
List of Major Changes 

 

 Global changes: Revision of text structure according to readability and story line 

 

 We changed the order of Sections 2 and 3; 

 We changed the title of new Section 3 to “Data Sets” only (former “2. Data Sets and 

Methods”) and we shifted the method section 2.4 (3.4) “event definition and statistical 

distribution functions” into the model description (new Section 2.6) for better story 

line. 

 We added Section 3.4 on numerical weather prediction models as used for further 

model validation in revised manuscript version (section 6). 

 New Figure 2: Flowchart of model components with respective description in Section 

2.1. 

 New Section 4.3 “sensitivities of simulated precipitation” with new Figures 8 and 9. 

 We added a paragraph in Section 5.1 on correlations of input variables. 

 We removed the former Figure 11: We conclude that there is no added value of this 

Figure compared to Figure 10. Instead, we add more detailed analysis of model 

sensitivities (4.3). 

 Section 6: We extend the model validation by statistics of stochastic simulations with 

the reduced SPM (basic model) and COSMO reanalysis data. The former Figure 12 

was split into two new Figures (14 + 15) with the new corresponding sub-figures 

being added. We also added the related statistics to Figure 16a. 

 We did adjustments to the Conclusions sections according to the points mentioned 

above; We also added a paragraph in the conclusions on the transferability of the 

presented method to different investigation areas. 



Point-by-point response to Reviewer #1 
Florian Ehmele on behalf of the co-author 

July 09, 2018 

Thank you very much for your work and the useful and valuable comments that 
helped to improve the scientific quality of our manuscript. Please find below our reply 
to the individual points. 

This study extended the previous models from Smith and Barstad (2004) and Barstad 
and Smith (2005) to stochastically generate extreme precipitation events. The model 
relates extreme precipitation to atmospheric conditions, kind of circulation-based 
model. This model is exclusively for extreme precipitation events, different from those 
models for long-term weather generation. The paper presented a lot of details to 
interpret the procedures about development, calibration and validation of the 
proposed model. The topic falls within the scope of HESS. 

Although the manuscript gave enough information about the model, it is not so easy 
to follow in the current form. I strongly suggest adjustments of the paper structure. 
First, a flowchart should be given to show the development, calibration and validation 
of the model.  

We understand the reviewer’s point that the manuscript may be difficult to follow. In 
the revised version of the manuscript, we try to improve the readability by re-
organizing the sections and by tightening / deleting details that are not that important. 
We follow the suggestion and included a flow chart with corresponding descriptions in 
the text that may help to better understand the links among the different components.  

Second, it is better to first give the model description following by data description, 
which is the usual way for method development.  

In the new version of the manuscript, we changed the order of Sections 2 and 3 as 
suggested. We also rearrange some Sections to improve the logical story line. 

Third, it is necessary to simplify some sections, but focus on how to connect 
atmospheric conditions with extreme precipitation so that the modeled data can 
represent the regional condition instead of one site.  

Ambient conditions directly feedback into the model equations that combine flow 
conditions with microphysics, thus representing the regional conditions. This is 
highlighted, for example, in Figures 7 and 9 (which will be Figs. 8 and 10 in the 
revised version). Furthermore, to highlight directly the relation between environment 
and ambient conditions, we will include a new Figure. Another critical point is that we 
used only data from one radiosounding (Stuttgart). As shown by Kunz (2011) for a 
comparison between Stuttgart and Nancy sounding, ambient conditions during large-
scale heavy rainfall usually do not show large gradients (at least for the parameters 
considered in the model and without fronts that are, thus, treated separately). We will 
add a comment in the manuscript. 

Fourth, usually, for model development, a comparison with a paralleled model is 
necessary. Please consider the possibility to add this part. Although it takes time to 
do additional comparison, it is persuasive to highlight the strength of your model. 
Further, people would wonder how your model’s performance compare with the 



models for long-term weather generation. With the above adjustments, the 
manuscript would be easier for readers to understand. 

We agree with the reviewer that a comparison with other models would be 
appropriate to highlight the skill and characteristics of our model. However, we are 
not aware of any comparable large-scale two-dimensional stochastic precipitation 
model. Therefore, we will compare the full SPM2D using the basic setup (reduced 
SPM; rSPM) with COSMO-CLM (CCLM) reanalysis using the top200 events. For this, 
we split Figure 12 into two new Figures 13 and 14, one for the median and one for 
the 90th percentile, and add the corresponding statistics of the rSPM and CCLM 
simulations. The same will apply to Figure 13 (new Fig. 15).  

Furthermore, the authors should state the potential extension of the proposed models 
to the other regions in the world, which would be helpful for readers to know how to 
use it. Otherwise, it is a model just applicable to a specific region, which is not 
necessary to publish it in an international journal. 

The methodology is not limited to a specific region. The basic core of the model, the 
orographic rainfall model according to Smith and Barstadt (2004), has been applied 
successfully to several regions around the world (e.g., US, Norway, Iceland, 
Germany). Our extension, the stochastic approach, only requires precipitation totals 
to estimate background and frontal precipitation including calibration. We will add a 
comment about the potential transferability in the conclusion section. 
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Point-by-point response to Reviewer #2 
Florian Ehmele on behalf of the co-author 

July 09, 2018 

Thank you very much for your work and the useful and valuable comments that 

helped to improve the scientific quality of our manuscript. Please find below our reply 

to the individual points. 

This is a difficult paper to read – I think some rewriting and tightening would help ex-
position and the reader understand what the main contributions are.  

We understand the reviewer’s point that the manuscript may be difficult to follow. In 
the revised version of the manuscript, we try to improve the readability by re-
organizing the sections and by tightening / deleting details that are not that important. 
We will also add a flow chart showing the different components of the model as sug-
gested by Reviewer #1 to better understand the model’s different components and 
their links. 

In terms of the scientific problems, my major concerns can be summarized by the 
following comments: 

1) How can you be sure the model isn’t overfit? There are numerous parameters and 
features, and a seemingly exhaustive parameter estimation method is used, but 
shouldn’t there be a cross-validation study where training data are used to fit the 
model, and held-out testing data are used to validate the goodness-of-fit? 

We don’t really see a conflict with overfit or “overengineering”. All four components of 
the model (orographic, background, frontal, embedded-convection) are physically-
based processes related to vertical lifting on different scales. The parameter estima-
tion mainly is required for the dynamical core (wave dynamics) and the microphysics. 
For clarification, we will add a comment on this in the conclusion section. Considering 
the question of cross-validation, we fully agree. However, this was already done. The 
model is trained for a set of approx. 100 events and then driven stochastically over 
10.000 events. The stochastic simulations, the main purpose of the model, are eval-
uated against the observations using different statistical quantities. To avoid any con-
fusion, we will highlight this in the manuscript.  

2) Lack of comparison against a simpler model. There are many moving pieces in 
this model; which components are giving the most improvement? In particular, it 
would be helpful to consider simpler versions of the model and compare their relative 
performance in simulation, this would help the reader understand which contributions 
are the most important and where future research may focus. 

We agree that adding a comparison to simpler versions or to other models would 
highlight the potential and skill of our approach (this point was also recommended by 
reviewer #1). As to the best of our knowledge there is no comparable stochastic 
model available, we will use COSMO-CLM reanalysis instead, but focusing on histor-
ic events. We will split the four-part Figure 12 into two Figures (new 13 and 14), one 
for the median and one for the 90th percentile and add the corresponding statistics for 
both cases using the reduced stochastic model (rSPM, basic model) and reanalysis 
data performed with the COSMO-CLM model. We same will apply for Figure 13 (new 
Fig. 15). With those additions the improvements of the model should become clearer.  



3) How well are spatial correlations maintained in the model? Spatially aggregated 
statistics like max, min and means are validated, but what about raw correlations? 

We are not sure what the reviewer exactly means with “raw correlations”. The pre-

sented analysis of maximum and minimum values in Figure 13 is not spatially aggre-

gated, but show max/min values at each grid point in the model domain. The median 

and percentile values presented in Figure 12 as well as the difference between mod-

el and observations for different return periods shown in Figure 14 are grid point-

based statistics and not spatially aggregated. As the SPM is event-based and not 

designed for continuous simulations of extreme events it is not possible to correlate 

“time series” between simulations and observations for the different grid points. Con-

sidering wave dynamics in combination with an FFT algorithm, a spatial conjunction 

is already given. 

 



Point-by-point response to Reviewer #3 
Florian Ehmele on behalf of the co-author 

July 09, 2018 

Thank you very much for your work and the useful and valuable comments that 
helped to improve the scientific quality of our manuscript. Please find below our reply 
to the individual points. 

The authors have taken a physically-based, simplified model of orographic 
precipitation and added mitigations in their approach. The approach has been tested 
with good results. 

It is an interesting and valuable contribution to the literature on this subject. It is 
thoroughly done and, given the complexity of the approach, it is easy to follow. I 
would say the results are convincing and robust. Below is a few comments/questions. 

Main question: It seems to me that the input parameters are treated independently, 
section 5.1, in this approach. We know that input parameters such as wind speed 
and direction are not independent, and thus should not be threated as such. 
Categorization helps, but still leaves us with the problem mentioned above. If I have 
understood this correctly, how do you justify independence (picking from pdf’s in a 
random fashion)? 

This is a very helpful comment. To address this point, we will add a new section “4.3 
Model sensitivities” to the paper with a more detailed sensitivity study of total 
precipitation to varying initial conditions including discussion in Section 5.1. Our 
results show different behaviors of the correlations between the input variables. 
Overall, the relation between the input parameters is weak with correlation 
coefficients in most cases between +/- 0.3, and only for two parameters of +/- 0.7. 
After seasonal differentiation, there are significant correlations in only one season. 
Those cases with higher correlation are mainly related to stability (saturated Brunt-
Väisälä frequency N_m^2). As shown in Figures 7 and 9, however, the model is less 
sensitive to this parameter compared to other. Taking into account the three points 
mentioned above, we found it acceptable to treat the input variables independently to 
keep the SPM as simple as possible. We will add a statement on this. 

Minor comments/questions: 

P7, L12, " linear model assumes penetration through the whole atmosphere...": Does 
it? it is contrary to what you write below Eq. 6, L24 which I thought was the idea of 
wave dynamics; reduced penetration with height. Perhaps the over-estimation has 
something to do with the saturation assumption you mentioned? 

This was incorrect as wave dynamics show vertically tilted waves that also decay 
with height (expect when Fr = U/NH is very large and where the solution more or less 
resembles the simple upslope approach). Furthermore, you are right that the 
assumption of saturation over all atmospheric layers, where also the lifting 
condensation level is at the surface, may lead to an overestimation of modelled 
precipitation. We will correct/change this in the text. 



P9: If c_oro is constant in the whole domain, it could be enter in wave space. Can it 
be collapsed with f_Cw into a common factor, reducing the number of free 
parameters? 

This might be possible. However, these two parameters affect different physical 
processes. f_Cw acts to reduce the uplift sensitivity of the model; therefore, it mostly 
affects areas with strong gradients in orography (compare Figure 2), whereas over 
less gradients with less orographic lifting the effect is weak. Additionally, multiple 
ascends/descents are possible without changes in water vapor content of the air 
parcel. Even though c_oro has the same effect, this parameter is independent from 
any lifting process and is applied throughout the domain. As mentioned in the text, it 
is a consequence of the assumption that vertical lifting of the entire column of air 
leads to condensation and instantaneous fallout of hydrometeors at any time. To deal 
with the resulting overestimation of available precipitable water, c_oro was 
implemented. We will change the text to better understand this point. 

Fig 15: I believe that the confidence interval should be wider on the upper side than 
the lower side (due to fewer data points). 

Yes, you are right. After checking the data and the routine, we conclude that the used 
empirical formula from Dyck (1980) is not the proper way. We redid the plots of 
Figure 15 (old numbering) using the statistical calculation described by Maity (2018) 
and replaced it in the new manuscript version. 
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Abstract. Various application fields, such as insurance industry risk assessments for the design of flood protection systems,

require reliable precipitation statistics in high spatial resolution, including estimates for events with high return periods. Ob-

servations from point stations, however, lack of spatial representativeness, especially over complex terrain, and
:
.
:::::
Thus,

::::
they

do not reliably represent the heavy tail of the distribution function.
:::::::
Common

:::::::::
numerical

:::::::
weather

::::::
models

:::
are

::::
not

::::::
capable

:::
of

::::::
running

::::::::::
simulations

::::
over

::::::::
thousands

::
of

:::::
years.

:
This paper presents a new method for stochastically simulating precipitation fields5

::::::::
numerical

:::::::
method

::
to

:::::::
simulate

::::::::::
larger-scale

::::::::::
precipitation

:::::
fields

::::::::::::
stochastically, based on a linear theory of

:::::::::
describing orographic

precipitation and additional functions that consider synoptically driven rainfall and embedded convection in a simplified way.

The model is initialized by various statistical distribution functions describing prevailing atmospheric conditions, such as wind

vector, moisture content, or stability, estimated from radiosonde observations for a limited sample of the 200 strongest rainfall

events observed.10

The model is applied for the stochastic simulation of heavy rainfall over the complex terrain of Southwest Germany. It is

shown that the model, despite its simplicity, yields reliable precipitation fields. Differences between observed and simulated

rainfall statistics are small, being in the order of only ±
:
10 % for return periods of up to 1,000 years.

1 Introduction

Persistent precipitation over large areas and the resulting widespread flooding frequently cause major damage in Central Europe15

in the order of several billion EUR
::::
Euro

::::::
(EUR)

:::
per

:::::
event. In Germany, two extreme floods in 2002 and 2013 with estimated

return periods of more than 200 years (Schröter et al., 2015) collectively caused more than EUR 22 billion in economic losses

(inflation adjusted to 2017; MunichRe, 2017). Besides
:::::
Beside

:
these extreme events, smaller floods with higher frequencies,

such as those in the years of 2005, 2006, 2010, and 2011 (Uhlemann et al., 2010; Kienzler et al., 2015), also contribute to the

large damage potential associated with floods.20

Flood risk estimation, for example, for insurance purposes or for the design of appropriate flood mitigation systems, re-

quires the reliable
:::::::::
dependable statistical analysis of extreme rainfall. Traditionally, these extremes have been estimated at

point stations from intensity-duration-frequency (IDF) with extreme value statistics being applied (Koutsoyiannis et al., 1998).

This method, however, implies two caveats
::::::::
drawbacks: (i) the low spatial representativeness of point observations and (ii)

1



the limited observation period so that not all possible extreme configurations enter the samples. To account for the former

point
::::::::::
shortcoming, either geostatistical interpolation routines, such as kriging (Goovaerts, 2000), or techniques that relate pre-

cipitation to both orographic characteristics and atmospheric parameters (e.g., Basist et al., 1994; Drogue et al., 2002) are

applied
::::
used. Shortcomings resulting from these methods are the lack of representativeness of station data with respect to the

surroundings, and the neglect of dynamical and thermodynamical processes decisive for real precipitation events. To account5

for the limited observation period, several studies have employed stochastic weather generators to simulate precipitation events

at single grid points (e. g., Richardson, 1981; Furrer and Katz, 2007; Neykov et al., 2014). A recent study by Cross et al. (2017)

introduced a censored rainfall modeling approach designed to reduce the underestimation of extremes. Albeit considering the

long-term variability of precipitation, which leads to more reliable estimates for extremes, these approaches still lack of spatial

representativeness.10

In the present study, we propose
::::::
present a two-dimensional stochastic precipitation model (SPM2D) that allows for simu-

lating a large number of precipitation fields with
::::
using

::
a high spatial resolution. Large sample sizes of several thousand events

are required to obtain reliable and robust estimates of the hazard for high recurrence periods, such as
:::
like

:
the one-in-200-year

events that have to be considered by insurance companies.
:::::::
Common

:::::::::
numerical

::::::
weather

:::::::
models

:::
are

:::
not

:::::::
capable

::
of

:::::::::
simulating

::::::::
thousands

:::
of

:::::
years

:::
due

::
to

::::
their

::::::::::
complexity

:::
and

:::
the

::::::::
resulting

::::
long

::::::::::
computation

:::::
time.15

The core of our SPM2D is the diagnostic linear model approach for orographic precipitation according to Smith and Barstad

(2004). The model considers wave dynamics in terms of the linearized equations of a stratified, non-hydrostatic flow over

mountains (Smith, 1980). Input parameters are atmospheric flow quantities connected to precipitation, such as stability, mois-

ture scaling height, precipitable water, or flow speed, all estimated from radiosoundings. Additional internal free parameters,

such as characteristic time scales for cloud water conversion and fallout, serve as calibration parameters. The Smith and Barstad20

(2004) model has been successfully applied in various regions, such as
:
:
::::
e. g. several locations in the United States (Barstad and

Smith, 2005), Iceland (Crochet et al., 2007), Southwest Germany (Kunz, 2011), or Southern and Northern Norway (Caroletti

and Barstad, 2010; Barstad and Caroletti, 2013). It is found that despite
::::::
Despite the fact that characteristic time scales and

background precipitation may vary from one situation to another,
::
it

:
is
:::::
found

::::
that simulations using fixed values for the free pa-

rameters yield reliable and robust
:::::::::
trustworthy

:
results. In our approach, we added two additional components to the orographic25

and background precipitation: synoptic-scale fronts and convection embedded into mainly stratiform clouds (Fuhrer and Schär,

2005). Whereas the former component may enhance (or reduce in case of absence) precipitation over larger areas, the latter

may lead to slightly locally
::::::
locally

::::::
slightly

:
enhanced totals.

