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Abstract. Parameter uncertainty estimation is one of the major challenges in hydrological modelling. Here we present 

parameter uncertainty analysis of a recently released distributed conceptual hydrological model applied in the Nea catchment, 

Norway. Two variants of the generalized likelihood uncertainty estimation (GLUE) methodologies, one based on the 

residuals and the other on the limits of acceptability, were employed. Streamflow and remote sensing snow cover data were 10 

used in conditioning model parameters and in model validation. When using the GLUE limit of acceptability (GLUE LOA) 

approach, a streamflow observation error of 25 % was assumed. Neither the original limits, nor relaxing the limits up to a 

physically meaningful value, yielded a behavioural model capable of predicting streamflow within the limits in 100 % of the 

observations. As an alternative to relaxing the limits; the requirement for percentage of model predictions falling within the 

original limits was relaxed. An empirical approach was introduced to define the degree of relaxation. The result shows that 15 

snow and water balance related parameters induce relatively higher streamflow uncertainty than catchment response 

parameters. Comparable results were obtained from behavioural models selected using the two GLUE methodologies. 

1 Introduction 

Hydrological models have numerous applications of central importance to society including for planning, design, and 

management of environmental and water resources. The operation of hydropower systems is mainly constrained by the 20 

availability of water resources. Hydrological models play an important role in forecasting the local inflows to the system on 

scales ranging from hours to years. With due recognition to the need for accurate prediction of streamflow and snow storage, 

Statkraft (2018) has recently released a new modelling framework mainly tailored for an operational purpose. In this study, 

one of the conceptual models of this framework was subjected to uncertainty analysis. Conceptual hydrological models 

typically have one or more calibration parameters and commonly require some form of inverse modelling to estimate model 25 

parameters from observations (Crawford and Linsley, 1966). During calibration, equifinality arises when different parameter 

sets  give equally good results in terms of predefined efficiency criteria (Beven, 1993; Savenije, 2001; Wagener et al., 2003). 

The generalized likelihood uncertainty estimation (GLUE) methodology (Beven and Binley, 1992) is an extension of the 

generalized sensitivity analysis concept of Hornberger and Spear (1981); and it accepts equifinality as a working paradigm 

for parameter calibration of hydrological models (Choi and Beven, 2007). It is based on the concept that all models of 30 

hydrological systems are highly simplified representations of reality (e.g. Reichert and Omlin, 1997), and hence it is  

expected to have several different model structures and parameter sets that describe the system in an adequate way 

(Blazkova and Beven, 2002). When dealing with non-linear systems, the classic hydrological approach of using a single set 

of model parameters may lead to large predictive biases (e.g. Mantovan and Todini, 2006). 

 Hydrological modelling is affected by four main sources of uncertainty related to input data, validation data, model 35 

structure, and model parameters (e.g. Renard et al, 2010). Input data uncertainties may arise from measurement limitations 
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and scaling issues, for example, due to forcing data downscaling. Errors of the rating curve affect streamflow estimates and 

thereby lead to validation data uncertainty. Structural uncertainty may result from the underlying assumptions and 

simplifications in the model formulation as well as from application of the model to conditions inconsistent with the model 

structure (Tripp and Niemann, 2008). Parametric uncertainty reflects the inability to specify exact values of model 

parameters (Renard et al, 2010) and it may stem from errors in input data and observations used for model conditioning as 5 

well as due to epistemic errors in model structure. An increased awareness of these modelling uncertainties and the need for 

quality control of such models requires the integration of uncertainty analysis into the modelling process from the very 

beginning (Beven, 1989; Saltelli et al., 2006,  Refsgaard et al., 2007).  

 Uncertainty analysis techniques can be classified as frequentist or Bayesian approaches, probabilistic or non-probabilistic 

approaches (e.g. Montanari et al. 2009), or as formal or informal approaches (e.g. Vrugt et al., 2009). Among the most 10 

widely used techniques in hydrological modelling are the formal Bayesian and the GLUE methods (Jin et al., 2010). The 

formal Bayesian approach makes strong assumptions about the statistics of observed data; with the likelihood function 

defined based on assumptions about the nature of the residuals (Schoups and Vrugt, 2010). However, the choice of an 

adequate likelihood function has been the subject of considerable debate. According to Beven and Smith (2014), a formal 

probabilistic likelihood function will have limited value since non-stationary epistemic uncertainties cannot be adequately 15 

represented by a statistical model. In GLUE, the likelihood measure is associated with a parameter set and should ideally 

reflect all the different sources of uncertainty (Beven and Smith, 2014). The original GLUE methodology has been subject of 

debate for using a subjectively set threshold of behavioral models (e.g. Mantovan and Todini, 2006; Stedinger et al., 2008; 

Clark et al., 2011; Nearing et al., 2016). This problem is common to most residual-based model selection methods (Schaefli, 

2016). The extended concept of behavioral models in the GLUE limits of acceptability approach (GLUE LOA) (Beven, 2006) 20 

attempts to overcome this drawback through use of error bounds of the observational dataset. 

 The GLUE LOA methodology involves specifying limits around some observational data within which model 

predictions are required to lie and thereby considered acceptable for the intended model application. The acceptability limits 

are set prior to running a model and, among other considerations, they are expected to take into account incommensurability 

and uncertainty in both the input and evaluation data (Beven, 2009). However, identification of models that reproduce the 25 

observed system behavior within the limits of measurement error is not easy due to time-varying errors in the input data and 

model structure (e.g. Beven, 2016). This difficulty is even more pronounced when input and other sources of errors are not 

explicitly accounted in defining the LOA.  

 Good quality time series data and associated uncertainties are not always readily available. For example, in regulated 

catchments the inflow hydrograph is often estimated from changes in storage volume and outflows using the water balance 30 

equation. Thus, as in the case of our study catchment, no stage - discharge relationship exists for estimating the streamflow 

uncertainty using the usual practice, i.e. by fitting different rating curves. In such instances the alternative is to assume an 

observation error proportional to the observational data. However, the identification of behavioral models without due 

consideration to such less precise observation error estimates may lead to the rejection of a useful model (i.e. making Type II 

error).  Some of the measures taken to minimize the risk of making type II error when identifying behavioral models using 35 

the GLUE LOA include: extending the limits (e.g. Blazkova and Beven, 2009; Liu et al., 2009) as well as using different 

model realization for different periods of a hydrological year (e.g. Choi and Beven, 2007). In this study, instead of relaxing 

the limits, the percentage of observations where model predictions are required to fall within the acceptability limits was 

relaxed. 
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 The GLUE methodology has been widely used in various disciplines (Beven, 2009; Efstratiadis and Koutsoyiannis, 2010) 

primarily due to its conceptual simplicity and ease of implementation. Further, its suitability for parallel implementation on 

distributed computer systems as well as its general strategy in dealing with equifinality in model calibration make it an 

appealing framework (Blasone et al., 2008; Shen et al., 2012; Mirzaei et al., 2015). 

 In this study model parameters were constrained using streamflow and the MODIS snow cover product (Hall et al., 2006). 5 

Multi-criteria model conditioning helps to reduce prediction uncertainty through improved parameter identification (e.g. 

Efstratiadis and Koutsoyiannis, 2010; Finger et al., 2015); and GLUE provides a flexible approach for using multi-criteria 

methods through different ways of combining measures. Besides streamflow, one of the observations commonly used in 

multi-criteria conditioning of rainfall-runoff models in snow dominated catchments is snow data. Remote sensing snow 

cover data have been used in several hydrological modelling studies for deriving and updating a snow depletion curve (e.g. 10 

Lee et al., 2005; Kolberg and Gottschalk, 2006; Bavera et al., 2012); as well as in multi-criteria based model calibration and 

simulated snow cover validation (e.g. Udnaes et al., 2007; Parajka and Bloschl, 2008; Berezowski et al., 2015). However, 

studies involving combined uncertainty of streamflow and snow cover predictions using the GLUE methodology are still 

missing in the literature.  

 The main objective of this study is to assess parameter uncertainty for a recently developed distributed conceptual 15 

hydrological model using the GLUE methodology with due consideration to the model’s main application as an operational 

hydrological model. The second objective is to investigate the potential value of snow cover data as additional observation in 

conditioning model parameters in the study area. The third objective is to assess the possibility of using a time relaxed 

GLUE LOA approach for constraining model parameters. In doing so, we employ a novel empirical approach for implicit 

accounting for the effects of input and observational data errors by relaxing the percentage of time steps in which prediction 20 

of model realizations fall within the limits.  

 This paper is organized as follows. First the hydrological model as well as the study site and relevant data used in this 

study are briefly described in sections 2.1 and 2.2. The procedures followed to setup the uncertainty analyses are then 

outlined in section 2.3. In section 3, the results from parameter uncertainty as well as uncertainty of streamflow and snow 

cover predictions using the residual based GLUE approach are presented. The results from the relaxed GLUE LOA are also 25 

presented in this section. Finally in sections 4 and 5, the analysis results and their implication on the hydrologic model, the 

data as well as the methodologies followed are discussed and conclusions are drawn. 

