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Abstract. Currently, applications of remote sensing evapotranspiration (ET) products are limited by the coarse resolution of 

satellite remote sensing data caused by land surface heterogeneities and the temporal scale extrapolation of the instantaneous 

latent heat flux (LE) based on satellite overpass time. This study proposes a simple but efficient model (EFAF) for 10 

estimating the daily ET of remotely sensed mixed pixels using a model of the evaporative fraction (EF) and area fraction (AF) 

to increase the accuracy of ET estimate over heterogeneous land surfaces. To accomplish this goal, we derive an equation for 

calculating the EF of mixed pixels based on two key hypotheses. Hypothesis 1 states that the available energy (AE) of each 

sub-pixel is approximately equal to that of any other sub-pixels in the same mixed pixel within an acceptable margin of error 

and is equivalent to the AE of the mixed pixel. This approach simplifies the equation, and uncertainties and errors related to 15 

the estimated ET values are minor. Hypothesis 2 states that the EF of each sub-pixel is equal to that of the nearest pure 

pixel(s) of the same land cover type. This equation is designed to correct spatial scale errors for the EF of mixed pixels; it 

can be used to calculate daily ET from daily AE data. The model was applied to an artificial oasis located in the midstream 

area of the Heihe River using HJ-1B satellite data with a 300 m resolution. The results generated before and after making 

corrections were compared and validated using site data from eddy covariance systems. The results show that the new model 20 

can significantly improve the accuracy of daily ET estimates relative to the lumped method; the coefficient of determination 

(R²) increased to 0.82 from 0.62, the root mean square error (RMSE) decreased to 1.60 from 2.47 MJ·m
-
² (decreased 

approximately to 0.64 mm from 0.99 mm), and the mean bias error (MBE) decreased from 1.92 to 1.18 MJ·m
-
² (decreased 

from approximately 0.77 mm to 0.47 mm). It is indicated that EFAF can reproduce daily ET with reasonable accuracy; can 

be used to produce the ET product; and can be applied to hydrology research, precision agricultural management and 25 

monitoring natural ecosystems in the future. 

Index Terms: Evapotranspiration; Heterogeneous surface; Temporal scale extrapolation; Evaporative fraction; Area 

weighting 
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1 Introduction 

Large-scale remotely sensed evapotranspiration (ET) estimates generally have a resolution that is too coarse for use in 

critical applications (e.g., drought assessment, water management or agricultural monitoring) (McCabe et al., 2017). 

Classical satellite-based models such as the Surface Energy Balance Algorithm for Land (SEBAL) (Bastiaanssen et al., 

1998), Surface Energy Balance System (SEBS) (Su, 2002), Atmosphere-Land Exchange Inverse (ALEXI) and an associated 5 

flux disaggregation technique (DisALEXI) (Norman et al., 2003; Anderson et al., 2011; Anderson et al., 2012), and 

temperature-sharpening and flux aggregation scheme (TSFA) (Peng et al., 2016), have been developed to monitor land-

atmosphere energy balance flux interactions; and in most cases, spatially variable inputs and parameters are based on 

assumptions of homogeneity of land and atmospheric surfaces (Sharma et al., 2016). However, surface characteristics such 

as land cover types, land surface temperatures, surface albedo values, downward shortwave radiation and other factors are 10 

spatially discrete. Studies have shown that different landscapes (Blyth and Harding, 1995; Moran et al., 1997; Bonan et al., 

2002; McCabe and Wood, 2006) and subpixel variations of surface variables, such as stomatal conductance (Bin and Roni, 

1994), or leaf area index (Bonan et al., 1993; El Maayar and Chen, 2006), can cause errors in heat flux estimations. 

Therefore, models of ET estimates that perform well for fine-resolution remote sensing data (e.g., 30 m resolution Landsat 

data) may not be appropriate for coarser-resolution data (e.g., 1 km resolution MODIS and AVHRR data). The spatial scale 15 

errors in remotely sensed ET (and other parameters derived from remote sensing data) are primarily arise from the 

combination of two factors, i.e., nonlinear models and surface heterogeneity, which is more likely to take place in coarser 

resolution data (Hu and Islam, 1997; Gottschalk et al., 1999; Tian et al., 2002; Garrigues et al., 2006; McCabe and Wood, 

2006; Jin et al., 2007; Xin et al., 2012; Li et al., 2013). To address the scale effect on energy fluxes, many studies have 

compared distributed calculations with lumped calculations. Distributed calculations are retrieved at fine resolutions and 20 

then aggregated to a coarser resolution, which is assumed to provide correct calculations in common scaling studies because 

the fine-resolution calculation closely represents actual conditions, whereas lumped calculations aggregate fine-resolution 

parameters to a coarser resolution and then are retrieved at coarser resolutions. Distributed calculations and lumped 

calculations may not be the same at different scales. Thus, their differences can be considered scale effects. Other studies 

have noted discrepancies between multi-sensor data aggregations. Moran et al. (1997) found a significant error of over 50% 25 

in sensible heat estimations of mixed pixels by comparing lumped and distributed surface fluxes for semi-arid rangeland in 

Arizona. Hong et al. (2009) found that peak values of ET at the pixel scale increased by 10%-25% following the up-scaling 

of surface fluxes retrieved by SEBAL from Landsat ETM+ at a 30 m resolution to MODIS at 250-, 500- and 1000-m 

resolutions. Ershadi et al. (2013) reported that input aggregation underestimated ET at the satellite image scale, with up to 15% 

fewer retrievals, and at the pixel scale by up to 50% relative to using an original fine resolution Landsat image. These results 30 

suggest that the spatial characteristics obtained from data of a specific resolution can only reflect characteristics observed at 

that resolution. For the heterogeneity of the geo-surface, RS data can synthetically reflect surface information. However, 

regardless of the spatial resolution, RS data inevitably neglect certain details due to the individual value of each pixel. 
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Moreover, for fine resolution data, the process of up-scaling during smoothing inevitably results in the loss of geo-surface 

information, reducing the heterogeneity and leading to scale effects. Thus, at the pixel scale, determining whether the 

physical mechanism is suitable for application, identifying the applicable conditions and determining how to correct the 

scale effects are the three critical issues for remotely sensed ET estimates (Li et al., 2013). 

Some studies have shown that the presence of different land cover types among sub-pixels can generate greater errors in 5 

surface flux (Moran et al., 1997; Kimball et al., 1999). Blyth and Harding (1995) proposed a patch model for estimating ET 

weighted by the area fraction (AF) of soil and vegetation at the pixel scale; the model hypothesizes that the heat transfer 

process involves significant levels of horizontal fluxes and that interactions among patches can be disregarded. This model 

structure and is relatively simple and has been widely used to map ET on a large scale (Norman et al., 1995) considering the 

contributions of surface fluxes from different components (vegetation and soil). Norman et al. (2003) proposed an approach 10 

called the DisALEXI model to estimate surface ET with the combination of low- and high-resolution remotely sensed data 

with little subjective endmember selection. Andersonet al. (2011) achieved upscale remotely sensed ET estimates by 

combining geostationary satellites and polar-orbiting satellite data and verified the consistency of ET estimate from high- to 

low-resolution based on the DisALEXI model. However, such models only identify vegetation and soil when estimating ET 

and do not consider contributions from other land cover types (e.g., water bodies, buildings and snow) or vegetation types 15 

(e.g., trees, grasses and crops). When scaling RS measurements over terrestrial surfaces, the scale effect caused by a density 

change is almost negligible; in general, mixed land cover types in a pixel are the major source of scaling errors (Chen, 1999). 

