1 and 2.30

mm day−1 for CMIP5 and observations, respectively). In contrast, there is considerable multi-model mean bias in Ep/P in the
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Figure 7. Absolute (top) and relative (bottom) multi-model mean precipitation climatology bias for 1961–1990. The location of the Yangtze

and Yellow catchments within China is shown. Desert regions (<200 mm year−1), as determined from CRU climatology (1961–1990), are

masked in white.
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Yellow catchment (1.35 ± 0.52 and 2.27 for CMIP5 and observations, respectively), with models (on average) simulating a

humid rather than a semi-arid climate zone, according to a widely-used aridity classification (Middleton and Thomas, 1997). In

fact, only one of 34 models considered simulates an aridity greater than 2.0 (MRI-CGCM3). This misrepresentation is a result

of a significant overestimate of P for 1951–2000 (2.18 ± 0.91 mm day−1 and 1.10 mm day−1 for CMIP5 and observations,

respectively) and a less biased simulation of Ep (2.75 ± 0.43 mm day−1 and 2.45 mm day−1 for CMIP5 and observations,5

respectively).
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Figure 8. The evaporative index against aridity for the Yangtze (left) and Yellow (right) river catchments. The shaded blue regions represent

the density of CMIP5 annual mean data for the 1951–2000 period, with darker shades meaning more data in a given region of the Budyko

space. The symbols represent observed data with darker shades for the more recent years. ω values are calculated for the 1951–2000 period

using Eq. (5).

Figure 9 shows the multi-model mean ∆P and ∆Ep (using 1980–1999 and 2080–2099 as present-day and future climates,

respectively) in RCP8.5. Consistent with previous literature (Chen and Frauenfeld, 2014), P increases in CMIP5 projections

throughout China, with significant increases across most of the Yellow catchment. P also increases across the Yangtze catch-

ment, although fewer models simulate significant increases here. As discussed by Greve and Seneviratne (2015), significantEp10

increases are ubiquitous. CMIP5 multi-model mean ∆P is 0.36 ± 0.56 mm day−1 and 0.35 ± 0.30 mm day−1 for the Yangtze

and Yellow, respectively. Respective values for ∆Ep are 0.33 ± 0.23 mm day−1 and 0.25 ± 0.19 mm day−1.

Although we expect model simulated ∆Q and ∆E to be erroneous due to climatology biases (as highlighted in the hypothet-

ical example in supplementary Sect. S1), we assume that ∆P and ∆Ep in the CMIP5 multi-model ensemble are not dependent

on the biases in climatology described above (Fig. 7). Figure 10 shows how ∆P and ∆Ep relate to the climatology of P (P )15
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Figure 9. Multi-model mean future-minus-present changes (2080–2099 minus 1980–1999) in P (top) and Ep (bottom) in RCP8.5. Stippling

indicates where less than 50 % of the CMIP5 models show significant change, as determined with a t-test comparing present-day and

future climates. Absence of stippling indicates where more than 50 % of the models show significant change and more than 80 % of the

significant models agree on the sign. Gray indicates where more than 50 % of the models show significant change but less than 80 % of

the significant models agree on the sign. This method follows (Tebaldi et al., 2011). Desert regions (<200 mm year−1), as determined from

CRU climatology (1961–1990), are masked in white for P .
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and Ep (Ep), respectively, across the 34 CMIP5 models. There are weak but significant correlations between ∆P and P in

RCP8.5 for both the Yangtze and Yellow catchments, but significance is lost with the exclusion of an outlying model in each

case. The weak but significant correlation between ∆P and P in RCP4.5 for the Yangtze catchment is also dependent on an

outlying model. There is little evidence for significant correlations between ∆Ep and Ep.
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Figure 10. Future-minus-present changes (2080–2099 minus 1980–1999) in P (left) and Ep (right) against P and Ep climatologies (1980–

1999), respectively, for 34 CMIP5 models. The dashed vertical lines show the observed climatologies for the Yellow (red) and Yangtze (blue)

catchments. The values in the top left of each panel refer to correlation coefficients for the catchment and RCP emissions scenario listed in

the legend. Those with asterisks are significant at the 95 % (p = 0.05) confidence level.