In the present study, we applied the SPM2D to both single
:::::::
historical events with heavy rainfall

:::::::
(training

::::::
events) and over a

long-term period of several thousand years (events) over Southwest Germany (Fig. 1).
::::::::
validation

:::::::
events). In the latter case, the30

required model parameters are estimated from probability density functions (pdf
:::
pdfs) and are stochastically simulated

::::::
selected.

In this application, we fixed the internal free parameters to constant values estimated
::
by thorough calibration. Due to varying

:::::::
Because precipitation regimes in summer and winter

:::
vary

::::::::::
significantly, we seasonally differentiate our analyses.

:::
The

:::::::::::
investigation

::::
area

::
for

::::
this

::::
study

::
is
:::
the

:::::::
Federal

::::
State

::
of

:::::::::::::::::
Baden-Württemberg

:::::
(BW)

::
in

:::::::::
Southwest

::::::::
Germany,

:::::
which

:::::::
extends

::::
from

::::
46.6

::
to

:::::::
50.8◦ N

:::
and

::::
from

:::
6.9

::
to

:::::::
11.1◦ E

::::
(Fig.

::
1).

::::
The

::::::
terrain

::::::
exhibits

::
a
::::::
certain

:::::
degree

:::
of

::::::::::
complexity:

::::
with

::
the

:::::
broad

::::::
Rhine35

2



Figure 1. Topographic map of Southwestern Germany and surrounding areas with main river networks and lakes as well as substantial

orographic structures; The national borders (slim solid black contours) and the border of the Federal State of Baden-Württemberg (bold solid

black contour) are shown as well as the model domain (red box).

:::::
Valley

::::
with

:::::::::
elevations

::
of

:::::::::
100–200 m

::::::::
bounded

:::
by

:::
the

::::::
Vosges

:::::::::
Mountains

:::::::
(France)

::
to

:::
the

:::::
west

:::
and

:::
the

:::::
Black

::::::
Forest

:::::::::
mountains

::
to

:::
the

::::
east;

::::
with

::
a
:::::::::
maximum

:::::::
elevation

:::
of

::::::
1493 m

:::::::::
(Feldberg)

:::
in

:::::::
Southern

::::::
Black

::::::
Forest;

:::
and

:::::
with

:::::
some

::::::
rolling

:::::
terrain

:::
to

:::
the

::::::::
northeast.

:::::::
Annual

::::::::::
precipitation

:::
is

:::::::
between

:::::::
600 mm

:::::::::
(southern

:::::
Rhine

:::::::
Valley)

:::
and

:::::::::::::
approximately

::::::::
2000 mm

::::::::
(southern

::::::
Black

::::::
Forest).

The presented SPM2D is one component of a risk assessment methodology that estimates the risk for a local direct insurer5

by quantifying the maximum probable loss for a 200-year return period (PML200). The other risk assessment components,

however, are not further discussed in this paper.

The paper is structured as follows: Section 2 briefly describes the data sets used in this study.
:::::::::
introduces

:::
the

:::::
basics

:::
of

:::
the

:::::::
SPM2D.Section 3 introduces the basics of the SPM2D.

:::::
briefly

::::::::
describes

:::
the

::::
data

::::
sets

::::
used

:::
in

:::
this

::::::
study.Section 4 presents

3



the results of the calibration based on a set of 200 historical heavy rainfall events,and
::::
gives

::
a
:::::::::
sensitivity

:::::
study

::
of

:::
the

::::::
model

::::::::
depending

:::
on

::::::
varying

:::::::
ambient

:::::::::
conditions.Section 5 shows some characteristics of the selected events. Simulation results

::::::
Results

::
of

:::
the

::::::::
stochastic

::::::::::
simulations are discussed in Section 6, and Section 7 lists some conclusions.

2 Data and methods

The SPM2D presented in this study is based on two different data sets: gridded precipitation data to estimate background5

precipitation and to calibrate and verify the model, and vertical profiles from radiosondes to initialize the model. Unless

otherwise indicated, the investigation period covers the years of 1951–2016 (hereinafter referred to as IP). The investigation

area is the Federal State of Baden-Württemberg (BW) in Southwest Germany, which extends from 46.6 to 50.8◦ N and from

6.9 to 11.1◦ E (Fig. 1). The terrain exhibits a certain complexity with the broad Rhine Valley; with elevations of 100–200 m

bounded by the Vosges Mountains (France) to the west and the Black Forest mountains to the east; with a maximum elevation10

of 1493 m (Feldberg); and with some rolling terrain to the northeast. Annual precipitation is between 600 (southern Rhine

Valley) and approximately 2000 mm (southern Black Forest).

2.1 Rainfall totals

Rainfall statistics in our study are based on the REGNIE (REGionalisierte NIEderschläge, regionalized precipitation) data

set provided by the German Weather Service (Deutscher Wetterdienst; DWD). REGNIE is a gridded data set of 24-hour15

totals based on several thousand climate stations more or less evenly distributed across Germany (so-called RR collective).

The REGNIE algorithm interpolates the observations to a regular grid considering elevation, exposition, and climatology

(Rauthe et al., 2013). The REGNIE area contains 611 grid points in the west–east direction with 5.83◦ E ≤ φ≤ 16◦ E and 971

grid points in the north–south direction with 47◦ N ≤ θ ≤ 55.08◦ N (φ: longitude; θ: latitude). Grid points outside of Germany

are set to malfunction. The spatial resolution of REGNIE is approximately 1 km2, and the observation period is from 06 to20

06 UTC.

It should be noted that REGNIE data are temporally not homogeneous due to changes in the locations and number of rain

gauges. Furthermore, because the number of stations considered by the regionalization is limited, especially over elevated

terrain, such as the Black Forest mountains, areal precipitation exhibits a certain bias. Its magnitude, however, cannot be

directly estimated from the observations solely (Kunz, 2011).25

2.2 Radiosoundings

Input of the SPM2D are several atmospheric parameters derived from radiosoundings: thermal stability in terms of saturated

Brunt-Väisälä frequency Nm (e. g., Lalas and Einaudi, 1973) and actual and saturated vertical temperature gradients (γ and

Γm), water vapor scaling heightHw, water vapor mixing ratio qv, wind speedU , and direction β (see Sect. 2). These parameters

are computed from the vertical profiles of temperature, moisture, wind speed, and direction at the radiosounding station of30

Stuttgart (48.83◦ N 9.20◦ E) located somewhat downstream of the northern Black Forest mountains. Even though the location

4



might not be ideal because the profiles do not represent undisturbed conditions, the profiles in the mean are similar to that of

the upstream station of Nancy in France as shown by Kunz (2011). Data from Nancy, however are available after 1990 only

and, thus, cannot be used in this study, whereas soundings from Stuttgart are available since 1957. In this study, we used the

soundings at the main standard times for synoptic observations of 00 and 12 UTC.

Sounding data were provided by the Integrated Global Radiosonde Archive (IGRA) for quality-controlled radiosonde and5

pilot balloon observations from the National Climatic Data Center (Durre et al., 2006). These data at both main pressure levels

and significant levels, where one of the parameters show a significant change, were interpolated into equidistant increments of

∆z = 10 m (Mohr and Kunz, 2013). All parameters derived from the soundings refer to the lowest 5 km of the atmosphere since

this layer is most relevant for air flow and stability. Furthermore, to account for the decreasing impact of higher atmospheric

layers on the flow characteristics, all flow parameters Λ have been vertically integrated (Λ̃), with water vapor weighting being10

applied (Kunz, 2011):

Λ̃ =

∫ zt
z=0

Λρdqv dz∫ zt
z=0

ρdqv dz
,

where ρd is the density of dry air and zt = 5000 m.

As some layers may be moist-unstable, resulting in imaginary Nm, the averaging routine is applied to N2
m. In the few cases

where Ñm was imaginary, it was set to a near-neutral, constant value of 0.0003 s−1.15

2.3 Parameters for Embedded Convection

Embedded convection in theSPM2D is considered by single streaks of enhanced precipitation (see Sect. 2). These streaks are

stochastically generated according to the statistical distributions of the observed maximum length L and width W of severe

convective storms estimated by ?. In that study, convective storms were identified from the constant altitude plan position

indicator (CAPPI) for a reflectivity in excess of 55 dBZ, also known as the Mason (1971) criterion for hail detection. The20

application of a tracking algorithm based on the concept of the algorithm of TRACE3D (Handwerker, 2002) yields entire

tracks of convective storms. In total, more than 20,000 tracks over Germany, France, Belgium, and Luxembourg were identified

during the summer half years (April to September) in the period 2004–2014. Even though we do not consider rainfall related

to severe convective storms or hail in the SPM2D, the statistical distributions of the storm’s dimensions are reliable proxies for

the extension of enhanced precipitation from embedded convection.25

2.4 Event definition and statistical distribution functions

Stochastic modeling of precipitation events with SPM2D requires the adjustment of appropriate probability density functions

(pdf) to all input parameters. These pdfs are estimated from an appropriate set of past heavy rainfall events . Based on the pdfs,

several thousands events can be stochastically generated (more details are found in Sect. 4). Because the characteristics of the

ambient conditions and thus the precipitation regimes change throughout the year, we seasonally differentiate the estimated30

pdfs among spring (MAM), summer (JJA), autumn (SON), and winter (DJF).
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In the first step, a sufficient and appropriate subset of relevant historic events was identified. An event here is defined as

a period of one or more days with persisting precipitation above a certain threshold. Because our study focuses on major

large-scale flood events and not on local-scale floods or flash floods, an extension to multi-day events is necessary. In this way,

time delays in discharge response or flood waves traveling along river networks are implicitly considered

(e. g., Duckstein et al., 1993; Uhlemann et al., 2010; Schröter et al., 2015).5

We define the historic event set based on maximum areal precipitation. For this, we simply accumulate the (equidistant)

24-hour REGNIE totals RBW of all grid points in BW. Following the sorting of all values of RBW in descending order, the

strongest 200 values enter the sample (top200). As precipitation is not limited to these (single) days but may be embedded in

longer time periods, we define the threshold of Rthres for event definition. Estimating Rthres, we consider “wet” days by using

RBW > 0 solely, and we set Rthres to the 75% percentile of this sample. A lower threshold leads to an over-interpretation of10

longer clusters, a higher one avoids multi-day events.

Event precipitation starts on the first day that exceeds Rthres. When areal means of consecutive days are also above Rthres,

they are simply accumulated, yielding events of more than one day. To ensure statistical independence, at least three days

of non-exceedance have to prevail between two events in accordance with the approach of Palutikov et al. (1999) for wind

storms. On the day that Rthres is not exceeded for the next three days as well defines the end of an event. In accordance15

with Piper et al. (2016), we solely count “rain days” (RBW ≥Rthres) and neglect “skip days” (RBW <Rthres) for event

duration estimation, which is a widely used approach (Wanner et al., 1997; Petrow et al., 2009). This approach avoids the

over-interpretation of longer clusters.

Based on the procedure described above, a defined precipitation event contains one or more days of the top200 sample.

In the next step, we identified the pdfs most appropriate for statistically describing each of the seven model parameters.20

In total, 17 different pdfs were tested and compared with the distribution functions of each parameter for each of the four

seasons (Table 1). In addition to 20 pdfs preset by the MATLAB statistic toolbox (MATLAB, 2016), we considered the circular

von-Mises distribution (Mardia and Zemroch, 1975) for wind direction only. Note that Gumbel (GbD) and Weibull (WbD)

distributions are special cases of the generalized extreme value distribution (GEV) and that some pdfs cannot be used for every

parameter due to their ranges of validity.25

To estimate the pdf that best fits the data, we estimated the appropriate number of histogram classes according to

Freedman and Diaconis (1981), and we calculated the bias, root mean square error (rmse) and Spearman correlation coefficient

rSp (Spearman, 1904) as quality indicators (QIs). We also applied a χ2-test according to Wilks (2006) as a QI. For each QI,

we ranked the pdfs in ascending order and added up the rank numbers for each pdf receiving the best fit in terms of the least

QI–rank sum (QIRS). In the case of the alikeness of two or more pdfs (about 10% of all cases), we manually selected the best30

one.
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2 Stochastic Precipitation Model

2.1 General description

The SPM2D, designed for widespread precipitation from essentially stratiform clouds, quantifies total precipitation Rtot from

the linear superposition of four processes and terms:

Rtot =Roro +R∞+Rfront +Rconv . (1)5

Roro estimates orographic rain enhancement, representing the central core of the SPM2D for complex terrain, such as
::
as

:::
for

:::::::
instance those in BW. R∞ is the background precipitation related to large-scale lifting. These two parts originate from the

linear orographic precipitation model of Smith and Barstad (2004) and Barstad and Smith (2005) with a few modifications,

hereinafter referred to as reduced SPM2D (rSPM). In an extension of the rSPM, we included two additional precipitation

components: Rfront to account for precipitation related to synoptic fronts, and Rconv to consider embedded convection atop10

mainly stratiform clouds (e.g., Fuhrer and Schär, 2005; Kirshbaum and Smith, 2008). These two components were included

because linear theory assumes waves that penetrate through the whole atmosphere, leading to an overestimation of precipitation

totals, whereas
:::
the

:::::
related

:::::::::
processes

::::::::::
significantly

::::::::
contribute

::
to

:::
the

::::
total

:::::::::::
precipitation

::::::
amount

:::
and

:::::
linear

::::::
theory, at the same time,

low intensities are underestimated
::::
tends

::
to

::
an

::::::::::::::
underestimation

::
of

:::
low

:::::::::
intensities

:
(e.g., Kunz, 2011).

The SPM2D presented in this paper is an event-based model. Instead of simulating continuous long-term periods of several15

years, a specific number n
::
nE:

of independent events with various durations
:::::::
duration tev occurring during different seasons is

simulated.
:::
The

:::::::::
individual

::::::::::
components

:::
are

::::::::
discussed

:::::
more

:::::::
detailed

::
in

:::
the

::::::::
following

::::::::
Sections.

:::::::
Starting

:::
the

:::::::
iteration

:::::
loop

::::
over

::
nE::::::

events,
:::::

first,
:::
the

::::::::::::
characteristics

:::::
season

::::
and

:::::::
duration

:::
tev:::

are
::::::::
allocated

::
to

:::
the

:::::
event

::::
(Fig.

:::
2).

::::
Next

::::
step

::
is

:::
the

:::::::::::
computation

::
of

::
the

:::::::::::
precipitation

:::::
fields

::::::
within

:::
the

::::
loop

::::
over

::::
tev.

::::
The

::::::::::
components

::
of

:::
the

:::::
total

::::::::::
precipitation

:::
in

:::
Eq.

:::
(1)

:::
are

::::::::
separated

::::
into

::::
two

:::::
types:

::::
Roro::::

and
::::
R∞ :::

are
::::::::
simulated

::::::::
12-hourly

:::
(2

:::::
times

:
a
:::::
day),

:::::
while

:::::
Rfront::::

and
:::::
Rconv:::

are
:::::::::
calculated

:::::::::
24-hourly

:::::
(once

:
a
:::::
day).20

:::
The

:::::::
linkage

:::::::
between

:::
the

:::::::::::
precipitation

::::::::::
components

:::
and

:::
the

::::::::::::
corresponding

:::::
input

::::::::
variables

:::::
(pdfs;

::::::::::
parameters)

::
is

::::
also

::::::
shown

::
in

:::
Fig.

::
2.

:::::
Note

:::
that

:::
the

:::::::
internal

::::
free

:::::
model

::::::::::
parameters

:::
are

:::
set

::
to

:::::::
constant

::::::
values

:::
for

:::
the

:::::
entire

:::::::::
simulation

:::::::::
(illustrated

:::
as

::::::
shaded

::::
box).

:::::
After

::::
each

:::::::
24-hour

::::::
period,

:::
the

::::
total

::::::::::
precipitation

:::::
Rtot ::::

sums
:::
up

::::::::
according

:::
Eq.

:::
(1).

:::
In

:::
case

:::
tev::

is
:::::::
reached,

:::
the

:::::::::::
computation

::::
goes

::
on

::
to

:::
the

::::
next

:::::
event

::::
until

:::
nE:::::

events
:::::
have

::::
been

:::::::::
simulated.

Since the purpose of the model is to stochastically simulate a large number of several thousands events, the results can be25

used to robustly estimate rare events, such as the one-in-200-year events that the insurance industry must consider (probable

maximum loss, PML200). The prerequisite, however, is a reliable
:::::
decent

:
simulation of single events.