El Maayar and Chen (2006) proposed an empirical algorithm that uses sub-pixel information on the spatial variability of leaf 

area index (LAI), land cover and surface topography to correct ET estimates at coarse spatial resolutions. However, an 

obvious weakness of this approach is that the coefficients must be adjusted for different models and study areas, which limits 20 

its applicability.  Other studies that combine coarse resolution parameters with land cover maps have used different schemes 

for different land cover types to estimate ET at the regional scale (Mu et al., 2007; Mu et al., 2011; Hu and Jia, 2015; Peng et 

al., 2016). However, at the pixel scale, the low calculation efficiency of this method limits its application at a larger scale 

because the ET of each pixel must be estimated using sophisticated algorithms. Moreover, this method presents difficulties 

accurately describing surface information due to the coarse resolution of land cover maps. 25 

Each of the above approaches reduces the error in ET estimates based on spatial disparities rather than both spatial and 

temporal disparities. Temporal scale extrapolation of instantaneous latent heat flux (LE) from satellite overpass time to daily 

ET is also crucial for applications of RS products. At present, the major temporal scale extrapolation methods include the 

method based on incoming solar radiation (Jackson et al., 1983; Zhang and Lemeur, 1995), the evaporative fraction (EF) 

method (Sugita and Brutsaert, 1991; Nichols and Cuenca, 2010) and the reference evaporative fraction method (Allen et al., 30 

2007a; Allen et al., 2007b). The method based on incoming solar radiation uses a sine function to connect the instantaneous 

ET with the 24-hour trend in solar radiation, with the function expressing the relationship between instantaneous ET and 

daily ET. The EF method, which is the most widely used, extrapolates the instantaneous EF to the daily EF based on the 

characteristics of EF that remain constant over one day. The reference evaporative fraction method assumes that the 
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instantaneous reference evaporative fraction which is calculated as the ratio of the computed instantaneous ET at the satellite 

overpass time from each pixel to the reference crop’s (such as alfalfa’s) ET, is the same as the average reference evaporative 

fraction over the 24 h average, and it then uses the reference crop’s accumulated daily ET to obtain the daily ET. Chavez et 

al. (2008) compared different ET temporal scale extrapolation methods and found that the EF method generates values that 

are most consistent with the measured values. 5 

Therefore, we propose a simple but efficient model (EFAF) to estimate the daily ET of mixed pixels. In this method, the 

daily ET of the heterogeneous land surface is estimated by calculating the EF of mixed pixels, and it only requires the area 

fraction (AF) of sub-pixels, which can be obtained from a high-resolution land-cover type map. The model was applied to an 

artificial oasis in the midstream of the Heihe River. HJ-1B satellite data were used to estimate the lumped fluxes at the scale 

of 300 m after resampling the 30 m resolution datasets to 300 m resolution, which was used to perform the key step of the 10 

model, i.e., correction of mixed-pixel EF and calculation of daily ET. Next, the EF of each pixel at a 300 m resolution was 

calculated using 300 m net radiation, soil heat flux, sensible heat flux and LE data at the satellite overpass time. The daily 

ET of the mixed pixels was retrieved from the EF of the mixed pixels and the available energy (AE) after temporal scale 

extrapolation. 

2 Methodology 15 

2.1 LE algorithm 

Surface thermal dynamics control energy partitioning and ET. However, the spatial resolution of thermal-infrared (TIR) 

images is usually not as high as the spatial resolution of visible near-infrared (VNIR) bands because the energy of VNIR 

photons is higher than the energy of thermal photons (Peng et al., 2016). The input parameter upscaling (IPUS), a widely 

used one-source energy balance model that can handle the upscaling of all surface variables to a large scale before 20 

calculating the heat flux and does not consider the surface heterogeneities at all, is used as the lumped method in this study. 

This model was designed to simulate the remote sensing images that have identical spatial resolutions in both the VNIR and 

TIR bands and has been described in details in Peng et al., (2016). The energy flux components net radiation (Rn), soil heat 

flux (G), sensible heat flux (H) and LE are shown as below (Jiao et al., 2014; Peng et al., 2016).   

Rn is the difference between incoming and outgoing radiation, as follows: 25 

Rn = Sd(1 − α) + εsLd − εsσTrad
4  ,          (1) 

where Sd  is downward shortwave radiation, α  is the surface albedo, εs  is the emissivity of land surface, Ld  is the 

downward atmospheric longwave radiation, σ = 5.67 × 10−8W ∙ m−2 ∙ K−4 is the Stefan-Boltzmann constant, and Trad  is 

the surface radiation temperature. 

G is commonly estimated through the derivation of empirical equations that employ surface parameters such as Rn as 30 

follows (Su, 2002): 
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𝐺 = 𝑅𝑛 × [𝛤𝑐 + (1 − 𝑓𝑐) × (𝛤𝑠 − 𝛤𝑐)] ,         (2) 

where Γs is equal to 0.315 for a bare soil situation, Γc is equal to 0.05 for a full vegetation canopy, and fc is fractional 

canopy coverage. 

The sensible heat flux (H) is calculated based on gradient diffusion theory: 

𝐻 = 𝜌𝑐𝑝
𝑇𝑎𝑒𝑟𝑜−𝑇𝑎

𝑟𝑎
 ,           (3) 5 

where ρ is the density of air; cp is the specific heat of air constant pressure; Taero is the aerodynamic surface temperature 

obtained by extrapolating the logarithmic air temperature profile to the roughness length for heat transport; Ta is the air 

temperature at the reference height and ra is the aerodynamic resistance that influence the heat transfer between the source of 

turbulent heat flux and the reference height. Finally, LE is calculated as a residual item of the energy balance equation (Eq. 

(4)).  10 

𝐿𝐸 = 𝑅𝑛 − 𝐺 − 𝐻 ,           (4) 

Further details can be found in Peng et al. (2016). 

2.2 EF of mixed pixels 

(1) Equation for EF of mixed pixels 

The EF is the ratio of LE and available energy (AE) (Rn-G), as follows: 15 

𝐸𝐹 =  
𝐿𝐸

𝑅𝑛−𝐺
 ,            (5) 

Studies have shown that the EF is quite stable over time and thus is well suited to denote the status of the surface energy 

balance for a certain period. For example, the EF is nearly constant during the daytime (Sugita and Brutsaert, 1991; Nichols 

and Cuenca, 2010) and thus, can be used for temporal scale extrapolation, i.e., from instantaneous LE at the satellite 

overpassing time to daily ET. EF is widely used to estimate daily ET with RS data in different methods (e.g., the feature 20 

space of the Land Surface Temperature and Vegetation Index (LST-VI) (Carlson, 2007; Long and Singh, 2012) and SEBS 

(Su, 2002) models).  

In this section, the EF of mixed pixels is investigated and a novel approach is derived to estimate the daily ET of mixed 

pixels. In other words, EF is used for temporal scale extrapolation and spatial scale correction of the remotely sensed LE and 

ET at a coarse-resolution scale at the same time.  25 

Because turbulence transferred by advection is always neglected in RS data, we only consider vertical turbulence. 

Therefore, the accurate LE (with scaling effects taken into consideration) of a mixed pixel can be weighted by the LE of its 

sub-pixels as follows: 

𝐿𝐸 =  ∑ 𝑠𝑖  𝐿𝐸𝑖 =   ∑[𝑠𝑖 ·  
𝐿𝐸𝑖

(𝑅𝑛−𝐺)𝑖
 · (𝑅𝑛 − 𝐺)𝑖] ,        (6) 
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where LE denotes the accurate LE of mixed pixels, si the area fraction (AF) of sub-pixel i, and LEi the LE of sub-pixel i. Eq. 

(5) and (6) can be combined as follows: 

𝐿𝐸 =  ∑[𝑠𝑖 ·  𝐸𝐹𝑖 · (𝑅𝑛 − 𝐺)𝑖] ,          (7) 

where EFi and (Rn-G)i denote the EF and AE of sub-pixel i in a certain mixed pixel respectively.  

At this step, a simplification is performed as described in Hypothesis 1:  5 

Here, Hypothesis 1 is proposed as follows:  

“The available energy (AE) of each sub-pixel is approximately equal to that of any other sub-pixels in the same mixed 

pixel within an acceptable margin of errors (e.g. 50 W ∙ m−2 (Seguin B et al.,1999; Kustas and Norman, 2000; Sánchez et al., 

2008)) and is equivalent to the AE of the mixed pixel.” 