If there was strong evidence for relationships between ∆P and P and/or ∆Ep andEp then a simple multiplicative correction,5

applied to catchment annual mean P and Ep, would be appropriate (Hempel et al., 2013). For P :

P ′GCM = PGCM × PCRU

PGCM

, (9)

where the subscript GCM is an individual model from the CMIP5 ensemble, the subscript CRU is the observed data and P ′ is

the corrected P . The period 1980–1999 is used to calculate the climatologies. Using a multiplicative correction factor preserves

the relative rather than absolute trends in model simulated P and Ep.

CMIP5 P and Ep biases for the Yangtze and Yellow catchments are, on average, positive and substantial (Fig. 10). As such,10

the correction factor in Eq. (9) is, on average, less than unity. A multiplicative correction factor would therefore narrow the

ranges of ∆P and ∆Ep across the CMIP5 ensemble. The assumption that we can use absolute ∆P and ∆Ep from CMIP5

models seems valid in the absence of strong evidence for relationships between ∆P and P and/or ∆Ep and Ep. We instead

use a simple additive correction (Hempel et al., 2013). Temporally constant offsets (the absolute differences between observed
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and simulated climatologies) are added to model simulated P and Ep. For P :

P ′GCM = PGCM + (PCRU −PGCM ). (10)

We adjust P andEp in the 34 CMIP5 models for 1951–2100 to eliminate the biases in simulating the observed CRU climatolo-

gies, while retaining absolute ∆P and ∆Ep. Positivity constraints on P and Ep can render additive corrections inappropriate,

but this is not a problem at the spatial (catchment) and temporal (annual) resolutions considered here.

Q (as simulated by the CMIP5 models and calculated using P−E) differs considerably fromQ∗ (Fig. 11) as calculated with5

Eq. (8), particularly for the Yellow catchment. The Budyko corrected future-minus-present change in runoff (∆Q∗; recall that

the future-minus-present change is the mean of 2080–2099 minus the mean of 1980–1999) is similar to ∆Q for the Yangtze

catchment in both RCP4.5 and RCP8.5 across the CMIP5 ensemble (Table 1). In the Yellow catchment (RCP8.5) the multi-

model mean ∆Q∗ matches that of the multi-model mean ∆Q (both 0.09 mm day−1). The 5–95 % range, however, is reduced

by 34 % (± 0.14 mm day−1 to ± 0.09 mm day−1). Similar results are found with RCP4.5, with little change in the multi-model10

mean from 0.07 mm day−1 to 0.06 mm day−1 but a decrease of 35 % in the 5–95 % range from ± 0.11 mm day−1 to ± 0.07

mm day−1 for ∆Q and ∆Q∗, respectively. These findings are not sensitive to using directly simulated runoff instead (Fig. 11

and Table 1). The small differences between Q and Q∗, and ∆Q and ∆Q∗, for the Yangtze catchment are expected given that

CMIP5 models broadly fall in the correct region of the Budyko space (Fig. 8). For the Yellow catchment, the uncertainties in

runoff projections have been reduced considerably. The CMIP5 multi-model mean ∆Q∗ in RCP8.5 is significantly different15

from zero at the 90 % confidence level. Such a level of confidence is not achieved for ∆Q.

4 Discussion

Before using the Budyko framework in tandem with CMIP5 output, we considered whether it could be used to quantify the

contribution of aridity change to the measured decrease in Yellow river runoff between 1951 and 2000. Encouragingly, for both

the Yangtze and Yellow catchments, the Q trend due to aridity change was found to be near-identical to that simulated using20

the LPJ LSM (which is forced by observed P and Ep). This suggests that the Budyko framework is suitable for determining

the relative contribution of aridity change to the measured decrease in Yellow river runoff, calculated as 27 %. Therefore, the

relative contribution of all other factors besides aridity to the measured decrease in Yellow river runoff is expected to equal 73

%.

