
Response to Reviewer #2 
 
Dear Reviewer, we are grateful for your thoughtful comments and suggestions. Following is our reply 

to the points raised in your feedback; and it is structured as comment from reviewer (bold text) followed 

by our response to the comment. Where relevant, the specific changes are also highlighted. 

 
The manuscript is in general well-written and in line with the scope of HESS. The manuscript 
performs a parameter uncertainty analysis of a distributed hydrological model by means of two 
variants of GLUE. Specifically the authors apply one variant based on the residuals and other in 
the limits of acceptability. The paper has a good practical component. However, I think it can be 
potentially highly improved by refining with a more rigorous and formal perspective. 

 
As presented in our response to the following specific comments; additional explanations and 
references have been provided and some corrections are made to make the manuscript more rigorous 
and to improve its readability. 

 
1. introduction  
Page 1 Line 23: there is not reference to Statkraft 
 

A citation within the text has been added as follows: 

 

Statkraft (2018) has recently released a new modelling framework mainly tailored for an operational 

purpose. 

 

The following full reference has been added in the list of references section: 

Statkraft information page: https://www.statkraft.com/, last access: 20 June 2018 
 
Page 1 Line 27: ’equally good’ needs some definition or explanation  
 

An explanation and additional reference have been provided as follows: 

 

During calibration, equifinality arises when different parameter sets give equally good results in terms 

of predefined efficiency criteria (Beven, 1993; Savenije, 2001; Wagener et al, 2003). 
 
Page 1 Line 32: ’less justifiable’ I would advice to be more rigorous 
 

The text has been modified and an explanation added from another reference as follows: 

 

It is based on the concept that all models of hydrological systems are highly simplified representations 

of reality (e.g. Reichert and Omlin, 1997), and hence it is expected to have several different model 

structures and parameter sets that describe the system in an adequate way (Blazkova and Beven, 2002). 

When dealing with non-linear systems, the classic hydrological approach of using a single set of model 

parameters may lead to large predictive biases (e.g. Mantovan and Todini, 2006). 
 
Page 2 Line 8: ’Uncertainty analysis classification’. more references are needed 
 

As suggested, more references have been added to this paragraph. 

 

Uncertainty analysis techniques can be classified as frequentist or Bayesian approaches, probabilistic or 

non-probabilistic approaches (e.g. Montanari et al. 2009), or as formal or informal approaches (e.g. 

Vrugt et al., 2009). Among the most widely used techniques in hydrological modelling are the formal 



Bayesian and the GLUE methods (Jin et al., 2010). The formal Bayesian approach makes strong 

assumptions about the statistics of observed data; with the likelihood function defined based on 

assumptions about the nature of the residuals (Beven et al, 2008; Schoups and Vrugt, 2010). However, 

the choice of an adequate likelihood function has been the subject of considerable debate. According to 

Beven and Smith (2014), a formal probabilistic likelihood function will have limited value since non-

stationary epistemic uncertainties cannot be adequately represented by a statistical model. In GLUE, the 

likelihood measure is associated with a parameter set and should ideally reflect all the different sources 

of uncertainty (Beven and Smith, 2014). The original GLUE methodology has been subject of debate 

for using informal likelihoods and a subjectively set threshold of behavioral models (e.g. Mantovan and 

Todini, 2006; Stedinger et al., 2008; Clark et al., 2011; Nearing et al., 2016). This problem is common 

to most residual-based model selection methods (Schaefli, 2016). The extended concept of behavioral 

models in the GLUE limits of acceptability approach (GLUE LOA) (Beven, 2006) attempts to 

overcome this drawback through use of error bounds of the observational dataset. 
 
2. Methods and materials  
Page 3 Line 30 and first paragraph: if possible, provide more explanation to define PT_GS_K  
 

Additional explanation has been provided as shown in the highlighted text.   

 

The Statkraft Hydrological Forecasting Toolbox, Shyft, (https://github.com/statkraft/shyft) is an open-

source distributed hydrological modelling framework developed by Statkraft (Burkhart et al., 2016). 