Therefore, Eq. (7) can be transformed in to the following expression: 10 

𝐿𝐸̃ =  [∑(𝑠𝑖 ·  𝐸𝐹𝑖 )] · (𝑅𝑛 − 𝐺) ,          (8) 

where LẼ denotes the latent heat flux in mixed pixels based on Hypothesis 1. There is a minor difference between LẼ 

and LE that can be regarded as an error of Hypothesis 1, and it will be analysed below.  

Rearranging Eq. (8) yields the following: 

𝐿𝐸̃

(𝑅𝑛−𝐺)
=  ∑(𝑠𝑖 ·  𝐸𝐹𝑖 ),           (9) 15 

Therefore, we have 

𝐸𝐹̃ = ∑(𝑠𝑖 ·  𝐸𝐹𝑖 ),           (10) 

where 𝐸𝐹̃ denotes the EF of the mixed pixel, including the error of Hypothesis 1, which is quite small and can be neglected 

based on a data analysis (see Section 4.3.1). Hence Eq. (10) can be used as the solution to the EF of mixed pixels. 

Using Eq. (10) makes calculating the EF of mixed pixels is straightforward since it only needs the AF of each land 20 

cover in the pixel, which can be easily obtained using a fine-resolution land cover map, as well as the EFi of its sub-pixels, 

which requires a specific technique to get in operations. 

(2) Calculating EF of mixed pixels 

The EFi of sub-pixels is required in Eq. (10); however, it is not available with coarse resolution data. In order to utilize 

Eq. (10), Hypothesis 2 is proposed: 25 

“The EF of each sub-pixel in a mixed pixel is approximately equal to the EF of the nearest pure pixel(s) of the same 

land cover type.” 

The concept of “nearest” in this study is refers to the shortest distance between the centre point of the mixed pixel 

where the sub-pixel is located and the centre point(s) of the pure pixel(s) with the same land cover type as the sub-pixel in 

the study area. The concept is illustrated in Fig. 1. 30 
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Figure 1: A sample graph of sub-pixel in a mixed pixel and its nearest pure pixel(s) of the same land cover type. 

In Fig.1, there are two land cover types: Yellow and Red. The centre pixel, which is a mixed pixel, contains a red sub-

pixel and a yellow sub-pixel. Hypothesis 2 examines which pixel the nearest neighbour. From Fig. 1, it is clear that the red 

sub-pixel has two nearest neighbours (red pixels with blue centres); thus, the EF of the red sub-pixel equals the mean EF of 5 

the two nearest pure pixels according to Hypothesis 2. The yellow sub-pixel has one nearest neighbour (yellow pixel with 

blue centre); thus, the EF of the yellow sub-pixel equals the EF of the yellow pure pixel. This process can be easily and 

rapidly implemented by computer program with matrix operation and nearest neighbour search (NNS) (Andrews, 2001; 

Zezula et al., 2006). 

This hypothesis is based on Tobler's First Law (TFL) (Miller, 2004; Tobler, 2004; Li et al., 2007), which states that 10 

“everything is related to everything else, but near things are more related than distant things”. In other words, the most 

similar conditions, phenological patterns and physical characteristics exist between a sub-pixel surface and nearby (pure 

pixel) surfaces given the same land cover. Accordingly, the EF of sub-pixel i can be determined using EF of pure pixel(s) at 

coarse resolution scale based on Hypothesis 2. 

Therefore, Eq. (8) may be reduced as above to the following: 15 

𝐿𝐸̃ =  (𝑅𝑛 − 𝐺) · 𝐸𝐹̃,           (11) 

Eq. (10) and Hypothesis 2 together can be used to calculate the EF of mixed pixels and therefore the daily ET. Eq. (10) 

and (11) can be used together to correct the spatial scale errors of the instantaneous LE at the overpassing time.   

In summary, by employing two key hypothesises, EFAF methodology is able to realize temporal scale extrapolation and 

spatial scale correction for remotely sensed LE and ET at a coarse resolution scale at the same time. The EF of a mixed pixel 20 

is expressed as the area-weighted EFi of its sub-pixels with acceptable simplifications, which simplified the calculations, 

increased the accuracy, and facilitated its use for daily operations. 
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2.3 Estimation of daily LE 

We use the EF method to extrapolate the temporal scaling of the LE. The EF method is based on the basic assumption 

that each component of the energy balance model remains relatively constant during the day and that the relative components 

of LE and AE (Rn-G) are constant (Sugita and Brutsaert, 1991; Nichols and Cuenca, 2010) Therefore, the daily LE can be 

expressed as follows: 5 

LEdaily

(Rn−G)daily
=

LEinst

(Rn−G)inst
= EFinst,          (12) 

LEdaily = EFinst ·   (Rn − G)daily,          (13) 

where the subscripts “daily” and “inst” indicate daily cumulative and instantaneous values, respectively. To calculate 

the daily total ET from Eq. (13), it is necessary to determine the EF and the daytime total AE (Zhang and Lemeur, 1995). 

The daytime net radiation is obtained from the parameterization proposed by Bisht et al. (2005), in which the average 10 

daytime net radiation and then its integral are calculated as follows: 

DANR = 2 ∗ Rninst/πsin [(
tovp−trise

tset−trise
) π],         (14) 

Rndaily  = ∫ DANR dt,           (15) 

where DANR is the average daytime net radiation, Rndaily is the daytime cumulative net radiation, tovp is the satellite 

imaging time, and trise and tset are local sunrise and sunset times, respectively, representing times at which the net radiation 15 

shifts from positive to negative. 

The daytime G is calculated from the by DANR and Eq. (2). 

The flowchart of the EFAF shown below illustrates the (1) calculation of LE without a scale effect, (2) calculation of 

the EF of mixed pixels, and (3) extrapolation of the temporal scale (Fig. 2). 

 20 
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Figure 2: Flowchart of the EFAF, where trapezoids represent the input variables or parameters, and rectangles represent 

variables or parameters. The inputs of EFAF encompass the remotely sensed variables or parameters and meteorological forcing 

dataset. The abbreviations are defined as follows: Rn: net radiation; G: soil heat flux; H: sensible heat flux; LE: latent heat flux; 

EF: evaporative fraction; ET: evapotranspiration;  5 

3 Study area and dataset 

3.1 Study area 

The study area is located in the Heihe River watershed in west-central Gansu Province, north-western China (Fig. 3). 

The Heihe River watershed has a land surface area of approximately 128,000 km² and is the second largest inland watershed 

in north-western China (Gu et al., 2008). The Heihe River watershed includes the Zhangye sub-watershed, which covers a 10 

total land area of approximately 31,100 km². The natural landscape of the study area is heterogeneous, including mountains, 

oasis areas, and desert (Ma and Veroustraete, 2006). The oasis is a typical farmland ecosystem located 8 km south of the city 

of Zhangye in which maize and wheat are the major crops. Large expanses of desert and mountains surround the central 

oasis. In this area, annual precipitation ranges from 100–250 mm, but potential ET levels reach approximately 1200–1800 

mm yearly (Li et al., 2013) 15 

Since 2012, an eco-hydrological experiment referred to as the Heihe Watershed Allied Telemetry Experimental 

Research (HiWATER) has been conducted in the area. An observation matrix composed of 17 eddy covariance (EC) systems 

and automatic meteorological stations (AMSs) was established across the landscape (Li et al., 2013). 
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The percentage of the numbers of land cover types (Yu et al., 2016) (Fig. 4) for the study area were extracted at a 300 m 

scale with 30 m land cover classifications developed by Zhong et al. (2014a) based on HJ-1/CCD time series. The pure 

pixels at 300 m scale are entirely made up of one particular land cover type, and the mixed pixels are made up of two or 

more land cover types according to the land cover datasets with a spatial resolution of 30 m. It has been shown that pure 

pixels account for 41.74% and mixed pixels account for 58.26% of the area. Such an area, with more mixed than pure pixels 5 

but with many of both, represents an optimal place to test the proposed method. 