2 Methods and materials 

2.1 The hydrological model 

The Statkraft Hydrological Forecasting Toolbox, Shyft, (https://github.com/statkraft/shyft) is an open-source distributed 30 

hydrological modelling framework developed by Statkraft (Burkhart et al., 2016). The modelling framework has three main 

models (method stacks) and in this study, the PT_GS_K model was used for uncertainty analysis. PT_GS_K is a conceptual 

model with several adjustable parameters depending on the climatic and physiographic characteristics of the study area 

where the model is applied. This model requires temperature, precipitation, radiation, relative humidity, and wind speed as 

forcing data. PT_GS_K uses the Priestley-Taylor (PT) method (Priestley, 1972) for estimating potential evaporation; a quasi-35 

physical based method for snow melt, sub-grid snow distribution and mass balance calculations (GS method); and a simple 

storage-discharge function (Lambert, 1972; Kirchner, 2009) for catchment response calculation (K). Overall, these three 

methods constitute the PT_GS_K model in Shyft. The framework establishes a sequence of spatially distributed cells of 
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arbitrary size and shape. As such it can provide lumped (single cell) or discretized (spatially distributed) calculations, as in 

this study. The model was applied to each of the grid-cells and for each time step.  

 Within the GS method, precipitation falling in each grid-cell is classified as solid or liquid precipitation depending on a 

threshold temperature (tx) and on the local temperature values. The snow melt energy is the sum effect of different energy 

sources in the system such as short wave and long wave radiation as well as the turbulent sensible and latent energy fluxes. 5 

Among other factors, the energy contribution from short wave radiation depends on snow albedo. For a given time step (t), 

the snow albedo of each grid cell depends on the minimum (α𝑚𝑖𝑛) and maximum (α𝑚𝑎𝑥) albedo values as well as on air 

temperature (𝑇𝑎) (Eq. 1). In this method the decay rates of albedo due to snow ageing as a function of temperature, i.e. the 

fast (fast ADR,α𝑓𝑑𝑟) and slow (slow ADR,α𝑠𝑑𝑟) albedo decay rates corresponding to temperature conditions above and below 

0
o
C respectively, are parameterized. Turbulent heat contribution is the sum of latent and sensible heat. Wind turbulence is 10 

linearly related to wind speed using a wind constant and wind scale from the intercept and slope of the linear function, 

respectively (Hegdahl et al., 2016). 

α𝑡 = 

{
 

 α𝑚𝑖𝑛 + (α𝑡−1 − α𝑚𝑖𝑛). (
1

21/α𝑓𝑑𝑟
)                                                                 𝑇𝑎 > 0  𝑜𝐶     

α𝑡−1 + (α𝑚𝑎𝑥 − α𝑚𝑖𝑛). (
1

2 (α𝑠𝑑𝑟)
)                                                             𝑇𝑎 ≤  0

  𝑜𝐶  

                                   (𝐸𝑞. 1) 

 Sub-grid snow distribution is described by a three parameter Gamma probability distribution snow depletion curve (SDC) 

(Liston, 1999; Kolberg and Gottschalk, 2006). The traditional Gamma distribution is parameterized with two values, i.e. the 

average amount of snow at the onset of the melt season 𝑚 (mm) and the shape value (𝑘); based on the assumption that the 15 

ground is completely snow covered before the onset of melt. Since this assumption may not hold true for a number of grid 

cells especially in alpine areas, a third parameter representing the bare ground fraction at the onset of snow melt season has 

been introduced (Kolberg and Gottschalk, 2006). The two parameter Gamma distribution (Eq. 2) is thus applied only to the 

remaining portion of a grid cell to estimate the fraction of the initially snow covered area where snow has disappeared (y’). 

The initial bare ground fraction parameter is constant for all years. At each time step, the state parameters such as snow 20 

water equivalent (SWE) and snow cover area (SCA) are updated using the SDC function. In the GS method, the shape value 

is a direct transformation of the sub-grid snow coefficient of variation (CVs). 

y’ = ∫ 𝑓(𝑥; 𝑘, 𝜃)𝑑𝑥
𝜆(𝑡)

0
= γ(𝑘,

𝜆

𝜃
)                                  (2) 

Where 𝑓 denotes the Gamma probability density function and  γ  is the incomplete Gamma function. 𝑥  and 𝜆(𝑡) 

respectively refer to point snow storage and the accumulated melt depth (mm) at time t since the onset of the melt season. 𝜃  25 

represents the scale parameter with 𝑚 = 𝑘𝜃 and 𝑘 = 𝐶𝑉𝑠
−2. 

 The catchment response function is based on the storage-discharge relationship concept described in Kirchner (2009) and 

represents the sensitivity of discharge to changes in storage (Eq. 3).  This method is based on the idea that catchment 

sensitivity to changes in storage i.e. g(Q) can be estimated from the time series of discharge alone through fitting empirical 

functions to the data such as the quadratic equation. Since discharge is generally non-linear and typically varies by many 30 

orders of magnitude, the recommended approach is to use log transformed discharge values in order to avoid the risk of 

numerical instability. In this method, the three parameters of the catchment response function, i.e. c1, c2, and c3 are 

parameterized. 

𝑑(ln (𝑄))

𝑑𝑡
=  𝑔(𝑄) (

𝑃−𝐸

𝑄
− 1)                           (3) 

with, 𝑔(𝑄) = 𝑒𝑐1 + 𝑐2(𝑙𝑛(𝑄)) + 𝑐3(𝑙𝑛(𝑄))
2
 35 
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In which E and Q respectively represent actual evapotranspiration and discharge. In the original formulation P refers to 

precipitation, whereas in this method it refers to the liquid water supply from rainfall and snow melt.  

 The potential evaporation calculation in the PT method requires net radiation and the slope of saturated vapor pressure as 

well as the Priestley-Taylor parameter, the psychometric constant, and the latent heat of vaporization (e.g. Matt et al., 2018). 

The latter three variables are kept constant in the PT method. Actual evapotranspiration is assumed to take place only from 5 

snow free areas and it is estimated as a function of potential evapotranspiration and a scaling factor. 

 In the default parameter settings of the PT_GS_K model seven parameters are considered as influential and thus allowed 

to vary in conditioning the model. Preliminary model calibration using the BOBYQA algorithm (Powell, 2009) and the 

default setting gave reasonable model performance. Hence, the same setting was also followed in this study with the addition 

that the sub-grid snow coefficient of variation was also considered an uncertain model parameter. A similar result was also 10 

observed when this setting was latter verified using the method of Morris (Morris, 1991; Saltelli et al., 2008) for screening 

the most influential out of the relevant model parameters. The feasible ranges of parameter values are set based on relevant 

literature and previous modelling studies in the Nea-Nidelva catchment. Table 1 shows list of these parameters with their 

range of possible values. 

2.2 Study area and data 15 

This study was conducted using climatic and catchment data from the Nea-catchment (11.67390
 o
 - 12.46273

 o 
E, 62.77916

 o
 - 

63.20405 
o
 N).  The Nea-catchment constitutes the headwaters of the Nea-Nidelva water resources management area which 

is situated in Sør-Trøndelag County, Norway (Fig. 1). The hydropower generated from this area is the main source of electric 

supply to several places in mid-Norway including to one of the biggest cities in the country, Trondheim. As a result this area 

has significance for Statkraft AS and other stakeholders responsible for the development and management of water resources 20 

in the region; and has been selected for research focused on better prediction and understanding of the snow processes and 

their impact on hydrology of the downstream area. 

 The Nea-catchment covers a total area of 703 km
2 
and it is characterized by a wide range of physiographic and land cover 

characteristics. Altitude of the catchment ranges from 1783 masl on the eastern part around the mountains of Storsylen to 

649 masl at its outlet around the Nea-bru hydrological station. Mean annual precipitation for the hydrological years 2011-25 

2014 was 1120 mm. The highest and lowest average daily temperature values for this period were 28 
o
C and -30 

o
C, 

respectively. 

 As mentioned in section 2.1, the PT_GS_K model requires temperature, precipitation, radiation, relative humidity, and 

wind speed as forcing data. In this study, daily time series data of these variables for the study area were obtained from 

Statkraft (2018) as point measurement, with the exception of relative humidity. Daily gridded relative humidity data was 30 

retrieved from ERA-interim (Dee et al., 2011). The Model uses a Bayesian Kriging approach to distribute the point 

temperature data over the domain, while for the other forcing variables it uses an inverse distance weighting approach. 

 Two observational datasets, streamflow and snow cover, were used in this study. Daily observed streamflow 

measurements covering four hydrological years (September 1 to August 31) were provided for the study area. The climatic 

data show that these hydrological years represented periods both above and below the long-term average annual precipitation. 35 

Years 2011 and 2013, respectively, were the wettest and driest years in over 10 years. Daily snow cover fraction data (SCF) 

was retrieved from NASA MODIS snow cover products (MODIS SCF) (Hall et al., 2006). Frequent cloud cover is one of 

the major challenges when using MODIS and other optical remote sensing data in Norway. In order to minimize the effect of 
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obstructions and misclassification errors emanating from clouds and other sources, a composite dataset was formed using 

data retrieved from the Aqua and Terra satellites, MYD10A1 and MOD10A1 products respectively  

 In this analysis, PT_GS_K was setup in distributed mode over 812 grid cells; requiring the following physiographic data 

of each grid cell: average elevation, and grid cell total area, as well as the areal fractions of forest, reservoir, lake, and glacier. 

Data for these physiographic variables was retrieved from two sources: the land cover data from Copernicus land monitoring 5 

service (2016) and the 10m digital elevation model (10m DEM) from the Norwegian mapping authority (2016). 