Deriving time series of water consumption using low and high year 2000 water consumption estimates, the component due25

to direct human impacts is calculated as 43 % and 71 %, respectively. Therefore, we can account for nearly all of the measured

decrease in Yellow river runoff (98 %) using aridity change and the high consumption estimate alone, but stress that such

estimates are highly uncertain. We are not able to dismiss a significant contribution from the net effect of all other factors

(besides aridity and direct human impacts), which ranges from 2 % to 30 %. Given that the estimate of the contribution of

aridity change appears to be the most robust result, we can instead state that the majority of the measured decrease in Yellow30

river runoff appears to be due to direct human impacts and all other factors. Also, despite the uncertain water consumption
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Figure 11. CMIP5 model simulated (Q; orange) and CMIP5 Budyko corrected (Q∗; blue) runoff anomalies for 1951–2100, relative to 1980–

1999, for the Yangtze (top) and Yellow (bottom) river catchments in the historical and RCP8.5 experiments. Shown are the 5-year running

multi-model mean (thick line) and 5–95 % ranges (shading) across the CMIP5 ensemble. The box plots (mean, ± one standard deviation

ranges, 5–95 % ranges, and minimum to maximum ranges) are given for 2080–2099 (Table 1). Also shown, for comparison, are box plots

for a subset of 28 (from 34) CMIP5 models for which Q is directly simulated (not limited to being calculated as P −E). The unfilled box

plot shows CMIP5 model directly simulated runoff for 2080–2099.
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Table 1. CMIP5 model simulated (∆Q) and CMIP5 Budyko corrected (∆Q∗) future-minus-present runoff changes (mm day−1) for 2080–

2099, relative to 1980–1999. The multi-model mean and 5–95 % ranges across the individual models are listed (based on a Gaussian

assumption). For comparison, values for a subset of 28 (from 34) CMIP5 models for which Q is directly simulated are also shown. CMIP5

model directly simulated future-minus-present runoff changes (∆Qdirect) are used to verify the suitability of calculating ∆Q as ∆P −∆E

(water balance-derived).

RCP4.5 RCP8.5

Yangtze (all): ∆Q 0.12 ± 0.32 0.14 ± 0.40

∆Q∗ 0.16 ± 0.33 0.18 ± 0.39

Yangtze (subset): ∆Q 0.08 ± 0.26 0.09 ± 0.35

∆Q∗ 0.12 ± 0.26 0.13 ± 0.32

∆Qdirect 0.08 ± 0.25 0.10 ± 0.33

Yellow (all): ∆Q 0.07 ± 0.11 0.09 ± 0.14

∆Q∗ 0.06 ± 0.07 0.09 ± 0.09

Yellow (subset): ∆Q 0.06 ± 0.11 0.09 ± 0.15

∆Q∗ 0.06 ± 0.07 0.09 ± 0.10

∆Qdirect 0.06 ± 0.11 0.09 ± 0.16

estimates, the contribution from direct human impacts is approximately 2 times greater than the contribution from aridity

change. Other studies have estimated the climate change (all non-human) and human components. Miao et al. (2011) attribute

55 % of the reduction in Yellow river water discharge to humans, with Wang et al. (2006) giving a value of 49 %, compared to

our range of 43 % to 71 %. Note that these studies use different methods and periods to estimate the contributions of the two

components, but focus on the second half of the 20th century. Our estimate of the component due to direct human impacts is5

consistent with these previous estimates, although we add detail by finding that this contribution is markedly greater than the

contribution from aridity change alone.

Although estimates of water consumption are highly uncertain there are also uncertainties in our estimate of the aridity

change contribution to Q change. This estimate, as well as runoff simulated by the LPJ LSM, rely on an uncertain observed

Ep dataset (see Sect. 2.1). An energy-only EP estimator is expected to be more appropriate (Milly and Dunne, 2016), but10

is not available because of insufficient observed data. Meanwhile, the observed P dataset is likely to contain biases and

inhomogeneities (Osborne and Lambert, 2014). Many grid boxes in China are poorly gauged (some not at all) in the period

investigated (see supplementary Fig. S1), especially in the mountainous Tibetan Plateau region, where P is scarce but highly

variable (Adam et al., 2006). These are largely insurmountable obstacles facing all hydroclimatological studies.