 

Figure 3: Distribution of in situ stations and land use classifications in our study area (revised based on Peng et al., 2016). 

 

Figure 4: Percentage of the number of land cover types for the study at 300 m scale with 30 m land cover images. 10 
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3.2 Remote sensing data 

The HJ-1B satellite (Table 1) was successfully launched on 6 September 2008 and follows a quasi-sun-synchronous 

orbit at an altitude of 650 km. After geometric correction, radiometric calibration, and atmosphere correction (Zhang et al., 

2013; Zhong et al., 2014b), the image quality of the HJ-1B data is the same as that of Landsat-5 TM, and the data can be 

used for applications including environmental and disaster monitoring (Jiang et al., 2013). The calculation of ET levels 5 

represents one of the most important applications of the HJ-1B satellite data. 

Table 1. Specifications of the HJ-1B main payloads 

Sensor Band Spectral range (µm) Spatial resolution (m) Swath width (km) Revisit time (days) 

Charge-Couple 

Device (CCD) 

1 0.43-0.52 

30 
360 (single) 

700 (double) 
4 

2 0.52-0.60 

3 0.63-0.69 

4 0.76-0.90 

Infrared Scanner 

(IRS) 

5 0.75-1.10 

150 
720 4 

6 1.55-1.75 

7 3.50-3.90 

8 10.5-12.5 300 

The algorithms for most surface parameters used to estimate ET are applicable under clear-sky conditions. Therefore, 9 

images were selected for the study area under clear or partly cloudy conditions based on data quality metrics and artificial 

visual interpretation from June to September 2012, i.e., 30 June, 8 July, 27 July, 3 August, 15 August, 22 August, 29 August, 10 

2 September, and 13 September. 

In this study, each component of the energy balance algorithm used to estimate the daily ET of mixed pixels was 

retrieved using the lumped method based on HJ-1B data (CCD/IRS). These components included surface albedo (Liang et al., 

2005; Liu et al., 2013), downward shortwave radiation (Li et al., 2011), land surface emissivity (Valor and Caselles, 1996), 

land surface temperature (Li et al., 2010), the normalized difference vegetation index (NDVI), fractional vegetation coverage 15 

(FVC) (Peng et al., 2016), and LAI (Nilson, 1971; He et al., 2012).  

Furthermore, 30 m resolution land cover classifications derived from HJ-1/CCD time series were used. Highly accurate 

30 m land cover classifications for June to September 2012 based on HJ-1B data were developed by Zhong et al. (2014a). 

The major land use types included cropland for maize, wheat and vegetables (according to experiential knowledge, although 

it is considered as other crops in this classification), uncultivated land (including bare soils and Gobi Desert), water bodies, 20 

grassland, forests, and buildings. 
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3.3 HiWATER experiment in situ dataset 

In situ data were provided by the HiWATER-Multi-Scale Observation Experiment on Evapotranspiration (MUSOEXE) 

over heterogeneous land surfaces of the HiWATER campaign, which was carried out at an artificial oasis in the Zhangye 

Heihe River watershed. During the HiWATER-MUSOEXE campaign, 17 EC towers and AMSs were arranged in two nested 

observation matrices (Li et al., 2013) to obtain ground measurements of radiation fluxes, meteorological parameters, and soil 5 

and turbulent heat flux. Details regarding the ground towers are shown in Table 2, and the tower distribution is shown in Fig. 

3.  

The in situ data are considered reliable based on various quality control measures. For example, prior to the main 

campaign, the performance of the instruments was compared in the Gobi Desert (Xu et al., 2013). After basic processing, 

including spike removal and corrections for density fluctuations (WPL-correction), a four-step quality control procedure was 10 

applied to the EC data. The EC data were based on 30 min intervals; additional information regarding system setup, data 

processing and quality control can be found in previous reports (Yang and Wang, 2008; Liu et al., 2011; Xu et al., 2013; Liu 

et al., 2016).  

Energy imbalance is common in ground flux observations conducted over long periods. Common methods for forcing 

the energy balance include conservation of the Bowen ratio (H/LE) and the residual closure technique. Studies have 15 

suggested that computing the LE as a residual may be a better method for energy balance closure when the LE is large (with 

small or negative Bowen ratios due to strong advection) (Kustas et al., 2012). Therefore, the residual closure method was 

used in this study, because there was a distinct “oasis effect” on clear days (Liu et al., 2011). 

Because this study focuses on mixed pixels of heterogeneous surfaces, we exclude some stations (EC 07, EC 08, EC 10, 

and EC 15) from our discussion, because they are located in areas with pure pixels. In addition, EC17 is in an area 20 

dominated by orchards. Orchards are considered other crops in our classification, and the complex vertical structure of 

orchard ecosystems can result in large gaps that are difficult to analyse. Therefore, EC17 is also excluded from our 

discussion. 

Regarding the other observations, we conducted interpolation to fill null values in the observations. Linear interpolation 

(Liu et al., 2012) was used for missing values over intervals smaller than 2 hours, and the mean diurnal variation (MDV) 25 

method (Falge et al., 2001) was used for missing values over intervals greater than 2 hours. Next, energy residual methods 

were used to conduct the closure process. Finally, a Eulerian analytic footprint model (Kormann and Meixner, 2001) was 

used to calculate the source region and extract ground observation values, which can express the LE of the heterogeneous 

surface. 

 30 
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Table 2. Details of the Heihe River basin (HRB) in situ stations 

Station Longitude (°E) Latitude (°N) Tower height (m)  Altitude (m) 

EC01 100.36 38.89 3.8 1552.75 

EC02 100.35 38.89 3.7 1559.09 

EC03 100.38 38.89 3.8 1543.05 

EC04 100.36 38.88 4.2 1561.87 

EC05 100.35 38.88 3.0 1567.65 

EC06 100.36 38.87 4.6 1562.97 

EC07 100.37 38.88 3.8 1556.39 

EC08 100.38 38.87 3.2 1550.06 

EC09 100.39 38.87 3.9 1543.34 

EC10 100.40 38.88 4.8 1534.73 

EC11 100.34 38.87 3.5 1575.65 

EC12 100.37 38.87 3.5 1559.25 

EC13 100.38 38.86 5.0 1550.73 

EC14 100.35 38.86 4.6 1570.23 

EC16 100.36 38.85 4.9 1564.31 

EC17 100.37 38.85 7.0 1559.63 

4 Results and analysis 

4.1 Results of the EFAF 

The EFAF study was performed on crops that mainly grew during June, July, August, and September. We selected two 

days in different growing phases, 8 July (Fig. 5) and 22 August (Fig. 6), and compared the changes in lumped EF, EFAF EF, 5 

lumped LE, and EFAF LE on these days. The results showed similar changes in EF and LE. 

Overall, there were no differences in EF and daily LE on either day between the city and the desert area that could be 

distinguished based on land cover data, because of the homogeneous surface of both land cover types (Fig. 5 and 6). For 

example, Area I in Fig. 7 represents the city of Zhangye, and Area II in Fig. 7 represents uncultivated land. The EFAF EF 

and EFAF LE values of both areas are the same as the lumped EF and lumped LE values because pure pixels were not 10 

corrected in this study. 