2.2 Orographic precipitation

The linear precipitation model of Smith and Barstad (2004) and Barstad and Smith (2005), which is briefly described in

this subsection, is a simple yet efficient way to compute precipitation over complex terrain. A total number of only seven30

atmospheric parameters estimated from sounding data (see Sect. 3.2) are
:
is

:
required to run the model. It is based on

:::
the three-

dimensional (3D) linear flow according to Smith (1980) and Smith (1989). Thus, it explicitly considers linear flow effects
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Figure 2.
:::
Flow

::::
chart

:::
of

::
the

::::::::
individual

::::::::::
components

:::::
within

:::
the

::::::
SPM2D

:::::
(solid

:::::
boxes)

:::
and

:::
the

:::::::::::
corresponding

::::
input

:::::::
variables

:::::
(pdfs;

::::::
dashed

:::::
boxes).

:::::::
Iteration

::::
loops

:::
are

::::::::
highlighted

::
as
::::::
ellipsis

::
or

::::
bold

:::::
dashed

::::::
arrows.

:::
The

::::::
constant

:::::
model

:::::::::
parameters

::
are

::::::::
illustrated

::
as

:::::
shaded

::::
box.

evolving over mountains, such as upstream-tilted gravity waves or flow that goes around rather than over an obstacle in the

case of low wind speed, high static stability, and/or large mountains .
:::
(i. e.

:::::
small

::::::
Froude

:::::::::
numbers). It is assumed that saturated

lifting produces condensed water that falls to the ground after a certain time shift (Jiang and Smith, 2003). Thus, precipitation

on the ground is directly related to the condensation rate.

One of the key components of the linear model is a pair of linear steady-state equations for the advection of vertically5

integrated cloud water and hydrometeor density, qc and qh, during characteristic time scales:

v · ∇qc = S(x,y)− qc
τc
, (2)

v · ∇qh =
qc
τc
− qh
τf
, (3)

where τc and τf are time scales for cloud water conversion and the fallout of hydrometeors respectively. Both time scales are

mathematically analogous and are assumed to be constant in time and space. When the time scales are set to zero, the maximum10

precipitation is almost one order of magnitude larger compared with a configuration with, for example, τf = τc = 1000 s (Kunz,

2011). Source
:::
The

::::::
source

:
term S describes the mass flux of precipitation caused by orographic lifting. For positive S, term

qcτ
−1
c acts as a source in Eq. (3) and as a sink in Eq. (2). This term is proportional to the cloud water density integrated

vertically from the bottom to the top of the lifting area. In light of this
:::
fact, it is assumed that the whole column is saturated

in the case of lifting. The loss of hydrometeors, qhτ−1f in Eq. (3) , determines precipitation rate R and is proportional to the15

hydrometeor column density
:::
and

:::::::::
determines

:::
the

:::::::::::
precipitation

:::
rate

::
R. However, in the case of descending air with negative S

downstream of mountains, evaporation occurs, and R may become negative.
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A powerful method for solving the
::
the

:::::::
solution

::
of

:::
the

:
advection equations for cloud physics, Eq. (2) and (3), together with

the linear theory for 3D flow is to apply a two-dimensional (2D) Fourier transform. In the Fourier space,
:::
the precipitation rate

R̂(k, l) is given by the following transfer function:

R̂(k, l) =
iCwσĥ(k, l)

(1− imHw)(1 + iστc)(1 + iστf)
, (4)

which relates
:::::::
connects

:
the precipitation field in the Fourier space, R̂(k, l), and

::
to the orography, ĥ(k, l), with

::::
both

::::::
related

::
to5

the horizontal wavenumbers (k, l). In Equation Eq. (4), i is the imaginary unit, and Cw = ρSref
Γmγ

−1 is the uplift sensitivity

related to condensation rate ρSref
= ρdqv, where ρd is the density of dry airand

:
, qv the water vapor density, and where Γm and

γ are the moist adiabatic and actual lapse rates respectively. Water vapor scale height Hw is the height above ground where

the vertical integrated horizontal water vapor flux has reached e−1 of its ground value. σ = Uk+V l is defined as the intrinsic

frequency with components U and V of the undisturbed horizontal wind vector that is assumed to be constant through time10

and space.

Whereas the nominator of Eq. (4) gives the dependency of
::::::::::
precipitation

::
on vertical motion and orography, the first bracket of

the denominator describes the relation of the source term to airflow dynamics. The second and third terms of the denominator

consider the advection of hydrometeors during characteristic time scales τx (x= c;f ) and ,
::::::::::
evaporation in the case of descent,

evaporation.15

Vertical wavenumber m in Eq. (4) is given by the dispersion relation (Smith, 1980):

m(k, l) =

[
N2

m−σ2

σ2
(k2 + l2)

]0.5
. (5)

In this formulation, m controls both the depth and tilt of forced ascent or descent. Because vertical lifting is assumed to be

saturated throughout the whole column,
:::::::
meaning

:::
that

:::
the

:::::
lifted

:::::::::::
condensation

:::::
level

::
is

::::::
located

::
at

:::
the

:::::::
ground,

:
saturated Brunt-

Väisälä frequencyNm has to be considered instead of the dry one,Nd. Compared with unsaturated flow, saturated flow leads to20

a weakening of the amplitude of the gravity waves via the reduction of static stability and thus to a flow that goes
::::::::
streaming

:
more

directly over the mountains rather than around as shown, for example, by Durran and Klemp (1982) or Kunz and Wassermann

(2011). Even though the concept of saturated flow by simply considering Nm must be regarded as an approximation of the

reality, it has been successfully applied by several authors studying flow dynamics and precipitation (Jiang and Smith, 2003;

Smith and Barstad, 2004; Kunz and Wassermann, 2011).25

The precipitation field on the ground is obtained via an inverse Fourier transform of the transfer function Eq. (4):

Roro(x,y) =

∫∫
R̂(k, l)ei(kx+ly)dkdl . (6)

Note that even
:::
Roro::::

can
:::::
attain

:::::::
negative

::::::
values

:::::::
meaning

::
a
::::::::
reduction

::
of

:::::::::::
precipitation

:::::
totals

::
of

::::::::::::
superimposed

:::::::::
processes.

:::::
Even

though Roro < 0 might be mathematically possible,
:
a
:
negative total precipitation does not make sense physically and thus is

truncated away. Therefore, we set Rtot(x,y) = max(Rtot(x,y),0).30

The model has five internal free parameters that can be used to adjust/calibrate the model to the observations. Three of

these parameters are implicitly considered in the transfer function (Eq. 4): the two time scales of τc and τf , which, however,
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Figure 3. Different effects of the implemented internal free parameters fdry (blue), fCw (red) and coro (green) on the original orographic

precipitation part (black curve) for a west to east cross section through the model domain. The underlying orography is shown in black.

are virtually identical, and the uplift sensitivity factor Cw. The latter is modified with a multiplier to C∗w = fCw
·Cw with the

new factor C∗w replacing the original Cw in Eq. (4). fCw
reduces the sensitivity of the model for lifting, and therefore, the

precipitation rate is reduced, especially over mountainous terrain
::::
with

::::
sharp

:::::::::
gradients,

:::::::
whereas

::
in

::::::
regions

::::
with

::::
less

:::::::::
orographic

:::::::
gradients

:::
the

::::::
effect

::
is

:::::
weak (Fig. 3, red curve). The used model formulation

:::
also

:
allows for multiple ascents/descents of a5

virtual air parcel without any change in its water vapor content. Actually, water vapor is partly removed due to condensation

processes during ascent, which is realized by fCw
.

An additional parameter, fdry, is implemented
:
in

::::
Eq.

:::
(6) to reduce evaporation in descent regions, where Roro < 0

::::
Roro

:
is
::::::::

negative
:
(Fig. 3, blue curve). The resulting underestimation of precipitation is found especially downstream of steeper

mountains with greater descent (Kunz, 2011). Therefore, we implemented a new (multiplicative) parameter
::::::::
Parameter fdry10

in (6), which is fdry < 1
::::
acts only at grid points (x,y) where Roro < 0; and fdry = 1 ,

::
in

::::::
which

:::::::
fdry < 1

:
;
:

in all other cases

:::::::
fdry = 1.

Finally, the last and additional calibration parameter, coro, reduces orographic precipitation in the whole domain (Fig. 3,

green curve). It is a consequence of the assumption that the vertical lifting of an entire air column with saturation produces

condensate and
:::::::::::
instantaneous fallout at any time,

::::::::
implying

::
an

::::::::::::
overestimation

:::
of

::::::::::
precipitable

::::
water. In reality, not all layers are15

completely saturated, and water may also partly be stored by clouds. Parameter coro is implemented similarly to fdry in Eq. (6)

but is
::::::::::
independent

::
of

::::
any

::::::
lifting

::::::::
processes

::::
and constant for the whole area

::::::
domain. With these two parameters, orographic

precipitation is modified to:

R∗oro(x,y) = fdry · coro ·Roro. (7)
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Note again that fdry affects only grid points with net descent, whereas coro is constant over the whole domain.
::::
From

::
a

:::::::::::
mathematical

::::::::::
perspective

:::
the

:::
two

::::::
factors

::::
fCw::::

and
::::
coro:::::

could
:::::::
collapse

:::
to

:::
one

::::::
single

:::::::::
parameter.

:::::::::::
Nevertheless,

::::
they

::::::::
describe

:::::::::::
modifications

::
on

::::::::
different

:::::::
physical

::::::::
processes

::
as

:::::::::
mentioned

::
in

:::
the

::::::
section

::::::
above

:::
and,

::::::
hence,

::::
have

::
to

::::::
remain

::::::::
separate.5

2.3 Background precipitation

Background
:::
The

::::::::::
background

:
precipitation term R∞ (Eq.

::
in

:
(Eq. 1) describes the effect of large-scale lifting by synoptic-scale

weather patterns. According to the ω-equation, lifting is the result of three different mechanisms: positive vorticity advection

increasing with height (or vice versa); the maximum of diabatic phase transitions; and the maximum of warm air advection.

Even though lifting is the superposition of these three mechanisms, it does not make sense to
:::
we

::
do

:::
not splitR∞ accordingly

:
,
::
as10

::
the

::::::
single

::::::
forcing

:::::
terms

:::
can

:::
not

::
be

::::::::
estimated

:::
out

::
of

::::::::::::
radiosounding

::::
data. Furthermore, we assume that the large-scale conditions

are almost horizontally homogeneous across the investigation area, and so is R∞ at each time step.

To simplify the inclusion of large-scale lifting in the SPM2D, we estimate R∞ from REGNIE totals
::::::::
observed

::::::
rainfall

:::::
totals

:::
(see

:::::
Sect.

:::
3.1)

:
over a larger area with almost flat terrain, where Roro as well as evaporation by ascent

:::
are

:::::::::
minimized to a large

degreeare minimized. However, an analysis of various past events show
:::::
shows the strong variability of the spatial distribution15

of precipitation even over flat terrain. For example, some events affect only the northern parts of the investigation area, whereas

others only
::::
other

:::::
occur

::::
only

::
in

:
the southern parts. To ensure the

:
a proper estimation ofR∞, we choose an area that covers most

of the total investigation area but excludes the Black Forest and prealpine lands. In the region, where we estimate R∞ (Fig. 4,

black box), heavy rainfall is very unlikely. Totals of more than 50 mm per day, for example, exhibit an annual exceedance

probability p of less than 0.5. Furthermore, as confirmed by Fig. 4, the probability of rain totals in excess of 50 mm per day20

is more or less homogeneously distributed. On average over 66 years, it can be assumed that precipitation in the area used for

R∞ estimation mainly result
:::::
results from large-scale lifting and to a lesser extent from orographic influences.

2.4 Frontal precipitation

Apart of
:::
from

:
large-scale lifting connected to low-pressure systems or waves in the flow patterns, precipitation is also sub-

stantially enhanced by weather fronts. Active fronts may increase precipitation considerably due to cross-frontal circulations25

and lifting in the warm sector of a cyclone (e. g., Bergeron, 1937; Eliassen, 1962). Conversely, if a font
::::
front affects only parts

of the investigation area (e.g., a trailing front, where the flow is almost parallel to the frontal alignment), regions outside the

sphere of influence may experience much less or even no rain at all. Both effects are considered by implementing an additional

quantity Rfront in Eq. (1):

Rfront = (Roro +R∞) · (cfront− 1) , (8)30

where cfront serves as the enhancement or reduction factor of the overall precipitation. In this simple parameterization, Roro

is considered again because frontal precipitation is additionally enhanced by orography as shown, for example, by Browning

et al. (1975) or Houze and Hobbs (1982). Due to the additive superposition of all precipitation components in Eq. (1), we have

to subtract the original precipitation totals leading to a total multiplier (cfront−1). The frontal enhancement factor is a function
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Figure 4. Probability of
:::::::
observed 24-hour REGNIE

:::::
rainfall

:
totals greater than 50 mm expressed as the average days per year for Baden-

Württemberg; the black box indicates the area, where background precipitation R∞ is estimated.

of space realized by a rectangular area cfront(x,y)(Fig. 5), where the orientation of the y-axis is prescribed by
::
the

:
mean wind

direction β .
::::
(Fig.

:::
5).

To avoid strong gradients at the border areas of the rectangular, we applied Gaussian-shaped smoothing. Along the x-5

dimension, the spread is set to 8σn, where σn is the standard derivation of the normal distribution. In the y-direction, an

infinitesimal length is considered (Fig. 5). As the minimum of cfront is zero, Rfront can also attain negative values, thus leading

to a weakening of total precipitation in an area affected or not affected by a front. To
::
In

:::::
order

::
to

:
calculate cfront from the

observational data, we define this quantity as the relative difference between observations O (REGNIE) and output M of the

rSPM (neglecting embedded convection as described in the next paragraph). This is expressed by10

cfront =O ·M−1 (9)

assuming that the differences originate primarily from frontal effects. For the quantification of cfront, we use spatial mean

values over the investigation area O and M . The corresponding pdf for stochastic modeling is estimated using the least QIRS

method with seasonal differentiation.
::
for

:
a
:::::::
training

::::::
sample

::
of
:::::::
historic

:::::
heavy

:::::::::::
precipitation

:::::
events

::::
(see

:::::
Sect.

::::
2.6).
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Figure 5. Schematic of a Gaussian-shaped distribution of the frontal enhancement factor with cfront = 2.6 and σn = 50 (upper right corner)

and its location in the model domain for a southwesterly wind direction (arrow). The blue lines indicate the boundaries of the frontal zone.

2.5 Embedded Convection

The last part of the total precipitation model SPM2D considers convection embedded in mainly stratiform clouds (e. g., Fuhrer

and Schär, 2005). Note, however, that the model is not foreseen to simulate purely convection. Such embedded convection5

mainly occurs when lifting is locally enhanced at mid- and upper tropospheric levels leading to a decrease of thermal stability

by the release of the latent heat of condensation (e. g., Kirshbaum and Durran, 2004; Kirshbaum and Smith, 2008; Cannon

et al., 2012). Convection in general involves several complex processes that make simulation a difficult task. Since our model

is restricted to large-scale precipitation with the objective of quantifying extremes in terms of areal precipitation solely, we

treat embedded convection in a very simplified way by implementing several rectangular cells similar to the approach of10

frontal system consideration.

Because embedded convection is also partly induced by orographic precipitation mechanisms, we implemented a multiplica-

tive factor to the precipitation fields related to both orographic and large-scale lifting, similar to the frontal part:

Rconv = cconv · (Roro +R∞) , (10)

with enhancement factor cconv.
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For each time step of the simulation, we choose a number of convective cells, each with specific width W and length L,

and distribute these
::::
them randomly over the whole model domain (Fig. 6). Both width W and length L of each rectangle

of the convective cells are estimated from the characteristics of the severe convective storms identified from radar data by5

?
::::::::::

Fluck, 2018 (see Sect. 3.3). Furthermore, we restricted the two parameters to L >W and Lmax = 300 km, or 300 grid points,

respectively. As for the frontal systems, the wind direction defines the orientation of the longer sides of the rectangles. For

each convective cell, we choose L ·W specific factors cconv with cconv ∈ {0;1}. As found, for example, by Fuhrer and Schär

(2005) or Cannon et al. (2012), embedded convection can enhance precipitation up to 200
:
%; thus, the given range of cconv is

adequate. Within the single cells, the spatial distribution of cconv randomly varies between the given borders
:::::
limits. Summing10

up all cells enables
::
the

::::::::
existence

::
of

:
more than one cell per day at a specific grid point. The complete convective precipitation

field for each time step is spatially smoothed to avoid sharp gradients. Opposite of
:
In

:::::::
contrast

::
to

:
the Gaussian shape smoothing

due to a more or less continuous ascent
::::::
increase/descent

::::::
decrease

:
of precipitation enhancement in the case of fronts, we use a

moving average with a span of 10 grid points to preserve the high spatial variability of convection.

2.6
::::
Event

:::::::::
definition

::::
and

::::::::
statistical

:::::::::::
distribution

::::::::
functions15

::::::::
Stochastic

::::::::
modeling

:::
of

::::::::::
precipitation

::::::
events

::::
with

:::::::
SPM2D

:::::::
requires

:::
the

:::::::::
adjustment

::
of

::::::::::
appropriate

:::::::::
probability

:::::::
density

::::::::
functions

:::::
(pdfs)

::
to

::
all

:::::
input

::::::::::
parameters.

:::::
These

::::
pdfs

:::
are

::::::::
estimated

:::::
from

::
an

::::::::
adequate

:::
set

::
of

::::
past

:::::
heavy

::::::
rainfall

::::::
events.