The modelling framework has three main models (method stacks) and in this study, one of these models, 

PT_GS_K, was used for uncertainty analysis. PT_GS_K is a conceptual model with several adjustable 

parameters depending on the climatic and physiographic characteristics of the study area where the 

model is applied. This model requires temperature, precipitation, radiation, relative humidity, and wind 

speed as forcing data. PT_GS_K uses the Priestley-Taylor (PT) method (Priestley, 1972) for estimating 

potential evaporation; a quasi-physical based method for snow melt, sub-grid snow distribution and 

mass balance calculations (GS method); and a simple storage-discharge function (Lambert, 1972; 

Kirchner, 2009) for catchment response calculation (K). Overall, these three methods constitute the 

PT_GS_K model in Shyft. The framework establishes a sequence of spatially distributed cells of 

arbitrary size and shape. As such it can provide lumped (single cell) or discretized (spatially distributed) 

calculations, as in this study. The model was applied to each of the grid-cells and for each time step. 
 
Page 5 Line 20: variables?  
 

‘parameter’ has been changed to ‘variable’ and a previous reference to the forcing variables was also 

indicated as shown below: 

 

As mentioned in section 2.1, the PT_GS_K model requires temperature, precipitation, radiation, relative 

humidity, and wind speed as forcing data. In this study, daily time series data of these variables for the 

study area were obtained from Statkraft (2018) as point measurement, with the exception of relative 

humidity. 
 
Page 5 Line 35: in my opinion the reference to the link fits better at the end of the paper, 
together with the date when the authors acceded to the data - this is for readers being able to 
reproduce the study  
 

A text citation has been added to the manuscript and the reference to the link is moved to the reference 

section at the end of the manuscript. The same change was also made for the reference related to the 

DEM data from Norwegian Mapping Authority. 

 



Data for these physiographic variables was retrieved from two sources: the land cover data from 

Copernicus land monitoring service (2016) and the 10m digital elevation model (10m DEM) from the 

Norwegian mapping authority (2016). 
 
2.3.1. this section needs to provide more description, i.e. to guide the reader  
 

Additional description as well as relevant references have been added as shown below: 

 

The performance of all uncertainty analysis techniques depends on the efficiency of the sample to 

represent the entire response surface (Pappenberger et al., 2008). In this study, prior distributions of the 

uncertain model parameters were not known and hence a uniform distribution was assumed. The 

challenge in using uniform distribution is, however, to adequately sample the entire parameter 

dimensions. To overcome this challenge and to better identify regions of behavioral simulations, a 

sample size of 100,000 runs was used. Each model run is a realization of a parameter set randomly 

drawn from the domains of the model parameters. The feasible ranges of parameter values are set based 

on information from relevant literature and previous modelling studies in the Nea-Nidelva catchment. 

An All-At-a-Time (AAT) sampling method (Pianosi et al., 2016) was employed. This method involves 

random selection of all parameter values simultaneously. Matlab scripts from the SAFE toolbox 

(Pianosi et al., 2015) were used as a basis to characterize behavioral and non-behavioral models. 
 
2.3.2. equation (5): if possible, i suggest to use other letter different to L, as it can confuse a 
reader to the likelihood function (i.e. in statistics the likelihood function is L(theta_model|data)). 
I suggest to use a more formal notation 
 

The notation for the Nash-Sutcliffe efficiency based informal likelihood measure has been changed 

from 𝐿 to 𝐿𝑁𝑆 as follows: 

 
𝐿𝑁𝑆(𝑂|𝑀(𝜃𝑖)) = 0.46(𝐿𝐿𝑛𝑁𝑆𝐸) + 0.54(𝐿𝑁𝑆𝐸)                        (4) 

 
In general, i think section 2 would be improved by 1) making clear distinction about statistic 
language from what the GLUE approach uses - which is what this paper uses. I think this might 
help to a reader that is not familiar with the approach to use it in right way with no confusion. 2) 
providing a road map of the methodology to re reader – for repeatability purposes 
 

Although there are some terminologies in the manuscript that are used both by the formal statistical and 

informal (GLUE) uncertainty analysis approaches, we are unable to identify a language in the 

manuscript which was not used in previous GLUE related studies.  

 

Regarding the second point, as shown above, more description has been provided in section 2.3.1 
 
3. Results and 4 Discussion Same comment as in my last paragraph, I suggest to avoid 
confusion, when possible. for example, in page 13, line 38 ’information content’. This should be 
used with caution, as it requires an approach to be evaluated. 
 

Additional explanation and a reference have been provided to describe the context in which this 

terminology was used: 

 

The information content of the input and observation datasets, which in turn is a function of multiple 

factors, such as relative accuracy and unusualness of an event (Beven and Smith, 2015) is more 

important than the length of the datasets especially in continuous rainfall-runoff modelling. 
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