However, the boundaries became blurred between buildings, which were given an LE of 0 in this study (Peng et al., 

2016), and farmland; thus, the intersection of these land cover types resulted in “buffer pixels”. For example, in Area III in 

Fig. 7, the EF and daily LE of pixels dominated by buildings (village areas with many villages) appears blue, denoting low 
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EF and LE values without scaling correction; these areas appear orange after considering agriculture areas around the 

buildings. For the same reason, in the suburbs surrounding the city of Zhangye (Area IV in Fig. 7), an area of mixed pixels 

dominated by buildings appears blue, with low lumped LE values; the same area appears yellow or pale blue after 

considering the presence of vegetables. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5. Maps of (a) lumped EF, (b) EFAF EF, (c) difference between EFAF and lumped EF (EFAF EF minus lumped EF), (d) 5 
lumped daily LE, (e) EFAF daily LE and (f) difference between EFAF and lumped LE (EFAF LE minus lumped LE) on July 8th, 

2012 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6. Maps of (a) lumped EF, (b) EFAF EF, (c) difference between EFAF and lumped EF (EFAF EF minus lumped EF), (d) 

lumped daily LE, (e) EFAF daily LE and (f) difference between EFAF and lumped LE (EFAF LE minus lumped LE) on August 

22nd, 2012 

The EF and LE values for pixels dominated by agriculture and including buildings decreased, likely because the area 

included villages whose EF was set to zero. For instance, in region IV (Fig. 7), pixels dominated by buildings and including 5 

cropland and pixels dominated by cropland and including buildings account for 20% and 80%, respectively, and the spatially 

averaged daily LE decreased from 8.98 to 7.39 MJ·m
-2

 (decreased approximately from 3.57 mm to 2.97 mm, the latent heat 

of vaporization is approximately 2.49 × 10
6
 W·m

-2
·mm

-1 
(Pan and Liu, 2003), the same below) on 8 July 2012. However, for 

pixels dominated by buildings, the spatially averaged daily LE increased from 0 to 4.70 MJ·m
-2

 (increased from 

approximately 0 mm to 1.80 mm). 10 
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Figure 7. Land cover maps of the study area at 300 m resolution and certain regions at 30 m resolution. Area I and II represent the 

area of pure pixels, Area III and IV represent the area of mixed pixels, and (120, 86) represents an example point of different land 

cover types in different months. 

In addition, the EF and daily LE decreased significantly on 8 July when the EFAF method was applied in the north-5 

western and southern oasis areas of the study area. This change was less pronounced on 22 August. The EF and daily LE 

decreased slightly in the north-western parts of the study area and increased slightly in the south-central oasis area. The 

reason for this difference could be that the mixed pixels in this area mainly included maize, spring wheat, and barley. In July, 

spring wheat and barley were in a ripening stage, which is characterized by lower ET. However, by August, the spring wheat 

and barley had been harvested and replaced by vegetables, and the maize had entered its dough stage, which is characterized 10 

by reduced ET. The ET of vegetables was higher than that of the spring wheat and barley in July (Wu et al., 2006). These 

differences could have resulted in the increase in the EF and daily LE after the EFAF method was applied. 

For example, the point located at coordinates (120, 86) (Fig. 7) included maize (58%) and spring wheat (42%). The 

mean EF of the pure pixels closest to the maize was 0.75, and the mean EF of pure pixels closest to the spring wheat was 

0.65. Therefore, application of the EFAF method resulted in a decrease in the EF from 0.81 to 0.71 and in a decrease in the 15 

daily LE from 14.25 to 12.37 MJ·m
-2

 (approximately 5.72 to 4.97 mm). In contrast, on 22 August, this pixel included maize 

(58%) and vegetables (42%). The mean EF of the pure pixels closest to the maize was 0.81, and the mean EF of the pure 

pixels closest to the vegetables was 0.86. Thus, application of the EFAF method resulted in an increase in the EF of 0.79 to 

0.83 and an increase in the daily LE of 12.33 to 13.00 MJ·m
-2

 (approximately 4.95 to 5.22 mm). Another reason for these 

minor changes could be related to irrigation, which occurred in the southern oasis area on 22 August (Peng et al., 2016). The 20 

EF of bare soil would likely increase because of greater soil moisture due to irrigation. As a result, the difference in EF 

values between agricultural land and bare soil decreased, as indicated in Fig. 6 (a) and (b). 
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4.2 Validation of daily LE 

Daily EC measurements for LE were aggregated using a range of time series data based on the time at which net 

radiation shifted from positive to negative values. The simulated EC measurements were averaged over the estimated 

upwind source area for each flux tower. The results (Table 3) indicate that in general, the EFAF LE values are more 

consistent with the EC measurements than the lumped LE values. Comparing the lumped and EFAF methods shows that the 5 

coefficient of determination (R²) increased from 0.62 to 0.82; the root mean square error (RMSE) decreased from 2.47 to 

1.60 MJ·m
-2

 (0.99 to 0.64 mm), a decreased of approximately 35.22%; and the mean bias error (MBE) decreased from 1.92 

to 1.18 MJ·m
-2

 (0.77 to 0.47 mm). 

Table 3. In situ validation results for the daily LE 

 Lumped LE (MJ∙m-2) EFAF LE (MJ∙m-2) RMSE decreased from 

lumped LE to EFAF LE (%) Date R2 MBE RMSE R2 MBE RMSE 

30 June 0.16 -1.42 2.59 0.59 -1.20 1.95 24.71% 

8 July 0.16 0.40 1.99 0.63 -0.32 1.38 30.65% 

27 July 0.24 2.49 3.37 0.65 0.53 1.62 51.93% 

3 August 0.50 1.37 3.09 0.87 0.53 1.78 42.39% 

15 August 0.39 1.48 1.87 0.72 0.95 1.32 29.41% 

22 August 0.01 -1.70 3.18 0.54 -1.43 2.19 31.13% 

29 August 0.43 -0.73 1.72 0.63 -0.73 1.38 17.77% 

2 September 0.18 0.72 1.72 0.52 0.87 1.48 13.95% 

13 September 0.01 -0.64 1.89 0.32 -0.08 0.90 52.38% 

Total 0.63 0.21 2.47 0.82 -0.10 1.60 35.22% 

Table 3 also presents the lumped LE and EFAF LE results against the EC measurements for each day. The EFAF LE 10 

better reproduced the EC measurements than the lumped LE on all nine days. Combining the EFAF LE with EC data on 29 

August resulted in a slightly more accurate LE estimate, with an RMSE of 1.38 MJ·m
-2

 (0.55 mm), relative to the lumped LE, 

with an RMSE of 1.72 MJ·m
-2

 (0.69 mm), the accuracy increased by approximately 13.95% according to the RMSE. This 

difference is likely related to the fact that the slight heterogeneity in land surface temperature decreased the scale error that 

resulted from thermal dynamics. In addition, the EFAF LE results for 13 September were more accurate, yielding an RMSE 15 

of 0.90 MJ·m
-2

 (0.36 mm), relative to the lumped LE, which had an RMSE of 1.89 MJ·m
-2

 (0.76 mm), the RMSE decreased 

by approximately 52.38%. This improvement may result from the greater landscape heterogeneity, which created obvious 

scale effects in the LE results; ripe maize, growing vegetables, withered grass, and bare soils coexisted in the study area on 

that day. 

However, uncertainties resulting from scale mismatches between RS data and the EC footprint could reduce the 20 

confidence and skill of the EFAF method. A unique aspect of the present study is that the EC data are consistent across the 

simulations on all nine days; this feature minimizes tower-uncertainties by ensuring that the retrieved LE can be assessed 
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against each EC tower record individually (Fig. 8). The results (Fig. 8) show that the EFAF LE had smaller RMSE values 

and higher R² values than the lumped LE for all EC sites, indicating that the EFAF method improved the accuracy of daily 

LE estimates. However, this improvement in accuracy differed across sites. 