::::::
Based

::
on

:::
the

:::::
pdfs,

::::::
several

::::::::
thousands

::::::
events

:::
can

:::
be

:::::::::::
stochastically

:::::::::
generated.

::::::::
Because

:::
the

::::::::::::
characteristics

::
of

:::
the

:::::::
ambient

:::::::::
conditions

::::
and

::::
thus

:::
the

::::::::::
precipitation

:::::::
regimes

::::::
change

:::::::::
throughout

:::
the

::::
year,

:::
we

:::::::::
seasonally

::::::::::
differentiate

:::
the

::::::::
estimated

:::
pdfs

::::::
among

::::::
spring

:::::::
(MAM),

:::::::
summer

:::::
(JJA),

::::::
autumn

:::::::
(SON),

:::
and

::::::
winter

:::::
(DJF).

:
20

::
In

:::
the

:::
first

:::::
step,

:
a
::::::::
sufficient

::::
and

:::::::::
appropriate

::::::
subset

::
of

:::::::
relevant

:::::::
historic

:::::
events

:::
has

:::::
been

::::::::
identified.

:::
An

:::::
event

::::
here

::
is
:::::::
defined

::
as

:
a
::::::
period

::
of

::::
one

::
or

:::::
more

:::::
days

::::
with

::::::::
persisting

:::::::::::
precipitation

::::::
above

:
a
::::::
certain

:::::::::
threshold

::
of

:::::
daily

:::::::::::
precipitation.

:::::::
Because

::::
our

::::
study

:::::::
focuses

::
on

:::::
major

:::::::::
large-scale

:::::
flood

:::::
events

::::
and

:::
not

::
on

:::::::::
local-scale

::::::
floods

::
or

::::
flash

::::::
floods,

::
an

::::::::
extension

::
to

::::::::
multi-day

::::::
events

::
is

:::::::::
reasonable

:::
to

:::::::::
consider

:::::
time

:::::::
delays

:::
in

::::::::::
discharge

:::::::::
response

:::
or

::::::
flood

:::::::
waves

:::::::::
traveling

::::::
along

::::::
river

:::::::::
networks

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e. g., Duckstein et al., 1993; Uhlemann et al., 2010; Schröter et al., 2015).25

:::
We

:::::
define

:::
the

:::::::
historic

:::::
event

:::
set

:::::
based

:::
on

:::::::::
maximum

::::
areal

:::::::::::
precipitation.

::::
For

::::
this,

:::
we

::::::
simply

::::::::::
accumulate

:::
the

:::::::::::
(equidistant)

::::::
24-hour

:::::::
rainfall

::::
totals

:::::
RBW::

of
:::
all

::::
grid

:::::
points

::
in

::::
BW

::::
(see

::::
Sect.

::::
3.1).

:::::::::
Following

:::
the

::::::
sorting

::
of

:::
all

:::::
values

::
of

:::::
RBW::

in
::::::::::
descending

:::::
order,

:::
the

::::::::
strongest

:::
200

::::::
values

:::::
enter

:::
the

::::::
sample

::::::::
(top200).

:::
As

:::::::::::
precipitation

::
is

:::
not

:::::::
limited

::
to

:::::
these

::::::
(single)

:::::
days

:::
but

::::
may

:::
be

::::::::
embedded

::
in
::::::

longer
::::
time

:::::::
periods,

:::
we

::::::
define

:::
the

::::::::
threshold

::::::
Rthres:::

for
:::::
event

::::::::
definition.

::::::::::
Estimating

::::::
Rthres,:::

we
:::::::
consider

::::::
“wet”

::::
days

::
by

::::::
using

::::::::
RBW > 0

::::::
solely,

::::
and

:::
set

::::::
Rthres::

to
::::

the
::::
75 %

:::::::::
percentile

:::
of

:::
this

:::::::::::
sub-sample.

::
A

:::::
lower

:::::::::
threshold

:::::
leads

::
to

:::
an30

:::::::::::::::
over-interpretation

::
of

::::::
longer

:::::::
clusters,

:
a
::::::
higher

:::
one

::::::
avoids

::::::::
multi-day

::::::
events.

:

:::::
Event

::::::::::
precipitation

:::::
starts

:::
on

:::
the

:::
first

::::
day

:::
that

:::::::
exceeds

::::::
Rthres.:::::

When
:::::
areal

:::::
means

:::
of

:::::::::
consecutive

:::::
days

:::
are

:::
also

::::::
above

::::::
Rthres,

:::
they

:::
are

::::::
simply

::::::::::::
accumulated,

:::::::
yielding

:::::
events

:::
of

::::
more

:::::
than

:::
one

::::
day.

::::
The

:::
last

:::
day

:::::
with

:::::::::
R≥Rthres::::::

before
:
a
::::::

period
::
of

::
at
:::::

least

::::
three

::::
days

:::
of

:::::::::::::
non-exceedance

:::::::
defines

:::
the

::::
end

::
of

:::
an

:::::
event.

:::::
Such

:
a
:::::::::

three-day
:::::
period

:::::::
ensures

::::::::
statistical

::::::::::::
independence

:::
of

:::
the

:::::
events

::
in
::::::::::

accordance
:::::

with
:::
the

::::::::
approach

:::
of

:::::::::::::::::::::
Palutikov et al. (1999) for

:::::
wind

::::::
storms.

:::::::::
Following

::::::::::::::::
Piper et al. (2016),

:::
we

:::::
only

::::
count

:::::
“rain

::::::
days”

::::::::::::::
(RBW ≥Rthres) :::

and
:::::::

neglect
:::::
“skip

:::::
days”

::::::::::::::
(RBW <Rthres):::

in
:::::::
between

:::
the

::::::::::::::::
start-day/end-day

::::::
period

:::
for

14



Figure 6. Schematic of the convection implementation with rectangular cells (blue). The orientation is defined by the wind direction (arrow);

each cell is assigned to an individual factor cconv.

::::
event

::::::::
duration

:::::::::
estimation,

::::::
which

::
is

:
a
::::::
widely

:::::
used

::::::::
approach

::::::::::::::::::::::::::::::::::
(Wanner et al., 1997; Petrow et al., 2009).

::::
This

::::::::
approach

::::::
avoids

::
the

::::::::::::::::
over-interpretation

::
of

::::::
longer

:::::::
clusters.

:::::
Based

::
on

:::
the

:::::::::
procedure

::::::::
described

::::::
above,

:
a
:::::::
defined

::::::::::
precipitation

:::::
event

:::::::
contains

::::
one

::
or

::::
more

:::::
days

::
of

:::
the

::::::
top200

::::::
sample.

::::
For5

:::
this

:::::
event

:::
set,

::
all

::::::::
required

::::
input

:::::::::
parameters

:::::
were

::::::::
extracted

::::
from

::::::::
sounding

::::
data

:::
and

::::::
rainfall

:::::
totals

::::
(see

::::
Sect.

:::
3).

::
In

:::
the

::::
next

::::
step,

:::
we

:::::::::
identified

:::
the

::::
pdfs

:::::
most

:::::::::
appropriate

:::
for

::::::::::
statistically

:::::::::
describing

:::::
each

::
of

:::
the

:::::
seven

:::::::::::
atmospheric

:::::
input

:::::::::
parameters,

:::::
event

::::::::
duration

:::
tev,

:::::::::::
background

:::::::::::
precipitation

::::
R∞ :::

and
:::::

front
:::::
factor

::::::
cfront.::

In
::::::::

addition
::
to

:::
20

::::
pdfs

::::::
preset

::
by

::::
the

::::::::
MATLAB

:::::::
statistic

::::::
toolbox

::::::::::::::::
(MATLAB, 2016),

:::
we

:::::::::
considered

:::
the

::::::
circular

:::::::::
von-Mises

::::::::::
distribution

::::::::::::::::::::::::
(Mardia and Zemroch, 1975)

::
for

:::::
wind

:::::::
direction

:::::
only.

::
In

::::
total,

:::
17

:::
pdfs

:::::
were

:::::::
suitable,

:::
and

:::::
tested

::::
and

::::::::
compared

::::
with

:::
the

:::::::::
distribution

::
of

::::
each

:::::::::
parameter

:::
for

::::
each10

::
of

:::
the

::::
four

::::::
seasons

::::::
(Table

:::
1).

::::
Note

::::
that

:::::::
Gumbel

::::::
(GbD)

:::
and

:::::::
Weibull

::::::
(WbD)

:::::::::::
distributions

:::
are

::::::
special

:::::
cases

::
of

:::
the

::::::::::
generalized

::::::
extreme

:::::
value

::::::::::
distribution

::::::
(GEV)

:::
and

::::
that

::::
some

::::
pdfs

::::::
cannot

:::
be

::::
used

:::
for

::::
every

:::::::::
parameter

:::
due

::
to
:::::
their

:::::
ranges

::
of

:::::::
validity.

:
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::
To

::::
find

::::
the

::::
pdf

::::
that

::::
best

::::
fits

::::
the

:::::
data,

:::
we

:::::::::
estimated

::::
the

::::::::::
appropriate

:::::::
number

:::
of

:::::::::
histogram

:::::::
classes

:::::::::
according

:::
to

:::::::::::::::::::::::::
Freedman and Diaconis (1981),

::::
and

::
we

:::::::::
calculated

:::
the

::::
bias,

::::
root

::::
mean

::::::
square

::::
error

::::::
(rmse)

:::
and

:::::::::
Spearman

:::::::::
correlation

:::::::::
coefficient

:::
rSp :::::::::::::::::

(Spearman, 1904) as
::::::
quality

:::::::::
indicators

:::::
(QIs).

:::
We

::::
also

::::::
applied

::
a
::::::
χ2-test

:::::::::
according

::
to

:::::::::::::
Wilks (2006) as

::
a

:::
QI.

:::
For

::::
each

::::
QI,5

::
we

::::::
ranked

:::
the

::::
pdfs

::
in
:::::::::

ascending
:::::
order

:::
and

::::::
added

::
up

:::
the

::::
rank

::::::::
numbers

:::
for

::::
each

:::
pdf

::::::::
receiving

:::
the

::::
best

::
fit

::
in

:::::
terms

::
of
:::

the
:::::

least

:::::::
QI–rank

:::
sum

:::::::
(QIRS).

::
In

:::
the

::::
case

::
of

::::::::
alikeness

::
of

::::
two

::
or

::::
more

::::
pdfs

::::::
(about

::::
10 %

::
of

:::
all

::::::
cases),

::
we

::::::::
manually

:::::::
selected

:::
the

::::
best

::::
one.

3
::::
Data

::::
sets

:::
The

:::::::
SPM2D

:::::::::
presented

::
in
::::

this
:::::

study
:::

is
:::::
based

:::
on

::::
two

:::::::
different

:::::
types

:::
of

::::
data

:::::
sets:

:::::::
gridded

:::::::::::
precipitation

::::
data

::
to

::::::::
estimate10

:::::::::
background

:::::::::::
precipitation

::::
and

::
to

:::::::
calibrate

::::
and

:::::
verify

:::
the

::::::
model,

:::
and

:::::::
vertical

::::::
profiles

:::::
from

::::::::::
radiosondes

::
to

::::::::
initialize

:::
the

::::::
model.

::::::::::
Furthermore,

::::
the

:::::::
SPM2D

::
is

:::
also

::::::::
validated

:::::
with

::::::::
reanalysis

::::
data

:::::
done

::::
with

:::
the

:::::::
regional

:::::::
climate

:::::
model

:::
of

:::
the

::::::::::
Consortium

:::
for

:::::
Small

:::::
Scale

::::::::
Modeling

:::::::::::::::
(COSMO-CLM).

::::::
Unless

::::::::
otherwise

::::::::
indicated,

::::
the

::::::::::
investigation

::::::
period

::::::
covers

:::
the

:::::
years

::
of

::::::::::
1951–2016

:::::::::
(hereinafter

:::::::
referred

::
to

::
as

::::
IP).

3.1
::::::

Rainfall
::::::
totals15

::::::
Rainfall

::::::::
statistics

::
in

:::
our

:::::
study

::
are

:::::
based

:::
on

:::
the

:::::::
REGNIE

::::::::
(German:

:::::
REG

:::::::::
ionalisierte

::::
NIE

:::::::::
derschläge;

:::::::::::
regionalized

:::::::::::
precipitation)

:::
data

:::
set

::::::::
provided

::
by

:::
the

:::::::
German

::::::::
Weather

::::::
Service

:::::::::
(Deutscher

::::::::::::
Wetterdienst;

::::::
DWD).

::::::::
REGNIE

::
is

:
a
:::::::
gridded

::::
data

:::
set

::
of

:::::::
24-hour

::::
totals

:::::
based

:::
on

::::::
several

:::::::
thousand

:::::::
climate

::::::
stations

:::::
more

::
or

:::
less

::::::
evenly

:::::::::
distributed

::::::
across

:::::::
Germany

:::::::::
(so-called

:::
RR

:::::::::
collective).

::::
The

:::::::
REGNIE

::::::::
algorithm

::::::::::
interpolates

:::
the

::::::::::
observations

::
to
::
a

::::::
regular

:::
grid

::
of

::::::::::::
approximately

:::::
1 km2

::::::::::
considering

::::::::
elevation,

:::::::::
exposition,

::::
and

::::::::::
climatology

:::::::::::::::::
(Rauthe et al., 2013).

::::
The

:::::::
REGNIE

:::::::
domain

::::::
covers

:::
the

::::
area

::::
with

::::::
5.83◦ E

::::::
≤ φ≤

:::::
16◦ E

:::
and

:::::
47◦ N

::::::
≤ θ ≤

::::::::
55.08◦ N

Table 1.
:::
List

::
of

:::
the

:::::
tested

:::
and

::::::
suitable

::::
pdfs

:::::
preset

::
in
:::

the
::::::::

MATLAB
::::::::

statistical
::::::
toolbox

::::
(the

::::
short

::::::::
acronyms

::
in

::::::
brackets

:::
are

:::
for

::::::
further

:::::::::
orientation).

:::::::::::::::
Birnbaum-Saunders

:::::
(BSD)

::::::::
Nakagami

:::::
(NkD)

::::::
Gamma

::::::
(GmD)

::::::
Normal

::::
(ND)

:::::::::
Generalized

::::::
Extreme

:::::
Value

:::::
(GEV)

: ::::::
Poisson

::::
(PD)

::::::
Gumbel

:::::
(GbD)

: :::::::
Rayleigh

:::::
(RyD)

:::::::::
Half-Normal

::::::
(HND)

:::::
Rician

:::::
(RcD)

:::::
Inverse

:::::::
Gaussian

:::::
(IGD)

: :::::
Stable

::::
(SD)

::::::
Logistic

::::
(LD)

: :::::::
Student’s

:
t
::::
(StD)

:

::::::::::
Log-Logistic

:::::
(LLD)

::::::
Weibull

:::::
(WbD)

:

:::::::::
Log-Normal

::::::
(LND)
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::
(φ:

:::::::::
longitude;

::
θ:
::::::::

latitude).
:::::
Grid

:::::
points

::::::
outside

:::
of

::::::::
Germany

:::
are

:::
set

::
to

::
a

::::::
missing

::::::
value.

::::
The

::::::::::
observation

:::::
period

::
is
:::::
from

:::
06

::
to

:::::::
06 UTC.

:
It
::::::
should

:::
be

:::::
noted

::::
that

::::::::
REGNIE

::::
data

:::
are

::::::::::
temporally

:::
not

::::::::::::
homogeneous

::::
due

::
to

:::::::
changes

:::
in

:::
the

::::::::
locations

:::
and

:::::::
number

:::
of5

:::
rain

:::::::
gauges.

:::::::::::
Furthermore,

::::
areal

:::::::::::
precipitation

:::::::
exhibits

:
a
::::::
certain

::::
bias

:::::::::
especially

::::
over

:::::::
elevated

::::::
terrain,

:::::
such

::
as

:::
the

:::::
Black

::::::
Forest

:::::::::
mountains,

:::::::
because

:::
the

:::::::
number

::
of

:::::::
stations

:::::::::
considered

:::
by

:::
the

:::::::::::::
regionalization

::
is

:::::::
limited.

:::
Its

:::::::::
magnitude,

::::::::
however,

::::::
cannot

:::
be

::::::
directly

::::::::
estimated

:::::
from

:::
the

::::::::::
observations

::::::::::::
(Kunz, 2011).

:::
We

:::
use

:::
the

::::::::
REGNIE

:::
data

:::
set

:::
for

:::
the

::::::::
definition

::
of

:::
the

::::::
top200

::::
data

:::
set,

:::::
event

::::::::
duration,

:::::::::
background

:::::::::::
precipitation

:::
and

:::
the

:::::
front

:::::
factor

:::::
cfront,:::

and
:::
for

:::
the

:::::::::
validation

::
of

:::
the

:::::::
SPM2D.