2.3 The uncertainty analysis methods
 

In this study modelling and parameter uncertainty analysis was conducted using two GLUE variants. First, the hydrological 

model and its snow sub-model were subjected to uncertainty analysis using the residual based GLUE methodology. When 

using this approach, the relevant model parameters were initially conditioned using either streamflow or MODIS SCF. In 10 

subsequent analysis, they were conditioned using both streamflow and SCF. Following that, uncertainty analysis was 

conducted using the relaxed GLUE LOA approach.  

2.3.1 Sampling the parameter dimensions 

The performance of all uncertainty analysis techniques depends on the efficiency of the sample to represent the entire 

response surface (Pappenberger et al., 2008). In this study, prior distributions of the uncertain model parameters were not 15 

known and hence a uniform distribution was assumed. The challenge in using uniform distribution is, however, to adequately 

sample the entire parameter dimensions. To overcome this challenge and to better identify regions of behavioral simulations, 

a sample size of 100,000 runs was used. Each model run is a realization of a parameter set randomly drawn from the 

domains of the model parameters. An All-At-a-Time (AAT) sampling method (e.g. Pianosi et al., 2016) was employed. This 

method involves random selection of all parameter values simultaneously. The residual based GLUE (Section 2.3.2) and the 20 

relaxed GLUE LoA (Section 2.3.3) approaches are used to identify the behavioural model runs. Matlab scripts from the 

SAFE toolbox (Pianosi et al., 2015) were used as a basis to characterize behavioral and non-behavioral models.  

2.3.2 The residual based GLUE approach 

In this study, the performance of each model realization was evaluated by using relevant likelihood measures. Residual 

based informal likelihood measures are considered suitable measures of fit when large data sets such as rainfall-runoff time 25 

series exist for model conditioning (Hassan et al., 2008). The Nash-Sutcliffe efficiency (NSE, Eq. 4) belongs to these groups 

of likelihood measures; and it is the most widely-used likelihood measure for assessing the fitness of model parameters in 

hydrological modelling (Xiong and O’Connor, 2008). Further the main end users of the model commonly use NSE both in 

calibration and evaluation of hydrological models. Thus use of this performance measure as a streamflow likelihood measure 

makes it easier both in setting the threshold value for behavioral models (i.e. based on previous experience) and in 30 

communicating model performance outputs. However, the NSE calculated using raw values tends to overestimate model 

performance during peak streamflow and underestimate during low streamflow conditions (e.g. Krause et al., 2005). To 

partly overcome this problem, NSE is often calculated with log transformed observed and simulated values. In this study, 

both NSE and NSE with log transformed streamflow values (LnNSE) were thus employed as likelihood measures in 

evaluating each model run. 35 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑠𝑖𝑚,𝑖 −𝑄𝑜𝑏𝑠,𝑖)

2𝑛
𝑖=1

∑ (𝑄𝑜𝑏𝑠,𝑖 −𝑄̅𝑜𝑏𝑠)
2𝑛

𝑖=1

                         (4) 
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In which 𝑄𝑠𝑖𝑚  represents simulated streamflow, 𝑄𝑜𝑏𝑠 is observed streamflow and 𝑄̅𝑜𝑏𝑠 represents mean value of observed 

streamflow series. 

 Within the residual based GLUE procedure, the definition of threshold likelihood value at which the model performance 

is judged reasonable is a subjective choice by the modeler. In this study, NSE and LnNSE of 0.7 and 0.6 were respectively 

considered as the threshold values for behavioral models. These values were chosen with due consideration to the input and 5 

observational data quality as well as the relative importance given to high streamflow in relation to low streamflow 

conditions in the hydropower industries. In the case of the combined likelihood measure, a weighted average threshold value 

(e.g. Hassan et al., 2008) was calculated assuming each likelihood measure to have a weight proportional to its threshold 

value. Accordingly, the NSE and LnNSE likelihood measures were respectively assigned weights of 0.54 and 0.46 (Eq. 5).  

𝐿𝑁𝑆(𝑂|𝑀(𝜃𝑖)) = 0.46(𝐿𝐿𝑛𝑁𝑆𝐸) + 0.54(𝐿𝑁𝑆𝐸)                        (5) 10 

where 𝐿𝑁𝑆(𝑂|𝑀(𝜃𝑖)) represents the combined likelihood measure for the i
th

 model realization with model prediction of 

𝑀(𝜃𝑖) which is a function of the set of model parameters 𝜃𝑖, and corresponding to the observations (𝑂). 𝐿𝑁𝑆𝐸  and 𝐿𝐿𝑛𝑁𝑆𝐸 

respectively represent the likelihood measures based on NSE and LnNSE. Models producing likelihood measure values 

greater than or equal to the threshold value were labeled as behavioral models and were retained for use in further analysis.   

 The root mean squared error (RMSE) of simulated and MODIS fractional snow cover was used as a likelihood measure 15 

of SCF. A threshold value of 0.17 was set when using the RMSE in model conditioning. This value was fixed based on 

average performance of similar conceptual hydrological models as a reference (e.g. Skaugen and Weltzien, 2016); and with 

due consideration to the inherent error in the MODIS SCF data. The estimated annual average error of MODIS SCF maps 

for Northern Hemisphere is approximately 8 % in the absence of cloud (Pu et al., 2007); and in forest dominated areas it may 

reach up to 15 % (MODIS, 2010).  20 

 Preliminary assessment of model performance indicates that the snow yes/no based model performance (CSI, Table 2) is 

very high both before the onset of snow melt and during the complete melt out period. The lowest mismatch between 

simulated and MODIS SCF was observed during early summer. It was thus decided to use a weighted mean likelihood 

measure of SCF; with maximum weight assigned to likelihoods from the mid part of the observation period. The likelihood 

of each SCF observation was assigned a specific weight based on the location of the observation date in a trapezoidal 25 

membership function (TMF). The start and end of MODIS SCF observation period locate the feet of the trapezoid and the 

start and end of the month of June locate the shoulders (Fig. 2). For each model realization, the weighted average RMSE 

(wRMSE) of all SCF observations and their corresponding simulated values for the calibration period was calculated and 

model realizations with wRMSE below the threshold value were considered behavioral. The weight of each behavioral 

model was calculated as the inverse of wRMSE and was used in constructing the cumulative distribution function (CDF); 30 

based on which the predicted SCF values for different quantiles can be extracted. 

 When selecting behavioral models using the combined likelihoods of streamflow and SCF, the merging of these 

likelihoods was carried out in two steps. First the likelihoods representing low and high flow condition, viz. LnNSE and NSE 

were combined following similar procedure as described above. The likelihoods of streamflow and SCF were separately 

rescaled such that their respective weights would sum to unity following a similar procedure to that used in Brazier et al. 35 

(2000). The combined streamflow likelihood and the SCF likelihood were subsequently multiplied to get a combined 

likelihood measure of streamflow and SCF.  
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2.3.3 The relaxed GLUE LOA approach 

Unlike the residual based model selection approaches, including the residual based GLUE methodology, the GLUE LOA 

approach relies on an assessment of uncertainty in the observational data. Uncertainty analysis was also thus conducted in 

this study using the GLUE LOA approach and its results compared against those from the residual based GLUE 

methodology. 5 

 In this study when using the GLUE LOA approach, both the streamflow and MODIS SCF data were considered as 

uncertain observations. Since no uncertainty data was available for streamflow observations in the study site, mean 

streamflow uncertainty of 25 % was assumed and the streamflow limits were defined using this value. Although, the 

maximum expected error of MODIS snow cover products under clear-sky conditions is reported to be 15 % for forest areas 

(MODIS, 2010), cloud coverage coupled with lack of contrast between clouds and snow cover may severely affect the 10 

accuracy. And in some cases this leads to misclassification of snow as land (e.g. Parajka et al., 2012). Thus a SCF 

uncertainty of 25-50 % was assumed to represent the errors associated with the SCF observations and the input data. 

 An alternative approach was employed to minimize the risk of rejecting useful model realizations due to using assumed 

average observational error bounds and due to lack of explicitly accounting the time-varying level of observational and input 

data uncertainties. The procedure involves relaxing the percentage of observations where model predictions fall within the 15 

acceptability limits. Model realizations whose predictions fall within the acceptable bounds in a defined percentage of the 

observations were considered behavioral. The minimum acceptable percentage of observations where model predictions fall 

within the limits (hereafter referred as threshold pLOA) in turn was set such that the 5-95 % prediction limit of streamflow, 

reported as Containing Ratio (CR, see Eq. 5), is close to the value obtained using the residual based GLUE methodology. 

The procedure for relaxing the original GLUE LOA requirement during the calibration period involves the following steps: 20 

Step 1: define an acceptable prediction limit (CR) at a chosen certainty level (e.g. 5-95 %). In this study the CR value 

obtained for the calibration period using the residual based GLUE methodology was adopted as an acceptable CR value. 

Step 2: relax the acceptable percentage of observations where model predictions fall within the limits. This is done by 

gradually lowering the requirement for bracketing the observations in 100% of the time steps up to the acceptable pLOA.  

Step 3: run calibration and test whether each model realization prediction falls within the limits at least for the specified 25 

percentage of the total observations. If model realizations that satisfy the relaxed acceptability criteria are found, proceed 

to step 4, otherwise lower the threshold pLOA further and repeat this step. 