The correction effect of the EFAF method was most distinct at the EC04 site, and the RMSE at EC04 decreased from 

5.36 to 2.72 MJ·m
-2

 (2.15 to 1.09 mm) (decreased by approximately 49.25%); this improvement stemmed from the fact that 5 

EC04 had the highest complexity of all sites. Maize-dominated pixels in EC04 included maize, vegetables, buildings and 

bare soil, at a ratio of 53:26:19:2, respectively. We conclude that maize and vegetables were land cover types with a high EF, 

while bare soil had a low EF. For buildings, the EF value was 0 in this study. For example, on 30 June, the EF of mixed 

pixels in EC04 was 0.81. However, the average EF values of the pure pixels positioned closest to maize and vegetables 

among the sub-pixels were 0.88 and 0.88, respectively and that of bare soil was 0.65. Therefore, when scale effects were 10 

taken into consideration, the EF of the mixed pixels was 0.70. Using the EFAF method, the daily LE of the mixed pixel 

where EC04 was located decreased from 13.57 to 11.78 MJ·m
-2

 (5.45 to 4.73 mm). Similarly, the difference between these 

estimates and the EC measurements also declined from 4.12 MJ·m
-2

 to 2.32 MJ·m
-2

 (1.67 to 0.93 mm) (decreased by 

approximately 43.3%). Additionally, there were large discrepancies between the observed and retrieved LE values at EC04. 

Specifically, there are two points far from the 1:1 line in Fig. 8 (d), with values of 8.36 MJ·m
-2

 (3.36 mm) on 27 July and 15 

9.33 MJ·m
-2

 (3.75 mm) on 3 August. Even after the EFAF method was applied, these values were 5.20 MJ·m
-2

 (2.09 mm) 

and 4.59  MJ·m
-2

 (1.84 mm), respectively, because EC04 was positioned in a maize-dominated pixel and the EC tower was 

located in a built-up area, thus generating errors associated with temperature retrieval that would create further errors in 

estimating Rn. For example, on 27 July and 3 August, the Rn observed by AWS for the EC station was 15.95 and 15.35 

MJ·m
-2

, respectively, while the retrieved Rn of the pixels was 18.14 and 18.80 MJ·m
-2

, respectively. The remaining larger 20 

errors in such pixels are a reminder that this method has limitations under certain extreme conditions. More complex models 

should be built for such circumstances and more information other than land cover should be included when considering 

subsurface heterogeneity to obtain results that are as accurate as those obtained for homogeneous sites. 

The correction effect was not significant for sites such as EC02, EC06, EC12, and EC14; these sites had minimal 

surface heterogeneity, with only two land cover types present in the mixed pixels. These pixels also included a mixture of 25 

maize and other crops with similar EF values. However, the accuracy of daily LE was improved based on the effects of 

mixed pixels on EF. For example, EC12 was a maize-dominated pixel, with a 74:26 ratio of maize to other crops in July. On 

27 July, the mean EF of the pure pixels closest to the maize area was 0.97; for the other crops, the EF of the pure pixels was 

0.84. The EF of this mixed pixel changed from 0.96 to 0.94 when the EFAF method was used, and the daily LE decreased 

from 18.00 to 17.24 MJ·m
-2

 (7.23 to 6.92 mm). Compared to the value of 16.52 MJ·m
-2

 (6.63 mm) found for EC, the EFAF 30 

LE was more accurate. 
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Figure 8. Scatter plots of the lumped LE (blue) and EFAF LE (red) against the EC measurement LE at each site 

4.3 Error analysis 

4.3.1 Error analysis of Hypothesis 1 

Hypothesis 1 states that the AE of each sub-pixel is approximately equal to that of any other sub-pixels in the same 5 

mixed pixel within an acceptable margin of errors (e.g. 50 W ∙ m−2  (Seguin B et al.,1999; Kustas and Norman, 2000; 
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Sánchez et al., 2008)) and is equivalent to the AE of the mixed pixel. To quantify the error associated with Hypothesis 1 for 

ET estimation, each lumped AE (Rn-G) was compared to the original 30 m pixel located within it, i.e., the pixel values of a 

lumped 300 m resolution were compared to the 10 × 10 set of 30 m pixels that they were drawn from. The difference AE 

(dA) and percent frequency of difference were measured from the 30 m resolution sub-pixels (𝑨𝒔𝒖𝒃) with the same values as 

the lumped AE measured at a 300 m resolution from each mixed pixel, relative to the original 30 m of distributed AE (𝑨𝒅) 5 

for the nine days.  

𝐝𝐀 = 𝑨𝒔𝒖𝒃 − 𝑨𝒅,            (15) 

𝐟 =
𝒅𝑨

∑ 𝒅𝑨
,             (16) 

In all cases, the peak of the histogram is positioned at approximately 0 W·m
-2

 (Fig. 9). This result indicates that the 

differences between the lumped and distributed AE range from -5 to 5 W·m
-2

, so the errors caused by Hypothesis 1 were 10 

minor for the AE estimations of most of the mixed pixels.  

Furthermore, the frequency distribution of the difference in AE follows a generally symmetric distribution 

approximately 0 W·m
-2

 at a range of ±120 W·m
-2

, though the frequency was low when the differences in AE were greater 

than 10 W·m
-2

 or less than -20 W·m
-2

 (less than 10%) (Fig. 9). The difference in frequency for values ±60 W·m
-2

 was 

extremely poor (less than 1%) and thus could be ignored. 15 

 

Figure 9. Distribution of the difference AE (dA) and the frequency of the difference for nine days 

In addition, larger dA values occurred mainly at the transition zones between oasis areas and uncultivated land because 

advection and its influences are not considered in EFAF. Addressing vertical and horizontal transport (such as oasis effects) 

at the same time would be excessively complex, and to our knowledge, such a process remains a huge challenge in the 20 

remote sensing of heat fluxes. However, as we can see, large positive and negative dA values existed in the same mixed 
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pixel effectively (for example, the dA value on 2 September (Fig. 10)). This result indicated that Hypothesis 1 results in 

large errors in the transition zones between oasis areas and uncultivated land, but these errors often cancel one another 

because large negative and positive errors exist in a mixed pixel. 

 

Figure 10. Spatial distribution of the difference AE (dA) and a transition zone on 2nd September. 5 

To evaluate the errors in the study area as a result of Hypothesis 1, the expected value (E(x)) of error was measured 

based on the dA and its frequency. Fig. 11 shows the expected values of error based on Hypothesis 1 (dA) for the nine days 

studied. Small expected values of less than 10 W·m
-2

 were observed when Hypothesis 1 was tested. A maximum error value 

of -8.44 W·m
-2

 was found on 22 August. The mean EF of pure pixels for maize, grass, bare soils and vegetables was 0.77, 

0.59, 0.22 and 0.81, respectively, on the same day. This result suggests that the LE estimation errors resulting from 10 

Hypothesis 1 for maize, grass, bare soils and vegetables were approximately -6.50, -4.98, -1.86 and -6.84 W·m
-2

, 

respectively. We consider these errors to be acceptable (Seguin B et al., 1999; Kustas and Norman, 2000; Sánchez et al., 

2007). 

E(x) =  ∫ 𝑑𝐴(𝑥)𝑓(𝑥)𝑑𝑥
∞

−∞
,          (17) 
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Figure 11. Expected error values based on Hypothesis 1 for the nine days 

4.3.2 Error analysis of Hypothesis 2 

Hypothesis 2 states that the EF of each sub-pixel in a mixed pixel is approximately equal to the EF of the nearest pure 

pixel(s) of the same land cover type. It is indicated that the EF of a pure pixel can be regarded as the correct value. Therefore, 5 

we can choose EF for each pure pixel in the entire image to compare to the mean EF of its nearest pure pixel(s) to analyse 

the errors caused by Hypothesis 2. The RMSE, MBE and R² values were calculated for each maize, grass, bare soil and 

vegetable land cover type (Fig. 12). 