:
10

3.2
:::::::::::::

Radiosoundings

::::
Input

:::
of

:::
the

:::::::
SPM2D

:::
are

:::::
seven

::::::::::
atmospheric

::::::::::
parameters

::::::
derived

:::::
from

:::::::::::::
radiosoundings:

:::::::
thermal

:::::::
stability

::
in
::::::

terms
::
of

::::::::
saturated

:::::::::::
Brunt-Väisälä

:::::::::
frequency

::::
Nm :::::::::::::::::::::::::::::

(e. g., Lalas and Einaudi, 1973) and
:::::
actual

::::
and

::::::::
saturated

::::::
vertical

:::::::::::
temperature

::::::::
gradients

::
(γ

::::
and

::::
Γm),

:::::
water

:::::
vapor

::::::
scaling

:::::
height

::::
Hw,

:::::
water

:::::
vapor

::::::
mixing

::::
ratio

:::
qv,

::::
wind

:::::
speed

::
U ,

::::
and

:::::::
direction

::
β

:::
(see

:::::
Sect.

::
2).

::::::
These

:::::::::
parameters

::
are

:::::::::
computed

:::::
from

:::
the

::::::
vertical

:::::::
profiles

::
of

:::::::::::
temperature,

::::::::
moisture,

:::::
wind

::::::
speed,

:::
and

::::::::
direction

::
at

:::
the

::::::::::::
radiosounding

::::::
station

:::
of15

:::::::
Stuttgart

::::::::
(48.83◦ N

:::::::
9.20◦ E)

:::::::
located

::::::::
somewhat

:::::::::::
downstream

::
of

:::
the

:::::::
northern

:::::
Black

::::::
Forest

:::::::::
mountains.

:::::
Even

::::::
though

:::
the

:::::::
location

:::::
might

:::
not

::
be

:::::
ideal

::::::
because

:::
the

:::::::
profiles

::
do

:::
not

::::::::
represent

::::::::::
undisturbed

::::::::::
conditions,

:::
the

::::::
profiles

:::
are

::::::
similar

::
to

::::
that

::
of

:::
the

::::::::
upstream

:::::
station

:::
of

::::::
Nancy

::
in

::::::
France

::
as

::::::
shown

:::
by

::::::::::::::
Kunz (2011) for

:::::
heavy

:::::::
rainfall

:::::
events

:::
on

:::::::
average.

:::::
Data

::::
from

:::::::
Nancy,

::::::::
however,

:::
are

:::::::
available

::::
after

:::::
1990

::::
only

::::
and,

:::::
thus,

::::::
cannot

::
be

::::
used

::
in
::::

this
:::::
study,

:::::::
whereas

:::::::::
soundings

:::::
from

:::::::
Stuttgart

:::
are

::::::::
available

:::::
since

:::::
1957.

:::
We

::::
used

:::
the

::::::::
soundings

::
at
:::
the

:::::
main

:::::::
standard

:::::
times

:::
for

:::::::
synoptic

:::::::::::
observations

:::
(00

:::
and

::::::::
12 UTC).

:
20

::::::::
Sounding

::::
data

::::
were

::::::::
provided

::
by

:::
the

:::::::::
Integrated

::::::
Global

::::::::::
Radiosonde

:::::::
Archive

:::::::
(IGRA)

:::
for

:::::::::::::::
quality-controlled

:::::::::
radiosonde

::::
and

::::
pilot

::::::
balloon

:::::::::::
observations

:::::
from

:::
the

::::::::
National

:::::::
Climatic

:::::
Data

::::::
Center

:::::::::::::::::
(Durre et al., 2006).

:::::
These

:::::
data,

:::::::
available

:::
at

::::
both

:::::
main

:::::::
pressure

:::::
levels

::::
and

:::::
levels

::
of

:::::::::
significant

:::::::
changes

:::
of

:::
one

:::
of

:::
the

::::::::::
parameters,

::::
were

:::::::::::
interpolated

:::
into

::::::::::
equidistant

:::::::::
increments

:::
of

::::::::
∆z = 10 m

::::::::::::::::::::
(Mohr and Kunz, 2013).

:::
All

:::::::::
parameters

:::::::
derived

::::
from

:::
the

:::::::::
soundings

::::
refer

::
to

:::
the

:::::
lowest

:::::
5 km

::
of

:::
the

:::::::::
atmosphere

:::::
since

:::
this

::::
layer

::
is
:::::
most

:::::::
relevant

:::
for

::
air

::::
flow

::::
and

:::::::
stability.

:::::::::::
Furthermore,

:::
to

::::::
account

:::
for

:::
the

:::::::::
decreasing

::::::
impact

:::
of

:::::
higher

:::::::::::
atmospheric25

:::::
layers

::
on

:::
the

::::
flow

::::::::::::
characteristics,

:::
all

::::
flow

:::::::::
parameters

::
Λ

::::
have

::::
been

::::::::
vertically

:::::::::
integrated

:::
(Λ̃),

::::
with

::
a

::::
water

:::::
vapor

:::::::::
weighting

:::::
being

::::::
applied

::::::::::::
(Kunz, 2011):

Λ̃ =

∫ zt
z=0

Λρdqv dz∫ zt
z=0

ρdqv dz
,

::::::::::::::::

(11)

:::::
where

::
ρd::

is
:::
the

::::::
density

:::
of

:::
dry

::
air

::::
and

:::::::::::
zt = 5000 m.

::
As

:::::
some

:::::
layers

::::
may

:::
be

::::::::::::
moist-unstable,

::::::::
resulting

::
in

:::::::::
imaginary

::::
Nm,

:::
the

::::::::
averaging

::::::
routine

::
is

::::::
applied

::
to
::::
N2

m.
:::
In

:::
the

:::
few

:::::
cases30

:::::
where

:::
Ñm::::

was
:::::::::
imaginary,

::
it

:::
was

:::
set

::
to

:
a
:::::::::::
near-neutral,

:::::::
constant

:::::
value

::
of

::::::
0.0003

::::
s−1.

:

3.3
:::::::::

Parameters
:::
for

::::::::::
Embedded

::::::::::
Convection
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:::::::::
Embedded

:::::::::
convection

::
in

:::
the

:::::::
SPM2D

::
is

:::::::::
considered

:::
by

:::::
single

::::::
streaks

:::
of

::::::::
enhanced

:::::::::::
precipitation

:::
(see

:::::
Sect.

::::
2.5).

::::::
These

::::::
streaks

::
are

::::::::::::
stochastically

::::::::
generated

::::::::
according

::
to

:::
the

::::::::
statistical

:::::::::::
distributions

::
of

:::
the

:::::::
observed

:::::::::
maximum

:::::
length

::
L

:::
and

::::::
width

::
W

::
of

::::::
severe

::::::::
convective

::::::
storms

:::::::::
estimated

::
by

::::::::::::
Fluck (2018).

::
In

::::
that

:::::
study,

:::::::::
convective

::::::
storms

::::
were

::::::::
identified

:::::
from

:::
the

:::::::
constant

:::::::
altitude

::::
plan5

::::::
position

::::::::
indicator

::::::::
(CAPPI)

::
for

::
a
:::::::::
reflectivity

::
in

::::::
excess

::
of

:::
55

::::
dBZ,

::::
also

::::::
known

::
as

:::
the

:::::::::::::::::::
Mason (1971) criterion

:::
for

:::
hail

:::::::::
detection.

:::
The

::::::::::
application

::
of

:
a
:::::::
tracking

::::::::
algorithm

:::::
based

:::
on

:::
the

:::::::
concept

::
of

:::
the

::::::::
algorithm

::
of

::::::::::
TRACE3D

::::::::::::::::::::::
(Handwerker, 2002) yields

:::::
entire

:::::
tracks

::
of

:::::::::
convective

::::::
storms.

::
In

:::::
total,

::::
more

::::
than

::::::
20,000

:::::
tracks

::::
over

::::::::
Germany,

:::::::
France,

:::::::
Belgium,

::::
and

::::::::::
Luxembourg

:::::
were

::::::::
identified

:::::
during

:::
the

:::::::
summer

::::
half

:::::
years

:::::
(April

::
to

::::::::::
September)

::
in

:::
the

::::::
period

::::::::::
2004–2014.

::::
Even

:::::::
though

::
we

:::
do

:::
not

:::::::
consider

:::::::
rainfall

::::::
related

::
to

:::::
severe

:::::::::
convective

::::::
storms

::
or

:::
hail

::
in
:::
the

::::::::
SPM2D,

:::
the

::::::::
statistical

::::::::::
distributions

::
of

:::
the

:::::::
storm’s

:::::::::
dimensions

:::
are

:::::::
reliable

::::::
proxies

:::
for10

::
the

:::::::::
extension

::
of

::::::::
enhanced

::::::::::
precipitation

:::::
from

:::::::::
embedded

:::::::::
convection

::::::::
described

::
by

::::::
Rconv.

:

3.4
::::::::

Numerical
::::::::
Weather

:::::::::::
Simulations

:::::::::
Simulation

::::::
results

:::::
from

:::
the

:::::::
SPM2D

::::
are

::::::::
validated

::::
with

::::
rain

:::::
totals

:::::
from

::::
the

:::::::::::::
non-hydrostatic

::::::::::
Consortium

::::
for

::::::::::
Small-scale

::::::::
Modeling

:::::::::
(COSMO)

::::::
model

::
in

::::::
climate

:::::
mode

::::::::::::::::::::::::
(CCLM Rockel et al., 2008).

::::::
CCLM

::
is
::::

run
::
by

::::::
global

::::::::
ERA-40

::::::::
reanalysis

:::::
from

::
the

:::::::::
European

::::::
Center

:::
for

::::::::::::::
Medium-Range

:::::::
Weather

:::::::::
Forecasts

:::::::::
(ECMWF)

::::
with

::
a
:::::::::

resolution
:::
of

:::::
T159,

::::::
which

::::::::::
corresponds

:::
to15

::::::::::::
approximately

::::::
125 km

:::
on

::
60

:::::::
vertical

:::::
layers

:::::::::::::::::::
(Kållberg et al., 2004).

::::
The

:::::::
ERA-40

::
is
::::::::

available
:::
for

:::
the

::::::
period

:::::
from

:::::::::
September

::::
1957

::
to

:::::::
August

:::::
2002

:::
and

::::::::
includes

:::
the

::::::::::
assimilation

:::
of

::::::
several

:::::::::::
observational

:::::
data

:::
sets

:::::
such

::
as

:::::::
satellite

:::::
data.

::::::::::::
Laube (2018)

::::::::
performed

::
a
:::::::::
dynamical

::::::::::
downscaling

:::
of

:::::::
ERA-40

::
to

:
a
:::::::::
horizontal

:::::::::
resolution

::
of

::::::
2.8 km

:::
for

::::::::
Southern

::::::::
Germany

::::
using

::
a
::::::::
threefold

:::::::
regional

::::::
nesting

::::
(50,

::
7,

::
to
::::::::

2.8 km).
:::::::::::::
High-resolution

::::::
CCLM

::::
data

:::
is

:::::::
available

:::
for

::::
the

:::::
period

:::::::::::
1971–2000.

:::
For

:::
the

::::::::::
evaluation,

::
we

::::::::::
considered

:::
the

::::::
top200

::::::::
REGNIE

::::::
events,

::::
from

::::::
which

::::::
around

:::
100

::::::
events

::::::::
occurred

:::::
within

:::
the

::::::
period

::::::
where

::::::
CCLM

::::
data

:::
are20

:::::::
available

::::::::
available

::::::::
including

:::
the

:::
top

:::
two

::::
and

:
7
::::
(14)

::
of

:::
the

::::::::
strongest

::
10

::::
(20)

::::::
events.

:

4 Calibration

This section describes the calibration of the SPM2D by comparing modeled and observed precipitation fields (REGNIE 24-

hour totals). The
:::::::
outcome

::
is

:
a combination of the free parameters with the highest skill of the simulated rainfall totals

::::::
historic

::::::
rainfall

:::::
totals

:::::::
(training

:::::::
sample),

::::::
which

::::
then is used for the stochastic simulations of 10,000 rainfall events , which

:::::::::
(validation25

:::::::
sample).

:::
The

:::::
latter is equivalent to a period of several thousand years as described in Sect. 6.

::
At

:::
the

::::
end

::
of

:::
this

::::::
section

:
a
:::::::
concise

::::
study

:::
on

:::::
model

::::::::::
sensitivities

::
is

:::::
given.

:

4.1 Method

The
:::::
Based

::
on

:::
the

:::::
event

:::
set

::
of

:::::::
top200,

:::
the

:
free model (calibration) parameters, τ∗, fCw

, fdry and coro, are assessedbased on

the event set of top200. All other parameters required by the SPM2D (cf. Sect. 2) are quantified from radiosounding profiles30

at Stuttgart. In this evaluation, the stochastic components of the SPM2D and the randomly modeled components for fronts

(Rfront) and embedded convection (Rconv) are neglected. Without these components, the model is referred to as the reduced

SPM2D (rSPM).
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To
:
In

:::::
order

::
to determine appropriate values of the free parameters, a large number of model simulations was carried out with

the rSPM. Whereas one parameter was successively varied, the others were kept constant. The selected ranges and increments

of the parameters listed in Table 2 resulted in 2,016 possible parameter combinations, giving a total number of approximately5

390,000 simulation days for the top200 event set. For each day and parameter combination, we assess the model skill by

quantifying both bias and rmse. Both data sets (model output and REGNIE) are slightly smoothed using a running 5×5 grid

box. The reason for the smoothing is that REGNIE data, despite having a high resolution of 1 km, exhibit spatial uncertainty

due to the limited number of observational data considered. Especially around the crests of Black Forest, where the number of

stations is very low, REGNIE data cannot reproduce local peak rainfall totals. Furthermore, as shown, for example, by Barstad10

and Smith (2005), smoothed data yield more robust results when comparing model and observation data. Note, however, that

larger values for
::
of τ∗ and smaller values of fCw , respectively, likewise smooth the simulated precipitation fields. In these

cases, the QIRS method used for the evaluation (Sect. 2.6) has to be applied carefully.

To avoid apparently better representations of smoothed data fields, we use skill score S (Eq. 12) described by Taylor (2001)

for evaluating climate models to determine the best parameter combination of rSPM:15

S =
4(1 + r)

(
σ̂f + 1

σ̂f

)2
· (1 + r0)

, (12)

where r is the correlation coefficient after Spearman (1904), r0 the maximum attainable correlation, and σ̂f = σmod ·σ−1obs the

normalized standard deviation with the standard deviation
::::::::
deviations

:
of model output σmod and that of observations σobs. For

σ̂f → 1 and for r→ r0, S approaches unity, which is the best result. According to Taylor (2001), improved values of rmse or

bias does not mean
::
do

:::
not

::::
lead

::
to
:
an actual improvement of the model performance, and the use of correlation and standard20

deviation is more stable. Furthermore, Taylor (2001) provided no regulation for the estimation of r0. Therefore, we set r0

to the maximum calculated correlation coefficient of all simulations. As it is not guaranteed that this maximum is the actual

maximum attainable correlation, we increase r0 by 10%, which yields
::
%,

:::::::
yielding

:
r0 = 0.93.

Skill score S is computed for each simulation day and each parameter combination. From all realizations, we select the

parameter combination that yields the highest median value of S averaged over all top200 events
:
,
::
as

:::
the

:::::::
SPM2D

::::::
should

:::
be

:::
able

::
to
::::::::
properly

:::::::
represent

::
a
:::::
broad

:::::
range

::
of

:::::::
different

:::::::::::
atmospheric

::::::::
conditions.

Table 2. The minimum and maximum values, and the increments of the time scales τ∗, and multiplicative factors for the uplift sensitivity

fCw , the lee-side drying fdry, and the adjustment of orographic precipitation coro.

parameter minimum maximum increment

τ∗ 800 s 1500 s 100 s

fCw 0.5 1.0 0.1

fdry 0.4 1.0 0.1

coro 0.5 1.0 0.1
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4.2 Calibration Results

Applying the method to the top200 events as described above, the highest median skill score of S = 0.60 is obtained for the

combination of τ∗ = 1400 s, fCw
= 1.0, fdry = 0.4 and coro = 0.8. For this combination, the other median values of the

::::
other5

quality indices are rSp = 0.39, σ̂f = 0.98, bias = 6.30 mm, and rmse = 14.85 mm. The assessed values for the former two model

parameters are physically plausible and comparable to other studies with the rSPM (e.g., Barstad and Smith, 2005; Caroletti

and Barstad, 2010; Kunz, 2011). The latter two parameters are incorporated exclusively in this study. However, considering the

slight overestimation of orographic precipitation enhancement and the strong overestimation of lee-side drying, the two values

are also physically plausible
::::
seem

::
to

:::
be

::::::::
physically

::::::::
plausible

::
as

::::
well.10

The sensitivity of skill score S to τ and of
:
to

:
the two other parameters, fCw

and coro (Fig. 7), shows a dipole structure in both

cases with the highest values of S along a counter diagonal. Minor skill scores obtain
:::
are

:::::::
obtained

:
with the shortest (longest)

time scales in combination with the highest (lowest) uplift sensitivity or highest (lowest) weighting ofRoro in Eq. 1
:::
(Eq.

::
1). This

implies, on the one hand, that for smaller displacements of precipitation from the formation region, orographic precipitation is

overestimated by the rSPM and thus has to be reduced. On the other hand, Roro has to increase for wider displacements.15

Note , however, that the above-identified parameter combination yields the lowest errors only when averaging over all events.