Step 4: calculate the new CR and check if it is close to the predefined acceptable CR value. If the calculated CR is less than 

the predefined CR, repeat steps 2 to 4. Whereas, if the two CR values are close (e.g. within 5%) then accept all model 

realizations that satisfy this pLOA as behavioral and store their indices for use in further analysis. 30 

 

 Model realizations that fulfill this relaxed LOA criteria both in streamflow and SCF observations were considered 

behavioral. A triangular membership function was used to define the weights of each criterion, where a maximum weight of 

1.0 was assigned to predictions with a perfect match to the observation and a minimum weight of 0.0 to predictions outside 

the acceptability limits. For each model realization, the weights of individual time-steps were added to give a generalized 35 

weight. Following the procedure by Blazkova and Beven (2009), the weights associated with streamflow and MODIS SCF 

were combined by taking the sum of these two criteria and rescaling them such that the sum of the weights for behavioral 

models is unity. The behavioral model realizations were used for prediction weighted by their overall degree of performance. 
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2.3.4 GLUE output analysis 

A split-sample based cross-validation of streamflow predictions was used to alternately evaluate how well the behavioral 

models identified at a given calibration period are able to reproduce the observed values from another period. The hydrologic 

model was run for four years at daily time step. The first month of each hydrological year was considered as a spin up period; 

and hence excluded from all uncertainty analyses. Each of the four years was alternately used to identify behavioral models 5 

and the remaining three years were individually used to assess the modelling uncertainty.  

 In this study the modelling uncertainty was evaluated using both qualitative and quantitative evaluation techniques. The 

upper and lower streamflow prediction limits as well as observed values were plotted on the same graph to visually assess 

capability of the identified behavioral models in bracketing the observations. The Containing Ratio (CR) index was also used 

to analyze the prediction uncertainty following a similar procedure to that used in some studies involving the GLUE 10 

methodology (e.g. Xiong et al., 2009; He et al., 2011). CR is expressed as the ratio of the number of observations falling 

within respective prediction bounds to the total number of observations (Eq. 5).  

𝐶𝑅 =  
∑ 𝐼(𝑄𝑜𝑏𝑠,𝑖)
𝑛
𝑖=1

𝑛
                             (5) 

where:  𝐼(𝑄𝑜𝑏𝑠,𝑖) = {
 1,   𝐿𝑙𝑖𝑚,𝑖 < 𝑄𝑜𝑏𝑠,𝑖 < 𝑈𝑙𝑖𝑚,𝑖  

0,   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      
 

𝑄𝑜𝑏𝑠,𝑖 represents observed streamflow at the i
th

 time step; and  𝐿𝑙𝑖𝑚,𝑖 and 𝑈𝑙𝑖𝑚,𝑖  are the lower and upper prediction bounds 15 

respectively. 

 As an alternative to a crisp prediction for an observation (e.g. Xiong and O’Connor, 2008), the median (50 %) 

streamflow prediction was also estimated from the behavioral model simulations and compared against observations using 

both NSE and LnNSE as goodness of fit measures.  Similarly, the critical success index (CSI, Table 2) and RMSE were used 

as goodness of fit measures for median SCF prediction. When using RMSE, the fractional snow cover data of each grid cell 20 

was directly employed in validating median predictions. CSI represents the number of grid-cells where the snow events are 

correctly predicted out of the total number of grid-cells where snow is predicted in the model. It was calculated based on a 

binary snow cover data using the two by two contingency table analysis (Table 2) following a similar procedure to that used 

in Hanzer et al. (2016). When converting the snow cover fraction to a binary measure, a grid-cell was classified as snow 

covered if at least 50 % of its area is snow covered. 25 

3 Results 

3.1 Uncertainty analysis using the residual based GLUE approach  

3.1.1 Uncertainty of model parameters 

The uncertainty of model parameters was analyzed using all years of record together as a single time series data. The dotty 

plots (Fig. 3) depict the goodness of fit response surface projected onto individual parameter dimensions. The parallel 30 

coordinate plots (Fig. 4) also show the distribution of model parameters within their respective parameter dimensions. The 

distribution of behavioral simulations across a parameter dimension varies from one parameter to another. The behavioral 

models are scattered nearly across the entire range of parameter dimension for fast ADR, slow ADR, and snow CV; indicating 

low model sensitivity to these parameters. On the other hand, the relatively localized distribution of behavioral models 

towards lower values when projected onto the parameter ranges of c1, c2, tx, and wind scale as well as towards higher values 35 
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of c3 reflects higher sensitivity of simulated streamflow to these calibration parameters. Furthermore, the parallel coordinate 

plots show an increase in likelihood measure value towards the lower (for c1, c2, tx, and wind scale) and higher (for c3) parts 

of their respective parameter dimensions. 

 The aforementioned less sensitive model parameters can, however, have high effect on model outputs through interaction 

with other parameters. Some degree of interaction between model parameters can be seen from the correlation shown in Fig. 5 

5. For example, a general decreasing trend in model performance can be noticed with a joint increase in c1 and c2. The 

strong influence of tx in constraining the output is also evident in these plots. A considerable level of interaction can also be 

observed from the correlation coefficient scores between c1 and c2 (0.56), c2 and c3 (0.53) as well as between tx and wind 

scale(0.66).

 The posterior distribution histograms (Fig. 6) and the statistical summary table of posterior distribution (Table 3) 10 

illustrate variability in distribution characteristics of the model parameters. The catchment response parameters, viz. c1, c2, 

and c3 showed relatively well defined peaks. Whereas, fast ADR, slow ADR, and snow CV appear less identifiable with 

relatively flat distribution across their respective parameter dimensions. It should however be remembered that in the GLUE 

methodology, it is the set of parameter values that gives a behavioral model. 

3.1.2 Uncertainty of streamflow predictions  15 

Figure 7 shows a sample cross-validation of daily streamflow prediction limits against observed values. The upper and lower 

prediction bounds as well as the median values are generated with behavioral models identified in year 2011 using the 

combined NSE and LnNSE likelihood measure. The calculated uncertainty in streamflow prediction indicated by the 5-95 

percentile range (shaded band) varied over time and relatively higher uncertainty was noticed during high streamflow than 

low streamflow periods.  20 

 As can be seen from the summary table of cross-validation results (Table 4), the CR values range from 0.62 to 0.91 with 

an overall mean value of 0.77. The mean CR values for the calibration and validation periods are 0.78 and 0.76 respectively. 

The evaluation result generally shows that the median prediction of behavioral models selected using the combined 

likelihood was able to reproduce the observed values remarkably well with average NSE and LnNSE of 0.86 and 0.72 

respectively for the validation period. However, performance of the behavioral models identified using NSE was very low 25 

when evaluated using LnNSE in year 2014. This phenomenon can be attributed to the relatively low quality of streamflow 

observations during the low streamflow period of this year. The validation result was also highly affected by nature of the 

likelihood measure used during the identification of behavioural models. For example, a persistent low performance was 

observed during early months of the hydrologic year when validating behavioural models identified using NSE alone (Fig. 

7c) as compared to those identified using the combined likelihood (Fig. 7d). Similarly, excluding the first 30 observations 30 

from the validation dataset resulted to an improvement of LnNSE from -0.53 to 0.44. 

3.1.3 Uncertainty of snow cover predictions 

Snow cover fractions (SCF) and snow water equivalent (SWE) are two main outputs of the snow sub-model (GS) of the 

PT_GS_K model. In this study an initial single-likelihood based conditioning of the GS specific parameters was carried out 

using MODIS SCF only and RMSE as a measure of model performance.  35 

 The cross-validation result of predicted median values against MODIS SCF observations is shown in Table 5. The 

highest and lowest RMSE values during the calibration period were 0.15 and 0.06 respectively with an average RMSE value 

of 0.11. Minimum and maximum RMSE values of 0.06 and 0.22 respectively were observed during the validation period 
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with an average RMSE value of 0.13. Similarly the lowest CSI during the calibration and validation periods were 0.99 and 

0.88 respectively. Comparable maximum CSI results were observed between the two periods. The 5-95 % SCF prediction 

interval was able to reasonably bracket the observations in most of the calibration and validation periods with mean CR 

values of 0.60 and 0.71 respectively without any explicit accounting for model residuals for each parameter set. The inter-

annual comparison of model performance shows that relatively lower performance was observed in years 2011 and 2012 as 5 

compared to the other periods.  

3.1.4 Uncertainty of streamflow and snow cover predictions using both observations

 The cross-validation result of simulated streamflow and SCF against observations is shown in Table 6.   A similar model 

performance was observed when model parameters are conditioned using both streamflow and MODIS SCF as compared to 

when only streamflow was used for model conditioning. The mean NSE and LnNSE values of the median streamflow 10 

prediction in the validation periods were 0.85 and 0.71 respectively. The average streamflow prediction uncertainty (CR) in 

the validation period was 0.70. For SCF, an average RMSE and CSI values of 0.11 and 0.99 respectively were obtained 

when using the combined likelihood. The streamflow and SCF median predictions obtained in this analysis are similar to the 

results when model parameters are respectively conditioned with streamflow only or MODIS SCF only. This result shows 

that contribution from the MODIS SCF was less significant in constraining the model parameters. The relatively low quality 15 

of MODIS SCF data as compared to the streamflow data for the study site may also partly explain this phenomenon.  