The EF of pure pixels appears to be well reproduced by Hypothesis 2; the overall RMSE is less than 0.06, indicating 

that Hypothesis 2 results in little error in the EF of sub-pixels estimations. For each land cover type, the maximum RMSEs 10 

were 0.047 for maize on 8 July, 0.055 for grass on 22 August, 0.048 for bare soils on 27 July and 0.059 for vegetables on 27 

July, respectively. The simple averaged AE for the entire study area was 315.46 W·m
-2

 on 8 July, 324.05 W·m
-2

on 27 July 

and 309.05 W·m
-2

on 22 August. This means that the maximum error in the LE estimates caused by Hypothesis 2 for maize, 

grass, bare soil and vegetables was approximately 14.83, 17.00, 15.55 and 19.12 W·m
-2

, respectively. Considering that most 

mixed pixels were closer to their nearest pure pixels than pure pixels were to their nearest pure pixels, the error in LE 15 

estimation caused by Hypothesis 2 might actually be lower. 

The MBEs of EF for four land cover types were less than 0.01. These low values indicate that using Hypothesis 2 does 

not have adverse effects on calculating the EF of sub-pixels. Greater MBEs were observed in vegetables, ranging from -

0.0050 to 0.019, and in grasslands, ranging from -0.0045 to 0.0083; in comparison, the MBE of maize ranged from -0.0037 

to 0.00076 and the MBE of bare soil ranged from -0.0020 to 0.00075. These differences are likely related to the accuracy of 20 

classification. Areas with vegetables and grasses may include different species with various phenological patterns; in 

contrast, the phenological patterns of maize varied less and the bare soils were relatively homogeneous.  

However, the R² value differed between maize, grassland and vegetables.  
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The lower correlations were mainly caused by the uncertainty associated with positive or negative differences between 

the EF of a pure pixel and the mean EF of its nearest pure pixel(s); this uncertainty arises because of the heterogeneity in 

surface roughness and other variables among vegetation land cover types. For bare soils, there was a lower R
2
 value on 27 

July. This value can be attributed to the higher RMSE, which may have been caused by a brief cloudy period on that day that 

was not properly identified in the cloud detection process over uncultivated land. 5 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 12. The RMSE, MBE and R² values of pure pixels based on the nearest pure pixel(s) for four land cover types: (a) maize, (b) 

grassland, (c) bare soils and (d) vegetables 

In summary, Hypothesis 2 reproduces the EF of sub-pixels with an RMSE less than 0.06, resulting in errors within 20 

W·m
-2

 for LE estimation in this study. We consider such errors to be acceptable in surface flux estimation (Seguin B et al., 10 

1999; Kustas and Norman, 2000; Sánchez et al., 2008). 

4.4 Sensitivity analysis of the land cover map 

An accurate high-resolution map of land cover types is essential when calculating the mixed pixel EF using EFAF. 

Incorrect specification of the underlying land cover is particularly critical because the EF and AF of sub-pixels are based on 

the land cover map. 15 
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To assess the sensitivity of the land cover map and AE, reference values were obtained from the retrieved data set on 27 

July; these values indicate a wider range of phenological conditions and thermal dynamics. Other days had relatively 

homogeneous phenology conditions and thermal dynamics; at these times, the sensitivity analysis is conservatively estimated. 

The simple averaged pure-pixel EF was calculated to investigate the sensitivity of the seven main land cover types in the 

study area, i.e., maize, grass, bare soil, wheat, vegetables, buildings and water bodies. Of these, the EFs of buildings and 5 

water bodies were defined as 0 and 1, respectively. 

 

Table 4. Differences in EF and LE caused by incorrect classification 

Incorrect 

classification 

EF or LE 

(W·m-2) 

Correct classification 

Maize Grass 
Bare 

soils 
Wheat Vegetables 

Water 

bodies 
Buildings 

Maize EF 0 0.07 0.38 0.5 0.07 -0.06 0.94 

 LE 0 22.68 123.14 162.03 22.68 -19.44 304.62 

Grass EF -0.07 0 0.31 0.43 0 -0.13 0.87 

 LE -22.68 0 100.46 139.35 0 -42.13 281.93 

Bare soils EF -0.38 -0.31 0 0.12 -0.31 -0.44 0.56 

 LE -123.14 -100.46 0 38.89 -100.46 -142.59 181.47 

Wheat EF -0.5 -0.43 -0.12 0 -0.43 -0.56 0.44 

 LE -162.03 -139.35 -38.89 0 -139.35 -181.47 142.59 

Vegetables EF -0.07 0 0.31 0.43 0 -0.13 0.87 

 LE -22.68 0 100.46 139.35 0 -42.13 281.93 

Water bodies EF 0.06 0.13 0.44 0.56 0.13 0 1 

 LE 19.44 42.13 142.59 181.47 42.13 0 324.06 

Buildings EF -0.94 -0.87 -0.56 -0.44 -0.87 -1 0 

 LE -304.62 -281.93 -181.47 -142.59 -281.93 -324.06 0 

The “+” and “-“ symbols indicate overestimation and underestimation, respectively. 

The average AE was 324.05 W·m-2 over the entire study area. 10 

Table 4 shows the difference in EF between the correct and incorrect classifications; the “+” and “-“ symbols indicate 

overestimation and underestimation, respectively. The results demonstrate that little errors was introduced by 

misclassifications among maize, grass and vegetables, because they have similar phenological conditions during the period 

of high water use efficiency, which is especially true of grass and vegetables because of their similar roughness length. 

Conversely, a greater error, with an absolute difference of 0.5 in EF, occurred because of misclassification between 15 

wheat and other vegetation types. As ripe wheat changes colour from green to yellow or brown, its water use efficiency 

decreases; this resulted in a error of 162.03 W·m
-2

 for the LE estimation. Additionally, incorrectly classifying bare soils as 

maize, grass or vegetables (or vice versa) also induced a greater error; the absolute difference in EF ranged from 0.31 to 0.38 

and the absolute difference in LE ranged from 100.46 to 123.14 W·m
-2

. However, incorrectly classifying bare soils as wheat 

(or vice versa) resulted in lower error, with an absolute difference in EF of approximately 0.12. 20 
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Furthermore, while misclassifications between water bodies and bare soils could result in a higher error in LE 

estimation, this rarely occurred because of the unique spectral characteristics of water and bare soils. Similarly, 

misclassification between buildings and other land cover types would induce a greater error because the EF of buildings was 

set to 0 in this study. 

5 Discussion 5 

The most significant contribution of EFAF is related to its capacity to correct spatial scale errors in the EF of mixed 

pixels; it can be used to calculate daily ET from daily AE data based on two hypotheses. This attribute could be beneficial in 

global ET mapping and water resources management compared to models that do not consider spatial scale effects. 

Validation of the EFAF results against EC measurements across the HiWATER experimental sites demonstrates that EFAF 

can reproduce the LE of mixed pixels with an RMSE of 1.60 MJ·m
-2

 (0.64 mm); without the EFAF, RMSE is 2.47 MJ·m
-2 

10 

(0.99 mm). The two hypotheses result in lower error, within 10 W·m
-2

 for Hypothesis 1 and 20 W·m
-2

 for Hypothesis 2. 

These results suggest that EFAF is reliable and has a considerable application potential. In particular, EFAF has the 

following advantages: 

(1) EFAF is uniquely able to identify the ET values of different land cover types in mixed pixels. This represents an 

improvement relative to single-source models that assume homogeneous land cover and two-source models that only 15 

distinguish bare surfaces from vegetated surfaces. Single-source models generate significant errors when applied to partially 

vegetated surfaces because they represent the surface as a single uniform layer (Timmermans et al., 2007). Two-source 

models are influenced by the characteristics of different vegetation species including canopy height and phenological 

conditions and can not distinguish other land cover types including water bodies, buildings and ice. In contrast, EFAF 

functions over heterogeneous surface can identify different land cover types (e.g., maize, grass, bare soil, vegetables, water 20 

bodies and buildings) from high resolution land cover images.  

 (2) EFAF reduces the uncertainties associated with both spatial scale and temporal scale. The EFAF method is based 

on the EF model, which is widely accepted for temporal extrapolation between data collected a satellite overpass time and 

daily ET. In the EFAF, the algorithm used to calculate the EF of mixed pixels is based on two hypotheses. The case study 

results presented in Sect. 4.1 and Sect. 4.2 demonstrate that the EFAF could significantly reduce the errors caused by the 25 

heterogeneous surfaces in a watershed located in north-western China, as well as reproducing the daily LE, particularly the 

spatial distribution of daily LE. Therefore, EFAF can be used for regional, continental or even global applications. 