Within the Budyko framework all climatic and non-climatic factors besides aridity are integrated by the ω parameter. In Eq.15

(7) we separate this “residual” into a component due to direct human impacts and a component due to all other climatic and
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non-climatic factors besides aridity change and direct human impacts. The low water consumption estimate means that we

are not able to dismiss a significant contribution from the net effect of all other factors. Support for a negligible contribution

from all other factors comes from the strength of agreement between Qa and Qal
. This is because the LPJ LSM includes a

realistic representation of vegetation, which has been shown to be a useful indicator of these other factors that are integrated by

ω (although this may only hold for larger catchments) (Li et al., 2013) (see supplementary Sect. S3). Further, supplementary5

Fig. S3 shows that CMIP5 models simulate no obvious changes in ω over the second half of the 20th century.

In estimating direct human impacts from just water consumption there remains the possibility that other direct human impacts

could account for a significant contribution to the decrease in Yellow river runoff. We present evidence that the contribution

from land-use change is negligible. On the other hand, catchment runoff can abruptly decrease during the filling of large reser-

voirs following dam construction, causing anomalously low annual runoff. Following filling, runoff should return to pre-dam10

levels and such projects are only thought to affect seasonal water storage and not introduce trends in long-term runoff. Rather,

dam and reservoir construction facilitates access to water resources and leads to more water withdrawal and consumption. The

influence of dams and reservoirs are likely accounted for in the water consumption estimates (Biemans et al., 2011).

The agreement between the Budyko framework and the LPJ LSM for the observed period also increases our confidence in

using the Budyko framework for projections. The CMIP5 Budyko corrected projected changes in runoff rely on the assumption15

that 21st-century changes in P and Ep are not dependent on existing climatology biases in CMIP5 models. Across the CMIP5

multi-model ensemble we did not find compelling evidence for relationships, supporting this assumption (Fig. 10). This is

broadly consistent with expectations, given recent research showing that the “wet gets wetter, dry gets drier” paradigm (Held

and Soden, 2006) does not hold over global land surfaces (Greve et al., 2014; Greve and Seneviratne, 2015). However, the

mean state can undoubtedly have some influence on the simulated changes in P and Ep due to land-atmosphere feedbacks20

(Berg et al., 2016). We note that when correcting Ep (Eq. (10); with P replaced with Ep) we calculate the correction offset

as the observed climatology (Penman-Monteith estimator) minus the model simulated climatology (energy-only estimator).

Using these different estimators will likely introduce some error in the calculation.

It is also important to note some potential limitations of using Eq. (7) to separate the measured decrease in Yellow river

runoff into various components. This approach assumes a linear relationship and therefore that the individual components are25

independent. Padrón et al. (2017) showed that cross correlations exist between many of the factors suggested to influence

runoff through ω. Testing for dependencies between ∆Qh and other components is unfortunately limited by the poor temporal

resolution of the irrigated area time series of Freydank and Siebert (2008). Although we find that interannual variations in Qa

and the residual Qh +Qo are correlated (-0.35), this correlation is weak and reverses sign when considering multi-year means.

Further, our approach considers long-term trends/changes in runoff, which means that any dependencies at shorter timescales30

should not influence conclusions.

In calculating Q∗ (Eq. (8)) ω values are calculated for the 1951–2000 period, using Eq. (5), then taken to be constant for

the period 1951–2100. While the relationships of variations in Q with variations in such catchment-specific parameters are

understood (Roderick and Farquhar, 2011; Gudmundsson et al., 2016), the full complexity of the influence of changes in

catchment properties on these parameters is not. However, Li et al. (2013) showed that, for large catchments, the long-term35
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averaged annual vegetation coverage explains as much as 63 % of the variance in the catchment-specific ω. With 21st-century

increases in total vegetation coverage projected (Schneck et al., 2015), we expect this parameter will increase in magnitude.

This is found to be the case in the CMIP5 multi-model ensemble and these increases in ω need to be included when verifying the

Budyko framework on the CMIP5 models themselves (see supplementary Sect. S3 and Figs. S2-4). The influence of changes

in ω on projected changes in Q is small compared to the influence of correcting Ep and P (see supplementary Sect. S3 and5

Fig. S5). Demonstrating this, the CMIP5 multi-model mean ∆Q∗ for the Yellow catchment in RCP8.5 with constant ω (0.09

± 0.09 mm day−1) is not significantly different to the CMIP5 multi-model mean ∆Q∗ for the Yellow catchment in RCP8.5

with time-varying ω (0.07 ± 0.08 mm day−1). Therefore, our conclusions are not sensitive to the choice of ω (constant or

time-varying).