3.2 Uncertainty analysis using the relaxed GLUE LOA approach 

 The median streamflow prediction of behavioural models identified using the relaxed GLUE LOA was able to mimic the 

observed values very well with a mean NSE and LnNSE of 0.85 and 0.7, respectively for the validation period (Table 7). A 

comparable performance was observed between models selected using the residual based GLUE and the relaxed GLUE LOA. 20 

The similarity in median predicted streamflow by these two GLUE methodologies can also be noticed from visual 

comparison of the resulting hydrographs (Fig. 7 and Fig. 8). A mean streamflow CR value of 0.75 was obtained for the 

validation period when using the relaxed GLUE LOA. This shows slightly better capability of the 5-95 % prediction bounds 

in bracketing the observations as compared to predictions using the residual based GLUE methodology when both 

streamflow and SCF are used in model conditioning. 25 

 The behavioural models selected using the relaxed GLUE LOA approach were also able to adequately reproduce 

observed SCF with a mean RMSE and CSI of 0.11 and 0.98 respectively for the validation period. Generally high prediction 

uncertainty of SCF was observed during the onset of snow melt and low uncertainty during the summer with an average CR 

of 0.63. Thus hydrological year 2011, having most of its observations coming from April, showed the lowest CR as 

compared to the other periods. Figure 9 shows observed and simulated average catchment SCF for sample calibration period 30 

(2011) and validation period (2012). From this figure it can be noticed that the median prediction tends to overestimate the 

observed SCF values; and many of the observed values from the month of April fall outside the 5-95 % prediction bounds. 

The overall result, however, indicates an improved capability of the 5-95 % prediction bounds in bracketing the SCF 

observations as compared to predictions using the residual based GLUE methodology.  

 35 
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4 Discussion  

The streamflow prediction uncertainty analyses results show that model performance was relatively lower during low-

streamflow than high-streamflow conditions throughout most validation periods (e.g. Table 4). A similar result was reported 

by Choi and Beven (2007) in their multi-period cluster based uncertainty analysis in Bukmoon catchment, South Korea, 

where high percentage of simulation bias was observed during the drier seasons due to relatively poor model performance 5 

during these periods. The result of this study is thus consistent with the general observation that catchment hydrologic 

models perform relatively well in wet conditions, but break down during low streamflow conditions (e.g. Kirchner, 2009). In 

the case of results from the residual based GLUE methodology, this can also be partly attributed to the nature of the 

likelihood measure used to identify the behavioral models. The result reveals this observation, where model performance 

during low streamflow periods (LnNSE) was improved when using the combined likelihood measures as compared to using 10 

NSE alone. This is because models identified using NSE alone strongly reflect hydrologic characteristics of the high 

streamflow periods and are expected to perform more poorly during low streamflow conditions. 

 In order to assess the potential value of MODIS SCF in constraining model parameters, the snow sub-model parameters 

were constrained using this observation and the posterior distribution of the individual parameters were compared against 

corresponding distributions that resulted from model conditioning using streamflow only. Parameter inference based on SCF 15 

only as a conditioning observation gave some parameter estimates that deviate significantly from those obtained when 

conditioned with streamflow only (Fig. 10). The box plots depict posterior distribution of the snow related parameters 

separately conditioned using streamflow and SCF. For the ease of comparison, parameter values were scaled between 0 and 

1. From these plots it can be seen that tx and wind scale are the model parameters most sensitive to the conditioning data 

type with a significant shift of their quartiles towards upper part of the parameter dimensions when conditioned using SCF. 20 

Whereas the fast ADR, slow ADR, and snow CV did not show significant displacement in their posterior distribution. These 

parameters were also identified as the least sensitive model parameters when the model was constrained using streamflow 

only. 

 Generally in snow models with the sub-grid snow distribution component parameterized using statistical probability 

distribution function, low snow CV results to faster depletion rate of snow covered fraction (e.g. Liston, 2004). Thus the 25 

slight displacement of snow CV posterior values towards lower part of its parameter dimensions coupled with the increased 

posterior values of wind scale would give rise to lower snow cover fraction during the melting period when model 

parameters are constrained using SCF only. On the other hand, the increased posterior values of rain/snow threshold (tx) 

would result to increase in snow deposition and thereby to partial or full cancelling out of the effects of changes in snow CV 

and wind scale. This phenomenon may thus lead to equifinality, where different set of model parameters give comparable 30 

SCF responses.  

 In the GLUE LOA approach a particular model realization is classified as acceptable if its prediction falls within the 

limits for all observed values. In continuous rainfall-runoff modelling it is difficult for all predictions of a given model 

realization to lie within the observation limits in a time series. In some cases this phenomenon can be attributed to different 

specific processes dominating the hydrologic behavior of a catchment at different sub-periods. While in other instances it 35 

may be due to lack of a viable means for explicitly taking into account for the effect of variable sources and level of 

uncertainties from the input data errors which are difficult to set a priori. Thus the time-varying likely effect of other sources 

of errors such as input errors on prediction uncertainty need also be implicitly taken into account when defining the limits of 

acceptability.  
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 The use of GLUE LOA for testing hydrologic models as hypotheses without a due consideration to errors in input data 

may lead to rejection of useful models that might adequately represent the catchment behavior and thereby to making type II 

error (false negative). In the past, various attempts have been made to minimize the risk of making type II errors in model 

calibration studies using the GLUE and other frameworks. In some studies an improved calibration of hydrologic models 

was obtained through independent calibration of sub-periods of a time series (e.g. Boyle et al., 2000; Samanta and Mackay, 5 

2003). When it comes to the GLUE LOA approach, extending the limits (e.g. Blazkova and Beven, 2009; Liu et al., 2009) as 

well as using different model realization for different periods of a hydrological year (e.g. Choi and Beven (2007) are some of 

the measures taken to minimize the risk of making Type II errors. Common to all these measures is that they attempt to relax 

the selection criteria for behavioral models. 

 In this study when using the GLUE LOA approach, the streamflow bounds were set to +/- 25 % and the result shows that 10 

none of the model realizations were able to satisfy the LOA criteria without one or more of their predictions falling outside 

the acceptable streamflow bounds. The failure rate was higher during low flow conditions as compared to high flow 

conditions. An initial attempt was made to relax the limit of acceptability by extending the streamflow bounds. Regardless, 

no model realization with its predictions falling within the error bounds for all observations was found until the limits were 

extended to over +/- 85 %. This relaxed acceptability limit seems less reasonable in terms of its physical meaning as an error 15 

bound. Therefore, rather than relaxing the limits, an alternative empirical approach was followed by relaxing the number of 

simulation time steps which fulfilled the original LOA criterion.  The procedure involves defining the acceptable 

percentage of observations that are required to be bracketed by model predictions (during the calibration period) based on a 

predefined acceptable CR value.  

 This empirical approach is based on the observed relationship between prediction uncertainty and number of behavioral 20 

models which in turn is a function of the selection criterion. As the threshold value of a likelihood measure increases (in the 

case of residual based GLUE) or absolute value of the limits decreases (in the case of GLUE LOA), the simulated runoff 

series gradually converges, though not necessarily to the observations. A similar observation was also reported in other 

GLUE based uncertainty studies (e.g. Xiong et al., 2008). A further analysis in this study reveals that, as the percentage of 

observations required to be bracketed by each model realization (pLOA) increases, the number of behavioral models 25 

decreases and thereby the simulated runoff series converges resulting to low CR (Figure 11). In this study, the threshold 

pLOA for each calibration period was defined in such a way that the 5-95 % prediction uncertainties of streamflow using the 

residual and the LOA based GLUE methodologies are similar. Defining the threshold pLOA this way helps to set a 

reasonable value that minimizes the risk of making type II errors while maintaining the overall model accuracy by rejecting 

the inclusion of non-behavioural models. Furthermore, it helps to grossly compare the performance of behavioural models 30 

selected using the relaxed GLUE LOA against the residual based GLUE in terms of their ability to reproduce the median 

streamflow and SCF predictions at similar level of uncertainty (i.e. the CR used to set pLOA). 

 Although it is difficult to single out the effects of input data error from model structural error on model performance 

using the GLUE methodology, the error patterns may aid in assessing model performance in different periods of the 

hydrologic year. Generally, a good model structure coupled with good data is not expected to give a consistent bias (e.g. Liu 35 

et al., 2009). Figure 12 shows a sample daily percentage of acceptable simulations satisfying the LOA criteria during the 

hydrologic year 2012. The percentage of acceptable number of model realizations in each time step was generally low during 

the calibration period (< 65 %). However, for each time step, predictions from some behavioral models are able to mimic the 

corresponding observation within the assumed error bound. The percentage of acceptable models was relatively higher 

during high than low streamflow conditions. And this result is consistent with the general observation that most hydrological 40 
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models perform relatively well during high streamflow than low streamflow periods. The spike in percentage of acceptable 

models in the month of February 2012 when time steps around are so low, however, reveals how model performances can 

unexpectedly vary between time steps in response to input data errors and/or the observational error bounds. The observed 

spike could thus be attributed to relatively low input data errors and/or lower actual observational error bounds as compared 

to the assumed average values for the particular time step. The distribution of the behavioral model weights over the 5 

calibration period shows that the mean weight during the period where the spike occurred is very low. Similarly the median 

weight of behavioral models during this period is close to zero implying that most of the model realizations have their 

predictions that barely fall within the limits.  