(3) EFAF is easy to apply. In EFAF, calculating the mixed pixel EF only involves determining the AF of sub-pixels, 

which can be obtained from a high resolution map of land cover types. Furthermore, the module for inhomogeneous surfaces 

is independent and easy to embed in traditional RS algorithms of heat fluxes; these algorithms were mainly designed to 30 

calculate LE or ET under unsaturated conditions and did not consider heterogeneities in the land surface. 
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(4) EFAF is robust in terms the mechanism of ET, especially through its two hypotheses. Hypothesis 1 is based on the 

theory of low spatial scale effects for AE. Hypothesis 2 is based on TFL, which ensures the maximum likelihood estimation 

of ET in land cover, phenology, surface topography and roughness length. 

(5) EFAF requires relatively few inputs, at most two or three. The first type of input is remotely sensed ET or LE 

images with no consideration of the spatial scale effect. These images can be obtained from ET products or calculated using 5 

RS algorithms of heat fluxes that were mainly designed to calculate LE or ET under unsaturated conditions and do not 

consider heterogeneities in the land surface (including single-source and two-source models). The second type of input is 

high spatial resolution land cover images, which are readily available. For example, GlobeLand30 is a global land cover data 

with a 30 m resolution, which can be downloaded free of cost from the following website: https://glc30.tianditu.com. The 

third type of input is daily AE, which is available directly from LE products in the first type of input or can be calculated 10 

using forcing data and heat flux algorithms. 

However, similar to other remotely sensed ET models, EFAF has several limitations: 

(1) Incorrect classifications directly impact the EF of mixed pixel estimates. As discussed in Sect. 4.4, relatively small 

errors resulted from the misclassification of vegetation with similar phenological conditions; however, larger errors resulted 

from the misclassification of vegetation with different phenological conditions and misclassification between vegetation and 15 

water bodies. Major errors resulted from the misclassification of buildings, bare soils and vegetation and of buildings, bare 

soils and water, though this was less common. 

(2) LE and EF retrievals are limited to clear-sky conditions. Clouds limit thermal infrared (TIR) observations of land 

surface temperatures and of the downward shortwave radiation, which control energy partitioning and ET (Bastiaanssen et 

al., 1998; Allen et al., 2007a; Ershadi et al., 2013). For example, TIR measurements within 1 k uncertainty allow ET 20 

estimates to have a relative error within 10% (Hook et al., 2004; Blonquist et al., 2009; Cammalleri et al., 2012; Hulley et al., 

2012; Fisher et al., 2013). If a cloud covers a mixed pixel area, the EFAF can reduce the effects of the cloud, but there will 

be a large error in the pure pixels covered by clouds. 

(3) Mismatch between the footprint of the EC measurement mismatches and the satellite image pixels is likely to 

increase the uncertainties in validation and create discrepancies between the retrieved LE and EC measurements, which are 25 

especially relevant for the LE or ET of heterogeneous surfaces. This problem is beyond the scope of this study and should be 

addressed in future work.  

(4) The underlying assumption and starting point of this method is that the pure pixel is truely the actual “purity” of the 

pure pixels; therefore, the EF of pure pixels is representative at least of the surrounding mixed pixels. Only land cover 

information was used to define pure pixels; therefore, subsurface heterogeneity in pure pixels caused by other aspects (such 30 

as variations in the surface variables) may have certain influences on the results. Including additional features in the 

definition of pure pixels may increase the complexity of the model and the difficulties of its application significantly. 

(5) Mixed land cover types in a pixel are the major source of scaling errors in ET estimates (Chen, 1999). However, 

other surface variables may also be spatially discrete such as land surface temperature, surface albedo values, downward 

https://glc30.tianditu.com/
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shortwave radiation and other factors, which cannot be ignored. For example, Norman et al. (2003) proposed the  DisALEXI 

model to increase the accuracy of estimating surface ET considering the scale effect of atmospheric temperature. Anderson 

et al. (2011) have achieved in daily remotely sensed ET estimates by combining geostationary satellites and polar-orbiting 

satellite data using the DisALEXI model. EFAF have increased the accuracy of ET estimate by considering the scale effect 

of land cover types. The scale effect of other surface variables for ET estimate requires further investigation in EFAF. 5 

Addressing these issues forms the foundation of our ongoing work. 

6 Conclusions 

This study aimed to develop an operational model for estimating the daily ET of heterogeneous surfaces that is capable 

of reproducing daily ET with reasonable accuracy but easy to apply. A simple model (EFAF) was developed to calculate the 

ET of mixed pixels based on the EF and AF from a high-resolution map of land cover types. Temporal scale extrapolation of 10 

the instantaneous latent heat flux (LE) at satellite overpass time to daily ET depends on the widely accepted EF model. For 

heterogeneous surfaces, an equation was derived to calculate the EF of mixed pixels based on two key hypotheses. 

Hypothesis 1 states that the AE of each sub-pixel is approximately equal to that of any other sub-pixels in the same mixed 

pixel within an acceptable margin of error and is equivalent to the AE of the mixed pixel. Hypothesis 2 states that the EF of 

each sub-pixel is equal to the EF of the nearest pure pixel(s) of the same land cover type. Determination of the EF of mixed 15 

pixels also depends on high-resolution land cover data to calculate the AF and the position of pure pixels. Daily ET is 

calculated by combining the EF of mixed pixels and the daily AE, which can be obtained from energy flux products or 

retrieved using forcing data. 

The EFAF method was applied to an artificial oasis in the midstream of the Heihe River using HJ-1B satellite data at a 

spatial resolution of 300 m. The results show that the EFAF can improve the accuracy of daily ET estimation relative to the 20 

lumped method. Validations at 12 sites with EC systems during 9 days of HJ-1B overpass showed that the R² increased from 

0.62 to 0.82, the RMSE decreased from 2.47 to 1.60 MJ·m
-2

 (0.99 to 0.64 mm), and the MBE decreased from 1.92 to 1.18 

MJ·m
-2

 (0.77 to 0.47 mm), which are a significant improvements. 

Error analysis suggests that the two key hypotheses of the model induce relatively little error. The expected value of the 

absolute error in AE due to Hypothesis 1 was within 7 W·m
-2

, and the maximum RMSE of the EF for each land cover type 25 

due to Hypothesis 2 was 0.047 for maize, 0.055 for grass, 0.048 for bare soil and 0.059 for vegetables. However, we note 

that the results from this study are probably limited and the model should be tested and validated in other areas. 

In brief, the estimated LE of pure pixels is considered accurate and used to calculate its EF. Based on this parameter, the 

equation for the EF of mixed pixels was established with two key hypothesises. A finer resolution land cover map is needed 

to search for “pure pixels” as well as to calculate area ratio of each land cover in mixed pixels. This process can derive the 30 

daily ET from coarse resolution remote sensing data with acceptable accuracy, and no other finer resolution data are needed 

in the EFAF method. Thus, this method may be applicable on a daily basis with daily coarse resolution imagery, such as 
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MODIS, and only one finer resolution land cover map for a certain length of time, i.e., a week, month or season, as long as 

the land cover change is not extreme in that period. It is quite convenient for regional applications that need long-term 

running. This method can also be used as a correcting technique for LE estimations or remote sensing products since 

calculating the EF of mixed pixels is carried out after calculating heat fluxes that could be based on an energy balance 

equation or other methods at the very beginning. The application of the EFAF could be limited with very coarse resolution 5 

data since the probability of pure pixels becomes very low. In these circumstances, a compromise may have to be made 

between the “purity” of pure pixels and the searching distance for the pure pixels. Additional investigations are needed to 

evaluate the performance of this method with different remote sensing products. 
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