We show that aridity change (changes in P and Ep only) is of greatest importance in shaping projected changes in runoff10

in CMIP5 models and all other factors (ω) play a secondary role. We expect our CMIP5 Budyko corrected Q projections to

be substantially more reliable than the original CMIP5 model simulated Q projections. In the case of the Yellow catchment,

the future-minus-present (2080–2099 minus 1980–1999) change in Q 5–95 % range is reduced by 34 % and 35 % in RCP8.5

and RCP4.5, respectively. Importantly, constraining Q projections using the Budyko framework increases confidence that the

Yellow catchment will see increases in Q by the end of the 21st century – the best guess (CMIP5 multi-model mean) change15

of 0.09 mm day−1 is significantly different from zero at the 90 % confidence level. Greater confidence in the range of Yellow

catchment water availability projections could be of great value to policy-makers. More generally, the Budyko framework

serves as an inexpensive tool to rapidly update projections from biased GCM simulations without the need for offline GHMs.

However, further research is needed. Specifically, we believe that an ensemble of GHMs, driven by at least one set of bias

corrected and downscaled GCM projections, should be used as a means of verification.20

Most applications of the Budyko framework consider spatial rather than temporal variations. Berghuijs and Woods (2016)

demonstrate that spatial and temporal variations are not necessarily tradable. We stress that the Budyko framework is not

employed here to robustly determine interannual variability in water availability, but is instead used to understand long-term

trends (Sect. 3.1) or the difference between 20-year means at the end of the 20th and 21st centuries (Sect. 3.2).

5 Conclusions25

We have demonstrated how the Budyko framework can be used to place water availability projections from readily-available

GCM output onto a more physical basis by correcting for biases in aridity, using the example of the Yangtze and Yellow river

catchments in China. The approach is inexpensive, does not need the use of offline GHMs, and could be used to provide rapid

updates on water availability projections for new GCM scenarios. Wherever GCMs simulate significant biases in representing

observed aridity, we expect to generate significantly altered projections. In the Yellow catchment, considerable negative biases30

in simulated aridity lead to a substantial narrowing of the range of future GCM projections. In catchments where GCMs

simulate positive biases, we would expect to see broadening of the range of GCM projections. Meanwhile, in the Yangtze

catchment, simulated aridity biases are small, meaning that projections are little changed by our approach.

22



We stress again that these refined water availability projections account for aridity change only. In the hypothetical case

where future aridity change is known, the projected Q will not be realised due to the effect of all other factors, especially

highly uncertain future changes in direct human impacts (these are not represented in CMIP5 models). Current human impacts

on Q are possibly greater than end-of-21st-century aridity change impacts on Q in the Yellow catchment (Haddeland et al.,

2014). Therefore, the current water shortages are not likely to be alleviated without improved agricultural practices and water5

management. Importantly though, reducing the range of water availability projections gives planners an improved idea of what

needs to be done to reduce water stress in the Yellow catchment for future generations. Moreover, our conclusions underline

the need for imminent action and highlight the fact that increases in Q due to aridity change will not offer much relief in the

absence of serious and concerted action to minimize direct human impacts.

Chinese authorities have recently attempted to alleviate the drying in the north of China, by diverting water there from10

the wetter south (the South-to-North Water Diversion Project). It remains to be seen whether this will reduce the imbalance in

atmospheric water supply and human water demand across China and whether it could even place additional water stress on the

more resilient south (Barnett et al., 2015). Generating refined water availability projections in these two key river catchments

should underpin decisions made on future engineering projects.

Data availability. The CMIP5 data can be accessed via the web portal https://esgf-node.llnl.gov/projects/esgf-llnl/. Sources for the observed15

datasets are: CRU TS3.23 P and Ep (Harris et al., 2014) http://www.cru.uea.ac.uk/data/; Global River Flow and Continental Discharge

Dataset Q (Dai et al., 2009) http://www.cgd.ucar.edu/cas/catalog/surface/dai-runoff/. Data from the LPJ LSM experiments are available from

the authors upon request.
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