 This result reveals that the GLUE LOA with relaxation in percentage of observations where model predictions fall within 

observational error bounds can be used as an alternative approach for conditioning model parameters and conducting 10 

uncertainty analysis when there is lack of metadata on input and observational data uncertainty coupled with highly time-

varying level of uncertainty from such sources. After relaxation, a limited sample of the total observations, i.e. 30 - 40 % of a 

hydrologic year, was able to effectively identify behavioural models; and this result is consistent with findings of other 

studies dealing with the effect of observation size on constraining model parameters (e.g. Seibert and Beven, 2009; Liu and 

Han, 2010; Sun et al., 2017). The relative accuracy of an event and other factors that affect the information content of the 15 

input and observation datasets (e.g. Beven and Smith, 2015) are more important than the length of the datasets especially in 

continuous rainfall-runoff modelling.  

5 Conclusions 

Two GLUE methodology variants were applied for parameter uncertainty analysis of a distributed conceptual hydrological 

model. The analysis result from the residual based GLUE methodology shows that the catchment response parameters, viz. 20 

c1, c2, and c3 as well as the wind scale are the most sensitive model parameters. More caution is thus required when 

defining the value range of these parameters. On the other hand, the fast and slow albedo decay rates as well as the snow CV 

are relatively more uncertain model parameters.  

 Model conditioning using combined streamflow and MODIS SCF did not improve the median prediction of streamflow 

as compared to the result when model parameters are conditioned using streamflow only. A similar result was also observed 25 

for SCF predictions. The additional information from the MODIS SCF data was generally less significant in constraining the 

rainfall-runoff model parameters.  

 When using the GLUE LOA approach, the model did not provide any behavioral simulation in the sample tried on the 

basis of treating the assumed observational error bound as 5-95% error. A relaxation was needed in order to partly overcome 

the limitations of using constant observational error proportionality and not taking an explicit account of the other sources of 30 

uncertainty such as from input data errors. A relaxed GLUE LOA approach was introduced that allows a relaxation on the 

number of time steps required to achieve the LOA. Similar results are obtained using both the residual based GLUE and the 

relaxed GLUE LOA approaches. Relaxing the percentage of observations required to be bracketed per simulation period by a 

particular model realization (pLOA) was found to be more effective than relaxing the observational error bounds. In this 

study the 5-95 % prediction uncertainty of residual based GLUE methodology was used as a reference to define the pLOA in 35 

the relaxed GLUE LOA analysis using forcing and observational datasets from a single catchment. More similar case studies 

should be conducted on catchments with different hydrologic characteristics to assess the scope of this approach under 

different condition. 



15 
 

Data availability. The underlying hydrologic observations for this analysis were provided by Statkraft AS and are 

proprietary within their hydrologic forecasting system. However, the data may be made available upon request. Please 

contact: John Burkhart <john.burkhart@statkraft.com> for further information and access to the data. 

 

Competing interests. The authors have no conflict of interest. 5 

 

Acknowledgements. This work was conducted within the Norwegian Research Council’s - Enhancing Snow Competency of 

Models and Operators (ESCYMO) project (NFR no. 244024) and in cooperation with the strategic research initiative 

LATICE (Faculty of Mathematics and Natural Sciences, University of Oslo https://mn.uio.no/latice). Computational and 

data storage resources were provided by NOTUR/NORSTORE projects NS9333K and NN9333K. We are grateful for Keith 10 

Beven and Chong-Yu Xu for their helpful comments. Furthermore, we thank Sigbjorn Helset and Statkraft AS, in general, 

for helping us to setup Shyft in a windows environment and for providing us the data. We also thank Kristoffer Aalstad and 

Sebastian Westermann for providing us a matlab script for retrieving the composite MODIS SCF data. 

References 

Bavera, D., Michele, C., Pepe, M., and Rampini, A.: Melted snow volume control in the snowmelt runoff model using a 15 

snow water equivalent statistically based model, Hydrological Processes, 26, 3405-3415, 2012. 

Berezowski, T., and Batelaan, O.: Skill of remote sensing snow products for distributed runoff prediction, Journal of 

Hydrology, 524, 718-732, 2015. 

Beven, K.: Changing ideas in hydrology—the case of physically-based models, Journal of Hydrology, 105, 157-172, 1989. 

Beven, K., and Binley, A.: The future of distributed models: model calibration and uncertainty prediction, Hydrological 20 

processes, 6, 279-298, 1992. 

Beven, K.: Prophecy, reality and uncertainty in distributed hydrological modelling, Advances in Water Resources, 16, 41-51, 

1993. 

Beven, K.: A manifesto for the equifinality thesis, Journal of Hydrology, 320, 18-36, 2006. 

Beven, K.: Environmental modelling: An uncertain future?, CRC Press, 2009. 25 

Beven, K., and Smith, P.: Concepts of information content and likelihood in parameter calibration for hydrological 

simulation models, Journal of Hydrologic Engineering, DOI: 10.1061/(ASCE) HE. 1943-5584.0000991, 2015. 

Beven, K.: Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication, 

Hydrological Sciences Journal, 61, 1652-1665, 2016. 

Blasone, R.-S., Vrugt, J. A., Madsen, H., Rosbjerg, D., Robinson, B. A., and Zyvoloski, G. A.: Generalized likelihood 30 

uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling, Advances in Water Resources, 31, 

630-648, 2008. 

Blazkova, S., and Beven, K.: Flood frequency estimation by continuous simulation for a catchment treated as ungauged 

(with uncertainty), Water Resources Research, 38, DOI: 10.1029/2001WR000500, 2002. 

Blazkova, S., and Beven, K.: A limits of acceptability approach to model evaluation and uncertainty estimation in flood 35 

frequency estimation by continuous simulation: Skalka catchment, Czech Republic, Water Resources Research, 45, 2009. 

Boyle, D. P., Gupta, H. V., and Sorooshian, S.: Toward improved calibration of hydrologic models: Combining the strengths 

of manual and automatic methods, Water Resources Research, 36, 3663-3674, 2000. 

mailto:john.burkhart@statkraft.com
https://mn.uio.no/latice


16 
 

Brazier, R. E., Beven, K. J., Freer, J., and Rowan, J. S.: Equifinality and uncertainty in physically based soil erosion models: 

application of the GLUE methodology to WEPP–the Water Erosion Prediction Project–for sites in the UK and USA, 

Earth Surface Processes and Landforms, 25, 825-845, 2000. 

Burkhart, J.F., Helset, S., Abdella, Y.S., Lappegard, G., Operational Research: Evaluating Multimodel Implementations for 

24/7 Runtime Environments, Abstract H51F-1541 presented at the Fall Meeting, AGU, San Francisco, Calif., 11-15 Dec, 5 

2016 

Choi, H. T., and Beven, K.: Multi-period and multi-criteria model conditioning to reduce prediction uncertainty in an 

application of TOPMODEL within the GLUE framework, Journal of Hydrology, 332, 316-336, 2007. 

Clark, M. P., Kavetski, D., and Fenicia, F.: Pursuing the method of multiple working hypotheses for hydrological modeling, 

Water Resources Research, 47, 2011. 10 

Copernicus land monitoring service: https://land.copernicus.eu/pan-european/corine-land-cover, accessed on: 29 August 

2016 

Coxon, G., Freer, J., Westerberg, I. K., Wagener, T., Woods, R., and Smith, P. J.: A novel framework for discharge 

uncertainty quantification applied to 500 UK gauging stations, Water resources research, 51, 5531-5546, 2015. 

Crawford, N. H., and Linsley, R. K.: Digital simulation in hydrology, Stanford Watershed Model IV, Department of Civil 15 

Engineering, Stanford University, 1966.  

Dee, D. P., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G., and 

Bauer, P.: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system, Quarterly 

Journal of the royal meteorological society, 137, 553-597, 2011. 

Efstratiadis, A., and Koutsoyiannis, D.: One decade of multi-objective calibration approaches in hydrological modelling: a 20 

review, Hydrological Sciences Journal–Journal Des Sciences Hydrologiques, 55, 58-78, 2010. 

Hall, K., George, R., Vincent, S., and Grid, V.: Updated daily MODIS/Terra Snow Cover Daily L3 Global 500m Grid V005, 

[April 2011 to August 2014], in: National Snow and Ice Data Center, Digital media, Boulder, Colorado USA, 2006. 

Finger, D., Vis, M., Huss, M., and Seibert, J.: The value of multiple data set calibration versus model complexity for 

improving the performance of hydrological models in mountain catchments, Water Resources Research, 51, 1939-1958, 25 

2015. 

Hanzer, F., Helfricht, K., Marke, T., and Strasser, U.: Multilevel spatiotemporal validation of snow/ice mass balance and 

runoff modeling in glacierized catchments, The Cryosphere, 10, 1859-1881, 2016. 

Hassan, A. E., Bekhit, H. M., and Chapman, J. B.: Uncertainty assessment of a stochastic groundwater flow model using 

GLUE analysis, Journal of Hydrology, 362, 89-109, 2008. 30 

He, M., Hogue, T. S., Franz, K. J., Margulis, S. A., and Vrugt, J. A.: Characterizing parameter sensitivity and uncertainty for 

a snow model across hydroclimatic regimes, Advances in Water Resources, 34, 114-127, 2011. 