Single events may become more realistic with another parameter combination, reflecting particularly the unknown, and thus

not considered microphysical processes that are decisive for precipitation formation and that are strongly controlled by vertical

wind speed, temperature, and moisture profiles. The dependency of microphysical processes on ambient conditions, however,

is not relevant when running the model in the stochastic mode as in this study.20

4.3
::::::::

Sensitivity
:::
of

::::::::
simulated

:::::
total

:::::::::::
precipitation

::
To

::::::::::
demonstrate

::::
how

:::::::::::
atmospheric

:::::::::
conditions

:::::::
translate

::::
into

:::::::::::
precipitation,

:::
we

:::::::
conduct

::
a

::::::::
sensitivity

:::::
study

::::
with

::::::
rSPM

:::::
using

:::
the

::::::
top200

::::
event

:::
set

::
by

::::::::
gradually

::::::::
changing

:::
the

:::::
input

:::::::::
parameters.

:::::::::
Following

:::::::::::
Kunz (2011),

:::
we

::::::::
perturbed

:::
the

:::::
values

::
of

::::
N2

m,
:::
qv,

:::
U ,

::
β,

:::
and

:
τ
:::::::::
estimated

::::
from

:::
the

::::::
top200

::::::
events.

::::
This

::
is

::::
done

::
by

::::::::::
multiplying

:::
the

:::::::::
respective

:::::::
quantity

::::
with

::::::::
var_mult

:::::::::
increasing

:::::::
linearly

::::
from

:::
0.5

::
to

:::
2.0

:::
in

:::::::::
increments

:::
of

:::
0.1.

:::::
Wind

::::::::
direction

::
β

::
is

::::::
varied

::
in

:::
the

:::::
range

::
of

::::::
±30◦

::
in

:::::::::
increments

:::
of

:::
5◦.

:::
The

::::::::::
calibration25

:::::::::
parameters

:::
are

:::
set

::
to

::::
their

::::::::
optimum

::::::
values

::::::::
estimated

:::
in

:::
the

:::::::
previous

:::::::
section.

:::::::
Besides

:::::
areal

:::::
mean

:::::::::::
precipitation,

:::
we

:::::::
analyze

::::
rmse

:::
and

::::
skill

:::::
score

::
S

:::
for

:::
the

::::::
median

::::
over

:::
the

::::::
top200

:::::
event

:::
set.

::::
Areal

:::::
mean

:::::::::::
precipitation

:::::::::::
accumulated

::::
over

:::
24

:::::
hours

:::::
shows

::
a
::::
high

:::::::::
sensitivity

::
to

:::::::
changes

::
in
:::::
water

::::::
vapor

::::::
content

:::
qv,

:::::
wind

:::::
speed

::
U

:::
and

:::::
wind

:::::::
direction

::
β

::::
(Fig.

:::
8).

::
In

:::
all

:::::
cases,

:::::::::::
precipitation

:::::::
increases

::::::::::
(decreases)

::::
with

:::::::::
increasing

::::::::::
(decreasing)

:::::::::
parameter

::::::
values.

::::::
Lowest

:::::::::
sensitivity

:::::
occurs

:::
for

::
β
:::::::
between

:::::
±15◦

:::::::
because

:::
of

:::
the

:::::::::
orientation

::
of

:::
the

:::::
major

:::::::::
orographic

:::::::::
structures

:::::
(e. g.,

:::
the30

:::::
Black

::::::
Forest)

::::
from

:::::::::
southwest

::
to

:::::::::
northeast.

:::::::
Westerly

:::::::
inflows,

:::::::::
prevailing

::
on

::::::::
average,

:::
still

:::::
occur

:::
for

:::::
small

:::::::::
variations

::
of

::
β.

::::
For

::::::
greater

::::
shifts

::::::::::
(∆β >20◦

::
or

:::::::::::
∆β <−20◦),

:::::
when

:::
the

::::::
inflow

:::::
angle

:::::::
becomes

:::::::
smaller,

:::::::::
sensitivity

:::::::
slightly

::::::::
increases.

::::
The

:::::::
changes

::
in

:::
the

::::
wave

:::::::
regimes

::::
and,

:::::
thus,

:::
the

:::::::
location

::
of

:::
the

::::::
updraft

::::
may

::::
also

:::::::
explain

:::
the

:::::
partly

:::::::
stepwise

:::::
form

::
of

:::
the

::::::
curves

:::
for

::::
both

::
β

:::
and

::
U .

::::
The

::::::
results

:::
for

::::::
varying

:::::::
stability

::::
N2

m :::
and

::::::::::::
microphysical

::::
time

:::::
scales

::
τ

:::::
reveal

::
an

::::::::
opposite

:::::::
behavior

::
of

::::
areal

:::::
mean

::::
with

:::
an
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Figure 7.
::
Sill

:::::
score

::
S,

:::::::
averaged

::::
over

:::
the

:::::
top200

:::::
event

:::
set,

::::::::
depending

:::
on

:
τ
::::

and
::
(a)

::::
coro,

:::
and

:::
(b)

::::
fCw ,

:::::
while

:::
the

::::
other

::::
free

:::::::::
parameters,

:::::::::
respectively,

::::
were

::
set

::
to
::::
their

:::::::
optimum

:::::
values.

:

:::::::
increase

:
at
:::::::
smaller

:::::
values

::::
and

:::
vice

::::::
versa.

:::::::::::
Furthermore,

:::
the

::::::::
sensitivity

::
of

:::
the

::::::
model

::
to

:::::::
changes

::
of

::::
these

::::
two

:::::::::
parameters

::
is

:::::
much

::::::
weaker

::::::::
compared

::
to

:::
the

:::::
other

::::::::::
parameters.

::::::::::
Qualitatively

::
a
::::::
similar

::::::::
behavior

:::
of

:::
the

:::::
model

:::
is

:::::
found

:::
for

:::
the

::::::::
medians

::
of

:::::
rmse

::::
and

::::
skill

:::::
score

::
S

::::
(Fig.

:::
9).

::::::
While

:::::
areal

::::::::::
precipitation

::::::::
discussed

::::::
above

::::
only

:::::::
provides

:::::::
insights

::::
how

:::::::
changes

::
in

:::
the

:::::::
ambient

:::::::::
parameters

::::::::
feedback

::::
into

:::::::
rainfall,

::::
rmse

::::
and
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Figure 8.
::::
Areal

:::::
mean

:::::::::
precipitation

:::::::
(median

::
of

::
the

::::::
top200

:::
BW

::::
event

:::
set)

::
as
::
a
::::::
function

::
of

::::
N2

m,
::
qv,

:::
U ,

::
β,

:::
and

:
τ
::::::::
perturbed

::
by

:
a
:::::::::::
multiplicative

::::
factor

:::::::::::::::::
(0.5 ≤ var_mult≤ 2)

:::
and

:::::::
changed

:::
∆β.

::::
The

:::::
dotted

:::
lines

:::::::
indicate

::
the

:::::
values

::
of

:::
the

:::::::
reference

:::
run.

:
S
::::

also
::::::::

consider
:::
its

::::::
spatial

::::::::::
distribution.

::::
The

::::::
results

:::
for

:::::
rmse

::::
(Fig.

::::
9a)

:::::
again

:::::
reveal

::::
the

::::::
highest

:::::::::
sensitivity

:::
of

:::
the

:::::
rSPM

:::
to

::::::
changes

:::
in

::
qv:::

and
:::
U .

:::::
While

:::
for

::::::::::::
var_mult > 1

:::
the

:::::::::
sensitivity

::
in

:::::
terms

::
of

:::::
rmse

:
is
::::::
similar

:::
to

::::
areal

:::::::::::
precipitation,

:::::
there

:
is
::
a
:::::
much

:::::
higher

:::::::::
sensitivity

:::
for

:::::
values

:::::
below

::
1.
:::
In

::::
those

:::::
cases,

::::::::::
orographic

::::::::::
precipitation

::
is

:::::
more

:::::::
detached

::
to

:::
the

::::::::
mountain

:::::
crests

::::::::
resulting

::
in

:::::
higher

:::::
totals

::::
due

::
to

:::::::
reduced

::::::::::
evaporation

::
in
::::

the
::::::
descent

:::::::
regions.

::::::::
Because

::
of

:::
the

:::::::::::
combination

::
of

::::::
higher

:::::
totals

::
at

::::::::
different5

::::::::
locations,

::::
rmse

:::::
show

:
a
::::::
higher

::::::::
sensitivity

:::
to

::::::
changes

:::
of

:
τ
::::
and

:::
N2

m:::::::::
compared

::
to

::::
areal

:::::
mean

:::::::::::
precipitation.

:::
The

::::
skill

:::::
score

::
S,

:::
on

:::
the

::::
other

:::::
hand,

::
is

:::::
most

:::::::
sensitive

::
to

:::::::
changes

::
in

::
qv::::

and
:
τ
:::::

(Fig.
::::
9b).

::::::::
Regarding

::::
N2

m,
::
S
::::::::
decreases

::::
just

:::
for

::::
very

::::
high

:::::
values

::
of

::::::::::
var_mult,

:::::
while

::::
there

::
is
::::::
almost

:::
no

::::::::
sensitivity

:::
on

:::
the

::::
wind

::::::::
direction

::
β.

::
In

:::
all

:::::
cases,

:::::::
highest

:
S
::
is
::::::::
obtained

::
for

:::
the

:::::::
original

::::::
values

::
of

:::
the

::::
input

::::::::::
parameters

::::::::::::
(var_mult= 1

:::
or

::::::::
∆β = 0◦),

:::::::::
indicating

:::
the

::::
well

:::::::::
calibration

::
of

:::
the

::::::
model.

4.4 Case Study10

After the parameter adjustment, the rSPM tends to slightly underestimate orographic precipitation, whereas totals over flat or

rolling terrain are overestimated. This behavior can also be seen
::
be

::::
seen,

:::
for

:::::::
instance,

:
in the example of 31 May 2013 (Fig. 10),

a heavy precipitation event that trigged
:::::::
triggered the severe flooding in 2013 (Schröter et al., 2015).

On that day, a pronounced low pressure
:::::
system

:
with its center over Croatia led to the sustained advection of moist airmasses

from northerly directions around 20◦ in combination with synoptic-scale ascent. The Stuttgart sounding with low stability
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Figure 9.
::::
Same

::
as

::::
Fig.

:
8,
:::
but

:::
for

::
(a)

::::::
median

::::
rmse

:::
and

::
(b)

::::::
median

::::
skill

::::
score

::
S.

(Nm = 0.0055 s−1), high precipitable water (pw = 24 kg m−2), and high wind speed (U = 20 m s−1), the latter two determining

the horizontal water vapor flux, is already an indication of high precipitation totals, especially over the Northern Black Forest.

Consequently, precipitation totals across the investigation area were
::::::
reached

:::::
values

:
between 10 and 100 mm.
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Figure 10. Comparison of (a) REGNIE 24-hour rainfall totals, and (b) rSPM output for Southwest Germany, exemplary on 31 May, 2013.

Note that REGNIE data are available for Germany only. The parametrization in (b) is τ∗ = 1400 s, fCw = 1.0, fdry = 0.4, and coro = 0.8.

The areas outside of Baden-Württemberg are covered white for better visualization and comparison.

Overall, the rSPM is able to reproduce most of the structures of the observed rain field (Fig. 10). The quality indices for

that day are S = 0.62, rSp = 0.30, σ̂f = 0.75, bias = 4.44 mm, and rmse = 14.82 mm. The best agreement between observed

and simulated precipitation fields is found for the Northern Black Forest as well as Swabian Jura. Over the northern part

of the model domain (north of 49◦ N) and southwest of Stuttgart, simulated rainfall is substantially higher compared with5

REGNIE. By contrast, the rSPM simulates lower totals in the Southern Rhine Valley near and over the mountainous regions

of the Southern Black Forest (around Freiburg), especially east of the Basel region, where lee-side evaporation in the model

dominates.

One reason for the discrepancy between observed and simulated precipitation might be the improper
:::::::
ill-suited location of the

Stuttgart sounding used for the model initialization. Since orographic precipitation in the rSPM strongly depends on the initial10

conditions of the used sounding data, which may be affected by the upstream terrain of northeastern Baden-Württemberg, we

conduct a sensitivity study of this event by varying the ambient conditions. Following Kunz (2011), we perturbed the estimated

values for N2
m, qv, U , and τ by multiplicative factor var_mult increasing linearly from 0.5 to 2.0 in increments of 0.1. Wind

direction β was varied in the range of ±30◦ in increments of 5◦.

The
:::
The

::::::::
sensitivity

:::::
study

::
as

::::::::
described

::
in

:::::
Sect.

:::
4.3

::
for

::::
this

::::::::
particular

::::
event

:::::::
obtains

:::
the best results in terms of the lowest rmse15

(Fig. 11) are obtained for higher stability (increase of N2
m) or longer time scales, whereas in the case of water vapor density qv

or horizontal wind speed U , the lowest rmse is obtained when decreasing the original values. The results also reveal a higher

sensitivity of the rSPM to changes in water vapor and wind speed compared with stability or microphysical time scales
:::
for
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Figure 11. Changes of (a) rmse, and (b) skill score S for perturbed values of N2
m, qv, U , β, and τ , with a multiplicative factor (var_mult),

and changed ∆β, for 31 May, 2013. The dotted lines indicate the values of the reference run.

:::
this

:::::
event. Regarding wind direction β, only small changes can be detected for ∆β between −30◦ and +10◦ with the lowest

rmse
:
is

:::::
given for the original value. The main reason for this is the orientation of the major orographic structures (e. g., the

Black Forest) from southwest to northeast, for which variations of β become relevant only for more easterly shifts (∆β > 10),

resulting in a steeper inflow angle.5

The highest skill score S, conversely, is reached for increasing U and qv, and decreasing τ and N2
m. In the case of wind

direction, S continuously decreases from 0.8 in the northwesterly inflow to 0.4 in the northeasterly winds.
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For the case study of 31 May 2013, the observed mean for Baden-Württemberg is R̄obs = 33.1 mm, whereas the simulated

mean is R̄mod =37.3 mm,
:::
and

::::
thus,

:
only 12.6 % higher compared with the observations. The rmse and skill score S are near

the optimum when perturbing different variables. The deviations of spatial means and quality indices are at a reasonable level.

However, as already explained, the SPM2D is not designed to represent historic events in detail. Other parameter combinations5

::
of

::::
fCw ,

::::
fdry,

::::
coro:::

and
:::
τ∗

:
may yield even better results for this single event.

5 Parameter estimation for the stochastic simulations

5.1 Adjustment of the distribution functions

Stochastic model simulations are based on pdfs that are adjusted to the required parameter. Event duration ,
:
as

::::
well

:::
as back-

ground and frontal precipitation as well as preconditions are estimated from REGNIE data for the top200 event set. Ambient10

parameters required by the SPM2D are derived from vertical profiles of the radiosondes at Stuttgart, whereas the width
:::::
extent

of embedded convection is estimated from the radar tracks of severe convection. Furthermore, as mean ambient conditions and

thus precipitation characteristics change throughout the year, we differentiate among the four seasons.

After separating the historic event set into the four main seasons, we estimate for each of the 10 parameters the pdf that best

fits the distribution of the observations (= 10 parameters× 4 seasons = 40 cases; Table 3) by using the least QIRS method (cf.15

Sect. 2.6). From the overall 21 pdfs that were considered, only 12 are suitable for adjusting the observations. In most of the

cases, the GEV with its special realizations of Gumbel (GbD) and Weibull (WbD) distribution appears to be appropriate (26

distributions), followed by the inverse Gaussian pdf (IGD) for five parameters and the Gamma pdf (GmD) for three parameters.

Especially for flow parameters derived from the soundings, GEV appears to be the most appropriate (19 out of 28 cases). In

five out of 40 cases (≈ 12.5 %), we had to choose the pdf manually due to the alikeness of two pdfs according to the QIRS20

method.

:::
The

:::::
input

:::::::::
parameters

:::
are

:::::::::
considered

:::
as

::::::::::
independent

:::
and

:::::::::::
uncorrelated.

:::
To

::::::
justify

:::
this

::::::::::
assumption,

:::
we

:::::::
perform

::
a

:::::::::
correlation

::::::
analysis

:::
of

::
all

:::::::
possible

::::::::::::
combinations

::
of

:::::
input

:::::::::
parameters

:::::
using

:::
the

:::::::::
correlation

:::::::::
coefficient

::
of

:::::::::::::::
Spearman (1904).

::
In

:::::
total,

:
a
::::
low

::::::
number

::
of

::::::
about

::::
16 %

:::::
have

:
a
::::::::::
correlation

:::::::::
coefficient

:::::
above

:::::
± 0.5

::::
and

::::
only

::::
4 %

:::
are

::::::
highly

::::::::
correlated

:::::
with

:::::
±0.7.

:::::::::
Regarding

::::
these

:::::
cases,

:::::
90 %

::::
show

:::::::
negative

::::::::::
correlations

::::
with

:::::::::
r ≤−0.5.