Hegdahl, T. J., Tallaksen, L. M., Engeland, K., Burkhart, J. F., and Xu, C. Y.: Discharge sensitivity to snowmelt 

parameterization: a case study for Upper Beas basin in Himachal Pradesh, India. , Hydrology Research, 47, 683-700, 

2016. 35 

Hornberger, G. M., and Spear, R. C.: Approach to the preliminary analysis of environmental systems, J. Environ. Mgmt., 12, 

7-18, 1981. 

Jin, X., Xu, C. Y., Zhang, Q., and Singh, V. P.: Parameter and modeling uncertainty simulated by GLUE and a formal 

Bayesian method for a conceptual hydrological model, Journal of Hydrology, 383, 147-155, 2010. 



17 
 

Kirchner, J. W.: Catchments as simple dynamical systems: Catchment characterization, rainfall‐runoff modeling, and doing 

hydrology backward, Water Resources Research, 45, 2009. 

Kolberg, S. A., and Gottschalk, L.: Updating of snow depletion curve with remote sensing data, Hydrological Processes, 20, 

2363-2380, 2006. 

Krause, P., Boyle, D. P., and Bäse, F.: Comparison of different efficiency criteria for hydrological model assessment, 5 

Advances in Geosciences, 5, 89-97, 2005. 

Lambert, A.: Catchment models based on ISO-functions, J. Instn. Water Engrs, 26, 413-422, 1972. 

Lee, S., Klein, A. G., and Over, T. M.: A comparison of MODIS and NOHRSC snow-cover products for simulating 

streamflow using the Snowmelt Runoff Model, Hydrological Processes, 19, 2951-2972, 2005. 

Liston, G. E.: Interrelationships among snow distribution, snowmelt, and snow cover depletion: Implications for atmospheric, 10 

hydrologic, and ecologic modeling, Journal of applied meteorology, 38, 1474-1487, 1999. 

Liston, G. E.: Representing subgrid snow cover heterogeneities in regional and global models, Journal of climate, 17, 1381-

1397, 2004. 

Liu, J., and Han, D.: Indices for calibration data selection of the rainfall‐runoff model, Water resources research, 46, 2010. 

Mantovan, P., and Todini, E.: Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology, 15 

Journal of hydrology, 330, 368-381, 2006. 

Matt, F. N., Burkhart, J. F., and Pietikäinen, J.-P.: Modelling hydrologic impacts of light absorbing aerosol deposition on 

snow at the catchment scale, Hydrology and Earth System Sciences, 22, 179-201, 2018. 

Morris, M. D.: Factorial sampling plans for preliminary computational experiments, Technometrics, 33, 161-174, 1991. 

Mirzaei, M., Huang, Y. F., El-Shafie, A., and Shatirah, A.: Application of the generalized likelihood uncertainty estimation 20 

(GLUE) approach for assessing uncertainty in hydrological models: a review, Stochastic Environmental Research and 

Risk Assessment, 29, 1265-1273, 2015. 

MODIS web page information at: http://nsidc.org/data/docs/daac/mod10c1_modis_terra_snow_daily_global_0.05deg_ 

cmg.gd.html, 2010. 

Montanari, A., Shoemaker, C. A., and van de Giesen, N.: Introduction to special section on Uncertainty Assessment in 25 

Surface and Subsurface Hydrology: An overview of issues and challenges, Water Resources Research, 45, 2009. 

Nearing, G. S., Tian, Y., Gupta, H. V., Clark, M. P., Harrison, K. W., and Weijs, S. V.: A philosophical basis for 

hydrological uncertainty, Hydrological Sciences Journal, 61, 1666-1678, 2016. 

Norwegian mapping authority: https://www.kartverket.no/, accessed on: 1 September 2016 

Pappenberger, F., Beven, K. J., Ratto, M., and Matgen, P.: Multi-method global sensitivity analysis of flood inundation 30 

models, Advances in Water Resources, 31, 1-14, 2008. 

Parajka, J., and Blöschl, G.: The value of MODIS snow cover data in validating and calibrating conceptual hydrologic 

models, Journal of Hydrology, 358, 240-258, 2008. 

Parajka, J., Holko, L., Kostka, Z., and Blöschl, G.: MODIS snow cover mapping accuracy in a small mountain catchment–

comparison between open and forest sites, Hydrology and Earth System Sciences, 16, 2365-2377, 2012. 35 

Pianosi, F., Sarrazin, F., and Wagener, T.: A Matlab toolbox for global sensitivity analysis, Environmental Modelling & 

Software, 70, 80-85, 2015. 

Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., and Wagener, T.: Sensitivity analysis of 

environmental models: A systematic review with practical workflow, Environmental Modelling & Software, 79, 214-232, 

2016. 40 

http://nsidc.org/data/docs/daac/mod10c1_modis_terra_snow_daily_global_0.05deg_


18 
 

Powell, M. J.: The BOBYQA algorithm for bound constrained optimization without derivatives, Cambridge NA Report 

NA2009/06, University of Cambridge, Cambridge, 26-46, 2009. 

Pu, Z., Xu, L., and Salomonson, V. V.: MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau, 

Geophysical Research Letters, 34, 2007. 

Refsgaard, J. C., van der Sluijs, J. P., Højberg, A. L., and Vanrolleghem, P. A.: Uncertainty in the environmental modelling 5 

process-a framework and guidance, Environmental modelling & software, 22, 1543-1556, 2007. 

Reichert, P., and Omlin, M.: On the usefulness of overparameterized ecological models, Ecological Modelling, 95, 289-299, 

1997. 

Renard, B., Kavetski, D., Kuczera, G., Thyer, M., and Franks, S. W.: Understanding predictive uncertainty in hydrologic 

modeling: The challenge of identifying input and structural errors, Water Resources Research, 46, 2010. 10 

Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F., and Commission, E.: Sensitivity analysis practices: Strategies for 

model-based inference, Reliability Engineering & System Safety, 91, 1109-1125, 2006. 

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S.: Global 

sensitivity analysis: the primer, John Wiley & Sons, 2008. 

Samanta, S., and Mackay, D. S.: Flexible automated parameterization of hydrologic models using fuzzy logic, Water 15 

Resources Research, 39, 2003. 

Savenije, H. H.: Equifinality, a blessing in disguise?. , Hydrological processes, 15, 2835-2838, 2001. 

Schaefli, B.: Snow hydrology signatures for model identification within a limits‐of‐acceptability approach, Hydrological 

Processes, 30, 4019-4035, 2016. 

Schoups, G., and Vrugt, J. A.: A formal likelihood function for parameter and predictive inference of hydrologic models 20 

with correlated, heteroscedastic, and non‐Gaussian errors, Water Resources Research, 46, 2010. 

Seibert, J., and Beven, K. J.: Gauging the ungauged basin: how many discharge measurements are needed?, Hydrology and 

Earth System Sciences, 13, 883-892, 2009. 

Shen, Z. Y., Chen, L., and Chen, T.: Analysis of parameter uncertainty in hydrological and sediment modeling using GLUE 

method: a case study of SWAT model applied to Three Gorges Reservoir Region, China., Hydrology and Earth System 25 

Sciences, 16, 2012. 

Skaugen, T., and Weltzien, I. H.: A model for the spatial distribution of snow water equivalent parameterized from the 

spatial variability of precipitation, The Cryosphere, 10, 1947-1963, 2016. 

Statkraft information page: https://www.statkraft.com/, last access: 20 June 2018 

Stedinger, J. R., Vogel, R. M., Lee, S. U., and Batchelder, R.: Appraisal of the generalized likelihood uncertainty estimation 30 

(GLUE) method, Water resources research, 44, 2008. 

Sun, W., Wang, Y., Wang, G., Cui, X., Yu, J., Zuo, D., and Xu, Z.: Physically based distributed hydrological model 

calibration based on a short period of streamflow data: case studies in four Chinese basins, Hydrology and Earth System 

Sciences, 21, 251, 2017. 

Tripp, D. R., and Niemann, J. D.: Evaluating the parameter identifiability and structural validity of a probability-distributed 35 

model for soil moisture, Journal of hydrology, 353, 93-108, 2008. 

Udnæs, H. C., Alfnes, E., and Andreassen, L. M.: Improving runoff modelling using satellite-derived snow covered area, 

Hydrology Research, 38, 21-32, 2007. 



19 
 

Vrugt, J. A., Ter Braak, C. J., Gupta, H. V., and Robinson, B. A.: Equifinality of formal (DREAM) and informal (GLUE) 

Bayesian approaches in hydrologic modeling, Stochastic Environmental Research and Risk Assessment, 23, 1011-1026, 

2009. 

Wagener, T., McIntyre, N., Lees, M., Wheater, H., and Gupta, H.: Towards reduced uncertainty in conceptual rainfall‐runoff 

modelling: Dynamic identifiability analysis, Hydrological Processes, 17, 455-476, 2003. 5 

Xiong, L., and O’Connor, K. M.: An empirical method to improve the prediction limits of the GLUE methodology in 

rainfall-runoff modeling, Journal of Hydrology, 349, 115-124, 2008. 

Xiong, L., Wan, M., Wei, X., and O'connor, K. M.: Indices for assessing the prediction bounds of hydrological models and 

application by generalised likelihood uncertainty estimation, Hydrological sciences journal, 54, 852-871, 2009. 

 

Table 1. Range of model parameters used for the PT_GS_K model stack uncertainty analysis 

Name Min.  Max. Description Method 

c1 -5.0 1.0 constant in Catchment Response Function, CRF  K 

c2 0.0 1.2 linear coefficient in CRF K 

c3 -0.15 -0.05 quadratic coefficient in CRF K 

tx -3.0 2.0 Solid/liquid threshold temperature (
o
C) GS 

wind scale 1.0 6.0 slope in turbulent wind function GS 

fast ADR 1.0 15.0 fast albedo decay rate (days) GS 

slow ADR 20.0 40.0 slow albedo decay rate (days) GS 

snow cv 0.06 0.85 spatial coefficient of variation of snowfall GS 

 

 10 
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Figure 1. Physiographic and location map of the Nea-catchment in Norway 

 

Table 2. Set up of the two-by-two contingency table for binary snow cover data comparison. O and S respectively represent 

 observed and simulated binary snow cover and the subscripts refer to snow-free (0) and snow covered (1) grid cell. 

 

 S1 S0 Sum 

O1 n11 n01 nx1 

O0 n10 n00 nx0 

Sum n1x n0x nxx 

 

𝐶𝑆𝐼 =
𝑛11

𝑛𝑥𝑥 − 𝑛00
 

 

 

Figure 2. A trapezoidal membership function for SCF likelihoods in the observational period. 
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Figure 3. Dotty plots of the likelihood measure for behavioral and non-behavioral models identified using the residual 

 based  GLUE methodology. 

 

 

 Figure 4. Distribution of model parameters within their variability ranges.   
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Figure 5. Model performance in response to the interaction between model parameters (upper diagonal cells) and correlation 

coefficient scores between the parameters (lower diagonal cells) 
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 Figure 6. Posterior distribution of calibration parameters after conditioning on flow observations 

 

Table 3. Statistical summary of posterior distribution for model parameters 

 

Statistics c1 c2 c3 tx 

(
o
C) 

wind  

scale 

fast ADR 

(days) 

slow ADR 

(days) 

snow 

CV 

Minimum -5.00 0.00 -0.12 -3.00 1.01 1.00 20.07 0.06 

Maximum -2.32 0.70 -0.05 1.98 3.74 14.96 39.98 0.85 

Mean -3.90 0.22 -0.07 -1.39 2.40 7.38 30.21 0.46 

Median -3.92 0.20 -0.07 -1.57 2.48 7.01 30.71 0.47 

Variance 0.33 0.02 0.00 1.15 0.48 15.46 33.15 0.05 

Skewness 0.18 0.53 -0.58 0.81 -0.22 0.19 -0.05 -0.06 
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Figure 7. Median, 5-95 percentile range and observed values of streamflow for sample calibration period (a) and validation 

periods (b, c and d). The calibration result (a) as well as the validation results presented in (b) and (d) are based on 

behavioural models identified using the combined likelihood, while the result shown in (c) is based on behavioural 

models identified using NSE alone.  

 

 Table 4. Cross-validation of streamflow predictions against observed values. Bold numbers show the result for calibration  

      period. 

Valid. 

year 

Likelihood  

(LH) 

measure 

Calibration year 

2011 2012 2013 2014 

NSE 

Comb. 

LH NSE 

Comb. 

LH NSE 

Comb. 

LH NSE 

Comb. 

LH 

2011 NSE 0.893 0.890 0.770 0.806 0.809 0.790 0.697 0.840 

LnNSE 0.712 0.855 0.366 0.812 0.693 0.719 0.521 0.771 

CR 0.759 0.721 0.756 0.677 0.805 0.764 0.729 0.710 

2012 NSE 0.842 0.869 0.920 0.930 0.818 0.787 0.910 0.874 

LnNSE 0.753 0.878 0.694 0.890 0.640 0.616 0.685 0.792 

CR 0.885 0.844 0.866 0.844 0.907 0.882 0.852 0.803 

2013 NSE 0.922 0.925 0.878 0.877 0.934 0.942 0.862 0.916 

LnNSE 0.780 0.914 0.391 0.799 0.887 0.936 0.531 0.792 

CR 0.778 0.759 0.759 0.666 0.830 0.830 0.756 0.622 

2014 NSE 0.828 0.884 0.860 0.892 0.826 0.810 0.901 0.924 

LnNSE -0.346 0.566 -0.529 0.531 0.138 0.488 0.268 0.716 

CR 0.737 0.658 0.721 0.666 0.773 0.721 0.718 0.647 

No. behavioural models 1573 749 3737 1031 4725 2245 4648 604 
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 Table 5. Cross-validation of SCF predictions against MODIS SCF.  

Calib. 

year 

   Validation year No. of 

behav. 

models 
2011  2012  2013 2014 

RMSE CSI CR RMSE CSI CR RMSE CSI CR RMSE CSI CR 

2011 0.147 0.987 0.417 0.152 0.999 0.330 0.067 0.985 0.839 0.089 0.991 0.656 83922 

2012 0.150 0.987 0.347 0.154 0.998 0.236 0.076 0.978 0.824 0.095 0.989 0.629 84945 

2013 0.200 0.878 0.924 0.217 0.875 0.795 0.057 0.985 0.919 0.100 0.948 0.931 98400 

2014 0.146 0.982 0.738 0.151 0.983 0.632 0.057 0.988 0.903 0.083 0.992 0.799 95039 

  

 Table 6. Cross-validation of streamflow and SCF predictions.  

Valid. 

year 

Obs. Likelihood 

measure 

Calibration year 

2011 2012 2013 2014 

2011 flow NSE 0.888 0.773 0.790 0.841 

 LnNSE 0.856 0.780 0.711 0.769 

  CR 0.660 0.611 0.753 0.693 

 SCF RMSE 0.142 0.146 0.155 0.143 

  CSI 0.987 0.987 0.954 0.987 

  CR 0.461 0.341 0.610 0.430 

2012 

 

flow NSE 0.855 0.939 0.738 0.886 

 LnNSE 0.886 0.869 0.602 0.791 

 

 

 CR 0.811 0.803 0.852 0.811 

SCF RMSE 0.158 0.150 0.165 0.150 

  CSI 0.985 0.999 0.960 0.992 

  CR 0.363 0.232 0.504 0.334 

2013 flow NSE 0.914 0.874 0.946 0.917 

  LnNSE 0.913 0.749 0.941 0.785 

  CR 0.679 0.605 0.827 0.619 

 SCF RMSE 0.053 0.063 0.049 0.055 

  CSI 0.992 0.987 0.994 0.990 

  CR 0.846 0.824 0.869 0.841 

2014 flow NSE 0.878 0.895 0.789 0.928 

  LnNSE 0.513 0.481 0.485 0.717 

  CR 0.627 0.627 0.712 0.647 

 SCF RMSE 0.079 0.087 0.078 0.078 

  CSI 0.996 0.993 0.990 0.996 

  CR 0.681 0.625 0.743 0.658 

No. acceptable models 726 988 2245 604 
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Table 7. Cross-validation of streamflow and SCF predictions after relaxing the LOA criteria. 

Valid. 

year 

Obs. Likelihood 

measure 

Calibration year 

2011 2012 2013 2014 

2011 flow NSE 0.881 0.861 0.769 0.854 

 LnNSE 0.839 0.838 0.711 0.796 

  CR 0.712 0.726 0.759 0.748 

 SCF RMSE 0.140 0.145 0.152 0.142 

  CSI 0.983 0.987 0.959 0.985 

  CR 0.551 0.450 0.615 0.552 

2012 flow NSE 0.808 0.914 0.758 0.837 

 LnNSE 0.822 0.918 0.595 0.791 

  CR 0.797 0.833 0.866 0.852 

SCF RMSE 0.162 0.150 0.161 0.153 

  CSI 0.970 0.995 0.963 0.986 

  CR 0.417 0.342 0.516 0.439 

2013 flow NSE 0.947 0.896 0.940 0.941 

  LnNSE 0.940 0.880 0.934 0.914 

  CR 0.767 0.707 0.825 0.800 

 SCF RMSE 0.049 0.057 0.051 0.052 

  CSI 0.994 0.989 0.992 0.991 

  CR 0.857 0.843 0.871 0.862 

2014 flow NSE 0.872 0.859 0.787 0.898 

  LnNSE 0.540 0.307 0.310 0.674 

  CR 0.641 0.627 0.704 0.671 

 SCF RMSE 0.077 0.082 0.079 0.078 

  CSI 0.994 0.994 0.989 0.995 

  CR 0.706 0.661 0.748 0.713 

No. acceptable models 419 813 2213 1029 

 

 

 

 Figure 8. Prediction and acceptable flow bounds for sample calibration period (a) and validation period (b)  
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 Figure 9. Prediction and acceptable bounds of average SCF for sample calibration period (a) and validation period (b)  

 

 

 Figure 10. Boxplot showing posterior distribution of model parameters when separately conditioned using streamflow and 

 SCF.  Parameter values are scaled between 0 and 1. 
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 Figure 11. The effect of the percentage of observations required to be bracketed by each model realization (pLOA) on 

 prediction uncertainty (CR) and efficiency of the median prediction (NSE) for sample calibration periods (years 2011 and 

 2012). 

 

 

Figure 12. Daily percentage of acceptable model realizations with their predictions falling within the observation error 

bounds (upper plot) and the daily weight associated with each acceptable model realization as well as daily mean and 

median value of the weights (lower plot) in a sample calibration period. 

 