::::::::
However,

::::
there

:::
are

::::::
distinct

::::::::
seasonal

:::::::::
differences,

:::
for

::::::::
instance,

::::
with25

:::::::::
correlations

:::
in

:::::::
summer,

:::
but

::::::
almost

::
no

::::::::::
correlation

::
in

:::::
winter

::::::::
regarding

:::
the

:::::
same

::::::::
variables.

::::
The

::::
most

:::::::
frequent

::::::::::
correlation

:::::
exists

:::::::
between

:::
the

:::::::
saturated

::::::::::::
Brunt-Väisälä

::::::::
frequency

::::
N2

m :::
and

:::
the

::::
lapse

:::::
rates

:
γ
:::
and

::::
Γm.

:::::::::::
Furthermore,

::
as

::::::
shown

::
in

::::
Sect.

::
4,

:::
the

:::::::
SPM2D

:
is
::::
less

:::::::
sensitive

::
to

::::
N2

m.
:::::
Thus

:::::::::
associated

:::::::::
correlations

:::::
have

:::
less

:::::::::
influence.

5.2 Event characteristics

Based on REGNIE data and the method described in Sect. 2.6, we estimate for each event within top200
:::
the duration tev (in30

days), again differentiating among the seasons. The histogram of historic events and the corresponding best-fitting pdf (Fig. 12)

shows that during the summer (JJA), a duration of between two and
:::
two

::
to three days dominates with a decreasing probability
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Table 3. Estimated best fitting pdfs for event duration (tev), background precipitation R∞, and frontal enhancement factor cfront derived

from REGNIE data (top box); square of saturated Brunt-Väisälä frequency N2
m, wind direction β, horizontal wind speed U , water vapor

scale heightHw, actual lapse rate γ, saturated moist adiabatic lapse rate Γm, and condensation rate ρSref derived from sounding data (bottom

box); for the pdf aconyms: see Table 1.

model parameter MAM JJA SON DJF

tev GEV GEV BSD NkD

R∞ WbD WbD WbD WbD

cfront LND GmD LND ND

N2
m GEV GbD GEV GEV

β GEV GEV GEV SD

U HND IGD HND GEV

γ GEV GEV IGD IGD

Γm GEV IGD IGD GEV

Hw GEV GbD GEV LD

ρSref WbD GEV WbD WbD

toward longer periods. In the winter (DJF), the distribution is generally shifted to longer events, whereas the probability for

single-day events remains roughly unchanged. The maximum of 15 days in DJF represents the longest duration of top200.

Whereas the estimated pdf for the summer (GEV) has a sharper maximum and a stronger decrease for tev > 3, the pdf found

to best fit the duration in the winter (NkD) shows a broader range of possible durations. Note , however, that the histogram in5

the winter shows a large scattering with irregular peaks, making an adjustment to a pdf very problematic. For the spring and

autumn, the results are comparable to those of the winter and summerrespectively.
:
,
::::::::::
respectively.

:

Concerning background precipitation R∞, totals of 20–25 mm d−1 are found to most likely occur with
:::::
within a range of

3–37 mm d−1 in the winter, 3–50 mm d−1 in the summer, and 0–50 mm d−1 during the other two seasons (not shown). For

all seasons, the Weibull distribution (WbD) is most appropriate. For frontal factor cfront, we obtain a log-normal distribution10

(LND) for the spring and fall, a normal pdf (ND) for the winter, and a Gamma pdf (GmD) for the summer. All pdfs have their

maximums around 0.7 to 0.8 with a range from 0.4 to 1.4 for most of the seasons (not shown). The gamma distribution in the

fall has a sharp ascent and a slower descent toward higher values (maximum of around 1.6).

5.3 Atmospheric parameters

As described in Sect. 2, orographic precipitation in the SPM2D depends on the
:::::
seven atmospheric parameters (cf. Table 3). An15

overview of the range of all parameters is shown as box plots in Fig. 13. In most cases, the atmosphere was slightly stably strat-

ified as represented by positive values of the squared Brunt-Väisälä frequency N2
m affecting the wave propagation. During the

summer, the distribution is shifted toward negative values (= unstable; recall that negative values are set to
::::::
Nm = 0.0003 s−1),
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Figure 12.
::::::::
Histogram

::
of

:::::
top200

::::
event

:::::::
duration

::
for

::::::::::::::::
Baden-Württemberg

:::::::
according

::
to

:::::::
REGNIE

:::::
(bars),

:::
and

::::::::
estimated

:::
best

:::::
fitting

:::
pdfs

::::::
(dotted

::::
lines)

:::
for

::
the

::::::
summer

:::::
(blue)

:::
and

:::
the

:::::
winter

::::
(red).

whereas in the winter, there are almost entirely positive values. Wind direction β, decisive for the spatial distribution of precip-

itation around the mountains, for example, the distribution of enhanced and reduced precipitation, shows pronounced seasonal

differences. More than 90 % of the top200 winter events have southwesterly to northwesterly winds (240◦–300◦), with other

directions hardly observed. The reason is that northerly flows are usually associated with low temperatures and thus low hu-5

midity during the winter and do not have the potential for heavy precipitation. In the summer, the wind direction that occurred

most frequently is between 240◦ and 300◦
::
as

::::
well. However, all other directions have been observed as well.

Horizontal wind speed U is high, especially during the winter, where reduced moisture is compensated by high velocity

to obtain substantial horizontal incoming moisture flow. Median values are 5 and 20 m s−1 during the summer and winter

respectively. Flow parameters related to humidity (Hw, ρSref
) conversely show higher values in the summer, where Γm is10

reduced due to the release of latent heat. Observed vertical temperature gradients γ show similar medians and interquartile

ranges with a broader distribution in thewinter.

In the histograms of N2
m for the top200 events (Fig. ??, left), distinct seasonal differences as already discussed can be

identified. For both seasons, the pdf with the best fit is a GEV (special case of Gumbel in summer), yielding a longer tail to

the right in the winter and a longer left tail in the summer. Seasonal differences are also well pronounced for wind direction β

28



Figure 13.
::::::::::
Atmospheric

::::::::
parameters

:::::::
required

::
for

:::
the

:::::::
SPM2D

:::::
derived

:::::
from

::::::::::
radiosounding

::::::::::
observations

::
at

:::::::
Stuttgart

::
for

::::::
top200

:::::
events

::::
with

::::
mean,

::::::::::
interquartile

:::::::
distance,

::::::::
minimum,

::::
and

::::::::
maximum

:::::
values;

:::
the

::::
left

:::::::::
box-whisker

:::
of

::::
each

:::
pair

::::::::
represents

:::
the

:::::::
summer,

:::
the

::::
right

::::
one

:::::::
represents

:::
the

:::::
winter

::::::
season.

:::
The

::::
units

::
for

::::
each

::::::
variable

:::
are

::::
given

::
in
:::
the

::::::
brackets

:::::
below

:::
the

::::::
variable

::::::
names.

(Fig. ??, right). Whereas during the winter time directions outside of 210◦ and 320◦ can be neglected, the distribution during

the summer shows several irregularities, making the adjustment of the distribution function difficult. However, it seems to be

plausible to apply a GEV distribution in the summer and the Stable distribution (SD) in the winter.

6 Stochastic event set
:::
and

::::::
model

:::::::::
validation5

Overall, a total number of
:::::
nE = 10,000 events (approx. 31,500 days) have been simulated with the SPM2D, hereafter referred

to as the SPM10k. For the evaluation with REGNIE data
:::
The

::::::
rSPM

:::
part

:::
of

:::
this

:::::
event

:::
set

::
is
:::::::
referred

:::
to

::
as

::::::::
rSPM10k

:::
in

:::
the

::::::::
following

:::::::
section.

:::
For

:::
the

:::::::::
validation

::
of

:::
the

:::::::
SPM2D, we quantified statistical values, such as return periods, probabilities, or
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percentiles .
::
and

::::::::
evaluate

::::
them

:::::
with

::::::::::
observations

::::::::::
(REGNIE),

::::::
CCLM

::::::::::
simulations

::::
and

:::
the

:::::
rSPM

:::::::
results.

::::
Note

::::
that

:::
the

:::::
main

:::::::
reference

::
is
:::
the

::::::::
REGNIE

::::::
top200

:::::
event

:::
set.

:

Spatial 24-hour mean values for the area of Baden-Württemberg range between 1.2 mm and 79.7 mm in the SPM2D,
:::
and

:::
1.3

::
to

:::::::
97.0 mm

::
in
::::::

rSPM,
:
whereas the maximum for top200 is only 49.6 mm. In total, 128 events (or 0.4 %) of the SPM10k5

::
or

:::
724

:::::::
(2.1 %)

::
of

::::::::
rSPM10k yield higher spatial precipitation amounts .

::::
than

:::
the

::::::::
maximum

:::
of

::::::
top200.

::::
The

::::::
CCLM

::::::::::
simulations

::::
range

::::::::
between

:::
1.8

:::
and

::::::::
37.6 mm.

Both median and 90th-percentile (p90) precipitation fields of top200 events and the SPM10k agree well concerning the

spatial distribution as well as the precipitation amounts (Fig. 14
::::
Figs.

::
14

::::
and

:::
15). Significant orographic structures in the

precipitation fields over the Black Forest and Swabian Jura are clearly visible in both
::
all

:
data sets. The areal rainfall of the10

SPM10k median field differs only about 3.3% from top200, whereas that of the p90 field is about 6.5% smaller. Maximum

values in the SPM10k are about 7% higher for the median field and approximately 1% smaller for the p90 field. Note that

the more detailed structure of REGNIE data results from the regionalization method and its strong dependency on orography

and should not be over-interpreted. Larger spatial differences mainly appear in the northern parts of Baden-Württemberg (the

Northern Rhine Valley and northeastern rolling hills) for both the median and the p90 field, whereas
::::::
whereat

:
for the latter,15

differences also arise in an additional area northeast and southwest of Stuttgart. Nevertheless, all differences are small in the

order of a few percent.
:::
The

:::::
rSPM

::::::
shows

::
an

:::::::::::::
overestimation

::
of

:::::::::::
precipitation

::::::::
especially

::::
over

:::::::::::
mountainous

:::::::
terrain,

:::::::
whereas

:::
the

::::::
CCLM

::::::::
simulates

::::::
overall

:::
less

:::::::::::
precipitation

:::
for

:::
the

::::::
median.

::::
For

:::
the

:::
p90

:::::
field,

:::::
major

:::::::::
differences

::::::
appear

:::::::::
especially

::
in

:::
low

:::::
lands.

:

:::
The

:::::
areal

::::::
rainfall

::
of

:::
the

::::::::
SPM10k

::::::
median

::::
field

::::::
differs

::::
only

:::::
about

:::::
3.3 %

::::
from

:::::::
top200,

:::::::
whereas

:::
that

:::
of

:::
the

::::::::
rSPM10k

::
is

:::::
about

:::::
22.1 %

:::::::
higher.

:::
The

::::::
spatial

:::::
mean

:::::::::::
precipitation

::
of

:::
the

::::::
CCLM

:::::::::
reanalysis

::
is

:::::
barely

::::
half

::
of

:::::::::
REGNIE,

:::::
which

:::::
might

:::
be

:
a
:::::

result
:::

of20

::
the

:::::::
reduced

:::::::
sample

::::
size.

::::
The

:::::::::
maximum

:::::
values

:::
at

:::
any

::::
grid

:::::
point

:::
for

:::
the

:::::::
median

::::
field

:::
are

:::::
about

::::
7 %

::::::
higher

::
in

:::
the

::::::::
SPM10k

::::::::
compared

::
to

:::::::
top200,

:::
and

:::::
about

:::::
34 %

:::::
higher

::
in

:::
the

:::::::::
rSPM10k,

:::::::
whereas

:::
the

::::::
CCLM

:::::::::
maximum

::
ist

:::::
about

:::::
44 %

:::::::
smaller.

:::
The

:::::
areal

::::::
rainfall

:::
for

:::
the

::::
p90

::::
field

::
is

:::::
about

:::::
6.5 %

:::::::
smaller

::
in

::::::::
SPM10k,

:::
and

::::::
about

::::
14 %

::::::
higher

::
in

:::::::::
rSPM10k,

:::
but

:::::
about

:::::
22 %

:::::::
smaller

::
in

::::::
CCLM.

::::
The

:::::::::
maximum

:::::
values

:::
at

:::
any

::::
grid

:::::
point

:::
for

:::
the

:::
p90

:::::
field

::
is

::::::::::::
approximately

::::
1 %

::::::
smaller

::
in

::::::::
SPM10k,

::::
and

:::::
about

:::::
22 %

:::::
higher

::
in

::::::::
rSPM10k

::::
and

::::
13 %

::::::
higher

::
in

:::::::
CCLM.25

Comparing precipitation amounts for other percentiles, for example, between the 16th and 99th percentiles (Fig. 16 a), the

differences between REGNIE and the SPM2D are very small for the spatial mean values and the maximum precipitation at any

grid point in the model domain. The differences become considerable only for the 95th percentile or
:::
and

:
above. The SPM2D

tends to overestimate lower precipitation amounts because the minimum values at any grid point are higher in the model than

in the observations and invert for the 99th percentile only.
::
In

::::::::
contrast,

:::
the

:::::::::
differences

::::::::
between

:::
the

:::::
rSPM

::::
and

::::::::
REGNIE

:::
are30

::::::::::
considerably

:::::
larger

:::
for

::::::::
maxima,

::::::
minima

::::
and

::::::
spatial

:::::
means

::::::::::
throughout

:::::
every

::::::::
percentile.

::::
The

::::::
CCLM

:::::::::
reanalysis

:::
has

::
a

:::::::
negative

:::::::
deviation

:::
for

:::::::::
minimum

:::
and

::::::
spatial

:::::
mean

:::::::::::
precipitation

::
in

:::
all

:::::::::
percentiles,

::::::::
whereas

:::
for

:::
the

::::::::
maximum

::::::
values

:::::
there

::
is

:
a
:::::::
marked

:::::::::::::
underestimation

:::
for

:::::
lower

:::::::::
percentiles

:::
and

:::
an

::::::::::::
overestimation

::
at

::::::
higher

:::::::::
percentiles.

:

At small percentiles, or for small precipitation amounts, respectively, QIs, such as correlation coefficient r, skill score S,

and normalized standard deviation σ̂f , have low values due to the overestimation of the SPM2D (Fig. 16 b). The highest35

skill is reached around the 90th percentile with a slight decrease for higher values, which can be the result of the increasing
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Figure 14. Precipitation fields for the median
:
of

:
(top

:
a) , and the 90th percentile (p90; bottom) of top200 (REGNIE) events

:
, (left column

:
b)

::
the

::::::::
rSPM10k, and

::
(c)

:
the SPM10k

:
,
:::
and (right column

:
d)

::
the

::::::
CCLM

:::::::::
simulations.

uncertainties of the observations. Nevertheless, a skill score of around or above 0.8 confirms the reliability of the simulations.

::::
Note

:::
that

:::
the

::::
QIs

:::::::
describe

:::
the

:::::::::::
performance

::
of

:::
the

:::::::
SPM2D

:::::::::
compared

::
to

::::::::
REGNIE

:::::
solely.

:::
In

:::
the

::::::::
following

:::
we

:::::::::
concentrate

::::
our

::::::
analysis

:::
on

:::::::
SPM2D

:::
and

:::::::::
REGNIE.

To estimate precipitation distributions for specific return periods, we fit a Gumbel distribution (Wilks, 2006) to the annual5

maximum series of both REGNIE and the SPM10k. Because
::
As it is not possible to estimate the time period and a correspond-

ing annual maximum series for the stochastic event set, we count the number of stochastic values exceeding the 99th percentile

of observations np99 and normalize it by the probability of occurrence p99, producing
:::::
giving

:::
the new time period TSPM:

TSPM =
np99

p99
. (13)
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Figure 15.
::::::::::
Precipitation

::::
fields

:::
for

::
the

::::
90th

::::::::
percentile

::::
(p90)

::
of

::
(a)

:::
the

::::::
top200

::::::::
(REGNIE)

:::::
events,

:::
(b)

:::
the

::::::::
rSPM10k,

::
(c)

:::
the

:::::::
SPM10k,

:::
and

:::
(d)

::
the

::::::
CCLM

:::::::::
simulations.

After sorting the SPM10k in descending order, we take the first nT = TSPM values as the annual series of the SPM10k and

estimate a
:::
new

:
Gumbel distribution. Using the distribution parameters

::::
these

:::::::::::
distributions, we obtain precipitation values for

specific return periods for both the observations and the SPM10k. This method is applied to the spatial mean values of different5

areas and for every single grid point.

For a 10-year return period, the SPM10k shows only small deviations from REGNIE of less than ±10
::::
± 10 % over almost

the entire area of Baden-Württemberg, with a small area of overestimation in the Southern Black Forest (Fig. 17 a). The areal

mean difference is only 0.6 %. In the case of T = 200 yrs (Fig. 17 b), the overestimation in the Southern Black Forest remains

with almost the same relative discrepancy. For this return period, the SPM10k tends to underestimate precipitation, especially

in the northern part of Baden-Württemberg and in the southeast around Lake Constance. Nevertheless, the deviations for most
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Figure 16. Comparison of (a) the maximum
::::
(red), the minimum

:::::
(black), and the spatial mean precipitation

:::::
(blue) of REGNIE and

::::
(solid

::::
line), the SPM2D

:::::
(dotted

::::
line),

::
the

:::::
rSPM

::::::
(dashed

::::
line)

:
and

:::::
CCLM

:::::::::
simulations (

::::::::
dot-dashed

::::
line),

:::
and

:
(b) quality indices (QI) r, S, and σ̂f

for different percentiles
::
of

:::
the

::::::
SPM2D

:::::::
compared

::
to

:::::::
REGNIE.

of the grid points are between ±20
::::
± 20 %, and the areal mean difference is about –10 %. Taking into account the strongly

increasing uncertainties of the observed values for higher return periods, especially for T > 100 years, this is still a reasonable

result.
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Figure 17. Relative difference of the precipitation amounts for (a) a return period of T = 10 years, and (b) T = 200 years, according to a

Gumbel distribution fitted to the observations (top200) and the SPM10k (see text for further explanation). The Neckar catchment is shown

as green contour.

On the level of the major river catchments, the differences also are small
::
are

::::::
small,

:::
too. For the Neckar catchment, for

example (see Fig. 17), which covers about 38
:
% of Baden-Württemberg, the spatial mean deviation is about –0.5 % in the case

of T = 10 yrs and –12.7 % for the 200-year return period. Even for the catchments containing the area of overestimation in5

the Southern Black Forest (Upper Rhine between Basel and Mannheim, and High Rhine between Constance and Basel), the

spatial mean deviations are between +1 and +4
:
% for T = 10 yrs and between –2 and –10

:
% for T = 200 yrs respectively.

Single grid point deviations and the ensuing spatial mean values as described above are sensitive to local conditions and

uncertainties in both REGNIE and SPM10k data. Hence, we evaluate the model in a similar way by calculating the spatial mean
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precipitation first and then fitting a Gumbel distribution to the spatial means in a second step. For the plotting, return period

Tk of each element xk of the annual maximum series with length Tmax is given by Tk = Tmax · rk(xk)
::::::::::::::::::
Tk = Tmax · rk−1(xk)

with the rank
::::::
rk(xk) of element xk rk(xk) (annual series sorted in descending order). The first element (highest value) of an5

annual series of, for example, 100 years therefore has a return period of T1 = 100 yrs, the second T2 = 50 yrs, and so on. The

values of Tk were adjusted using the plotting position method of Cunnane (1978).

Again, the difference between the simulated and observed spatial mean values of daily precipitation for the whole of Baden-

Württemberg is small, with slightly lower values from the simulations (Fig. 18 a). The distribution of the SPM10k is very close

and almost parallel to the estimated observed Gumbel distribution and mostly in between or close to
:::::
within

:
the 95 % confidence10

interval (CI95) estimated with the formula of Dyck (1980)
::::::::::
Maity (2018). Considerable differences between the SPM10k and

REGNIE arise only for return periods of T = 1000 yrs and above but are still small. For the Neckar catchment, the simulation

results agree well with the observed distribution for return periods up to approximately 300 years (Fig. 18 b). For higher return

periods, the differences increase but are still inside or around the CI95. Similar results can be found for other river catchments.

Note again that for such high return values, the statistical uncertainty of the observed distribution also increases significantly.15

7 Summary and Conclusions

We have presented a novel method for estimating the statistics of total rainfall based on a stochastic model approach (SPM2D).

Total precipitation at any
::::
each grid point is calculated from the linear superposition of four different parts: orographic pre-

cipitation, synoptic background precipitation, frontal precipitation and embedded convection
::::::::::
precipitation

::::
from

::::::::::
convection

::::::::
embedded

::::
into

::::::::
stratiform

::::::
clouds. The linear theory of orographic precipitation according to Smith and Barstad (2004),

::::::
which20

::::::::
represents

:::
the

::::
core

:::
of

:::
the

:::::::
SPM2D,

:
has been modified by

::::
using

:::::
three

:::::::
different

:
calibration parameters to minimize the weak-

nesses found in previous studies (e. g., Barstad and Smith, 2005; Kunz, 2011) and to adjust the model to the specific conditions

of the investigation area. We
:::
such

:::
as

:::
the

::::::::::::
overestimation

:::
of

::::
wave

:::::::::
dynamics

::::
and,

::::
thus,

::::::::
resulting

::::::::::
precipitation

::::
and

::::::::::
evaporation

::::::::::::::::::::::::::::::::::::
(e. g., Barstad and Smith, 2005; Kunz, 2011).

::::
For

:::::::::::::
cross-validation,

:::
we

:
calibrated and adjusted the SPM2D to a historic event

set of heavy rainfall events (top200). Using ;
:::::::
training

:::::
data).

:::
By

::::::::
adjusting

::::::::::
appropriate probability density functions (pdfs) for25

all required model parameters, we simulated 10,000
::::::::::
independent stochastic precipitation events and compared the results with

observations
::::::::
(validation

:::::
data).

::::
The

::::::
results

::::
were

:::::::::
compared

::::
with

::::::::::
observations

::::
and

::::::::
reanalysis

::::
data

:
using different percentiles or

:::
and return periods.

The focus of the presented investigations was on the Federal State of Baden-Württemberg in Southwest Germany
::::
with

:::
the

::::::
striking

::::::::::::
low-mountain

::::::
ranges

::
of

:::::
Black

:::::
Forest

::::
and

:::::::
Swabian

::::
Jura. The following main conclusions can be drawn:30

– The results illustrate the capability of the SPM2D to both simulate
:::
has

:
a
:::::
high

:::
skill

:::
to

:::::::
simulate

::::
both historic and stochas-

tic events with realistic spatial distribution and magnitude despite its simple approach of using just seven atmospheric

variables for precipitation calculation
:::::
heavy

::::::
rainfall

:::::::
events.

::::
The

:::::::::
simulated

::::::
spatial

::::::::::
distributions

::::
and

::::::::::
magnitudes

::::
are

::::::
reliable

::::::
despite

:::
the

:::::::::
simplified

::::::::
approach

::
of

:::
the

::::::
model

::::::::
initialized

:::
by

:
a
:::
set

::
of

:::::::::::
atmospheric

:::::::
variables

::::::::
obtained

::::
from

::::::
radio-

::::::::
soundings. The differences between the SPM2D and REGNIE are small with deviations of less than 10 %. Local
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Figure 18. Daily rainfall totals (areal mean) as a function of return period T based on the annual maximum series of observations (REGNIE,

blue), the corresponding Gumbel distribution including the 95 % confidence intervals (black), and the annual SPM10k series (red) for (a) the

Federal State of Baden-Württemberg, and (b) the Neckar catchment.

differencesmay be the result of an inhomogeneous ,
::::::::
however,

::::
may

::::
also

:::
be

:::::
traced

:::::
back

::
to

:::::::::::
uncertainties

:::
in

::::::::
REGNIE

:::::::::::
observations,

::::::
mainly

:::::::
because

::
of

:::::::::
prevailing

::::::::::::::
inhomogeneities

::
in

:::
the

::::::
spatial

:
distribution of rain gauges, which leads to

discrepancies in the interpolated REGNIE fields. The interpolation method used for REGNIE furthermore
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overemphasizes the orographic influence on the precipitation distribution whereby more uncertainties emerge
::::::::
especially

:::
over

:::::::::::
mountainous

:::::::
terrain.

–
:::
The

::::::::::
comparison

::
of

:::
the

:::::::
SPM2D

::::
with

:::
the

:::::::
reduced

::::::::
stochastic

::::::
model

:::::
rSPM

:::::::::::
demonstrates

:::
the

::::
need

::
to
::::::::::
additionally

::::::::
consider5

::::::::::
precipitation

::::::
related

::
to
:::::::

frontal
:::::::
systems

:::
and

:::::::::
embedded

::::::::::
convection.

::::
The

:::::::
SPM2D

::::
with

:::::::::
simplified

:::::::::::::::
parameterizations

:::
for

::::
these

:::::
parts

::::
even

::::::
yields

:::::
more

::::::
reliable

:::::::::::
precipitation

:::::
fields

:::
for

::
a
:::::::
historic

:::::
event

:::
set

::::::::
compared

::
to
::::

the
:::::::::::
sophisticated

:::::
high-

::::::::
resolution

:::::
NWP

:::::
model

:::::::
CCLM.

– The solution of the model equations in the Fourier space using a fast Fourier transform algorithm allows for simulations

::::::
Fourier

:::::
space

::
by

:::
an

::::
FFT

::::::
allows

:::
for

:::
the

:::::::::
simulation of a large number of events with less temporal effort. Furthermore,10

wave dynamics are directly implemented.
:::
and

::
to

:::
run

:::
the

:::::
model

::
in
:::::::::
stochastic

:::::
mode.

:

– The linear approach for orographic precipitation worked quite well during calibration to historic events (top200). The

newly added amounts for frontal precipitation and embedded convection as well as the implemented model parameters

afford even more plausible realizations on a physical basis: fCw
decreases the sensitivity of orographic precipitation

on multiple ascents; fdry reduces the underestimation of lee-side precipitation due to evaporation; and coro takes into15

account the
::::
extent

:::
of

:::
the

:::::
model

::::::
domain

::::
has

::
to

::
be

::::::
limited

::
to

::::::
ensure

:::
the

::::::
validity

::
of

:::
the

:
assumption of an entirely saturated

atmosphere at any time
::::::
spatially

::::::::::::
homogeneous

:::::::::
distributed

::::::::::
atmospheric

:::::::::
conditions

::::
and

:::::::
synoptic

:::::::
forcing.

::::
This

::::::
allows,

:::
for

:::::::
instance,

:::
for

:::
the

:::::
usage

::
of

:
a
:::::::
vertical

::::::
profile

::::
from

:
a
::::::
single

::::::::::::
radiosounding

:::::
station

:::
(or

::::::
model

::::
data).

– The presented stochastic approach is easily applicable to other investigation areas. Prerequisite information of

atmospheric variables
::::::::::
Atmospheric

::::::::
variables

::
for

:::
the

:::::::::::
initialization

::
of

:::
the

:::::
model

:
can be estimated based on radiosoundings20

,
:::::
either

::::
from

:::::::::::::
radiosoundings as within this study , or based on reanalysis or forecast data of numerical weather or climate

::
or

:::::
using

::::::::
reanalysis

::
or

::::
data

:::::
from

:::::
NWP models. Therefore, it can be used for precipitation simulations in areas with less

or even no
::::::
applied

::
to
::::

any
::::::
region

::
of

:::
the

:::::
world

:::::
with

::::::
similar

:::::::::::
precipitation

::::::::::::
characteristics

::::
even

::
if

:::::
there

::
is

::::
only

:
a
:::::::

limited

::::::
number

::
of

:
ground-based observations

:::::::
available.

As shown in a case
::
our

:
study, the SPM2D is sensitive to perturbations of ambient conditions, and therefore,

:
.
:::::::::
Therefore,25

high-quality input data, especially of the atmospheric parameters, are essential. Both radiosoundings or numerical model

outputs may not correctly represent the undisturbed conditions upstream of the investigation area due to , for example, an

inconvenient location of the launching station of the radiosondes or measurement errors, which leads to hardly quantifiable

uncertainties in the SPM2D
::
On

::::
the

:::::
other

:::::
hand,

:::
the

::::::::::
sensitivities

:::
of

::::::::::
precipitation

::::
and

:::::
rmse

::
to

::::::::
changing

:::::
input

::::::::::
parameters

::
is

::::::
limited

::
in

::
a

:::::
range

::
of

::::::
around

::::::
±10%

:::
of

:::
the

:::::::
original

::::::
values,

::::::
which

::
is

::::::
usually

::::::
within

:::
the

:::::
range

:::
of

::::::::::
uncertainty.

:::::
Using

::::
data

:::
of30

::::
only

:::
one

::::::::
sounding

::::::
station

::::::
turned

:::
out

::
to

::
be

::::::::
sufficient

::
to
:::::::

achieve
:::::::
reliable

:::::
heavy

::::::
rainfall

::::::
fields.

:::
As

:::::
shown

:::
by

::::::::::::
(Kunz, 2011),

:::
the

:::::::::
differences

::
to

::::::
another

::::::::
upstream

::::::::
sounding

::::::
station

::::::
(Nancy

::
in

:::::::
France)

:::
are

:::::
small,

::
at

::::
least

::
in

:::
the

:::::
mean.

:::::
This,

::::::::
however,

::::::
applies

::::
only

::
for

::::::::::
widespread

:::::::::::
precipitation

::::
with

::::::::
durations

::::
over

::::::
several

::::::
hours

::
to

:::::
days,

:::::
which

::
is

:::
the

:::::
focus

::
of

::::
our

:::::
study.

::::::::::
Intermittent

::
or

:::::
even

::::::
mainly

::::::::::::::::
convectively-driven

:::::
events

::::::
cannot

:::
be

::::::
reliably

::::::::::
reproduced

::
by

:::
our

::::::
model.

:
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:::
The

:::::
input

:::::::::
parameters

::::
can

::
be

:::::::::
considered

:::
as

:::::::::::
independent,

::
as

:::
just

::
a
:::
few

:::::
cases

:::::::
revealed

::::::
higher

::::::::::
correlation.

::::
The

::::::::
sensitivity

:::
of

::
the

::::::
model

:::
for

:::::
these

:::::::::
parameters,

::::::::
however,

::::::
turned

:::
out

::
to

:::
be

:::::
week.

:::::::::::
Additionally,

:::
the

:::::::::
correlation

::::::::::
coefficients

:::::::
between

:::
the

::::::
model

::::
input

:::::::::
parameters

::::
vary

::::::
among

:::
the

:::::::
seasons.

:

::
To

:::::::
transfer

:::
the

::::::
method

::
to

:::::::
another

::::::::::
investigation

:::::
area,

:::
just

::
a

:::
few

:::::
steps

:::
are

::::::::
necessary:

::::
first

:
a
::::::
proper

::::::
sample

:::
of

:::::::
historical

::::::
heavy5

::::::
rainfall

::::::
events.

::
In

:::
the

:::
next

:::::
step,

::
the

::::::::
statistics

:::::
(pdfs)

::
of

:::
the

::::::::
prevailing

:::::::
ambient

:::::::::
conditions,

::::::::::
background

:::::::::::
precipitation,

::::
and

:::::::
duration

::
for

:::
the

:::::
event

:::
set

::::
have

::
to

::
be

:::::::::
calculated.

:::::::
Finally,

:::
the

::::::
reduced

:::::
SPM

::::::
(rSPM)

:::
has

::
to
:::
be

::::::::
calibrated

:::
by

::::::::::
determining

:::::::::
appropriate

::::::
values

::
for

:::
the

::::
free

:::::
model

::::::
tuning

:::::::::
parameters.

The
:::::::
presented

:
SPM2D is part of a

::
the

::::::
project

::::::::
FLORIS

::::::
(Flood

:::::
Risk),

::::::
which

::::::::
represents

::
a
:::::
novel risk assessment methodol-

ogy that estimates the flood risk for a local direct insurer
:::
for

::
an

::::::
entire

::::::
domain

::::
and

:::
not

::::
only

:::
for

:::::
single

::::::::::
catchments

:::::::
applied

::
in10

::
the

:::::::::
insurance

:::::::
industry. Within the framework of this project, the SPM2D is used for two more

:::
was

:::::::
applied

::
to

:::::
other federal

states in Central Germanywith the quality of the results resembling those presented for Baden-Württemberg in this study. The

precipitation fields simulated with the SPM2D
::::::
central

::::::::
Germany.

::::
The

::::::::
modeled

::::::::::
precipitation

:::::
fields

:
are used as input data for

hydrological simulations with the aim of the flood risk estimation of a one-in-200-year event and the corresponding probable

maximum loss (PML200), as it is mandatory by law for the insurance industry to maintain capital stock for such an event .15

Besides the PML200 for insurance companies, the proper statistics of extreme events are useful for multifarious issues in

different fields of water management, such as
:::
and

::::::::
hydraulic

::::::::::
simulations,

::::
from

::::::
which

:::
the flood protection with dams or retention

areas, or forecast scenarios
:::
risk

:::
can

::
be

:::::::::
estimated,

:::
for

:::::::
example

:::
for

:
a
::::::::::::::
one-in-200-years

:::::
event

:::::::
required

:::::::::
according

::
to

:::
the

::::::::
insurance

::::::::
regulation

::
of

::::::::
Solvency

:::
II.

::::::::
However,

:::
the

::::::
results

::
of

:::
the

:::::::
SPM2D

::::::::
basically

:::
can

::
be

:::::
used

::
for

:::::::
several

:::::::
different

::::::::::
applications

::::
such

:::
as

::::
water

:::::::::::
management

::
or

:::
the

::::::
design

::
of

:::::
flood

::::::::
protection

::::::::
measures.20

8 Data availability

The REGNIE data used in this paper are freely available for research and can be requested at the DWD (doi:10.1127/0941-

2948/2013/0436); The sounding data are freely available from the Integrated Global Radiosonde Archive (https://www.ncdc.

noaa.gov/data-access/weather-balloon/integrated-global-radiosonde-archive). The required orographic data set

(doi:10.1080/13658810601169899) can be downloaded
:::::::
obtained

:
from http://srtm.csi.cgiar.org/.25
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